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Deep learning has gained increasing attention in the field of
optical metrology and demonstrated great potential in solving
a variety of optical metrology tasks, such as fringe analysis and
phase unwrapping. However, deep neural networks cannot
always produce a provably correct solution, and the predic-
tion error cannot be easily detected and evaluated unless the
ground-truth is available. This issue is critical for optical
metrology, as the reliability and repeatability of the measure-
ment are of major importance for high-stakes scenarios. In this
paper, for the first time to our knowledge, we demonstrate that
a Bayesian convolutional neural network (BNN) can be trained
to not only retrieve the phase from a single fringe pattern but
also produce uncertainty maps depicting the pixel-wise con-
fidence measure of the estimated phase. Experimental results
show that the proposed BNN can quantify the reliability of
phase predictions under conditions of various training dataset
sizes and never-before-experienced inputs. Our work allows
for making better decisions in deep learning solutions, paving
a new way to reliable and practical learning-based optical
metrology. © 2021 Optical Society of America under the terms of

theOSAOpen Access Publishing Agreement
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Fringe-pattern analysis is key to many optical metrology appli-
cations [1], such as optical interferometry, fringe projection
profilometry, digital holography, moiré interferometry, shearog-
raphy, and corneal topography. The purpose of the fringe-pattern
analysis is to extract the underlying phase information of test
objects from one or several fringe pattern(s). Normally, a fringe
pattern I can be expressed as

I (x , y )= A(x , y )+ B(x , y ) cos ϕ(x , y ), (1)

where (x , y ) is the pixel coordinate, A is the background signal, B
is the modulation, andϕ is the phase of test objects. As A and B are
unknown, it is an ill-posed problem to extract ϕ if only one fringe
image is at hand. Single-shot phase demodulation approaches,
e.g., Fourier transform profilometry (FTP) [2], resort to the assis-
tance of a spatial carrier to handle the ill-posed issue. Although they
are of high efficiency, they are susceptible to complex surfaces that

can easily cause spectral aliasing during the phase demodulation.
On the contrary, multi-shot phase demodulation approaches,
such as phase-shifting (PS) algorithms [3], can carry out pixel-wise
phase measurements with high accuracy. However, they are frag-
ile for disturbances and vibrations due to the limited efficiency
resulting from the multi-frame nature.

Recently, the deep learning technique has been introduced
to the fringe-pattern analysis [4]. It is reported that the phase
information can be extracted from a single fringe pattern with sub-
stantially enhanced phase accuracy for complex objects by a trained
deep neural network (DNN). Therefore, the learning-based fringe
analysis has great potential in realizing high-efficiency and high-
accuracy phase demodulation. However, as most DNNs are driven
by data completely, the reasoning process is quite different from
that of a traditional physical model. Actually, when the training
data are insufficient or the testing data are rare, the output of DNN
may not be reliable enough. A recent example in computer vision
has shown a disastrous prediction where an image classification
network mistakenly identified two African Americans as gorillas,
giving rise to concerns of racial discrimination [5]. Therefore, how
to trust the prediction of a DNN is still a big challenge.

For the task of single-shot fringe-pattern analysis, the uncer-
tainty estimation of the predicted phase is indispensable as it is an
ill-posed problem to retrieve the phase from Eq. (1) with a single
image. Inspired by recent successful applications of Bayesian deep
learning approaches [6], we demonstrate for the first time, to
the best of our knowledge, that a Bayesian convolutional neural
network (BNN) can be trained to not only demodulate the phase
from a single fringe pattern, but also evaluate two uncertainties
of the prediction. They are the data uncertainty and the model
uncertainty. The data uncertainty is also referred to as the aleatoric
uncertainty that can quantify the randomness of the prediction
due to the noise and data imperfection. The model uncertainty
can be referred to as the epistemic uncertainty, which captures
the robustness and the uncertainty of the model. The proposed
BNN is easy to construct and can be extended to traditional DNNs
readily. Experimental results on fringe projection profilometry
show that the uncertainty maps predicted by BNN can indicate
the actual error distribution faithfully in the absence of standard
reference data.
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According to Eq. (1), the phase can be retrieved by

ϕ(x , y )= arctan
M(x , y )
D(x , y )

= arctan
c B(x , y ) sin ϕ(x , y )
c B(x , y ) cos ϕ(x , y )

,

(2)
where the numerator M(x , y ) characterizes the phase sine
[sin ϕ(x , y )] and the denominator D(x , y ) characterizes the
phase cosine [cos ϕ(x , y )]. c is a constant parameter that depends
on the used phase demodulation approach [2,3]. To emulate this
process, a DNN can be trained to learn M(x , y ) and D(x , y ),
which are then fed into the arctangent function for retrieving the
phase.

Here, we present a BNN that uses the Concrete dropout [7]
to approximate Bayesian inference in deep Gaussian processes for
learning the numerator M(x , y ) and the denominator D(x , y )
statistically. We assume that X is a set of input fringe images,
which can be represented as X= {xk

}
K
k=1, where xk is the kth input

fringe pattern and K is the size of the set. Y is a set of ground-truth
labels corresponding to the training data, which can be written
as Y= {yk

}
K
k=1, where yk consists of the ground-truth numerator

and denominator (Mk, Dk). w represents the weight matrix of the
BNN. To investigate the distribution of the output of BNN, we
model the predictive distribution p(y*|x*,X, Y) as

p
(
y*|x*,X, Y

)
=

∫
p
(
y*|x*,w

)
p(w|X, Y)dw, (3)

where p(y*|x*,w) is the probability of the output y* given the
input x*, the weights w, and p(w|X, Y) the probability of
the weights w given the training data (X, Y). The distribution
p(y*|x*,w) describes the data uncertainty, and the distribution
p(w|X, Y) characterizes the model uncertainty.

To measure the data uncertainty, we assume that yk has N pixels,
and p(yk

|xk,w) can then be written as

p
(
yk
|xk,w

)
=

N
5
i=1

p
(
yk

i |x
k,w

)
. (4)

Assuming that the distribution of yk is Gaussian for each pixel,
the data uncertainty can be captured by minimizing the negative
log-likelihood function at the training stage,

−
1

K

∑
k

log p
(
yk
|xk,w

)

=
1

K

K∑
k=1

[
1

2(σ k)2

∥∥∥yk
− ŷk

∥∥∥2
+

1

2
log (σ k)

2
]
, (5)

where y is the ground-truth label, ŷ is the result predicted by BNN,
andσ 2 is the predicted variance.

To measure the model uncertainty, the Concrete dropout net-
work is applied. By placing the Concrete dropout before every
weight layer, we can use a simple variational distribution q(w) to
approximate p(w|X, Y), which is usually hard to calculate analyti-
cally. By using the Monte Carlo (MC) integration over T samples
satisfying w(t)

∼ q(w), Eq. (3) can be approximated as

p(y∗|x∗,X, Y)≈
∫

p(y∗|x∗,w)q(w)dw≈
1

T

T∑
t=1

p(y∗|x∗,w(t)).

(6)
At the prediction stage, the dropout layers in our BNN ran-

domly set input neurons to zero with a learned dropout rate.

By collecting the results of stochastric forward propagation
through the trained model, the predictive mean can be computed
and be used as the prediction of the BNN,

µ̂= E (y∗|x∗,X, Y)≈
1

T

T∑
t=1

E (y∗|x∗,w(t))=
1

T

T∑
t=1

y∗(t),

(7)
where E is the expectation. The model uncertainty is measured by
the variance of the predicted results:

σ̂model
=

√
E
[
Var

(
y*
∣∣w, x*,X, Y

)]
≈

√√√√ 1

T

T∑
t=1

(
y∗(t) − µ̂

)2
.

(8)
Then, the data uncertainty is quantified by the average of the

estimated variance:

σ̂ data
=

√
V ar

(
E
[
y*
∣∣w, x*,X, Y

])
≈

√√√√ 1

T

T∑
t=1

(σ 2)
(t). (9)

Our BNN follows the architecture of the U-Net. In the train-
ing stage, the dropout rate of each layer is not fixed and can be
learned automatically by BNN. More details about the theory, the
structure, and the learned dropout rates of BNN are provided in
Supplement 1.

The diagram of the testing process of our method is shown in
Fig. 1. With an input fringe pattern, the trained BNN outputs T
different sets of data including the numerator, the denominator,
and their variance maps. The mean numerator and the mean
denominator are obtained for calculating the final wrapped phase
µ̂ϕ by Eq. (2). To obtain the data/model uncertainty of the phase,
we calculate the data/model uncertainty of the numerator and
the denominator using Eqs. (9) and (8) first, and then apply the
propagation of uncertainty:

σ̂model/data
ϕ =

√(
∂ϕ

∂M
σ̂

model/data
M

)2

+

(
∂ϕ

∂D
σ̂

model/data
D

)2

. (10)

More details on the calculation of the phase and its uncertainties
are provided in Supplement 1.

We tested the proposed method under the scenario of fringe
projection profilometry. Our system consisted of a projector
(DLP 4100, Texas Instruments) and a camera (V611, Vision
Research Phantom). The projector illuminated test objects with
pre-designed fringe patterns and the camera captured 8-bit gray-
scale images simultaneously from a different perspective. The
spatial frequency of the projected fringes was f = 160. To collect
training data, we captured many fringe images of different kinds
of objects and generated the ground-truth labels by a 12-step PS
algorithm. The BNN was implemented by using the Keras and
computing on a graphic card (GTX Titan, NVIDIA). Further
details about the optical setup, implementation of BNN, and tests
with fringe patterns of different spatial frequencies are provided in
Supplement 1.

The test scene shown in Fig. 2(a) contains two plaster statues
that are not present in the training stage. The trained BNN used
the fringe image as an input and made T = 50 predictions. The
mean of the numerator and the denominator, and the wrapped
phase, are shown in Figs. 2(b)–2(d), respectively. The correspond-
ing uncertainties are demonstrated in Figs. 2(e)–2(h), respectively.
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Fig. 1. Schematic of the proposed method. With the Monte Carlo dropout sampling, T samples of the BNN’s prediction are obtained for an input fringe
pattern. Each prediction outputs a set of data including M∗(t), (σ 2

M)
(t), D∗(t), and (σ 2

D)
(t). The wrapped phase µ̂ϕ is obtained by feeding the mean µ̂M and

the mean µ̂D into the arctangent function. To obtain the phase uncertainties, we first calculate the uncertainties of the numerator and the denominator and
then apply the propagation of uncertainty (PU).

Fig. 2. Test of the trained BNN. (a) The input fringe pattern.
(b)–(d) Mean numerator, mean denominator, and wrapped phase,
respectively. (e) and (f ) Data uncertainty and the model uncertainty
of the estimated numerator, respectively. (g) and (h) Corresponding
uncertainties of the denominator.

Our BNN is well-calibrated, and the evaluation of the predicted
uncertainties is provided in Supplement 1. To investigate the phase
accuracy, we unwrapped the phase by using the temporal phase
unwrapping approach [8] and calculated the phase error against a
ground-truth phase map, which was obtained by the 12-PS algo-
rithm. In Supplement 1, the unwrapped phase has been converted
into the 3D reconstruction for better investigation of recovered
surface details.

To demonstrate the efficacy of the uncertainties, we also trained
the BNN with only half of the training data. For comparison, a
convolutional U-Net (termed as “CNN”) that had no dropout
layers was trained as well. Figures 3(a) and 3(b) show the absolute
phase error when both models were trained with all of the data.
The two networks demonstrated similar performance on the phase
measurement as the BNN followed the main structure of the U-
Net. Two regions of interest (ROIs) were selected, and their error
distributions are shown in Figs. 3(i) and 3(j). For both the CNN
and BNN, the phase errors are small for smooth areas, such as the
statues’ faces. But, the error begins to increase rapidly for the sharp
regions, e.g., the hairs of the statues. From Figs. 3(c) and 3(d), we
can see that the distribution of uncertainties faithfully indicate
the error distribution, where the areas with large errors have been
labeled with large uncertainties. We find the model uncertainty is

Fig. 3. Analysis of the phase error and uncertainties of the BNN in
two differenct cases. For the first case where the full training dataset was
used for training: (a) bsolute phase error of CNN; (b) absolute phase
error of BNN; (c) and (d) BNN’s data uncertainty and model uncertainty
of the phase. (e)–(h) Corresponding results for the second case where
only half of the dataset was used for training. (i) and (j) show the errors
and uncertainties of the two ROIs in the first case and the second case,
respectively.

small, implying that the phase prediction can be performed consis-
tently by the BNN. The data uncertainty is more significant, which
is the result of the image noise in the captured images. In fringe pro-
jection, dense fringe patterns (e.g., f = 160) are usually captured
with compromised fringe contrast. Next, the errors of both CNN
and BNN increase when only half of the data were used, as can be
seen in Figs. 3(e) and 3(f ). We can see the data uncertainty almost
does not change as the data reduction did not affect the data noise.
However, the model uncertainty rises significantly. Its mean value
surges from 0.029 rad to 0.062 rad, as can be seen from Figs. 3(d)
and 3(h). The reduction of training data has an adverse effect on
the robustness of the model, thus increasing its doubt about the
prediction.

Further, we tested the BNN by using a tough sample that is a
complex industrial part with screw thread shown in Fig. 4(a). The
absolute phase error of the BNN is shown in Fig. 4(b). It can be

https://doi.org/10.6084/m9.figshare.16918204
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seen that the error of the smooth cylindrical area is small but that of
the screw thread region is quite large. The data uncertainty and the
model uncertainty are demonstrated in Figs. 4(c) and 4(d). We can
see the BNN has faithfully indicated the overall error distribution.
For detailed investigations, we have a magnified view of the screw
thread region as shown in Fig. 4(e), where A represents the inter-
nal area and B represents the screw thread. A background image
without fringes was also captured, and the selected area is shown
in Fig. 4(f ), which demonstrates that the internal area A is smooth
without any screw structure. As the smooth surface is common and
has been seen by the BNN during training, the uncertainty maps
indicated high credibility, and the error is small, as can be seen in
Fig. 4(g). For region B, however, the error shown in Fig. 4(h) is very
serious. By comparing Figs. 4(e) and 4(f ), we can see the projected
fringe patterns happened to couple with the structure of the screw
thread at region B, forming an approximate low-frequency moiré
pattern. As a result, it is difficult for the neural network to handle
this rare case, thus resulting in the significant model uncertainty.
We also find that the moiré pattern has also been captured by the
data uncertainty, which implies that it may also be treated as a kind
of image noise by BNN. Moreover, an out-of-distribution (OOD)
fringe image that has a different spatial frequency ( f = 80) was
also tested. The corresponding results are shown in Figs. 4(i)–4(p),
where the phase error and the predictive uncertainties are more
severe for the whole scene. For region A, the mean data uncertainty
and model uncertainty rise to 0.14 rad and 0.12 rad from 0.074 rad
and 0.025 rad, respectively. For region B, they increase to 0.55 rad
and 0.48 rad from 0.45 rad and 0.31 rad, respectively. We can see
that the model is very suspicious of its prediction for the OOD
data. Further, if considered in a quality control setting, this exper-
iment would provide a typical example of how the BNN allows
for making better decisions. When using deep learning methods
for detecting surface defects, one may face the risk of incorrectly
classifying an industrial part as a defective product due to a failure
of the DNN. By converting the phase results into 3D reconstruc-
tions [Figs. 4(q)–4(s)], we can see that the 12-step PS method
successfully measured the profile of the complex threaded region B,
while the network produced inconsistent and distorted reconstruc-
tions. In this case, the “defect” is caused by the network rather than
the object itself. It is worth noting that the estimated uncertainty
maps have captured this problem by showing high uncertainties
for this region. Consequently, instead of blindly believing that
the product is defective, we should resort to alternative (prefer-
ably more reliable) methods to further check this dubious result.
More experimental results of the BNN’s performance in handling
never-experienced input data are provided in Supplement 1.

In this work, we have presented a fringe-pattern analysis
framework using a BNN that can not only demodulate the phase
information from a single fringe image but also output pixel-
wise uncertainty maps describing the confidence of the neural
network on its prediction. The BNN is developed by using the
MC Concrete dropout approximation. This strategy is easy to
implement and can be extended to other existing neural networks
by simply adding extra Concrete dropout layers. To validate the
proposed method, we tested the performance of the BNN in the
conditions of varying training dataset size, rare test inputs, and
OOD data, respectively. Experimental results have shown that the
predicted uncertainty maps can successfully indicate the distri-
bution of real phase errors without using any ground-truth data.
In the future, error-reduction methods based on the estimated
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Fig. 4. Uncertainty analysis of a measured complex industrial part with
screw thread. (a) A captured fringe image ( f = 160). (b) Absolute phase
error of BNN. (c) Data uncertainty of BNN. (d) Model uncertainty of
BNN. (e) Magnified view of the fringe image for the selected area, where A
indicates the internal area and B the area with screw thread. (f ) Magnified
view of a background image (without projected fringes) for the same
selected area. (g) and (h) phase errors and uncertainty maps of region
A and region B, respectively. (i)–(p) Corresponding results when the
frequency of the projected fringes is f = 80. (q)–(s) 3D reconstructions
obtained by the 12-PS method (ground-truth method, GT) and the
BNNs.

uncertainty maps will be further investigated. We believe that a
DNN that can provide confidence measure of the estimated phase
is crucial to fringe-pattern analysis and that it has great potential
for inspiring novel and reliable learning-based optical metrology
approaches.
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