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Digital holographic microscopy (DHM) offers label-free, full-field imaging of live-cell samples by capturing opti-
cal path differences to produce quantitative phase images. Accurate cell segmentation from phase images is crucial
for long-term quantitative analysis. However, complicated cellular states (e.g., cell adhesion, proliferation, and
apoptosis) and imaging conditions (e.g., noise and magnification) pose significant challenge to the accuracy of
cell segmentation. Here, we introduce DL-CSPF, a deep-learning-based cell segmentation method with a physical
framework designed for high-precision live-cell analysis. DL-CSPF utilizes two neural networks for foreground-
background segmentation and cell detection, generating foreground edges and “seed points.” These features serve
as input for a marker-controlled watershed algorithm to segment cells. By focusing on foreground edges and “seed
points”, which have lower information entropy than complete cell contours, DL-CSPF achieves accurate segmen-
tation with a reduced dataset and without manual parameter tuning. We validated the feasibility and generalization
of DL-CSPF using various open-source and DHM-collected datasets, including HeLa, pollen, and COS-7 cells.
Long-term live-cell imaging results further demonstrate that DL-CSPF reliably characterized and quantitatively
analyzed the morphological metrics across the cellular lifecycle, rendering it a promising tool for biomedical
research. © 2024 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training,

and similar technologies, are reserved.
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1. INTRODUCTION

In biomedical images analysis, cell segmentation is a funda-
mental task that is universally required across a diversity of
experimental setups and imaging techniques [1–5]. Accurate
cell segmentation is a crucial prerequisite for cellular quan-
titative analysis, holding significant implications for the
investigations of cell kinetics [6], cell proliferation [7], can-
cer treatment [8], and drug release monitoring in vitro [9].
However, complex cell distribution states such as cell adhesion
and growth states including proliferation and apoptosis typically
present significant challenges for segmentation. Moreover, for
cell samples with weak absorption features, the amplitude of the
light does not change when passing through samples but a sub-
stantial phase delay is introduced, which is difficult for human
eyes and photodetectors to capture. Fluorescence microscopy
uses fluorescent molecules to label target proteins in cells to
provide specificity for imaging, yet invasive imaging is inca-
pable of enabling long-term observation of live cells [10–15].

Quantitative phase imaging (QPI) utilizes the RI as an endog-
enous contrast agent to generate cell- or subcellular-specific
quantitative maps, achieving label-free non-destructive live-cell
imaging [16–24]. As a classical QPI technique, digital holo-
graphic microscopy (DHM) interferometrically encodes the
complex field information into intensity modulation (i.e., inter-
ferogram or hologram), and performs the quantitative analysis
of wave-matter interactions by decoding phase delay [25–29].
However, due to high-coherence sources typically used in
DHM, the imaging quality is plagued by speckle noise, thereby
enhancing the difficulty of segmentation. Therefore, stable
and accurate cell segmentation on phase images under complex
conditions (e.g., cell adhesion, proliferation/apoptosis, and
noise) is pivotal for long-term dynamic live-cell analysis with
DHM, which is of significant importance for the application of
QPI technology in biomedicine.

Traditional approaches to cell segmentation rely on manually
crafted feature definitions that allow the algorithmic recognition
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of cellular regions and borders. These algorithms can be system-
atically classified into the following categories: threshold-based
methods (e.g., Otsu [30] and maximum entropy algorithms
[31]), edge-based methods (Canny edge detection [32],
Laplacian of Gaussian [33], Sobel and Prewitt operators [34],
etc.), region-based methods (such as region growing [35], region
splitting/merging, and watershed algorithms [36]), and cluster-
ing and graph-based methods (e.g., K-means clustering [37]).
Unfortunately, manual feature definitions are usually highly
context-specific and require task-dependent and experience-
dependent parameters tuning to work well [38,39]. Switching
to a different cell type (with different morphological features)
or confronting diverse cellular states (cell adhesion, cell prolif-
eration, and apoptosis, etc.) typically requires a redesign and/or
reoptimization of the segmentation algorithm, as well as fairly
tedious parameters tuning.

In recent years, deep learning (DL) techniques for computer
vision are increasingly being utilized for a variety of tasks in
biological image analysis, providing a new paradigm for cell
segmentation tasks [40–47]. Unlike the traditional “physics-
based” approach, DL-enabled segmentation methods are a kind
of “data-driven” approach, which is developed from a segmenta-
tion scheme based on a fully convolutional network (e.g., U-Net
[48], mask R-CNN [49], and U2-Net [50]), to the methods
incorporating attention mechanisms [51,52]. Furthermore,
an instance segmentation approach such as YOLACT [53]
demonstrates decent real-time segmentation performance.
The Segment Anything Model [54,55], as an advanced image
segmentation framework based on vision Transformers and
prompt-driven mechanisms, exhibits high generalization capa-
bilities and flexible interactive segmentation functionality.
Alternatively, Cellpose is a Transformer-based DL segmentation
method, featuring a universal cross-modality cell segmenta-
tion framework and a graphical user interface (GUI) [56,57].
Additionally, users can enhance generalization by adopting
the “human-in-the-loop” training approach with their own
datasets. Notwithstanding, these methods all depend on exten-
sive, high-quality, labeled paired datasets that are prohibitively
laborious and time-intensive to acquire due to the heterogeneity
and quality variability of biological images, as well as complex
cellular states that make this process more challenging.

In this study, we propose a novel DL-based cell segmenta-
tion method with a physical framework (DL-CSPF), which
introduces physical framework constraints into a conventional
end-to-end DL model for high-accuracy cell segmentation in
diverse situations, such as cell adhesion, proliferation, and apop-
tosis. Applied to DHM, DL-CSPF accurately segments and
recognizes cells from phase images, thereby facilitating long-
term, high-accuracy dynamic live-cell analysis. In DL-CSPF,
inspired by physics-informed DL models, the introduction of
a physical framework enables convolutional neural networks
(CNNs) to conduct accurate segmentation with modestly sized
datasets. Unlike off-the-shelf DL-based methods that directly
extract effective information to learn features of individual cells,
DL-CSPF employs two pre-trained networks for foreground-
background segmentation and cell detection (“seed-point”
extraction) from phase images. Subsequently, it utilizes the
foreground as edge constraints and the “seed points” as fea-
ture guidance to achieve accurate segmentation through the

marker-controlled watershed algorithm (MCW) [58]. Due
to the degradation of the learning target, which reduces the
information entropy of the dataset required for training and
thereby lowers the learning difficulty, only a small fraction of
the dataset is sufficient to achieve accurate cell segmentation,
and without parameter tuning. We conducted the experiment
to validate the feasibility and generalization of DL-CSPF using
open-source datasets and real datasets collected by DHM for
Henrietta Lacks (HeLa) human cervical cancer cells, pollen
cells, and COS-7 cells. Additionally, DL-CSPF was employed
to segment and recognize HeLa cells over up to 9 h, accurately
characterizing their area, dry mass (DM), and dry mass surface
density (DMSD), and conducting quantitative morphological
analysis of single-cell division behavior.

2. DEEP-LEARNING-BASED CELL
SEGMENTATION METHOD WITH A PHYSICAL
FRAMEWORK

A. Overview of Method

In DL-CSPF, the whole cell segmentation can be divided into
three processes: collecting phase images by DHM to con-
struct a well-matched paired dataset, designing DL models
for foreground-background segmentation and cell detection,
achieving accurate cell segmentation by using the obtained
foreground boundaries and “seed points” as prior constraints
for the MSW algorithm. Specifically, the foreground boundary
represents the dividing line between the segmented object (cells)
and the image background, without considering distinctions
between individual cells. Meanwhile, “seed points” denote the
recognition points (centroid points) of each cell. The specific
process is shown in Fig. 1. In DHM, the object wave O(x , y ),
which records the sample complex amplitude information,
interferes with the reference wave R(x , y ), generating a holo-
gram IH(x , y )= |O|2 + |R |2 + O∗R + R∗O. Taking the
Fourier transform (FT) on the hologram, the +1-order term
(R∗O) can be obtained by band-pass filtering, and the phase
information can be recovered through inverse Fourier trans-
form (IFT), phase aberration correction [59], and unwrapping
algorithms [60]. We collected the ground truth (GT) required
for training by employing methods such as empirical gradient
threshold (EGT) [61], distance transform (DT) [62], Cellpose,
and ImageJ on the QPI results recovered by DHM, and the
specific implementation is detailed in the next section.

In the original design of the physical framework, foreground-
background segmentation and cell detection both depend on
manually crafted feature recognition algorithms, e.g., EGT,
DT, Otsu, and Laplacian of Gaussian (LoG) [63]. However,
these algorithms generally require multi-parameters tuning,
which relies on the experience of the user and is susceptible
to diverse cellular types and states. Moreover, due to high-
coherence sources typically used in DHM, the phase imaging
quality is plagued by speckle noise caused by stray interferences
from system imperfections, thereby impacting the robust-
ness of the segmentation algorithm. Herein, we design the
foreground-background segmentation model (FSNet) and
cell detection model (CDNet) for foreground edges and “seed-
point” extraction, as illustrated in Figs. 1(a)–1(c). DL-based
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Fig. 1. Deep-learning-based cell segmentation method with a physical framework. (a) Overview of DL-CSPF. (b) Process of training for
foreground-background segmentation task. (c) Process of training for cell detection task. (d) Overview of the FSNet architecture. (e) Overview
of the CDNet architecture.

methods, through hierarchical nonlinear transformations,
can automatically learn rich feature representations from data,
encompassing multiple layers of features that range from low-
level (e.g., edges, textures) to high-level (e.g., object parts,
semantic information). The incorporation of the DL technique
facilitates enhanced generalization in handling complex cellular
states and types, even in the presence of noise, and eliminates the
necessity for parameter tuning. DL-CSPF acquires foreground
borders and “seed points” using properly trained FSNet and
CDNet as constraints and guidance information, in which “seed
points” M = {m1,m2, . . . ,mk} (corresponding to unique
marker point L i ) can steer the MCW algorithm to segment
adhesive cells from each other. Specifically, for each pixel Pi ,

the topological distance to each marker point L i is calculated,
and the pixel is assigned to the marker point with the smallest
topological distance, thereby forming the watershed lines. These
watershed lines, in conjunction with the constraints provided
by foreground borders, can isolate each pair of adherent cells,
facilitating accurate cell segmentation.

B. Foreground-Background Segmentation Model

In FSNet, we implement the foreground-background seg-
mentation task by using a residual network (ResNet) structure
[64]. As an effective scheme to address the degradation and
gradient vanishing problems, ResNet introduces a deep residual
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learning framework into CNN. Instead of expecting each group
of stacked layers to directly fit a desired underlying mapping,
ResNet explicitly enables these layers to fit a residual mapping.
As shown in Fig. 1(d), the stacked nonlinear layers fit another
mapping of F (x ) := H(x )− x , in which H(x ) denotes the
desired underlying mapping, and the original mapping is recast
into F (x )+ x . Unlike conventional cell segmentation tasks,
foreground segmentation does not require focusing on the
detailed boundaries between cells. Instead, it emphasizes the
distinction between the object and the background. Therefore,
FSNet based on the ResNet architecture is capable of recogniz-
ing smooth and accurate edges features, demonstrating strong
generalization performance.

Specifically, in FSNet, we initially resize the phase images
to H ×W × 64 for the initial layer, where H and W are the
height and width of the input images, respectively. This layer
then passes through a set of residual blocks, with the dimen-
sions increasing to H ×W × 128, H ×W × 256, and finally
H ×W × 512 after each set. The output is subsequently
adjusted to H ×W × 1 by a global average pooling, yielding
a mask that delineates the cellular regions within the phase
image. The model predicts a probability map for each pixel
being part of the cell membrane area. Furthermore, the rectified
linear unit (ReLU), as a commonly used activation function,
introduces nonlinearity into CNN to mitigate the vanishing
gradient problem. To effectively refine the loss function, we
deploy the Adam optimizer, an algorithm renowned for its com-
putational efficiency and robustness in converging towards the
minimum of the loss function. By harnessing the power of back-
propagation, we meticulously adjust the internal parameters of
the FSNET through successive iterations. As a key factor that
directly influences the model’s optimization process and final
performance, we adopt mean squared error loss (MSE-Loss) as
the loss function for FSNet:

LMSE =
1

N

∑N

i=1
(y i − ŷ i )

2, (1)

where y i denotes the GT of the i th sample, and ŷ i is the
predicted value of the i th sample.

C. Cell Detection Model

In cell detection, the centroid region of the cell, referred to as
the “seed points”, serves as the recognized target to acquire
cellular distribution positions, as shown in Fig. 1(c). Accurate
cell detection is a crucial prerequisite for addressing complicated
cell states, such as cell adhesion and cell proliferation/apoptosis.
Therefore, we design a cell detection model (CDNet) based on
the U-Net, which enables the integration of high-resolution
features from the encoder with the low-resolution features in
the decoder; it effectively handles small objects and details in
images. As a fully convolutional network, U-Net supplements
a usual contracting network by successive layers, where pooling
operators are replaced by upsampling operators. Moreover,
in the upsampling part, U-Net also added a large number of
feature channels, which allows the network to propagate context
information to higher-resolution layers.

As shown in Fig. 1(e), the CDNet consists of a contracting
path (left side) and an expansive path (right side), in which both
of them follow the typical CNN architecture. Specifically, the

contracting path consists of the repeated application of two
3× 3 convolutions (unpadded convolutions), each followed
by a ReLU and a 2× 2 max pooling operation with stride for
downsampling. On the other hand, each step within the expan-
sive path involves upsampling the feature map, applying a 2× 2
convolution (“up-convolution”) to halve the number of feature
channels, concatenating with the correspondingly cropped
feature map from the contracting path, and performing two
3× 3 convolutions, each followed by a ReLU. In the cell detec-
tion task, we initially resize the phase images to H ×W × 64,
followed by the images of H/16×W/16× 1024 obtained
through four rounds of downsampling, which involves consecu-
tive convolutions and pooling operations to capture contextual
information. Thereafter, the network performs four rounds of
upsampling to achieve images of H ×W × 64, which entails a
gradual restoration of the spatial resolution of the feature maps
through upsampling and convolutional operations, enabling
precise localization. Between downsampling and upsampling,
skip connections are utilized to fuse the feature maps, allowing
the decoder to integrate low-level local features with high-level
semantic information. Unlike the foreground-background
segmentation task, CDNet utilizes the binary cross-entropy loss
(BCE-Loss) [65] as a loss function for training:

LBCE =−
1

N

∑N

i=1

[
y i log(pi )+ (1− y i ) log(1− pi )

]
,

(2)
where y i is the GT of the i th pixel, pi denotes the predictive
probability of the i th pixel, and N is the total number of pixels.

3. EXPERIMENT AND RESULTS

A. Experiment and Dataset Acquisition

In this section, we conduct the experiment on an open-source
dataset [66] and a dataset constructed using DHM to verify the
feasibility of the proposed method. We employed an off-the-
shelf digital holographic microscope (DH-SCLM) developed
by SCILab [67], on which a 20×, 0.5 NA objective lens and a
CCD camera with 4.4 µm pixel size were equipped. A laser with
a central wavelength of 532 nm was employed in DH-SCLM to
capture holograms for QPI. We collected 710 holograms and
reconstructed the corresponding phase images, and these data
were further partitioned into training, validation, and test sets
at ratios of 85%, 5%, and 10%, respectively. In the foreground-
background segmentation stage, we initially adopted the EGT
algorithm on the phase images to obtain preliminary results
of foreground segmentation, followed by utilizing ImageJ for
manual inspection and correction of any omissions or errors.
Alternatively, for cell detection, we used the DT algorithm to
preliminarily extract the “seed points” of the cells from the phase
images. Subsequently, we used the Cellpose2.0 to further supple-
ment and revise omitted points and errors. The experiment was
conducted on a workstation equipped with an Intel i9-10900K
3.70 GHz CPU and an NVIDIA GeForce RTX 3090 GPU.
The proposed method was operated by Python 3.8 and PyTorch
1.12.1. During the training process, FSNet and CDNet were
trained for 10 epochs and 25 epochs, respectively, taking 2 h and
4.5 h.
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Fig. 2. Cell segmentation results and close-up views on an open-source dataset. (a1)–(a3), (b1)–(b3) Segmentation results on two sets of test
samples using three different methods (“EGT+DT+ watershed”, U-Net, and DL-CSPF), respectively. (a4), (b4) Ground truth. (c)–(g) Original
cell images, with red arrows emphasizing the complex scenarios encountered in segmentation, including cell adhesion, single-cell, and noise. (c1)–
(g1), (c2)–(g2) Enlarged views of cell segmentation results by “EGT+DT+ watershed” and U-Net exhibit rough edges, and some cells are either
over-segmented or under-segmented. (c3)–(g3) The corresponding results based on DL-CSPF demonstrate accurate cell segmentation that is in good
agreement with the GT, (c4)–(g4).



Research Article Vol. 64, No. 7 / 1March 2025 / Applied Optics B25

B. Segmentation Results and Discussion

Figure 2 showcases a comparison of cell segmentation results
and close-up views on the open-source dataset using the con-
ventional method (“EGT + DT + watershed”) [63], the
DL-based method (U-Net), and DL-CSPF. Among the vari-
ous conventional segmentation schemes, the method that
adopts EGT to segment foreground and background, extract-
ing “seed points” using DT for cell detection, and applying
the MCW to achieve cell segmentation, demonstrates bet-
ter generalizability and segmentation accuracy, despite the
need for multi-parameters tunings. As a typical DL-based cell
segmentation method, U-Net demonstrates decent segmen-
tation performance and representativeness. Therefore, we
adopted “EGT + DT + watershed” and U-Net as subjects
for comparative experiments. Figures 2(a1) and 2(b1) show
the segmentation results using the “EGT + DT + watershed”
method for two typical cell specimens selected from the test set;
alternatively, the enlarged views are shown in Figs. 2(c1)–2(g1).
It can be found that the results exhibit rough segmentation edges
[Figs. 2(e1) and 2(g1)], with some cells being over-segmented
[Fig. 2(f1)] or under-segmented [Figs. 2(c1)–2(d1)], which is
attributed to the algorithm’s limited recognition capabilities.
The corresponding results based on the U-Net method and
the zoomed-in views are showcased in Figs. 2(a2)–2(b2) and
2(c2)–2(g2), from which the cell adhesion issues cannot be
resolved. The under-segmentation issue is due to the inadequate
feature recognition of U-Net driven by a limited-sized dataset.
In DL-CSPF, the introduction of a physical framework decom-
poses image features, thereby reducing information entropy,
and sustains excellent cell segmentation performance when
trained on a modestly sized dataset. The results are shown in
Figs. 2(a3)–2(b3) and 2(c3)–2(g3), which are in good agree-
ment with the GT [Figs. 2(c4)–2(g4)]. Despite challenges such
as cell adhesion and noise, DL-CSPF can still achieve accurate
cell segmentation, producing smoother segmentation edges and
demonstrating more resilience to changes in image quality.

To validate the feasibility and generalization of DL-CSPF for
real datasets with the complex live-cell samples, we implement
the experiment on phase images obtained by DHM for HeLa
cells, pollen cells, and COS-7 cells, as shown in Fig. 3. Despite
only three types of cells being tested here, they are representa-
tive in terms of morphological characteristics, encompassing
a wide range of parameters such as roundness, perimeter, and
long/short axis ratio found in most live cells. Figures 3(a1)–
3(c1) present the phase images reconstructed by DHM, and
the close-up views are shown in Figs. 3(d1)–3(f1). Due to
laser sources typically used in DHM, the imaging quality is
susceptible to speckle noise, which significantly impacts the
segmentation performance of “EGT+DT+ watershed” (this
is likewise a common problem encountered by traditional
approaches), as shown in Figs. 3(a2)–3(c2). Additionally, in
conventional approaches, multi-parameters tuning typically
relies on the user’s expertise and exhibits substantial variability
with changes in cell types and imaging systems (e.g., magni-
fication and resolution). Image quality problems caused by
noise can adversely affect the cell edge determination and cell
detection accuracy [Figs. 3(d2)–3(f2)]. In the U-Net-based DL
segmentation method, we used the same number of datasets

as DL-CSPF for training, and the segmentation results are
presented in Figs. 3(a3)–3(c3), in which the adherent cells
cannot be recognized and isolated, as illustrated in Figs. 3(d3)–
3(f3). The cross-section across adhered cells intuitively signifies
the indeed existing intercellular boundaries in complex cell
states, as depicted in Figs. 3(g)–3(i). In contrast, DL-CSPF
demonstrates excellent segmentation performance across three
cell types, features smooth cell edges and accurate cell identifi-
cation, and exhibits strong generalizability, even though image
quality is compromised by noise, as presented in Figs. 3(a4)–
(c4) and 3(d4)–3(f4). Figures 3(a5)–3(c5) and 3(d5)–3(f5) are
the GT and the corresponding enlarged views. Herein, we just
discussed the segmentation of phase images recovered by DHM.
Additionally, we tested phase results reconstructed based on
differential phase contrast [68,69] and Fourier ptychographic
microscopy methods [70,71] to validate the generalizabil-
ity of DL-CSPF, still demonstrating favorable segmentation
performance.

According to Table 1, our method outperforms the tradi-
tional DL method based on U-Net and the “EGR + DT +
watershed” method across the board in terms of recall, accu-
racy, precision, and F1 score, mirroring the GT. Furthermore,
when trained on an equal number of datasets, DL-CSPF
exhibits higher segmentation accuracy than U-Net. Moreover,
attention-mechanism-based DL cell segmentation models
enable the model to dynamically attend to different areas of the
image when handling each pixel or feature, thereby improving
the precision and robustness of segmentation. However, it still
has not detached from its fundamentally data-driven essence,
and no specific comparative studies have been conducted in this
work.

4. DL-CSPF FOR LONG-TERM LIVE-CELL
ANALYSIS WITH DHM

In this section, we conducted the experiment of HeLa cells
for up to 9 h using DHM. With the support of the DL-CSPF
approach, we analyzed the morphological metrics of live HeLa
cells, including area and DM. Additionally, DL-CSPF can also
be integrated with DHM to form a live-cell analysis framework
for studying cell circumference, volume, irregularity, length-
to-short axis ratio, texture [72], etc. Herein, we particularly
discussed the DMSD throughout the complete process of
single-cell division, analyzing its biological behavior. The used
HeLa cells were cultured in the DMEM medium with 10% fetal
bovine serum under standard cell culture conditions (37.2◦C in
5% CO2 in a humidified incubator) for observation.

A. Cell Morphology Characterization

1. Area

Based on the position of the cellular edges, the number of pixels
within each cell contour can be calculated and multiplied by the
pixel area to obtain the area of a single cell. Given the presence of
an objective lens in DHM, which imparts a system magnifica-
tion, the formula for calculating the area of a single cell is defined
as follows:

S =
∑
�

(pixelsize/Ma)2, (3)
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Fig. 3. Cell segmentation results for phase images by DHM on HeLa, pollen, COS-7 cells. (a1)–(c1) QPI results by DHM on three types of
cells, the enlarged views of which are shown in (d1)–(f1). (a2)–(c2), (a3)–(c3), (a4)–(c4) Segmentation results using “EGT + DT + watershed”,
U-Net, and DL-CSPF methods, respectively. (c5)–(g5) Ground truth. (d2)–(f2), (d3)–(f3) The magnified views of the segmentation results using
“EGT+DT+watershed” and U-Net demonstrate poor performance in handling cell adhesion and noise. (d4)–(f4) Corresponding results based on
DL-CSPF, mirroring the GT, (d5)–(f5). (g)–(i) The cross-section over the adherent cells indicates the cell boundaries that indeed exist.

where pixelsize represents the pixel size of the CCD, Ma repre-
sents the system magnification, and � represents the contour
position of an individual cell obtained after cell segmentation.

2. DryMass

Utilizing the fact that the refractive increments of most sub-
stances in cells are approximately the same and independent of

composition, DHM is applicable to the measurement of cellular
DM. The DMSD at each pixel (x , y ) is calculated as

ρ(x , y )=
λ

2πα
ϕ(x , y ), (4)

where α is a constant known as the specific refraction increment
[73]. According to Ref. [74], we used the average value of this
parameter of 0.2 ml/g for the DM calculations. Then the total
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Table 1. Quantitative Comparison Results of Three Methods

Method Sample Accuracy Precision Recall F1 Score Size of Data

EGT+DT+watershed HeLa 0.9591 0.9317 0.9151 0.9233 NaN
Pollen 0.9625 0.8803 0.9814 0.9281 NaN
COS-7 0.9876 0.8956 0.9966 0.9434 NaN

U-Net HeLa 0.9472 0.9213 0.8847 0.9026 710
Pollen 0.9890 0.9496 0.9987 0.9735 710
COS-7 0.9875 0.9017 0.9824 0.9403 710

DL-CSPF HeLa 0.9637 0.9467 0.9088 0.9274 710
Pollen 0.9908 0.9819 0.9822 0.9821 710
COS-7 0.9921 0.9362 0.9708 0.9532 710

Fig. 4. Long-term dynamic live-cell analysis results. (a) Cell segmentation result at a certain time point. (b1)–(b6) Single-cell segmentation and
recognition in the complete cell cycle. (c) Fluctuations in cellular total area and DM over the 9 h period. (d), (e) Box-scatter charts of the area and DM
at time T1, T2, and T3. (f ) Single-cell variation of area and DM during the cell cycle. (g) Fluctuations in DMSD throughout the cell cycle.

DM is calculated by integrating the region of interest in the
DMSD, and the expression is shown as follows:

DM=
λ

2πα

∫
S
1ϕdS. (5)

B. Long-Term High-Accuracy Live-Cell Analysis
Results

Figure 4 presents the results of DL-CSPF applied to long-term,
high-precision live-cell analysis, in which Fig. 4(a) shows the
segmentation result at a certain time point during the 9 h
observation of HeLa cells using DHM. Furthermore, the fluc-
tuations in cell area and DM over the 9 h period are illustrated

in Fig. 4(c), where the information at time points T1, T2, and T3

is presented using a box-scatter chart [Figs. 4(d)–4(e)], demon-
strating the individual distribution and statistical characteristics
of cells at three time points, including the central tendency and
dispersion of the distributions of cell area and DM metrics. As a
fundamental cellular life activity, the investigation of cell prolif-
eration phenomena is of particular importance. The complete
process of single-cell division is tracked in Figs. 4(b1)–4(b6),
which is accurately detected and recognized by DL-CSPF. In
the cellular proliferation, the interphase constitutes the stage
of the cell cycle characterized by cellular growth and DNA
replication, typically occupying the majority of the cell cycle
duration, which can be subdivided into the G1, S, and G2
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phases [75]. Figure 4(f ) illustrates the temporal fluctuations in
single-cell area and DM throughout a cell cycle. Additionally, we
introduced DMSD to analyze the variations during the division
process, as shown in Fig. 4(g). Initially, the cell significantly
increases its DM through protein synthesis and organelle repli-
cation, thereby providing the essential material foundation for
subsequent DNA replication and cell division. Subsequently,
the DM production remains constant and the surface growth
pauses; the DMSD manifests a steep increase with a maximum
value occurring a few minutes before the cytokinesis. As cells
divide, the rapid surface increase and the septum degradation
induce an abrupt decrease in DMSD. The accelerated dynamic
cell segmentation and recognition results and are animated in
Visualization 1.

5. CONCLUSION

In this work, we presented a novel DL-based cell segmentation
method with a physical framework, in which the physical frame-
work is introduced in a DL-based cell segmentation method
for accurate and robust segmentation with diverse cell states
(i.e., cell adhesion, proliferation, and apoptosis). Unlike the
off-the-shelf end-to-end DL-based methods that directly extract
effective information to learn features of individual cells, DL-
CSPF conducts foreground-background segmentation and cell
detection (“seed-point” extraction) from phase images using
CNN. Due to the degradation of the information entropy of the
dataset required for training, DL-CSPF achieves accurate cell
segmentation while only using a small fraction of the dataset,
demonstrating enhanced generalization. Moreover, compared
with the traditional segmentation approaches that rely on man-
ually crafted feature definitions, DL-CSPF exhibits superior
segmentation performance in scenarios such as cell adhesion
and noise without the need for task-dependent and experience-
dependent parameters tuning. DL-CSPF is also employed in
DHM for long-term dynamic live-cell analysis, and enables
the morphological characterization and quantitative investi-
gation of the cell division process by introducing DMSD. The
feasibility of DL-CSPF was verified through experiments on
an open-source dataset and a real dataset constructed by DHM
for HeLa, pollen, and COS-7 cells. Further efforts will be made
to improve the speed for achieving real-time high-dynamic
cell segmentation. The algorithm will also be further engi-
neered to incorporate plug-and-play functionality for seamless
integration. By leveraging the advantages of integrating DL
methodologies with a physical framework, DL-CSPF will also
be further applied to the multimodality cell segmentation of
fluorescence [76], phase contrast [69], DIC imaging [77] at the
cellular scale, as well as to the segmentation of lipid droplets,
mitochondria, nuclei, and other organelles at the organelle scale
[78,79].
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