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Bowen Wang 1,2, Wenwu Chen1,2, Jiaming Qian1,2, Shijie Feng1,2✉, Qian Chen2✉ and Chao Zuo 1,2✉

Abstract
To reveal the fundamental aspects hidden behind a variety of transient events in mechanics, physics, and biology, the
highly desired ability to acquire three-dimensional (3D) images with ultrafast temporal resolution has been long
sought. As one of the most commonly employed 3D sensing techniques, fringe projection profilometry (FPP)
reconstructs the depth of a scene from stereo images taken with sequentially structured illuminations. However, the
imaging speed of current FPP methods is generally capped at several kHz, which is limited by the projector-camera
hardware and the number of fringe patterns required for phase retrieval and unwrapping. Here we report a novel
learning-based ultrafast 3D imaging technique, termed single-shot super-resolved FPP (SSSR-FPP), which enables
ultrafast 3D imaging at 100,000 Hz. SSSR-FPP uses only one pair of low signal-to-noise ratio (SNR), low-resolution, and
pixelated fringe patterns as input, while the high-resolution unwrapped phase and fringe orders can be deciphered
with a specific trained deep neural network. Our approach exploits the significant speed gain achieved by reducing
the imaging window of conventional high-speed cameras, while “regenerating” the lost spatial resolution through
deep learning. To demonstrate the high spatio-temporal resolution of SSSR-FPP, we present 3D videography of several
transient scenes, including rotating turbofan blades, exploding building blocks, and the reciprocating motion of a
steam engine, etc., which were previously challenging or even impossible to capture with conventional methods.
Experimental results establish SSSR-FPP as a significant step forward in the field of 3D optical sensing, offering new
insights into a broad spectrum of dynamic processes across various scientific disciplines.

Introduction
The ability to probe fast-occurring events in three

dimensions (3D) with ultrafast temporal resolution has
been of vital importance for gaining new insight and
understanding fundamental scientific questions in
mechanics, physics, and biology1–3. Current charge-
coupled device (CCD)- and complementary metal-oxide-
semiconductor (CMOS)-based image sensors only record
two-dimensional (2D) image sequences that lack depth
information, and their imaging frame rates only reach a

few kHz at a decent resolution4–6. In addition, due to the
limited speed of data transfer and sensor integration time,
increasing the frame acquisition rate often results in a
significant reduction in imaging resolution and signal-to-
noise ratio (SNR).
With the advances in electronic imaging sensors, we

have witnessed the rapid evolution of 3D image acquisi-
tion technologies over the past decades7,8. As one of the
most widely adopted 3D sensing techniques, fringe pro-
jection profilometry (FPP) reconstructs the depth infor-
mation of a scene from stereo images taken with
sequential structured illuminations9–12. However, for
measuring dynamic or even transient events, the imaging
speed of FPP is capped by two fundamental factors: (1)
hardware: the speed of the projector and camera; and (2)
software (algorithm): the number of patterns required per
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3D reconstruction. These two factors are complementary
to make 3D imaging “faster”: one should employ high-
speed hardware while simultaneously reducing the num-
ber of fringe patterns needed for the 3D reconstruction13.
In terms of “hardware”, binary defocusing techniques

have been explored to produce quasi-sinusoidal fringes
with 1-bit binary patterns through defocusing of the
projector lens14–16. These methods take advantage of the
binary operation mechanism inherent in digital-light-
processing (DLP) technology to break the speed bottle-
neck of conventional FPP techniques that typically
employ 8-bit sinusoidal fringe patterns, permitting tens of
kHz fringe projection by utilizing a digital micromirror
device (DMD)13,17,18. On the other hand, various pattern
schemes and decoding algorithms for absolute phase
retrieval have been developed, e.g., dual-frequency phase
shifting19, bi-frequency phase shifting20, 2+2 phase
shifting21, geometric constraints-based composite phase-
shifting method22, speckle-embedded Fourier transform
algorithm23, and micro Fourier transform profilometry13.
These methods remove the encoding redundancy in the
traditional Gray code or multi-frequency phase-shifting
methods, effectively reducing the number of patterns
required for unambiguous 3D reconstruction. Despite
these significant advancements, extracting high-precision
absolute phase information from one single fringe pattern
remains a challenge.
With the advancements in artificial intelligence, parti-

cularly deep learning (DL)24–26, optical metrology — a
field dedicated to the precise measurement and char-
acterization based on optical signals, has experienced a
paradigm shift. The advantage of DL lies in its ability to
automatically extract features27–30 and patterns from a
large amount of data, thereby offering novel data-driven
solutions to various complex problems in optical
metrology. Nowadays, deep learning has gradually “per-
meated” into almost all facets of optical metrology31, e.g.,
fringe analysis32–34, fringe denoising35–37, and phase
unwrapping38–41. In particular, it has been demonstrated
that properly trained deep neural networks (DNNs) can
retrieve phase and unambiguous 3D coordinates of
complex objects from only a single fringe pattern, effec-
tively pushing the 3D imaging speed to align with the
camera’s native frame rate for 2D image acquisition.
Nevertheless, as mentioned earlier, the high-speed cam-
eras currently available can only achieve an imaging frame
rate of a few kHz with a decent resolution. Consequently,
the highest 3D imaging frame rate of reported FPP
techniques only reaches ~ 20 kHz42, which still falls short
of the requirements for capturing ultra-fast phenomena.
In this work, we report a novel learning-based ultrafast

3D imaging method, termed single-shot super-resolved
FPP (SSSR-FPP), as shown in Fig. 1, that is capable of
reconstructing 3D images of non-repetitive dynamic

events at 100,000 frames per second (fps). It uses only one
pair of low-SNR, low-resolution (LR), pixelated fringe
patterns as input, while the high-resolution (HR)
unwrapped phase and fringe orders can be deciphered
with a specifically trained network. The novelty of the
SSSR-FPP concept lies in exploiting the significant speed
gain achieved by reducing the imaging window of con-
ventional high-speed cameras, while the lost spatial
resolution is then regenerated with deep learning. As a
result, we reveal the potential of combining deep learning
with FPP for ultrafast, super-resolved, ambiguity-free 3D
imaging, pushing the 3D imaging frame rate into the 100
kHz regime. In the following sections, we will outline the
principle of SSSR-FPP and its experimental setup, quan-
tify its super-resolution performance and 3D measure-
ment accuracy, and demonstrate its applications in
various transient scene categories.

Results
By leveraging the substantial speed gained from redu-

cing the imaging window of conventional high-speed
cameras, SSSR-FPP attempts to retrieve a high-SNR and
high-quality 3D image from a pair of single low-SNR, low-
resolution fringe patterns. As depicted in Fig. 1, the SSSR-
FPP system comprises two high-speed scientific cameras
(Vision Research Phantom V611) and a customized DLP
projection system equipped with an XGA resolution
(1024 × 768) DMD chip. The cameras operate within a
localized readout window of 160 × 160 pixels, enabling
them to capture consecutive images at a frame rate of
100,000 fps with a maximum exposure time of 9.5 μs (see
Supplementary Information, Section B for more details
about the hardware system).
The primary challenge of SSSR-FPP lies in deciphering

absolute phase distribution with decent resolution and
SNR from only a single pair of low-quality, pixelated
fringe images. Inspired by the recent success of DNN
applied in image super-resolution43, fringe analysis32,44,45,
and geometric phase unwrapping31,40, we propose to
leverage deep learning to address this challenge. As
schematically described in Fig. 2, SSSR-FPP employs two
structurally similar but functionally different convolu-
tional neural networks (CNNs), CNN1 and CNN2, which
work in concert to achieve both super-resolved phase
retrieval and phase unwrapping (detailed in Supplemen-
tary Information, Section A). A low-resolution (160 ×
160) fringe image is the input of CNN1, which is inte-
grated with the traditional phase-shifting physical model
to generate the 3 × super-resolved (480 × 480) numerator
(sine) and denominator (cosine) components of the
wrapped phase function. These two components are then
jointly processed through the arctangent function to
predict a high-resolution wrapped phase map. The pro-
posed approach circumvents the challenges associated
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with accurately following the 2π phase jumps by directly
employing an end-to-end network structure, thereby
improving the accuracy of the reconstructed phase
effectively. CNN2 is designed to predict a low-precision
absolute phase from the input fringe image. Though the
absolute phase output by CNN2 is relatively “coarse”, it is
adequate to resolve the fringe order of the high-precision,
high-resolution wrapped phase predicted by CNN1 so
that the high-precision absolute phase can be obtained.
Based on the pre-calibrated geometric parameters of the
experimental setup, a high-precision 3D point cloud can
be reconstructed, and thus, single-shot super-resolved
structured light 3D imaging at a frame rate of 100,000 fps
can be realized.

Measurement results of a static plaster model
To evaluate the super-resolution capability of the pro-

posed SSSR-FPP, we measured a static plaster model,
which was not included in the dataset used for training
our neural networks. Due to the short exposure time
(9.5 μs) and the low pixel resolution (160 × 160 pixels),
background noise and mosaic effect are evident in the raw
images captured at 100,000 fps (refer to Fig. 3a and the

corresponding zoomed region). The corresponding ideal
high-resolution fringe image of 480 × 480 pixels, captured
at a focal length of 72 mm, is shown in Fig. 3b, where
noise and pixelation are mitigated at the expense of a
much lower frame rate (22,000 fps) and longer exposure
time (45 μs). Without altering the hardware setup, the
trained CNN1 takes the low-resolution fringe pattern as
input and predicts the corresponding super-resolved
background-free fringe amplitude image. Image resolu-
tion and fringe quality are improved significantly, as
verified by the output numerator term (sine component of
the ideal fringe image) shown in Fig. 3c, with the error
from the ground truth displayed in the lower right corner.
Following the output from CNN1, the high-resolution
wrapped phase is calculated using the arctangent func-
tion, as shown in Fig. 3d. The wrapped phase, along with
the reference images, is then fed into CNN2 to produce
the high-resolution phase distribution, as depicted in
Fig. 3e. The mean absolute phase error (MAE) of the
proposed method is only 0.0257 rad for the measured
scenario involving complex surfaces.
To further verify the super-resolution 3D imaging

capability, we compared the 3D reconstruction results
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Fig. 1 Schematic diagram of the SSSR-FPP system. The SSSR-FPP system includes two high-speed CMOS scientific cameras (Vision Research
Phantom V611) and a customized DLP projection system. With the increase in a camera’s maximum frame rate, the exposure time is too limited to
capture a sufficiently bright image, resulting in images with poor SNR and evident read noise superimposed
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obtained by our method with those generated from raw
low-resolution fringe patterns using various up-sampling
strategies. It should be noted that these conventional
methods still require 3-frequency and 3-step phase-
shifting algorithm to determine the absolute phase,
entailing a total of nine fringe patterns. The 3D-rendered
geometries, converted from the unwrapped phase maps
through stereo triangulation, offer a more intuitive com-
parison, as shown in Fig. 3f–j. Two areas (boxed regions)
containing fine structures are enlarged and shown on the
right, with the bottom row showing the line profile along
the blue dotted line. As shown in Fig. 3f, the recon-
struction from raw low-resolution data is too coarse to
discern the model’s facial features and clothing details.
While up-sampling of the raw fringe images yielded a

higher quality 3D reconstruction that preserves surface
details more effectively, they suffered from periodic phase
errors stemming from non-sinusoidal waveforms (a con-
sequence of inaccurate interpolation), as can be seen in
Fig. 3h. In contrast, the proposed SSSR-FPP method
produced the most accurate 3D reconstruction, with fine
surface details well-captured, closely mirroring the
ground truth data obtained from high-resolution (480 ×
480 pixels) 3-frequency and 12-step phase-shifted fringe
images. A comparative analysis of the depth profiles for a
selected area is further presented in Fig. 3k–o. Our
method faithfully reproduced the shape and features
present in the ground truth, exhibiting a high degree of
structural similarity in both depth values and the precise
identification of inflection points. The depth
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measurement error curve indicates that the error between
the network output and the true value is less than 0.5 mm.
Objective quantitative assessment based on the Structural
Similarity Index (SSIM) and Peak Signal-to-Noise Ratio
(PSNR) metrics further validated the fidelity and high
SNR of our reconstruction, with values of 0.92 and 26.81
dB, respectively. In contrast, due to pixel aliasing and
noise interference, the error distributions of other meth-
ods significantly exceed 0.5 mm. Specifically, when com-
pared with the non-interpolated 3-frequency and 3-step
phase-shifting methods, our approach demonstrated
substantial improvement, with an increase of 0.13 in SSIM
and 9.52 dB in PSNR.
To demonstrate the rationality and effectiveness of the

constructed deep learning network, we employed the
same training datasets and compared the performance of
different network structures (MVSNet46, DCNN47, Multi-
path CNN32, etc.) with our method in a comparative

experiment in Fig. S9. Experimental results show that the
constructed network can preserve the smallest MAE
(0.0871 rad) in the predicted absolute phase, especially in
the region of sharp edges or significant variations in
reflectivity, and thus guarantee the highest precision of
ultra-high-speed 3D imaging and measurement. More
details can be found in Section D of the Supplementary
Information. In addition, to further demonstrate the
generalization capability of the SSSR-FPP method, in
Section F of the Supplementary Information, we present
additional comparative experimental results of four dif-
ferent plaster models. These results confirm that SSSR-
FPP is robust against challenges such as low image SNR
and can be reliably applied to a variety of samples with
complex shapes. It is important to note that the SSSR-FPP
reconstruction is fully automated and does not require
manual adjustment of parameters, thereby enhancing its
algorithmic efficiency. In consideration of the
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aforementioned discussions, the SSSR-FPP method offers
a promising solution for single-shot 3D super-resolved
reconstruction, minimizing the impact of phase mea-
surement errors at low SNR to the greatest extent possible
with current technology.

Quantitative analysis of 3D reconstruction accuracy
To quantitatively evaluate the accuracy of SSSR-FPP

measurement results, we further conducted a dynamic
measurement scenario involving a pair of standard cera-
mic spheres and a table tennis ball in free fall. The stan-
dard spheres have certified radii of 25.3989 mm and
25.4038 mm, respectively, with a center-to-center dis-
tance of 100.0532 mm. This allows us to gauge the
measurement precision and repeatability of the SSSR-FPP
system using spheres with precisely calibrated dimen-
sions. The table tennis ball, with a radius of approximately
19.8 ± 0.1 mm, was used to test the system’s accuracy to
measure moving objects. Figure 4b presents the color-
coded 3D shapes of the two standard spheres and the
falling table tennis ball measured by the proposed SSSR-
FPP method at T = 0 ms. As shown in Fig. 4d, the
measurement errors (root mean square) for the standard
spheres are 77.74 μm and 57.34 μm, respectively. The
measured center-to-center distance between the two
spheres is 100.21 mm. In Fig. 4c, we provide the mea-
surement errors for a free-falling ball at three distinct

instants (T = 0 ms, 16.43 ms, 35.82 ms). Since the
dimension of the table tennis ball was uncalibrated, the
accuracy of the measurements was determined by fitting
the point cloud and calculating the discrepancy between
the measured data and the fitted sphere, and the spherical
radius was determined by fitting an optimal sphere to the
3D point cloud. These results demonstrate that SSSR-FPP
is capable of performing quantitative absolute 3D shape
measurement with an accuracy better than 80 μm within a
volume of 260 mm × 260 mm × 50 mm.

Experimental results of dynamic scenes
We demonstrate the high temporal resolution of SSSR-

FPP by performing 3D videography of a fast-changing
scenario containing two isolated samples: a fast-spinning
computer fan and a static plaster model located on the
right side. Despite the background noise and pixelation in
the raw fringe images, the 3D geometry of the entire fan
and the surface details of the plaster model, including the
curly hair and the ripples on the skirt, were well-resolved
by SSSR-FPP, as demonstrated in Fig. 5b. An enlarged
view of the corresponding areas is presented in Fig. 5d.
The corresponding depth curves clearly show that the
skirt of the plaster model was accurately reconstructed at
t = 0.17 ms.
To test the repeatability of the 3D measurement data,

we randomly selected three points on the fan blade to
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illustrate the periodic motion (A, B, and C, marked in
Fig. 5a). As shown in Fig. 5g, the depth variations in the
z-direction at these selected positions are plotted for a
period of 15 ms as a function of time. The graph indicates
that the rotation period of the fan is about 9.81 ms,
equivalent to a speed of 6,116 revolutions per minute
(RPM), demonstrating the stable repeatability of the
SSSR-FPP measurement. The color-coded 3D rendering
of the fan surface at ~ 0.17 ms is presented in Fig. 5e.
Figure 5f demonstrates five line profiles drawn outwards
from the central hub along the radial direction. Within
the short period of 0.89 ms, the fan blades rotated rapidly,
completing about 1/11 of a turn from the initial position,
producing a maximum depth variation of over 8 mm in
the z-direction. The length of the fan blade can be further
estimated from the 3D reconstruction to be ~ 110 mm,
with a radius of ~45 mm. The corresponding 3D-rendered
video sequence is available in Supplementary Visualiza-
tion 2.
Finally, we performed 3D reconstruction of a turbofan

engine model at its maximum physical rotational speed.
The original image captured is presented in Fig. 6a.
Despite the high-frequency details in the raw fringe image

being distorted by the noise superimposed, SSSR-FPP
successfully resolved the textural characteristics, as shown
in Fig. 6b. As shown in Fig. 6b, the 3D rendering of the
turbofan engine model is displayed from two different
perspectives. The numerator (sine) term of the network
output is shown in Fig. 6c. To validate the reliability of the
SSSR-FPP reconstruction, we selected three arbitrary
points on the flywheel, labeled as A, B, and C in Fig. 6d, to
showcase the periodic rotation. Figure 6d shows the
successive 3D measurement results at a time interval of
0.01 ms. The inset provides a magnified view of the blade
region, allowing for an intuitive observation of the surface
shape variation (the blade rotated approximately 5 pixel
points in the image with an interval of 0.02 ms). In Fig. 6e,
we graphed the vertical displacement along the z-axis at
the designated points, which were measured over an 8 ms
period. It can be observed that the fan’s rotational period
is approximately 6.14 ms, corresponding to a speed of
9771 RPM. Figure 6f presents an enlarged view of the
selected region 2, providing a closeup perspective that
captured the texture details of the gears at various
moments. We conducted a cross-sectional analysis in the
x-z plane on a specific area of the turbine’s turntable. As
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shown in Fig. 6g, the measured gear width is approxi-
mately 2.44 mm. After 0.03 ms, the forward movement
increment of the gear is about half a gear. The analysis
confirms that the SSSR-FPP technique is capable of deli-
vering high-resolution ultrafast 3D shape measurements
across a measurement volume of 400 mm × 180 mm ×
210 mm. The reconstructed 3D-rendered video sequence
over an observation period of 6.14 ms is further provided
in Supplementary Visualization 3.
In addition to the three dynamic experiments demon-

strated above, we have also presented additional high-
speed 3D imaging results across diverse scenarios in
Supplementary Information, Section G. These additional
experiments include capturing non-repetitive transient
events such as a flying bullet, analyzing the physical
transformation process of a steam engine, recording
complex object deformations, and measuring objects with
diverse materials and colors. The corresponding 3D video
sequences can be found in Supplementary Visualization
4–8. These supplementary experimental results further
consolidate the robustness and universality of the high-
speed dynamic imaging capability of SSSR-FPP,

particularly for measuring fast-moving objects with
complex geometries and surface reflectivities, at an
unprecedented speed of 100 kHz.

Discussion
Analysis of spatial resolution and SNR of the SSSR-
FPP system
The intrinsic restriction on the maximum frame rate of

a high-speed camera is mainly determined by the time
required to read out the captured images from the
detector, which is determined by the readout speed, pixel
clock rate, and the dimension of the image to be read out
(i.e., the pixel resolution). As a result, most high-speed
cameras can achieve significantly higher frame rates by
substantially reducing the frame size, typically achieved by
averaging or windowing the neighboring pixels and per-
forming image recording and readout for a subset of the
sensor’s full area.
Taking the commercially available high-speed camera

used in our SSSR-FPP system, Phantom V611, as an
example, its maximum read-out speed is ~ 6 Gigapixels
per second, corresponding to only 6224 fps at full
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megapixel resolution (1280 × 800). However, it is capable
of acquiring over 20,000 fps with about a quarter of the
full size (512 × 512), 100,000 fps with a significantly
reduced resolution (160 × 160), and achieving a maximum
speed of 1000 kHz with only a few lines of pixels (128 × 8).
In addition to the reduction in image resolution, there
exists a direct relationship between the camera’s frame
rate and its exposure time (integration time), which in
turn directly affects the imaging sensitivity and SNR. As
an example shown in Fig. 1, the maximum attainable
frame rate cannot surpass the physical limit governed by
the sensor exposure time. With the increase in camera’s
frame rate, the exposure time becomes too short to
acquire sufficient photons, resulting in images with a poor
SNR and pronounced readout noise.
In the realm of high-speed imaging, it is common

practice for high-speed imaging devices to utilize image
sensors with large pixels to guarantee adequate detection
sensitivity. A larger pixel size offers higher light-gathering
capabilities, albeit at the expense of reduced spatial
resolution due to lower sampling density. The imaging
resolution of most high-speed cameras is primarily con-
strained by the Nyquist sampling limit determined by
pixel size, rather than the diffraction limit imposed by the
imaging optics. Therefore, achieving an optimal balance
between sensitivity and resolution is essential in designing
high-speed imaging systems. This balance allows for
capturing high-quality images while maintaining an
accurate representation of fine details, even under chal-
lenging conditions of high-speed imaging with limited
exposure time.
The proposed imaging system utilizes a 20 μm pixel size

sensor (Phantom CMOS), coupled with a 24 mm focal
length lens, which theoretically enabled the system to
achieve a spatial resolution of 0.833 mrad. Through SSSR-
FPP reconstruction, the spatial resolution can be
enhanced up to 0.891 lp/mm (Group -1, Element 6),
corresponding to a 1.58 × improvement in resolution.
Leveraging the prior knowledge embedded in the network
significantly improves the spatial resolution, rendering the
texture details on the plaster models sharper, in con-
junction with the improvement of SNR from 28.57 dB to
33.51 dB (further discussions about the spatial resolution
and the accuracy of the reconstructed phase distribution
can be found in Supplementary Information, Section D).
It is worth noting the proposed method offers higher
accuracy in both lateral and axial directions than con-
ventional solutions, providing a low-cost yet robust
solution for high-speed 3D imaging.

Advantages of SSSR-FPP for ultrafast 3D imaging
Furthermore, we conducted a comparative experiment

to analyze the influence of different fringe pattern
schemes on the reconstruction results under ultra-high-

speed imaging conditions. We find that the composite
fringes-based 3D imaging methods become vulnerable
under pixelated and low SNR sampling conditions, due to
the fact that the reduced resolution and SNR make the
problem of spectral aliasing more severe, which is fatal in
techniques like multiplexed FPPs. (Details are in the
Supplementary Information, Section E.) Moreover, to
highlight the unique value of the SSSR-FPP method in the
field of ultra-high-speed 3D imaging, we analyzed and
compared the proposed method with three mainstream
3D reconstruction techniques [structure from motion
(SfM)48, simultaneous localization and mapping
(SLAM)49, multi-view stereo (MVS)50,51] in terms of
imaging speed, number of point clouds, accuracy, inde-
pendence from calibration, and cost-effectiveness. We
further conducted a comparative experiment on the 3D
reconstruction of a static plaster statue. The experimental
results demonstrate that our method can achieve high-
precision 3D reconstruction of 80244 point clouds at an
imaging speed of 100,000 fps. Details are in the Supple-
mentary Information, Section D, Figs. S10 and S11. Due
to the artificial projection to help correlation matching
and the ability of super-resolved imaging, our method has
obvious advantages compared with other methods in
terms of imaging speed, accuracy, and number of recon-
structed point clouds. Therefore, it can be used to dis-
cover the physical mechanism behind transient
phenomena and provide a powerful scientific tool for the
study of transient events in aerospace, biomedicine,
defense, and military fields.

Further consideration about the SSSR-FPP method
Though the proposed method is capable of achieving

single-frame super-resolution 3D reconstruction, it is
essential to keep a clear mind and recognize that the
SSSR-FPP method, despite its effectiveness, is not omni-
potent. Several inherent limitations of deep learning
methods should be taken into consideration carefully.
(1) The network basically obtains the mapping rela-

tionship between the desired image and the raw image
through the learning of a huge amount of paired data and
the adjustment of hyperparameter terms. From the
opposite perspective, DNNs can be pretty fragile due to
the impartial principle that information cannot be
“formed from nothing”. In other words, if we do not
employ a proper network model and training algorithm or
fail to feed it with the correct type of data reflecting the
real underlying physics, the neural network may yield
poor performance.
(2) Deep learning approach eliminates the traditional

approach’s reliance on handcrafted priors and adequately
utilizes the high-frequency texture information “hidden”
in the observed fringe pattern. More importantly, the
reconstruction ability of computational imaging
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technology is greatly limited by “the accuracy of for-
warding mathematical modeling” and “the reliability of
reverse reconstruction algorithm”.
Recognizing these challenges, we implemented a

physics-based procedure for the generation of training
datasets instead of using simulations or direct down-
sampling methods. Although adjusting the lens focal
length to acquire samples at different image resolutions is
indeed labor-intensive and imposes stringent require-
ments on the stability of the imaging system, these efforts
are essential to overcome the “domain mismatch” pro-
blem. To alleviate these issues, we tried to explore opti-
mization strategies for dataset generation. In the
Supplementary Information, Section C and Fig. S7, we
demonstrate the application of dataset generation techni-
ques based on “digital twin” and transfer learning52,53 in
our method, we show that the approach of combining
virtual and real datasets can achieve a performance
(MAE = 0.1037 rad) close to that of the approach with all
real datasets (MAE = 0.0872 rad). The gap between these
two approaches diminishes as the number of datasets
gradually increases. The experimental results demonstrate
the effectiveness of the dataset generation technique based
on “digital twin” and transfer learning in reducing the
dataset acquisition cost in the SSSR-FPP method. To
address the issue of data imbalance in single-frame abso-
lute phase retrieval and super-resolution, the raw low-
resolution images fed into the network come from two
cameras of different viewpoints, in addition to the physical
model-based data acquisition approach, which inherently
incorporates a specific parallax that facilitates removing
phase ambiguity (the sub-pixel offset between two differ-
ent views also contribute to the image super resolution).
Finally, for highly reflective objects, the severely limited
exposure time in ultra-high-speed imaging mode caused
no overexposure in all cases of our experiments. However,
establishing accurate datasets unaffected by overexposure
is the most important challenge we face. To handle this
issue, we combined a multi-exposure fusion algorithm54 in
dataset production to eliminate the adverse effects of
overexposure on achieving the wrapped phase (refer to
Supplementary Information, Section C and Fig. S6). The
results in Fig. S6 demonstrate that the introduction of the
multi-exposure fusion algorithm generates composite
optimal exposure fringe images, yielding global high-
quality wrapped phase maps and effectively improving the
3D reconstruction accuracy of locally overexposed regions.
However, it is also important to acknowledge that our

method has certain limitations. For instance, the diversity
and complexity of samples that SSSR-FPP can effectively
handle are still somewhat restricted. Furthermore, due to
the inherent underdetermined nature of the pixel super-
resolution problem, there also exists a fundamental limit
to the degree of resolution improvement that can be

achieved by deep learning. There are several intriguing
avenues that merit further exploration to address these
challenges. For example, incorporating a system point
spread function (PSF)55,56 into our network design could
potentially address this issue to a certain extent, or
modeling the full-precision57 3D geometry to explore the
limits of accuracy. In addition, if we want to further
extend the measurement volume, we not only need to
customize the imaging focal length and field of view of the
projector and imaging camera but also need to take into
account the light power of the projector.

Conclusions
In this work, we have reported SSSR-FPP, a learning-

based ultrafast 3D imaging technology that uses only one
pair of low-SNR, low-resolution, and pixelated fringe pat-
terns to achieve high-resolution absolute 3D shape mea-
surement of dynamic events. To our knowledge, this is the
first demonstration of ultra-high-speed FPP 3D imaging at
an unprecedented speed of 100 kHz. SSSR-FPP exploits the
significant speed gain achieved by reducing the imaging
window of conventional high-speed cameras while “regen-
erating” the lost spatial resolution with deep learning,
resulting in a boost in 3D frame rate up to more than one
order of magnitude without compromising spatial resolu-
tion. Moreover, owing to its single-shot nature, the SSSR-
FPP method fundamentally overcomes the phase-shifting
errors and associated artifacts induced by object motion.
Finally, by simply utilizing imaging sensors with a higher
frame rate in conjunction with a high-power light source
and large-aperture imaging optics could, in principle, fur-
ther push 3D imaging frame rates up to the million-frame-
per-second regime. Experimental results suggest that SSSR-
FPP is expected to offer new insights for studying a multi-
tude of ultra-fast dynamic processes, advancing our
knowledge across various scientific disciplines.

Materials and methods
Optical setup
The SSSR-FPP prototype is shown in Fig. 1, which is

composed of two high-speed scientific cameras (Vision
Research Phantom V611) and a customized DLP projection
system with an XGA resolution (1024 × 768) DMD chip. A
24 mm-85 mm lens (Nikon AF-S, an aperture is con-
tinuously adjustable from f/3.5 to f/4.5) was mounted on the
scientific camera, and the aperture (F-number) of the lens
was fully open to permit the maximum light flux for ima-
ging. In experiments, the cameras operated within a loca-
lized readout window (160 × 160) with a focal length of 24
mm, so that it is capable of capturing consecutive images at
a frame rate of 100,000 fps with a maximum exposure time
of 9.5 μs. Besides, to generate training datasets, the cameras
were set to the resolution of 480 × 480 when capturing
high-resolution fringe images, with a focal length of 72 mm,
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a lower frame rate (2,2000 fps), and a longer exposure time
(45 μs). By omitting any grayscale features and displaying
binary images on the DMD, the system refresh rate was
driven at 2,2000 fps, which isis precisely synchronized by a
custom-built FPGA circuit. For more details, see Supple-
mentary Information, Section B about the optical system
setup and hardware synchronization.

Methodology overview
The first workflow of the deep learning-based SSSR-FPP

framework involves generating training datasets. Instead of
creating datasets through simulations (e.g., based on sim-
ple pixel merging or optical transfer function modeling), in
the proposed solution, the desired 3 × super-resolved
results corresponding to the low-SNR, low-resolution
fringe images were obtained experimentally based on the
same experimental setup but tripling the focal length of
the lens (from 24 mm to 72 mm), as demonstrated in
Fig. 1. This approach allows the SSSR-FPP framework to
learn more potential information reliably from experi-
mental data with “physical meaningful” prior knowledge
about the image formation process, without requiring
additional computational resources. Further details on the
dataset preparation for network training are provided in
Supplementary Information, Section C.
Then, the workflow of the SSSR-FPP framework comes

to train the neural networks. SSSR-FPP employs two
collaborative but functionally different CNNs, CNN1 and
CNN2, which were trained independently and sequen-
tially. CNN1, which combines a dual regression archi-
tecture and a composite loss based on physics and data,
accepted as input a low-resolution (160 × 160) and low-
SNR fringe image. Corresponding labels were 3 × super-
resolved (480 × 480) numerator and denominator terms
of the wrapped phase function, which could be calculated
to achieve the high-resolution wrapped phase. The task is
to perform super-resolved phase retrieval via deep learn-
ing. For CNN2, the training process established a map-
ping from an ambiguous wrapped phase to an absolute
phase map. CNN2 is a framework embedded with geo-
metric constraints and phase unwrapping, and its input
was a pair of low-resolution fringe images, super-resolved
wrapped phase maps (predicted by CNN1), and the
reference plane information. The label for CNN2 was the
absolute phase map, obtained by the multi-frequency
phase shifting method (12-step phase-shifting and
3-frequency temporal phase unwrapping with frequencies
of 1, 8, and 32). Refer to Supplementary Information,
Section A for more network training details.
During the implementation stage, i.e., in the transient

experiments, CNN1 received a low-resolution fringe image
and output super-resolved numerator and denominator
terms of the wrapped phase. The architecture of CNN1
incorporates the physical model of the phase-shifting

method, bypassing the difficulty of predicting 2π jumps in
the wrapped phase function. The dual regression archi-
tecture and composite loss enable CNN1 to be driven by
both experimental data and physical models. Then, the
high-resolution wrapped phase, along with reference plane
information, was fed into CNN2, which deciphered an
unambiguous absolute phase map. Although the output
absolute phase output is relatively “coarse” due to factors
such as environmental light, large surface reflectivity, and
discontinuities, it is sufficient to resolve the precise fringe
order of the wrapped phase. This allows the generation of
a high-resolution and high-precision absolute phase.
Finally, with the pre-calibrated parameters, super-resolved
3D imaging at 10,0000 fps can be realized.

Image acquisition and 3D reconstruction
In image acquisition, the focal length of the imaging lens

needed to be adjusted repeatedly during data collection.
To automate the whole process, an electro-mechanical
lens mount adapter was employed for electronic control of
focus and aperture. Moreover, a phase-correlation-based
image registration algorithm was implemented to align the
LR-HR image pair precisely for dataset preparation. In this
work, the training dataset consists of 1000 groups of fringe
images with corresponding ground truth data (for addi-
tional information about the optical setup and training
data acquisition details, refer to Sections B and C of the
Supplementary Information). It also should be noted that
when the relative position of the camera or projector is
changed the established mapping function of the training
data will be destroyed and the process needs to be
restarted completely. To maintain the model’s general-
ization capabilities and ensure its accuracy, retraining is
recommended when alterations occur to the imaging
setup or environmental conditions. This process necessi-
tates the acquisition of new HR and LR image pairs. These
image pairs serve as the foundation for enhancing or
retraining the existing network, thereby ensuring that the
training model maintains high performance and adapt-
ability in diverse real-world applications.
We designed two CNNs (CNN1 and CNN2) with

identical architectures but distinct input and output
configurations. Two CNNs (CNN1 and CNN2) perform
the specific functions of super-resolved phase retrieval
and phase unwrapping, respectively. CNN1 and CNN2
operate independently on their respective tasks and strive
to reach an optimal state. After learning from the massive
dataset, the properly trained model can “regenerate” the
lost spatial resolution and predict high-accuracy absolute
phase information from only one pair of low-quality
pixelated fringe images, enabling single-shot, super-fast
and unambiguous 3D surface imaging. (the corresponding
system acquisition process and reconstruction workflow
are detailed in Supplementary Visualization 1).
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