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In this Letter, an accurate and highly efficient numerical
phase aberration compensation method is proposed for
digital holographic microscopy. Considering that most
parts of the phase aberration resides in the low spatial fre-
quency domain, a Fourier-domain mask is introduced to
extract the aberrated frequency components, while rejecting
components that are unrelated to the phase aberration
estimation. Principal component analysis (PCA) is then
performed only on the reduced-sized spectrum, and the
aberration terms can be extracted from the first principal
component obtained. Finally, by oversampling the reduced-
sized aberration terms, the precise phase aberration map is
obtained and thus can be compensated by multiplying with
its conjugation. Because the phase aberration is estimated
from the limited but more relevant raw data, the compen-
sation precision is improved and meanwhile the computa-
tion time can be significantly reduced. Experimental results
demonstrate that our proposed technique could achieve
both high compensating accuracy and robustness compared
with other developed compensation methods. © 2016
Optical Society of America
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In last decades, digital holographic microscopy (DHM) has be-
come a powerful tool since the development of CCD and
CMOS cameras permits the real-time recording of a digital
hologram and quantitative retrieval of the complex wavefront
of the samples with high accuracy [1]. However, the recon-
structed phase images generally suffer from a spherical phase
curvature introduced by the microscope objective (MO), which
needs to be compensated to access the exact phase induced by
the object only [2]. Generally, the spherical phase aberration
term, which needs to be compensated, can be written as

Q�x; y� � ei�kxx�l x x2�kyy�l y y2�; (1)

where the factors kx; ky denote the linear phase difference be-
tween the object beam O�x; y� and reference beam R�x; y� due
to the off-axis geometry, while the parameters l x ; l y describe the
relative divergence between O�x; y� and R�x; y� due to the mis-
match in spherical phase curvature. Once the coefficients of
Q�x; y� have been determined, the spherical phase curvature
introduced by the MO can be compensated by multiplying
with its conjugation Q�.

Recently, a lot of methods have been proposed to compen-
sate this curvature Q�x; y� of the wavefront in DHM either
physically [3–6] or numerically [1,7–14]. Normally, the spheri-
cal phase factor could be physically compensated by introduc-
ing the same curvature in the reference arm using a same
objective [3] or position adjustable lens [4], or arranging the
whole optical geometry in a telecentric manner [6]. However,
the phase curvature is difficult to be completely eliminated be-
cause a perfect matching between the object and reference
wavefront curvatures is difficult to realize in practice. On the
other hand, instead of compensating the aberration physically,
the numerical methods remove the phase aberration during
post processing of the digital hologram. Double exposure
method [11] can obtain the curvature Q�x; y� accurately, but
an additional hologram recording without the samples is re-
quired. Other methods either multiply an adapted phase mask
in the reconstruction plane or hologram plane [7,11], or di-
rectly fit the curvatureQ�x; y� with a standard two-dimensional
(2D) spherical function [10] or Zernike polynomials [12] by
using 2D fitting methods. However, these techniques are gen-
erally time-consuming, because even for the simplest 2D least-
squares surface fitting method [10] the processing time could
be several seconds for a typical megapixel hologram while
2D phase unwrapping is required, which limits the real-time
performance of DHM. Recently, Zuo proposed a numerical
aberration compensation method based on principal compo-
nent analysis (PCA) by using the singular value decomposition
(SVD) [14]. The definition of two one-dimensional (1D)
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vectors p�x� � ei�kxx�l x x2� and q�y� � ei�kyy�l yy2� with the phase
aberration matrix rewritten as Q�x; y� � pqT is introduced in
Ref. [14] to transfer 2D phase unwrapping and 2D surface fit-
ting problems into 1D procedure on two orthogonal directions,
which could improve the compensating efficiency significantly.

Unfortunately, although the computational dimension is re-
duced from 2D to 1D after PCA, PCA itself could be a time-
consuming task because its processing time depends on the size
of images. If the PCA algorithm with full-sized complex images
is implemented, the SVD process would result in exponential
growth of the PCA processing time with the image size increas-
ing, as shown in Fig. 1. Even if the current PCA-based numeri-
cal compensation method (cPCA) introduced in Ref. [14]
extracts the first principal component from the �1 order spec-
trum, the PCA procedure could also waste a long time if a larger
�1 order spectrum is selected. To ensure its efficiency, one sim-
ple way is to limit or reduce the size of the selected �1 order
spectrum. However, the amount of high-frequency compo-
nents would lose in this way and the detail information of
the recovered complex image would be lost.

To address this efficiency problem in cPCA, this Letter inves-
tigates the characteristic of typical phase aberration spectra and
presents a highly efficient compensation method by extracting
the reduced-sized aberration spectrum. Figures 2(a)–2(c) show
three different phase maps of the same specimens and pixel res-
olution (1280 × 960), but suffer from different amounts of aber-
ration. The level of phase aberration is apparently manifested by
the density of concentric circles in each phase maps. The �1
order spectra of the three phase maps with a dimension of 144 ×
108 are shown in Figs. 2(d)–2(f), respectively. As can be seen, the
sizes of the blue windows in Figs. 2(d)–2(f), in which the most of
energy of the aberration is concentrated, expand with the increas-
ing amounts of aberration, suggesting that the size of aberration
spectrum only depends on the amount of aberration rather than
the size of the entire phase image. This observation has been in-
troduced in Refs. [4,6,9]. In practical conditions, only reduced
aberrations are normally introduced. Thus, most of its energy is
concentrated in a very limited spatial support around the carrier
frequency, like Fig. 2(f). Therefore, we introduce a masking op-
erator that limits the support of�1 order spectrum to the region
where aberration energy is concentrated. The masking operator
significantly reduces the amount of data involved in the compu-
tation, and thus the computational efficiency of the PCA process
can be greatly improved. Furthermore, because the limited mask
almost embraces the total energy of aberration while the object
energy (that spread evenly over the entire�1 order spectrum) is

significantly attenuated, a higher accuracy of phase compensation
over cPCA can be expected to be achieve.

Now, the efficiency of the PCA procedure is improved, but
the fitting accuracy of the aberration is unexplored. Considering
a typical full-sized phase image with spherical aberration shown
in Fig. 2(c), its first principal component with resolution of
1280 × 960 can be extracted through the PCA procedure. One-
dimensional vector of the first principal component along X-axis
is shown in Fig. 3(a1), and its unwrapped phase distribution
(1280 red points) and the fitted parabolic curve (blue curve)
is shown in Fig. 3(a2). As can be seen, one red point at the edge
of the 1D phase vector is far away from the blue parabolic curve
in Fig. 3(a2). Meanwhile, in Fig. 3(a1), this error point at the
beginning of the vector has a value that is very close to point at
the end of the vector. This inspiring observation reminds us that
the spectrum masking procedure can be decomposed into two
steps, frequency filtering and under-sampling. It is known that
by employing Fourier transform (FT), the filtering process in the
frequency domain can be regarded as a cyclic convolution oper-
ation in the spatial domain. Therefore, the error point at the
beginning of this vector, which has a value averaged by the point
at the end of this vector, should be removed before least-squares
fitting. However, because there are 1280 points in this vector
totally, the fitting accuracy of full-sized phase image is rarely

Fig. 1. Curve of PCA processing time increasing with image size.

Fig. 2. Comparison of different phase images and their �1 order
spectra. (a)–(c) show three phase images of a typical cell sample with
different amounts of spherical aberration, respectively; (d)–(f ) show
their �1 order frequency spectra, respectively.

Fig. 3. Wrapped and unwrapped 1D phase vectors along the X-axis
obtained from the PCA process with different sizes of selected aberra-
tion spectra.
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affected by the single error point. Next, considering the reduced-
sized aberration spectrum extracted from the blue window in
Fig. 2(f), a subsampled (32 × 24) phase image [Fig. 4(g)] can
be obtained through inverse FT and its reduced-sized first prin-
cipal component [Fig. 4(h)] can be extracted through the PCA
procedure. Similarly, a subsampled 1D vector along X-axis is
shown in Fig. 3(b1), and its unwrapped phase distribution
(32 red points) and the fitted parabolic curve (blue curve) are
shown in Fig. 3(b2). It also can be seen that an error point is
far away from the blue parabolic curve, which could be removed
by setting a reasonable threshold T (typically T � π

2 ). After
removing the error point, the fitted parabolic curve [green curve
in Fig. 3(b2)] is corrected obviously because this vector only
involves 32 points. Because the subsampled phase vectors have
been corrected, the full-sized phase vectors can be obtained
accurately by oversampling.

So, based on these facts, we propose an optimal PCA-based
(OPCA) numerical phase aberration compensation method for
digital holography. In order to explain the entire framework of
OPCA, a set of experimental results of human macrophage cells
at the output of each step is presented in Fig. 4. At the begin-
ning of OPCA, the frequency spectrum [Fig. 4(b)] of the digital
hologram [Fig. 4(a)] and the cropped �1 order spectrum in
Fig. 4(c) are obtained successively. Then the full-sized phase
image with aberration [Fig. 4(e)] can be generated through FT

after centering the �1 order spectrum [Fig. 4(d)]. Instead of
fitting the full-sized phase aberration image directly, we intro-
duce a masking operator to extract the aberration spectrum
[Fig. 4(f )] where aberration energy is concentrated. In OPCA,
we select the aberration spectrum in the �1 order spectrum
manually, ensuring the aberration spectrum containing more
than 80% energy of the�1 order spectrum. Next, after inverse
FT, the subsampled phase map with aberration is obtained
[Fig. 4(g)]. Utilizing the PCA algorithm and the 1D phase un-
wrapping technique, the first principle component [Fig. 4(h)]
and two unwrapped phase vectors are extracted successively.
Figure 4(i) presents one unwrapped phase vector along the
X-axis. Different from cPCA, one error point at the edge of
each 1D unwrapped phase vector is removed before least-
squares fitting in OPCA to improve the fitting accuracy. After
getting the corrected parabolic equations [Fig. 4(j)] from those
two phase vectors, we employ an oversampling process to avoid
the Ringing effect resulted from spectrum truncation. At last,
the full-sized phase aberration map [Fig. 4(k)] with dimension
1280 × 960 can be reconstructed according to Eq. (1) and the
compensated phase image [Fig. 4(l)] is finally obtained.

In order to evaluate the improvement of our proposed OPCA
phase aberration compensation algorithm, we have applied other
different PCA algorithms to the same digital hologram and
Fig. 5 shows their compensation results. The ideal reconstructed
phase aberration shown in Fig. 5(a) is extracted from the full-
sized phase map [Fig. 4(e)] utilizing conventional PCA algo-
rithm after error points removing operation. Although the
spherical aberration is compensated accurately, over 2 s are
wasted on the SVD process. Figure 5(e) presents the difference
in image between Fig. 4(k) and Fig. 5(a), demonstrating that
OPCA method truly improves compensating efficiency without
sacrificing any compensation accuracy. Moreover, OPCA fin-
ishes its PCA process with only 0.001 s. By employing the
cPCA algorithm, the reconstructed phase aberration map is pre-
sented in Fig. 5(b). This result is obtained from the �1 order
spectrum with dimension 144 × 108, without removing error

Fig. 4. Experimental results of human macrophage cells at the
output of each step in OPCA. (a) Digital hologram; (b) presents
the frequency spectrum of (a); (c) shows the cropped �1 order spec-
trum; (d) presents the centered �1 order spectrum; (e) is the phase
image with aberration; (f ) presents the cropped aberration spectrum;
(g) shows the subsampled phase map; (h) is the extracted first principle
component; (i) presents the unwrapped phase vector along the X-axis;
(j) shows the fitted curve after error point removing; (k) is the fitted
phase aberration map; and (l) is the compensated phase image. Fig. 5. Performance comparison of five different PCA algorithms.
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points and oversampling two phase vectors. Although the result
seems similar to the correct phase aberration [Fig. 5(a)], the
processing time spent on PCA is 0.008 s, and the processing
time would also increase undoubtedly with a larger �1 order
spectrum. Furthermore, noticing the enlargement part in the
phase difference map Fig. 5(f), Ringing effect emerges due to
the spectrum truncation at the edge of the �1 order spectrum.
Figure 5(c) shows the reconstructed phase aberration by employ-
ing OPCA method without oversampling. With the limited size
of the aberration spectrum, serious Ringing effect occurs in the
phase difference map Fig. 5(g) due to the spectrum truncation
at the edge of the frequency mask. By employing the OPCA
method without error points removing process, the phase aber-
ration cannot be fitted accurately [Fig. 5(d)], leaving residual
spherical aberration in the phase difference map as expected
[Fig. 5(h)]. Figure 5(i) summarizes the comparison of these
five different phase aberration compensation algorithms, which
highlights the advantage of our OPCA method in both effi-
ciency and accuracy.

Furthermore, to quantitatively illustrate the relationship be-
tween the compensating accuracy and the size of the aberration
spectrum, four compensation methods are implemented with
different sizes of selected aberration spectrum. Figure 6 presents
the root-mean-squared error (RMSE) of the recovered phase
images. As can be seen, the cPCA technique is obviously
affected by the size of selected aberration spectrum because
the error points and the spectrum truncation have not been
addressed properly. On the other hand, among these four meth-
ods, OPCA achieves the highest compensating accuracy and
the best robustness with the frequency mask shrinking.
Noticing that the recovered phase RMSE increases rapidly us-
ing OPCA when the size of the aberration spectrum reduces to
24 × 18, this is because the frequency mask is shrinked smaller
than the aberration spectrum. Therefore, the whole aberration
spectrum should be selected manually in OPCA to prevent the
occurrence of this incorrect compensation.

In conclusion, we have proposed a high-efficiency PCA-
based phase aberration compensation method for digital holo-
graphic microscopy by introducing a masking operator on the
�1 order spectrum to extract the aberration spectrum where
aberration energy is concentrated. Because the size of the
subsampled aberration spectrum is limited by the masking
operator, the computational efficiency of the PCA process is
significantly improved. Moreover, the limited mask almost
embraces the total energy of aberration while the object energy
is significantly attenuated; thus, higher compensation accuracy
and robustness are achieved as demonstrated by the experimen-
tal results. Based on the PCA technique, when the phase aber-
ration function Q�x; y� only contains non-cross terms and can
be separated into two 1D vectors, our method can be further
extended to correct some high-order phase aberrations, not just
limited to tilt and defocus.
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