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a b s t r a c t

Dual-wavelength interferometry could extend the measured range of single-wavelength interferometry by
combining the two single wavelength phases, particularly for the measurement of step height. When testing the
high-reflectivity surfaces with the single wavelength Fizeau interferometer, we have presented the π∕4 phase-shift
carrier squeezing interferometry (QCSI) method for phase extraction with multi-beam interference (Appl. Opt. 55,
1920–1928, 2016). In this paper, we propose an integer and decimal portions synthetization (IDS) method for the
multi-beam interference in the dual-wavelength Fizeau interferometer. One of the single wavelength wrapped
phases is demodulated by the multi-beam interference QCSI algorithm, while the second of the single wavelength
wrapped phases is extracted by the conventional two-beam interference phase-shift algorithm, so the equivalent
wavelength unwrapped phase is derived from the two single wavelength wrapped phase. The decimal portion
of synthesized phase is then obtained directly from the first single wavelength wrapped phase, and the integer
portion of synthesized phase is obtained from the fringe order of the first single wavelength wrapped phase
determined by the equivalent wavelength unwrapped phase. The proposed non-iterative IDS method avoids the
common error magnification effect in the two-wavelength techniques, and only requires no more than 8 frame
phase-shift interferograms for each single wavelength. Its robust performance is validated by both simulations
and experiments in the presence of multi-beam interference as well as phase-shift error for measuring objects
with height discontinuities.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The interferometry is a powerful, typical and direct choice to mea-
sure the three-dimensional surface profile [1]. However, if the surface
has a height discontinuity larger than a quarter of the wavelength of the
illumination laser, the profile cannot be measured correctly using single-
wavelength interferometry, due to the 2𝜋 phase ambiguity problem in
the phase unwrapping procedure. Dual-wavelength interferometry pro-
vides a solution to solve this problem [2,3]. Subtracting the unwrapped
phase at the first wavelength from the other unwrapped phase at the
second wavelength, the phase for the long equivalent wavelength is
produced, enabling measurement of height discontinuities larger than
𝜆∕4 at either single wavelength. A variety of remarkable researches
to demodulate the phase for the equivalent wavelength have been
reported, which are based on the two-beam interference [4–6].

* Corresponding author.

However, when testing surface with high reflectivity, the multi-
beam interference exists and the interference intensity is not strictly
cosine distributed [7,8]. The ripple error presents obviously in the
extracted phase for the equivalent wavelength from the combination
of the two phases at each single wavelength when using the routine
phase-shift algorithms suitable only for two-beam interference. Placing
an attenuator in interferometric cavity is a usual approach to suppress
multi-beam interference. However, for the test surfaces with different
reflectivity or apertures, attenuators should be fabricated with different
transmissivities or apertures at both of the two wavelengths in dual-
wavelength Fizeau interferometry.

The other way to handle this problem is to separately demodulate
the phase at each single wavelength using the multi-beam interference
algorithms. These multi-beam interference algorithms have been made
aiming at reducing the effect of harmonics, which could be divided into
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the non-iterative and iterative methods according to the demodulation
process. The multi-beam interference error could be suppressed by the
𝜋∕4 phase-shift averaging method [9], principal component analysis
(PCA) [10–12], 4N-3 algorithm [13,14] and so on, all of which are non-
iterative algorithms. However, their precision is limited by the accuracy
of phase shift. Using the iterative algorithm, phase distribution can be
extracted from the interferograms with random phase shifts [15,16].
Actually, the phase shifts in the well-calibrated Fizeau interferometer
are not arbitrary but with minor difference from the demanded nominal
value, so the time-consuming iterative algorithm will not be the best
choice. To suppress the ripple error in the retrieved phase induced by
the multi-beam interference and the phase-shift errors simultaneously,
a 𝜋∕4 phase-shift carrier squeezing interferometry (QCSI) algorithm is
proposed [17], which is based on carrier squeezing interferometry (CSI)
by converting the temporal phase shift into spatial carrier and establish-
ing the relationship of the temporal domain and spatial domain [18–
20]. However, as mentioned above, the equivalent wavelength phase is
obtained by subtracting the phase at one wavelength from the phase at
the other wavelength. Therefore, both phases should be demodulated by
the multi-beam interference algorithms mentioned above respectively,
which would be a complex and time-consuming process. Moreover, for
the error magnification effect in the two wavelength techniques [2],
all the retrieve errors of the two single-wavelength phases would be
superposed and magnified in the equivalent wavelength phase.

This paper is organized mainly as follows. In Section 2, for single
wavelength phase in the presence of multi-beam interference as well as
phase-shift error, the calculated residual phase error by the conventional
phase-shift algorithm such as the de Groot 7-frame algorithm [21] is
analyzed. Based on the analysis of the demodulated phase error and the
two-wavelength techniques, we present an integer and decimal portions
synthetization (IDS) method for multi-beam interference in the dual-
wavelength Fizeau interferometer in Section 3. By the calculation of
the integer-portion phase, the residual phase error for the conventional
phase-shift algorithm could be suppressed. And then one of the single-
wavelength wrapped phases could be extracted by the multi-beam
interference algorithm, while the second could be demodulated by the
conventional two-beam interference phase-shift algorithm. So the pro-
cess of phase demodulation is simplified by the proposed IDS method.
Finally, in Sections 4 and 5, numerical simulations and experiments are
executed to demonstrate the performance of the proposed IDS method
in multi-beam interference, compared with the 7-frame algorithm, 𝜋∕4
phase averaging algorithm and the iterative algorithm.

2. Analysis for the demodulated error

In the presence of multiple-beam interference as well as phase-shift
error for Fizeau interferometer, the calculated residual phase error for
the conventional phase-shift algorithm could be expressed as:

Δ𝜙 = 𝑜
(

𝑎𝑖
)

+ 𝑜
(

𝜀𝑗
)

(1)

where 𝑜
(

𝑎𝑖
)

and 𝑜
(

𝜀𝑖
)

are the residual calculated phase errors resulted
by the harmonics in multi-beam interferometry and the phase-shift error
separately, and 𝑎𝑖 is the coefficients of harmonic in multi-beam interfer-
ometry, while 𝜀𝑖 is the error coefficient of phase shift. To estimate the
influences of the retrieve errors for the single-wavelength phase in dual-
wavelength interferometry, the multi-beam interferometry error 𝑜

(

𝑎𝑖
)

and phase-shift error 𝑜
(

𝜀𝑖
)

would be analyzed separately in following
section.

2.1. demodulated error in presence of multi-beam interference

The intensity distribution of multi-beam interference in Fizeau in-
terferometer could be developed in Fourier series from the expression

of the Airy formula [22]. And the intensity distribution of multi-
beam interference could be expressed approximately as the sum of
harmonics [23]:

𝐼𝑛 = 𝐼0

{

𝑎0
2

+
∞
∑
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𝑎𝑘 cos
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}

(2)

where 𝐼0 and 𝜙 are the local mean intensity and measured phase
separately, and 𝛿𝑛 is the temporal phase shift, and 𝑛 is the frame number,
and the pixel coordinate ( 𝑥, 𝑦 ) in Eq. (2) is omitted for simplicity.
Besides, the coefficients in Eq. (2) are depended on the reflection
coefficients of reference flat 𝑟1 and test surface 𝑟2, which are defined
as follows:

𝑎0 =
2
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𝑟21 + 𝑟22 − 2𝑟21𝑟
2
2
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(3)
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For the conventional phase-shift algorithm such as the 7-frame
phase-shift algorithm proposed by de Groot [21], the calculated phase
error 𝑜

(

𝑎𝑖
)

in Eq. (1) from the multi-beam interferograms with 𝜋∕2
phase shift could be expressed as:
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.
(5)

The term of sin (8𝑚𝜙) and the higher order ones in Eq. (5) could
be omitted due to their small coefficients. The calculated error is then
approximated as the sinusoidal function with the period 4 times the
modulation frequency of fringes. And substituting the coefficients of
harmonics in Eqs. (3) and (4) into Eq. (5), the calculated phase error
𝑜
(

𝑎𝑖
)

could also be rewritten as:

𝑜
(

𝑎𝑖
)

= 𝑟21𝑟
2
2
(

1 − 𝑟21𝑟
2
2
)

cos (4𝜙) . (6)

Since the reflection coefficients 𝑟1, 𝑟2 < 1, the coefficient of sine term
in Eq. (6) satisfies the condition:

𝑟21𝑟
2
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< 1
2
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2
. (7)

Therefore the calculated phase error of 7-frame phase-shift algorithm
for multi-beam interferometry satisfies the condition 𝑜

(

𝑎𝑖
)

< 1∕2 rad.
To provide a more intuitive explanation, Fig. 1 illustrates the values of
the coefficient for sine term in the calculated phase error 𝑜

(

𝑎𝑖
)

in Eq. (6)
with the test surface reflection coefficient 𝑟2 varying from 0.2 to 0.99,
while the reflection coefficient of reference flat 𝑟1 is set from 0.2 to 0.9.
Inferred from the relationship curve presented in Fig. 1, the value of the
coefficient in Eq. (6) is less than 0.3. And then the values of calculated
phase error satisfies the condition 𝑜

(

𝑎𝑖
)

< 0.3 rad.
Actually in dual-wavelength Fizeau interferometer developed by

ourselves with the working wavelength 632.8 nm and 532 nm, the
reference flat is made by silica with the reflection coefficient about 0.2.
Therefore, the values of calculated phase error satisfies the condition
𝑜
(

𝑎𝑖
)

< 0.04 rad from Fig. 1.

2.2. demodulated error in presence of phase-shift error

When the phase shifter is not calibrated well and is non-linear for the
existence of the phase-shift error, the phase shift 𝛿𝑛 could be expressed
as a function of the unperturbed phase-shift values 𝛿0𝑛, which is given
by the superposition of different-order polynomials:

𝛿𝑛 = 𝛿0𝑛

[

1 + 𝜀1 + 𝜀2
𝛿0𝑛
𝜋
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(
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)2
+⋯ + 𝜀𝑝

(

𝛿0𝑛
𝜋

)𝑝−1
]

,

𝑛 = 1,… , 𝑁 (8)
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Fig. 1. The values of the coefficient for sinusoidal term in 𝑜
(

𝑎𝑖
)

with 𝑟2 varying from 0.2
to 0.99, while 𝑟1 is set from 0.2 to 0.9.

where 𝑝 (𝑝 < 𝑁 − 1) is the maximum order of the nonlinearity, and
𝜀𝑞 (1 ≤ 𝑞 ≤ 𝑝) is the 𝑞th order error coefficient, which is smaller than 1.
Staying with de Groot’s 7-frame phase-shift algorithm, the calculated
residual phase error 𝑜

(

𝜀𝑗
)

in Eq. (1) caused by the phase-shift error
could be expressed as [24]:

𝑜
(

𝜀𝑗
)

= 𝜋
2
𝜀2 −

𝜋2𝜀22
64

sin (2𝜙) +
𝜋4𝜀41
256

sin (2𝜙) +⋯ (9)

where the phase shift 𝛿𝑛 is given by the superposition of the first two
order polynomials for simplicity:

𝛿𝑛 =
𝜋
2
(𝑛 − 3)

[
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𝜀2
2

(𝑛 − 3)
]

, 𝑛 = 1, 2…𝑁. (10)

From the calculated residual phase error 𝑜
(

𝜀𝑗
)

in Eq. (9), the dc
component 𝜋𝜀2∕2 is a constant for a spatially uniform phase shift, which
would not affect the extraction of the measured phase. For the error
coefficient 𝜀𝑞 is smaller than 1, the higher order residual error could
be neglected. And the calculated residual phase error 𝑜

(

𝜀𝑗
)

in Eq. (9)
caused by the phase-shift error could be rewritten and satisfies the
condition:
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(11)

Therefore the calculated phase error 𝑜
(

𝜀𝑗
)

in Eq. (9) satisfies the
condition 𝑜

(

𝜀𝑗
)

< 𝜋2∕64 = 0.16 rad. And Fig. 2 illustrates the maximum
value of calculated residual phase error 𝑜

(

𝜀𝑗
)

caused by the phase-shift
error for de Groot’s 7-frame phase-shift algorithm. The 2nd order error
coefficient 𝜀2 is set from −0.3 to 0.3 with the phase-shift miscalibration
varying from −0.3 to 0.3, which is sufficient to present the most cases
for the phase-shift errors. Derived from Fig. 2, the values of calculated
phase error 𝑜

(

𝜀𝑗
)

caused by the phase-shift error for de Groot’s 7-frame
phase-shift algorithm satisfies the condition 𝑜

(

𝜀𝑗
)

< 0.02 rad actually.
As analyzed above, the varying ranges for the residual calculated

phase errors resulted by the harmonics in multi-beam interferometry
and the phase-shift error are 𝑜

(

𝑎𝑖
)

< 1∕2 rad and o
(

𝜀j
)

< 0.16 rad sep-
arately. And then the calculated residual phase error in Eq. (1) resulted
by the harmonics in multi-beam interferometry and the phase-shift error
for the conventional phase-shift algorithm satisfies the condition:

Δ𝜙 = 𝑜
(

𝑎𝑖
)

+ 𝑜
(

𝜀𝑗
)

< 0.5 + 0.16 = 0.66 𝑟𝑎𝑑. (12)

Moreover, from the practical analysis of the residual calculated phase
errors resulted by the harmonics in multi-beam interferometry and the
phase-shift error shown in Figs. 1 and 2, we find that 𝑜

(

𝑎𝑖
)

< 0.04
rad and 𝑜

(

𝜀𝑗
)

< 0.02 rad. Then the calculated residual phase error in
Eq. (12) Δ𝜙 is less than 0.06 rad actually.

3. Principle of the proposed IDS method

In the two-wavelength techniques, the equivalent wavelength
wrapped phase is obtained by subtracting the measured phases at two
different wavelengths, which could be expressed as [2]:

𝜙𝑒𝑞 = 𝜙𝜆2 − 𝜙𝜆1 = 2𝜋
(

1
𝜆2

− 1
𝜆1

)

𝑧 = 2𝜋
𝜆𝑒𝑞

𝑧 (13)

where 𝜆1 and 𝜆2 are the two wavelengths used to make the mea-
surement, and 𝜆2 is assumed to be less than 𝜆1. 𝜙𝜆1 and 𝜙𝜆2 are the
single-wavelength wrapped phases for 𝜆1 and 𝜆2 respectively, and 𝜆𝑒𝑞 =
𝜆1𝜆2∕

(

𝜆1 − 𝜆2
)

represents the longer equivalent wavelength. And 𝑧 is
measured difference in surface height.

And from the equivalent wavelength phase in Eq. (13), the measured
difference in surface height could be written as:

𝑧 =
𝜙𝑒𝑞

2𝜋
𝜆𝑒𝑞 =

(

𝜙𝜆2 − 𝜙𝜆1

)

2𝜋
𝜆𝑒𝑞 =

(

𝜙𝜆2 − 𝜙𝜆1

)

2𝜋
𝑀

(

𝜆1 + 𝜆2
)

2
(14)

where 𝑀 is the wavelength magnification ratio and is defined as the
ratio of long equivalent beat wavelength over the mean wavelength for
𝜆1 and 𝜆2. From Eq. (14), it is clear that the retrieval errors of the two
single-wavelength phases would be superposed and amplified by the
factor of 𝑀 , adding to the true equivalent wavelength data. To improve
the precision of the data, the equivalent wavelength unwrapped phase
could be used to determine fringe orders of the single-wavelength data
to remove the ambiguities [25].

Therefore, if the calculated phase error in Eq. (1) for the single
wavelength could be suppressed in the determination of fringe orders
for the other single wavelength, there is no need to use the multi-beam
interferometry algorithm for the former in dual-wavelength phase-shift
Fizeau interferometry with multi-beam interference. And the process
would also be simplified. In addition, the precision of the measured data
could be improved when the other one of single-wavelength phase is
extracted by the multi-beam interference algorithm.

Specifically, the schematic of the procedure for the proposed IDS
method is illustrated in Fig. 3. In IDS method, the multi-beam in-
terferograms of the two single working wavelengths (such as 𝜆1 and
𝜆2) are processed by the multi-beam interferometry algorithm and the
conventional phase-shift algorithm respectively, where the algorithms
are the QCSI and 7-frame phase-shift algorithm separately. And then
after the subtraction and unwrapping process, the practical unwrapped
equivalent wavelength phase 𝛷′

𝜆𝑒𝑞
could be obtained as:

𝛷′
𝜆𝑒𝑞

= 𝛷𝜆𝑒𝑞 + Δ𝜙𝜆2 (15)

where 𝛷𝜆𝑒𝑞 is the theoretical phase for 𝜆𝑒𝑞 , and Δ𝜙𝜆2 is the residual
calculated phase error of 𝜆2 demodulated by the conventional phase-
shift algorithm in the presence of multi-beam interference, which is
introduced in the equivalent wavelength phase by the subtraction.

As shown Fig. 3, the wrapped phase 𝜙𝜆1 of 𝜆1 demodulated by the
multi-beam interferometry algorithm is used to be the decimal portions
of final synthesized phase 𝜙𝐷𝑒𝑐 . And the equivalent wavelength phase
𝛷′

𝜆𝑒𝑞
in Eq. (15) is used to calculate the fringe order of the single-

wavelength 𝜆1 data and obtain the integer portions of final synthesized
phase. Therefore, final synthesized phase could be written as:

𝛷 = 𝛷𝐼𝑛𝑡 + 𝜙𝐷𝑒𝑐 = 𝛷𝐼𝑛𝑡 + 𝜙𝜆1 (16)

where 𝛷𝐼𝑛𝑡 is the integer portion of final synthetized phase, and it could
be expressed as:

𝛷𝐼𝑛𝑡 = 𝑟𝑜𝑢𝑛𝑑
⎡

⎢

⎢

⎣

𝛷′
𝜆𝑒𝑞

2𝜋
⋅
𝜆𝑒𝑞
𝜆1

−
𝜙𝜆1
2𝜋

⎤

⎥

⎥

⎦

⋅ 2𝜋 (17)

where round [ ] is the rounding operator. As mentioned above, when
the unwrapped equivalent wavelength phase 𝛷′

𝜆𝑒𝑞
with the calculated
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Fig. 2. The maximum values of calculated residual phase error 𝑜
(

𝜀𝑗
)

caused by the phase-shift error for different the error coefficient 𝜀𝑞 using de Groot’s 7-frame phase-shift algorithm:
(a) 𝜀2 is set from −0.3 to 0.3 with the phase-shift miscalibration 𝜀1 varying from −0.3 to 0.3, (b) the phase-shift miscalibration 𝜀1 varied from −0.3 to 0.3 when 𝜀2 is set as 0.3, (c) 𝜀2
varied from −0.3 to 0.3 when 𝜀1 is set as 0.

Fig. 3. The schematic of the procedure for the proposed IDS method.

residual error in Eq. (15) is substituted into Eq. (17) and the integer
portion could be rewritten as:

𝛷𝐼𝑛𝑡 = 𝑟𝑜𝑢𝑛𝑑

[

𝛷𝜆𝑒𝑞 + Δ𝜙𝜆2

2𝜋
⋅
𝜆𝑒𝑞
𝜆1

−
𝜙𝜆1
2𝜋

]

⋅ 2𝜋

= 𝑟𝑜𝑢𝑛𝑑

[

𝛷𝜆𝑒𝑞

2𝜋
⋅
𝜆𝑒𝑞
𝜆1

−
𝜙𝜆1
2𝜋

+
Δ𝜙𝜆2
2𝜋

⋅
𝜆𝑒𝑞
𝜆1

]

⋅ 2𝜋.

(18)

Substituting the equivalent wavelength 𝜆𝑒𝑞 = 𝜆1𝜆2∕
(

𝜆1 − 𝜆2
)

into
Eq. (18), the deviation of the integer portion phase introduced by the
calculated phase error of 𝜆2 as the second term of round [ ] in the
Eq. (18) could be derived as:

Δ𝛷𝐼𝑛𝑡 =
𝜆2

2𝜋
(

𝜆1 − 𝜆2
)Δ𝜙𝜆2 . (19)

As shown in Eq. (18), when the deviation of the integer-portion
phase Δ𝛷𝐼𝑛𝑡 in Eq. (19) is less than 1, it could be eliminated by
the round operation in the calculation of the integer-portion phase

as shown in Eq. (18). Therefore, the calculated phase error of 𝜆2
demodulated by the conventional phase-shift algorithm would not affect
the final synthesized phase. In IDS method, the influence of multiple-
beam interference error and phase-shift error for 𝜆1 could be suppressed
using multi-beam algorithms, while the influence of calculated residual
errors for 𝜆2 could be suppressed according to Eq. (18) with the round
operation for the integer-portion phase.

And to obtain the varying range of the deviation of the integer-
portion phase Δ𝛷𝐼𝑛𝑡 in Eq. (19), the residual calculated phase errors
resulted by the harmonics in multi-beam interferometry and the phase-
shift error by the conventional phase-shift algorithm have been analyzed
in Section 2. As analyzed in Section 2 above, the varying range for the
residual calculated phase error resulted by the harmonics in multi-beam
interferometry and the phase-shift error is less than 0.66 rad as shown in
Eq. (12). And then the deviation of the integer-portion phase in Eq. (19)
could be derived theoretically as:

Δ𝛷𝐼𝑛𝑡 < 0.105
𝜆2

(

𝜆1 − 𝜆2
) . (20)
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And as mentioned above, the deviation of the integer-portion phase
Δ𝛷𝐼𝑛𝑡 could be eliminated by the round operation when it is less than
1. Therefore, the condition in Eq. (20) should be 0.105𝜆2∕

(

𝜆1 − 𝜆2
)

<
1, and then the working wavelengths of the dual-wavelength Fizeau
interferometer should satisfy the condition 𝜆2 < 0.9𝜆1. Moreover, from
the practical analysis of the residual calculated phase errors resulted by
the harmonics in multi-beam interferometry and the phase-shift error
shown in Figs. 1 and 2, the deviation Δ𝛷𝐼𝑛𝑡 is less than 0.06𝜆2∕

(

𝜆1 − 𝜆2
)

.
Therefore, the influence of calculated residual errors for 𝜆2 could be
suppressed by IDS method when the working wavelengths satisfy the
condition 𝜆2 < 0.943𝜆1. And then the influence of the phase-shift
errors and multi-beam interference for the single wavelength 𝜆2 in
dual-wavelength Fizeau interferometer could be suppressed by the IDS
method.

4. Numerical simulation and analysis

In this section, numerical simulations are executed for evaluating the
performance of the proposed IDS method. Fig. 4(a) shows the simulated
wavefront distribution with the resolution of 256 ×256 pixels. The
primary simulated is defined by the peaks function 𝑤 = 0.015 × 632.8 ×
peaks (256) with a step height of 1200 nm. And the profile of the step is
plotted in Fig. 4(b).

The intensity distribution of interferogram without noise is de-
termined by the Eq. (2), where the local mean intensity is set as
𝐼0 (𝑥, 𝑦) = exp

[

−
(

𝑥2 + 𝑦2
)

∕20
]

in general. And the two wavelengths are
set as 632.8 nm and 532 nm respectively, which satisfied the condition
𝜆2 < 0.943𝜆1. And therefore the equivalent wavelength is 3.34 μm. The
reflection coefficients of reference surface and test surface are set as 0.2
and 0.7 respectively. A linear carrier along the horizontal direction for
simplicity is introduced, and the interferograms of the two wavelengths
are shown in Fig. 4(c) and (d) respectively.

For comparison, the 7-frame algorithm [21], 𝜋∕4 phase averaging
algorithm [9] and the iterative algorithm [15] are adopted to process
the two single-wavelength multiple-beam interferograms separately in
the simulation. For IDS method as shown in Fig. 3, the influence of
multiple-beam interference and phase-shift error for the single working
wavelength 𝜆1 are suppressed by the multi-beam interferometry algo-
rithm, while the calculated residual errors for the other single working
wavelength 𝜆2 are suppressed by the round operation for the integral-
portion phase. The precision of IDS method is mainly depended on the
multi-beam interferometry algorithm for the single working wavelength
𝜆1. Therefore, the QCSI algorithm [17] is used as the multiple-beam
interferometry algorithm for 𝜆1 in IDS method as shown in Fig. 3 for it
is not limited by the accuracy of phase shift and without the iterative
process. And the 7-frame algorithm is used to progress the multiple-
beam interferograms of 𝜆2 in IDS method

First, for the phase-shift multi-beam interferograms without phase-
shift errors, Fig. 5 shows the demodulated residual errors processed by
the three algorithms mentioned above and the proposed IDS method.
And the profiles of the middle row in the demodulated residual errors
are also plotted in Fig. 5 for further details. The calculated results of
the 𝜋∕4 phase averaging algorithm, the iterative algorithm and the IDS
method are better than the 7-frame algorithm, which also validate the
equivalentness of the IDS in the presence of multi-beam interference.
And the precision of IDS method is better than PV 0.005𝜆 and RMS
0.0012𝜆 (𝜆 = 632.8 nm).

As for the 7-frame phase-shift algorithm, the calculated phase error
for the single wavelength could be approximated as the function of
sin (4𝜙) from Eq. (6) after the higher order ones are omitted due to
their small coefficients. Therefore, the calculated phase error for the
equivalent wavelength could be written as:

Δ𝜙𝜆𝑠 = 𝐾𝜆2 sin
(

4𝜙𝜆2

)

−𝐾𝜆1 sin
(

4𝜙𝜆1

)

=
(

𝐾𝜆2 +𝐾𝜆1

)

sin
(

2𝜙𝜆𝑒𝑞

)

cos
(

2𝜙𝜆𝑎

) (21)

Fig. 4. Simulation results: (a) the given measured wavefront with a step of 1200 nm, (b)
the profile of the step, (c) one of multiple-beam interferograms for 632.8 nm, (d) one of
multiple-beam interferograms for 532 nm.

where 𝐾𝜆1 and 𝐾𝜆2 are the coefficients of the term sin (4𝑚𝜙) for the two
working wavelengths separately. And 𝜙𝜆𝑎 = 𝜙𝜆1 +𝜙𝜆2 denotes the phase
of the shorter averaging wavelength 𝜆𝑎, which is represented by 𝜆𝑎 =
𝜆1𝜆2∕

(

𝜆1 + 𝜆2
)

= 289 nm. From Eq. (21), the calculated phase error for
the 7-frame phase-shift algorithm is in the form of moiré fringe. And the
modulation of the moiré is a sinusoidal function with the period 2 times
frequency of the equivalent wavelength fringes. From the interferogram
of the wavelength 632.8 nm as shown in Fig. 4(c), the equivalent
wavelength interferogram is about 1.14 fringes. Considering about the
2 times characteristic of the modulation in the moiré, the modulation of
the moiré ripple elements in the calculated phase is about 1.14 × 2 × 2 ≈
4.5 fringes, which is in agreement with the result in Fig. 5(a). Similarly,
after the term sin (4𝑚𝜙) form in the calculated phase error is suppressed
by the 𝜋∕4 phase averaging algorithm and the iterative algorithm, the
calculated phase error for the equivalent wavelength phase could be
approximated as Δ𝜙𝜆𝑒𝑞 =

(

𝐾 ′
𝜆1 +𝐾 ′

𝜆2

)

sin
(

4𝜙𝜆𝑒𝑞

)

cos
(

4𝜙𝜆𝑎

)

, where
𝐾 ′

𝜆1
and 𝐾 ′

𝜆2
are the coefficients of the term sin (8𝑚𝜙) for the two working

wavelengths separately. And then the modulation of the moiré ripple
elements in the calculated phase error is about 1.14 × 2 × 4 ≈ 9 fringes,
which could also be verified from the profile of the calculated phase
error in Fig. 5(b) and (c).

Besides, the simulations are also executed with the phase-shift error,
and the demodulated errors for the mentioned four algorithms above
are illuminated in Fig. 6. In the simulation, the phase-shift error is
determined by the 2-order polynomials in Eq. (8) with the order error
coefficients 𝜀1 = 0.2 and 𝜀2 = 0.2, which is sufficient to the most practical
cases for the phase-shift errors. As shown in Fig. 6, the precision of IDS
method is better than the other three algorithms with the PV value of
5.42 nm (0.0086𝜆, 𝜆 = 632.8 nm) and RMS value of 1.13 nm (0.0018𝜆).
For the deviation of 𝜋∕4 phase shift between adjacent calculated phases
in presence of the phase-shift error, the 𝜋∕4 phase averaging algorithm
could not suppress the influence of the multi-beam interference and
the phase-shift error very well. And the iterative algorithm needs more
multi-beam interferograms and iterations to improve the precision.
Besides, all the retrieve errors of the two single-wavelength phases
would be superposed and magnified in the equivalent wavelength phase
for the error magnification effect, which could be avoided in IDS
method.

Therefore, the precision of the proposed IDS method is better than
the other algorithm for its superiority in suppressing the ripple error
from the multi-beam interference as well as phase-shift error in dual-
wavelength Fizeau interferometer.
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Fig. 5. Residual errors and the profiles of the middle row without the phase-shift error for 7-frame algorithm in (a), 𝜋∕4 phase averaging algorithm in (b), the iterative algorithm in (c),
and IDS method in (d).

Fig. 6. Residual errors and the profiles of the middle row with the phase-shift error for 7-frame algorithm in (a), 𝜋∕4 phase averaging algorithm in (b), the iterative algorithm in (c),
and IDS method in (d).

5. Experiments

For a further comparison, the four algorithms above are applied in
the experimental research to verify the performance of the proposed IDS
method. The experiments are implemented in a dual-wavelength Fizeau
interferometer developed by ourselves, with working wavelengths of
632.8 and 532 nm. And then the corresponding equivalent wavelength is
equal to 𝜆𝑒𝑞 = 3.34 μm. In addition the test sample with high reflectivity
coefficient in the experiment is the veeco calibrated step with the height
of 7.8 μm.

First, after the phase shifter is well calibrated, we capture the
multiple-beam interferograms with 𝜋∕4 phase shift for the two working
wavelengths. And as mentioned above, the 7-frame algorithm, the 𝜋∕4
phase averaging algorithm, the iterative algorithm and our proposed IDS
method are used to these multi-beam interferograms for comparison.
The final demodulated phases and the profiles of step for the above four
algorithms are illustrated in Fig. 7. And the height results of the step for
the four algorithms are also labeled in the figure.

To provide a more intuitive explanation and comparison, the distri-
butions of the top and bottom surfaces for the test step demodulated
by the four algorithms are illustrated in Fig. 8. As shown in the figure,
the ripple presents in the retrieved phase demodulated by the 7-frame
algorithm in Fig. 8(a), while disappears when using the other three algo-
rithms. Besides, the distribution of the retrieved surface for the proposed

IDS algorithm is in agreement with the results for the other two multi-
beam interferometry algorithms, which validates the effectiveness of the
IDS method in the presences of multi-beam interference. Meanwhile, the
PV and RMS values of the top and bottom surfaces by the IDS algorithm
are 516.72 nm (PV), 41.33 nm (RMS), 303.26 nm (PV) and 51.68 nm
(RMS) respectively, which are better than the other two algorithms for
the error magnification effect in the two-wavelength techniques.

Secondly, we also capture the phase-shift multiple-beam interfero-
grams for the two wavelengths without calibrating the phase shifter. The
same process as above is also implemented, and the final demodulated
phases and the profiles are illustrated in Fig. 9 for comparison. In
addition, the phase-shift error of experimental interferograms for the
two working wavelengths is calculated by the iterative algorithm, which
is shown in Fig. 10. And the maximal absolute value of the phase-shift
error for the working wavelength 532 nm is 0.1338𝜋, which is 53%
relative to 𝜋∕4.

For the existence of the phase-shift errors and the multi-beam inter-
ference, the ripple error presents in the retrieved phase demodulated by
the 7-frame algorithm shown in Fig. 9(a) and the 𝜋∕4 phase averaging
algorithm shown in Fig. 9(b). For the deviation of 𝜋∕4 phase shift
between adjacent calculated phases, the 𝜋∕4 phase averaging algorithm
could not suppress the multi-beam interference error very well. And
the ripple error disappears when using the iterative algorithm and our
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Fig. 7. Experimental results with the well calibrated phase shifter: the demodulated phases and profiles of the step by 7-frame algorithm in (a), 𝜋∕4 phase averaging algorithm in (b),
the iterative algorithm in (c), and IDS method in (d).

Fig. 8. The distributions of the top and bottom surfaces for the test step demodulated by the four algorithms with the well calibrated phase shifter: (a) 7-frame phase-shift algorithm,
(b) 𝜋∕4 phase averaging algorithm, (c) the iterative algorithm, (d) the proposed IDS method.

proposed IDS method from the retrieved phase shown in Fig. 9(c) and
(d).

Besides, the distributions of the top and bottom surfaces for the test
step demodulated by the above four algorithms are also obtained and
illustrated in Fig. 11. Caused by the multi-beam interference and the
phase-shift error simultaneously for the two wavelengths respectively,
the ripple errors are obvious in the forms of moiré fringe in the
distributions of the top and bottom surfaces for the 7-frame algorithm
and the 𝜋∕4 phase averaging algorithm. And the results for IDS method
are approximately in agreement with the ones for the iterative algorithm
in Fig. 11(c), which also validates the effectiveness of the IDS method in
the presences of multi-beam interference as well as the phase-shift error.

However, compared with the IDS method, the iterative algorithm needs
more multi-beam interferograms and more time for several iterations,
which are 24 frames and 5 iterations separately in the experiment. In
addition, the results for IDS method are also approximately in agreement
with the ones in Fig. 8(d) also by the IDS algorithm in the first
experiment.

Above all, we have compared the performances of the four algo-
rithms in the experiment and present the result in Table 1. Obviously,
it can be seen from Table 1 that IDS method and Iterative algorithm
could suppress the influence of multi-beam interferometry without the
calibration of the phase shift. However, the later needs more multi-
beam interferograms for the two single wavelengths and iterations to
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Table 1
Comparison of the performance for the four algorithms in the experiment.

Approaches 7-frame algorithm 𝜋∕4 phase averaging algorithm Iterative algorithm IDS method

Multi-beam interference
suppression

No Yes Yes Yes

Calibration of phase shift Need Need No need No need

Frames of interferograms 𝜆1 7 14 24 8
𝜆2 7 14 24 7

Iterations No No 5 times No
Error magnification effect
suppression

No No No Yes

Fig. 9. Experimental results without the calibration of the phase shifter: the demodulated phases of the step 7-frame algorithm in (a), 𝜋∕4 phase averaging algorithm in (b), the iterative
algorithm in (c), and IDS method in (d).

Fig. 10. The phase-shift error of experimental interferograms without the calibration of
the phase shifter for the two working wavelengths.

improve the precision. Besides, the error magnification effect in the two-
wavelength techniques could not be avoided in the iterative algorithm.

6. Conclusion

In this paper, we analyze the demodulated errors by the conventional
phase-shift algorithm such as the de Groot 7-frame algorithm for single
wavelength phase in presence of multi-beam interference as well as
phase-shift error. The residual phase errors resulted by multi-beam
interference and the phase-shift error are less than 0.04 rad and 0.16

rad in practical situation respectively. And to simplify the process of
the phase demodulation and to suppress the error magnification effect
in dual-wavelength Fizeau interferometer, we propose an integer and
decimal portions synthetization (IDS) method. In IDS method, one of
the single wavelength wrapped phase is demodulated by the multi-
beam interference algorithm, while the second of the single wavelength
wrapped phase is extracted by the conventional two-beam interference
phase-shift algorithm. And the adopted multi-beam interference algo-
rithm and conventional two-beam interference phase-shift algorithm are
our QCSI algorithm and the de Groot’s 7-frame phase-shift algorithm
separately. From the two single wavelength wrapped phase, the equiv-
alent wavelength unwrapped phase is derived. And then the decimal
portion of synthesized phase is obtained directly from the first single
wavelength wrapped phase demodulated by QCSI algorithm. Besides,
the equivalent wavelength unwrapped phase could determine the fringe
order of the first single wavelength wrapped phase to obtain the integer
portion of synthesized phase. Combining the integer and decimal por-
tions, we can obtain the final synthesized phase. And the residual phase
error of the second single wavelength using the conventional phase-
shift algorithm could be suppressed in the calculation for the integer
portion of synthesized phase. Compared with other algorithms, the IDS
method validates its effectiveness and robustness in simulations and
experiment. And IDS method need less frames of the single wavelength
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Fig. 11. The distributions of the top and bottom surfaces for the test step demodulated by the four algorithms without the calibration of the phase shifter: (a) 7-frame phase-shift
algorithm, (b) 𝜋∕4 phase averaging algorithm, (c) the iterative algorithm, (d) the proposed IDS method.

interferograms and no iterations in presence of multi-beam interference
as well as phase-shift error.
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