
Research Article Vol. 29, No. 9 / 26 April 2021 / Optics Express 13388

Single-shot 3D shape measurement using an
end-to-end stereo matching network for speckle
projection profilometry
WEI YIN,1,2,3,4 YAN HU,1,2,3,4 SHIJIE FENG,1,2,3,4,7 LEI
HUANG,5 QIAN KEMAO,6 QIAN CHEN,1,2,8 AND CHAO
ZUO1,2,3,4,9,10

1School of Electronic and Optical Engineering, Nanjing University of Science and Technology, No. 200
Xiaolingwei Street, Nanjing, Jiangsu Province 210094, China
2Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094,
China
3Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing,
Jiangsu Province 210094, China
4Smart Computational Imaging Research Institute (SCRI) of Nanjing University of Science and Technology,
Nanjing, Jiangsu Province 210019, China
5Brookhaven National Laboratory, NSLS II 50 Rutherford Drive, Upton, New York 11973-5000, USA
6School of Computer Science and Engineering, Nanyang Technological University, 639798, Singapore
7geniusshijie@163.com
8chenqian@njust.edu.cn
9zuochao@njust.edu.cn
10surpasszuo@163.com

Abstract: Speckle projection profilometry (SPP), which establishes the global correspondences
between stereo images by projecting only a single speckle pattern, has the advantage of single-shot
3D reconstruction. Nevertheless, SPP suffers from the low matching accuracy of traditional stereo
matching algorithms, which fundamentally limits its 3D measurement accuracy. In this work,
we propose a single-shot 3D shape measurement method using an end-to-end stereo matching
network for SPP. To build a high-quality SPP dataset for training the network, by combining
phase-shifting profilometry (PSP) and temporal phase unwrapping techniques, high-precision
absolute phase maps can be obtained to generate accurate and dense disparity maps with high
completeness as the ground truth by phase matching. For the architecture of the network, a
multi-scale residual subnetwork is first leveraged to synchronously extract compact feature tensors
with 1/4 resolution from speckle images for constructing the 4D cost volume. Considering that
the cost filtering based on 3D convolution is computationally costly, a lightweight 3D U-net
network is proposed to implement efficient 4D cost aggregation. In addition, because the disparity
maps in the SPP dataset should have valid values only in the foreground, a simple and fast
saliency detection network is integrated to avoid predicting the invalid pixels in the occlusions
and background regions, thereby implicitly enhancing the matching accuracy for valid pixels.
Experiment results demonstrated that the proposed method improves the matching accuracy by
about 50% significantly compared with traditional stereo matching methods. Consequently, our
method achieves fast and absolute 3D shape measurement with an accuracy of about 100µm
through a single speckle pattern.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical 3D measurements based on structured light projection have become a prevalent non-contact
3D shape measurement technique [1]. With the advantages of simple hardware configuration,
high measurement accuracy, and high 3D point cloud density, it has been proven one of the most
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promising techniques and is extensively applied in industry inspection and scientific research
[2–5]. Essentially, the structured light-based 3D measurement methods can be regarded as an
improved form of stereo vision, which is achieved by introducing an additional light source
generator (such as a projector) in the system configuration [6]. The light source generator projects
a series of specifically coded patterns onto the measured scenes [7]. Compared with stereo
vision-based methods, the structured light-based 3D measurement methods can easily overcome
the problem of low matching accuracy caused by weak texture regions.

Among the 3D shape measurement methods based on structured light projection, two commonly
used structured light patterns are fringe patterns and speckle patterns. Correspondingly, there are
two mainstream methods: fringe projection profilometry (FPP) [8–11] and speckle projection
profilometry (SPP) [12–14]. In FPP, the projector projects a series of fringe patterns onto
the measured scenes. The fringe images modulated by the measured objects are captured
synchronously by the camera and then processed to obtain the phase information by using
various phase retrieval techniques, such as Fourier transform profilometry (FTP) [15–17] and
phase-shifting profilometry (PSP) [18]. However, these methods both adopt the arctangent
function which can only provide a wrapped phase with 2π phase jumps. Therefore, it is necessary
to perform phase unwrapping to eliminate the phase ambiguity and convert the wrapped phase
to the absolute phase [19–25]. To address this issue, several composite phase-shifting schemes
(e.g, dual-frequency PSP [26], bi-frequency PSP [27], and 2+2 PSP [28]) have been proposed,
which can solve the phase ambiguity problem without significantly increasing the number of
projected patterns. However, these methods still require a certain number of projection patterns.
As a result, it is difficult to obtain high-precision and absolute phase information from a single
fringe image in FPP, which limits its applications in dynamic 3D measurement [29,30].

Different from FPP, the projector in SPP projects a speckle pattern onto the measured scenes.
The speckle images modulated by the measured objects are captured synchronously by the
stereo camera and then processed to obtain the disparity map by using various stereo matching
techniques. The projected speckle pattern designed using a spatial encoding strategy has
inherently global uniqueness, which makes the SPP-based 3D measurement methods have the
advantage of single-shot 3D reconstruction. Therefore, the key idea of the design method for
the speckle pattern is how to ensure that the local speckles are globally unique with respect
to the whole projection pattern [31]. These design methods for projection patterns can be
grouped into three main classes based on various spatial encoding strategies [7,32,33]: strategies
based on non-formal codification [34,35], strategies based on De Bruijn sequences [36–38], and
strategies based on M-arrays [39]. In the last few decades, researchers have proposed numerous
design methods for the speckles. However, due to the measured objects with complex reflection
characteristics and the perspective differences between the stereo camera, it is still difficult to
ensure the global uniqueness of each pixel in the whole measurement space by only projecting one
speckle pattern [12,14,40], which leads to the common mismatching in actual measurements. In
order to solve this problem in SPP, some robust stereo matching algorithms such as SGM [41–43]
and ELAS [44] are proposed to acquire dense disparity maps, thus enabling robust absolute
3D measurement. However, these methods achieve reliable stereo matching by smoothing the
disparity map, at the cost of matching accuracy. It is easy to understand that projecting multiple
speckle images will improve the accuracy of 3D measurement, because more constraints can
be exploited to completely guarantee the global uniqueness of the measured scenes. Following
this idea, Zhou etal. [14] proposed a high-precision 3D surface profile measurement scheme
by only projecting a single-shot color binary speckle pattern (CBSP) and a temporal-spatial
correlation matching algorithm, which can be applied to measurements of dynamic and static
objects. In order to improve the 3D measurement speed, Schaffer etal. [12,13] used laser speckles
as projected patterns which are switched using an acousto-optical deflector. Its projection rate is
more than 10 times higher than the common projection systems. Capturing images of encoded
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objects through two synchronized high-speed cameras, this proposed system achieves high-speed,
dense, and accurate 3D measurements of spatially separated objects at 350 frames per second.
These proposed SPP methods can achieve high-performance 3D measurement based on speckle
projection, but it is impossible to obtain accurate 3D data from a single speckle image. For
SPP, it still lacks a stereo matching algorithm using a single speckle pattern that can achieve
high-robustness and high-accuracy 3D measurement for the recovery of the fine details of complex
surfaces.

Compared with traditional stereo matching methods, recently, many deep learning methods for
stereo vision are proposed and have achieved excellent performance of stereo matching [45–52].
There is generally a four-step pipeline for stereo matching, including matching cost calculation,
cost aggregation, disparity computation, and disparity refinement, while traditional stereo
matching methods perform all four steps using non-learning techniques. Existing learning-based
stereo matching methods attempt to exploit deep learning to implement one or multiple of the
four steps to obtain better matching results. LeCun etal. [45] first adopted the Siamese network
to perform block matching for obtaining the initial matching cost and then exploited typical
stereo matching procedures, including SGM-based cost aggregation, disparity computation,
and disparity refinement to further improve matching results. Luo etal. [46] inputted left and
right image patches with different sizes into the CNNs for computing the initial matching cost,
which will convert the binary classification problem into a multi-classification task, enabling
high-efficiency stereo matching. Currently, some end-to-end stereo matching networks have been
developed to predict whole disparity maps without post-processing. Kendall etal. [49] proposed to
generate a 4D cost volume of size C × D × H × W (i.e., Features × Disparity × Height × Width)
by combining the features of all pixels from the reference image and all candidates among
disparity ranges along the epipolar line of the target image. The 4D cost volume is filtered through
a series of 3D convolutional layers. The final disparity maps are regressed from the filtered
cost volume using a differentiable soft argmin operation, which allows it to achieve matching
results with sub-pixel accuracy without any additional post-processing or regularization. Later,
Chang etal. [51] proposed a pyramid stereo matching network (PSMNet) to further improve the
matching accuracy by using the spatial pyramid pooling and multiple hourglass networks based
on the 3D CNN. Zhang etal. [52] introduced SGM-based cost aggregation and local guided
filter into the existing cost aggregation subnetwork to obtain better matching accuracy and the
generalization ability of the network.

In this work, we propose a single-shot 3D shape measurement method using an end-to-end
stereo matching network for speckle projection profilometry. In supervised learning, the use of
high-quality datasets, including input data and ground truth, is very important for learning-based
methods. KITTI is a prominent stereo dataset, which promoted the development of deep learning
in stereo vision [53]. It is worth noting that KITTI is very challenging because its labels obtained
by 3D Lidar are extremely sparse and low-precision. In our method, different from KITTI, by
combining 12-step PSP [18] and multi-frequency temporal phase unwrapping techniques [22],
high-precision absolute phase maps with high completeness can be obtained to generate dense
disparity maps with subpixel precision by phase matching, which will be as the high-quality
ground truth for our stereo matching network. For the architecture of our proposed network,
a multi-scale residual subnetwork is first leveraged to synchronously extract compact feature
tensors with 1/4 resolution from speckle images for constructing the 4D cost volume. Considering
that the cost filtering operation using 3D convolutional layers is computationally expensive, a
lightweight 3D U-net network is proposed to implemented efficient 4D cost aggregation for
achieving higher matching performance. In addition, because the disparity maps (as the ground
truth) in the SPP dataset has valid values only in the foreground, a simple and fast saliency
detection network is integrated into our end-to-end network to avoid predicting the invalid pixels
in the disparity maps including occlusions and backgrounds, thereby implicitly enhancing the
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matching accuracy for valid pixels. Based on the proposed method, the matching accuracy is
improved by about 50% significantly compared with traditional stereo matching methods. The
experiment results demonstrated that the proposed method can achieve fast and absolute 3D
shape measurement with an accuracy of about 100µm through a single speckle pattern.

2. Principle

In this section, a single-shot 3D shape measurement method using an end-to-end stereo matching
network for speckle projection profilometry will be presented. In our method, a speckle pattern
and a series of fringe patterns need to be projected by the projector onto the measured scenes and
captured synchronously by the stereo camera. The acquired speckle image pair is first processed
by epipolar rectification, and then fed directly into the proposed end-to-end stereo matching
network to obtain the corresponding disparity map without the background. The disparity map
is converted into the final 3D results after disparity-to-height mapping as shown in Fig. 1. It
is clear that the projected speckle pattern and the end-to-end stereo matching network together
determine the actual 3D measurement performance of the proposed method.

Fig. 1. The diagram of the proposed single-shot 3D shape measurement method using an
end-to-end stereo matching network for speckle projection profilometry.

For the speckle pattern, we follow a simple and effective design and evaluation method
proposed in our previous work [31]. By introducing epipolar rectification and depth constraint,
the only thing the stereo matching algorithms need to do is to search the corresponding pixel
within the pre-defined local 1D range rather than the traditional global 2D range, which means
that our optimized design method of the speckle pattern just requires the local speckles in the
speckle patterns are unique with respect to the local 1D projection space. Based on this idea, the
projected speckle pattern is designed and evaluated to assist in improving the 3D measurement
performance.

For the proposed end-to-end stereo matching network, there are two aspects that affect its
final stereo matching performance. First, for the deep learning-based network approach, the
datasets, including input data and ground truth, are very important to efficiently train the stereo
matching network. In our method, a series of acquired fringe images are used to generated dense
disparity maps with subpixel precision as the high-quality ground truth for our SPP datasets,
which potentially determines the trained network’s highest matching accuracy and robustness
when measuring objects with complex surfaces. In the next subsection, we will discuss in detail
how to construct a high-quality SPP dataset using phase-shifting methods and multi-frequency
temporal phase unwrapping techniques in FPP. Secondly, for the architecture of our proposed
network, although a large number of high-performance learning-based stereo matching networks
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exist, these networks are generally trained and validated on the KITTI stereo dataset and cannot
be directly applied to SPP. KITTI is a prominent stereo dataset, which promoted the development
of deep learning in stereo vision [53]. It is worth noting that KITTI is very challenging because
its labels obtained by 3D Lidar are extremely sparse and low-precision. Specifically, KITTI is a
dataset in the field of autonomous driving, in which the data has the properties of large scale and
sparse texture, and its 3D reconstruction accuracy is millimeter precision. In contrast, our stereo
matching network aims to achieve high-precision and robust 3D measurements with micron-level
accuracy by matching the objects with strong speckle texture information. The specific structure
of the proposed network will be presented in detail according to Section 2.2.

2.1. High-quality SPP dataset constructed by using FPP

To build a high-quality SPP dataset, fringe projection profilometry (FPP) is used to obtain
high-precision and dense disparity maps as the ground truth. In a common FPP system, there are
three main processing steps in FPP: phase extraction, phase unwrapping, and phase-to-height
mapping. During phase recovery, sinusoidal fringe-based FPP methods are more prevalent
to retrieval the wrapped phase using Fourier transform methods in frequency domain [15] or
phase-shifting methods in time domain [18]. Fourier transform profilometry (FTP) has the
advantage of single-shot phase extraction but suffers from the spectrum overlapping problem.
These methods generally produce coarse wrapped phases with low quality, making it difficult to
achieve high-precision 3D acquisition. Different from FTP, phase-shifting profilometry (PSP)
can realize pixel-wise phase measurements with higher accuracy unaffected by ambient light, but
it needs to project at least three fringe patterns to obtain a phase map theoretically.

In this work, the standard 12-step phase-shifting fringe patterns with shift offset of 2π/12 are
adopted because it is quite robust to ambient illumination and varying surface properties:

Ip
n (x, y) = 0.5 + 0.5 cos(2πfx − 2πn/12), (1)

where Ip
n (x, y)(n = 0, 1, 2, . . . , 11) represent fringe patterns to be projected, f is the frequency of

fringe patterns. Then the fringe images captured by the camera can be described as

Ic
n(x, y) = Ac(x, y) + Bc(x, y) cos(ϕc(x, y) − 2πn/12), (2)

where Ic
n(x, y) represent the intensity of captured fringe images, Ac(x, y), Bc(x, y), and ϕc(x, y) are

the average intensity, the intensity modulation, and the phase distribution of the measured object.
According to the least-squares algorithm, the wrapped phase ϕc(x, y), Bc(x, y), and Maskc

v(x, y)
can be obtained:

ϕc(x, y) = tan−1
∑︁11

n=0 Ic
n(x, y) sin(2πn/12)∑︁11

n=0 Ic
n(x, y) cos(2πn/12)

, (3)

Bc(x, y) =
2
12

⌜⃓⃓⎷[︄ 11∑︂
n=0

Ic
n(x, y) sin(2πn/12)

]︄2

+

[︄ 11∑︂
n=0

Ic
n(x, y) cos(2πn/12)

]︄2

, (4)

Maskc
v(x, y) = Bc(x, y)/255>Thr1, (5)

where Thr1 is the preset threshold for the tested object, Maskc
v(x, y) can be used to identify the

valid points in the whole image. The threshold Thr1 should be changed for object surfaces with
different reflectivity, theoretically. In most cases, Thr1 = 0.01 is acceptable for various objects
in our measurement. In our method, Maskc

v(x, y) is exploited to preprocess the ground truth for
enhancing the learning ability of the network to the valid information of the measured scenes.
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Due to the truncation effect of the arctangent function in Eq. (3), the obtained phase ϕc(x, y) is
wrapped within the range of (−π, π], and its relationship with Φc(x, y) is:

Φ
c(x, y) = ϕc(x, y) + 2πkc(x, y), (6)

where kc(x, y) represents the fringe order of Φc(x, y), and its value range is from 0 to f − 1.
In our method, multi-frequency temporal phase unwrapping method (MF-TPU) is exploited to

obtain kc(x, y) for each pixel in the phase map accurately. In MF-TPU, the wrapped phase ϕc(x, y)
is unwrapped with the aid of one (or more) additional wrapped phase map with different frequency.
For instance, two wrapped phases ϕc

h(x, y) and ϕc
l (x, y) are both retrieved from phase-shifting

algorithms by using Eq. (3), ranging from −π to π. It is easy to find that the two absolute phases
Φc

h(x, y) and Φc
l (x, y) corresponding to ϕc

h(x, y) and ϕc
l (x, y) have the following relationship:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φ
c
h(x, y) = ϕc

h(x, y) + 2πkc
h(x, y),

Φ
c
l (x, y) = ϕc

l (x, y) + 2πkc
l (x, y),

Φ
c
h(x, y) = (fh/fl)Φc

l (x, y),
(7)

where fh and fl are the frequency of high-frequency fringes and low-frequency fringes. Based on
Eq. (7), kc

h(x, y) can be calculated by the following formula:

kc
h(x, y) =

(fh/fl)Φl(x, y) − ϕh(x, y)
2π

. (8)

Since the fringe order kc
h(x, y) is integer, ranging from 0 to fh - 1, Eq. (8) can be adapted as

kc
h(x, y) = Round

[︃
(fh/fl)Φc

l (x, y) − ϕc
h(x, y)

2π

]︃
, (9)

where Round() is the rounding operation. When fl is 1, there will be no phase ambiguity so
that ϕc

l (x, y) is inherently an unwrapped phase. Theoretically, for MF-TPU, this single-period
phase can be used to directly assist phase unwrapping of ϕc

h(x, y) with relatively higher frequency.
However, the phase unwrapping capability of MF-TPU is greatly constrained due to the influence
of noise in practice. For a normal FPP system, MF-TPU can only reliably unwrap the phase with
about 16 periods due to the non-negligible noises and other error sources in actual measurement.
Thus, it generally exploits multiple (>2) sets of phases with different frequencies to hierarchically
unwrap the wrapped phase step by step, and finally arrives at the absolute phase with high
frequency instead of only using the phase with a single period. In our method, three wrapped
phases with different frequencies (including 1, 8 and 57) are used to obtain high-precision and
dense (57-period) absolute phase.

Finally, phase matching based on the phase information is implemented to obtain the disparity
map with integer-pixel precision by minimizing the difference between absolute phases from two
perspectives:

∆Φ(i) = abs(ΦL(x, y) − ΦR(x + i, y)), (10)
∆Φmin(Dint) = min

i
∆Φ(i), (11)

where i is the candidate disparity value locally in our SPP system based on epipolar rectification
and depth constraint, the disparity Dint represents the pixel-to-pixel correspondence between
two camera views. Then, the disparity refinement is realized to obtain the disparity map with
subpixel precision by a simple linear interpolation:

Dsub = Dint +

⎧⎪⎪⎨⎪⎪⎩
ΦL(x,y)−ΦR(x+Dint ,y)

ΦR(x+Dint+1,y)−ΦR(x+Dint ,y) , ΦL(x, y) − ΦR(x + Dint, y)>0,
ΦL(x,y)−ΦR(x+Dint ,y)

ΦR(x+Dint ,y)−ΦR(x+Dint−1,y) , ΦL(x, y) − ΦR(x + Dint, y)<0.
(12)

By phase matching, the high-precision and dense disparity map Dsub can be obtained as the
ground truth of our high-quality SPP dataset in Fig. 2.
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Fig. 2. The diagram of constructing high-quality SPP dataset by using FPP.

2.2. End-to-end stereo matching network

In this subsection, an end-to-end stereo matching network, which is used to solve the stereo
matching problem in SPP, is proposed to substantially promote the matching accuracy compared
with the state-of-the-art stereo matching methods. Existing high-performance learning-based
stereo matching networks are generally trained and validated on the KITTI stereo dataset. In
the KITTI stereo dataset, the data has the properties of large scale and sparse texture, and the
corresponding 3D reconstruction results have only millimeter precision. In contrast, based on our
high-quality SPP dataset, our stereo matching network aims to achieve robust 3D measurements
with micron-level accuracy using a speckle image pair. In addition, for the ground truth of our
SPP dataset, the disparity map of the sample data has valid values only in the foreground as
shown in Fig. 2. Thus, it is difficult to naively exploit these existing end-to-end networks [50–52]
to directly obtain the final disparity map, but a simple and fast saliency detection network is
integrated into our network to avoid predicting the invalid pixels in the disparity maps including
occlusions and backgrounds. Specifically, the schematic diagram of the proposed stereo matching
network is shown in Fig. 3.
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Fig. 3. The schematic diagram of the proposed end-to-end stereo matching network. The
whole stereo matching network is composed of a multi-scale residual subnetwork (as the
shared feature extraction subnetwork), construction of the 4D cost volume, cost aggregation
using 3D convolutional layers, disparity regression, and a saliency detection subnetwork.

In Fig. 3, the whole stereo matching network is composed of a multi-scale residual subnetwork
(as the shared feature extraction subnetwork), construction of the 4D cost volume, cost aggregation
using 3D convolutional layers, disparity regression, and a saliency detection subnetwork. It is
worth noting that before stereo matching epipolar rectification is first executed to simplify the
two-dimensional search problem to a one-dimensional matching problem [54]. Then, in feature
extraction for matching cost calculation, different from the traditional methods that directly
exploit the gray information or color value of the pixel for correspondence matching, our purpose
is to calculate the feature representation of each pixel to be matched for the subsequent matching
process. Specifically, learning-based methods usually implement feature extraction on the input
stereo images simultaneously to obtain rich feature information, which is used to construct a 4D
cost volume as the initial matching cost. Therefore, the initial matching accuracy corresponding
to the initial matching cost strongly depends on the quality of the extracted feature information.

For the feature extraction subnetwork in our work, a multi-scale residual network is proposed
to process the input stereo image pair to obtain rich multi-scale feature information. In this
subnetwork, speckle images are first processed by a 2D convolution layer and four residual blocks
to obtain 64-channel feature tensors. Considering that the high-resolution matching costs in the
subsequent cost aggregation will consume a lot of computational overhead and take up expensive
GPU memories, it is necessary to perform a 1/4 downsample operation on the feature tensors. It
is worth noting that the extraction of low-resolution feature tensors is not so much a compromise
to the expensive computational cost but to keep the feature tensors more compact and achieve
high-efficiency feature extraction. Then, the low-resolution feature tensors successively go
through six residual blocks for further expanding the receptive field of each pixel of output tensors.
It is crucially important that each pixel of feature tensors yielded by the network must have a
larger receptive field so that the network will not ignore any important feature information during
the prediction period [55]. And then, the multi-scale pooling layers are introduced to downsample
the input tensors by 1/4, 1/16, 1/64, and 1/256, which can further compress and extract the main
features of the tensors to reduce computation complexity and prevent over-fitting. For these
four downsample paths, the feature tensors are all processed sequentially by a convolutional
layer, a group of residual blocks, and an upsample layer implemented by bilinear interpolation.
After the feature tensors from these six paths are gathered, the concatenate layer is applied for
the feature combination along the channel axis. Finally, the feature tensors are processed by a
2D convolution layer, two residual blocks, and a 2D convolution layer without ReLU to obtain
32-channel feature tensors with 1/4 resolution.
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At the next stage, for constructing the 4D cost volume, feature tensors of each pixel in the left
image and all corresponding candidates in the local disparity range on the epipolar line of the
right image are concatenated. The initial 4D cost volume of dimensionality H × W × D × F (i.e.,
Height × Width × Disparity × Features) is built as shown in Fig. 4:

Cost(:, 1 : (W − Di), Di − Dmin + 1, 1 :
F
2
) = Featureleft(:, 1 : (W − Di), :),

Cost(:, 1 : (W − Di), Di − Dmin + 1, (
F
2
+ 1) : F) = Featureright(:, (Di + 1) : W, :)

, (13)

where Featureleft and Featureright represent the feature tensors with 1/4 resolution from two per-
spectives output by the feature extraction subnetwork, their size (H × W × F/2) is 240 × 320 × 32
for the 480 × 640 resolution of the cameras. [2Dmin, 2Dmax] is the disparity range of our SPP
system. For feature tensors with 1/4 resolution, the initial 4D cost volume is built based on
the range [Dmin, Dmax]. Di is a candidate disparity in the range [Dmin, Dmax]. D is the absolute
disparity range (Dmax − Dmin + 1).

Fig. 4. The schematic diagram of the construction of the 4D cost volume. Based on the
disparity range of our SPP system, the initial 4D cost volume is built by combining feature
tensors of each pixel in the left image and all corresponding candidates along the epipolar
line of the right image.

In cost aggregation, the initial 4D cost volume will be further optimized using 3D convolutional
layers. Although some downsample operations have been done during feature extraction, in
fact, the 4D cost volume with 1/4 resolution still occupies a lot of GPU memories. Therefore, a
lightweight 3D U-net network is proposed to achieve efficient 4D cost aggregation. First of all,
three sets of 3D convolutional layers are adopted to realize cost filtering and downsample the
4D cost volume by 1/4. Then, the ConvTranspose3d layer is used to upsample the cost volume,
and combined with shortcut operations to achieve residual aggregation. According to the output
of the residual operations, three 3D convolutional layers are used to acquire a 4D cost volume
with a single-channel feature, and subsequently obtain the final full-resolution 4D cost volume
through an upsample layer.

Disparity regression in [49] is introduced to estimate the disparity map based on the final 4D
cost volume with a single-channel feature. The probability of each candidate disparity Di is first
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calculated using the softmax operation for the predicted cost volume. The predicted disparity
map Disparity(x, y) is procured by the weighted sum of the normalized probability for each
candidate disparity Di:

Disparity(x, y) =
2Dmax∑︂

Di=2Dmin

Di × softmax(Cost(x, y, Di)). (14)

The traditional stereo matching network directly calculates the loss between the predicted
disparity map and the ground-truth for training. But for the dataset built in our SPP system,
the disparity map of the sample data has valid values only in the foreground. Therefore, it
is necessary to integrate an additional saliency detection network into our existing network.
Currently, the learning-based saliency detection method has been widely investigated with its
advantages of high accuracy, high efficiency, and low cost. Among them, fully convolutional
network (FCN) is one of the most promising network architectures and has achieved significant
results on various well-known datasets [56]. However, given the dataset of SPP that the spatial
structure of the tested scenes is relatively simple and the saliency objects have strong speckle
texture information, a saliency detection network based on a simple network structure can also
achieve good detection results. In order to avoid extracting redundant features, the feature tensors
from two perspectives output by the feature extraction subnetwork are directly stacked through
a concatenate layer. And then, through a group of residual blocks, a ConvTranspose2d layer,
another group of residual blocks, and a convolutional layer, the feature tensors are sequentially
filtered and upsampled to obtain a single-channel feature tensor with full resolution. Finally, the
sigmoid function is used to achieve the regression of the saliency detection mask Mask(x, y),
enabling the prediction of the disparity map without the background:

Disparitytrain(x, y) = Disparity(x, y) × Mask(x, y). (15)

During training, we used Adam to minimize the joint loss, thereby updating the weights that
parameterize the network. The joint loss consists of a smooth L1 loss for the disparity map and a
binary cross-entropy loss for the saliency mask:

Loss = LossMask + LossDisparity, (16)

LossMask = −
1
N

N∑︂
n=1

[Maskc
v(n) ln Mask(n) + (1 − Maskc

v(n)) ln(1 − Mask(n))], (17)

LossDisparity =
1
N

N∑︂
n=1

smoothL1 (Dsub(n) − Disparitytrain(n)), (18)

smoothL1 (x) =
⎧⎪⎪⎨⎪⎪⎩

0.5x2, if |x|<1,

|x| − 0.5, otherwise.
(19)

where Maskc
v and Dsub are the corresponding ground truth of the saliency mask and the disparity

map according to Section 2.1.
During testing, the saliency detection mask Mask(x, y) needs to be binarized to distinguish the

foreground from the background, and the final disparity map is obtained:

Disparityfinal(x, y) = Disparity(x, y), if Mask(x, y)>=0.75. (20)

To verify the actual impact of the saliency detection network, the comparison of the 3D
reconstruction results without/with the saliency detection network is presented as shown in Fig. 5.
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It can be found in Fig. 5 that our measurement results without the saliency detection network have
serious mismatches in the background, which will affect the convergence of the network during
training and reduce the actual performance of the network. Therefore, the saliency detection
network is an additional but necessary module in our approach, implicitly enhancing the matching
accuracy for valid pixels.

Fig. 5. Comparison of the 3D reconstruction results without/with the saliency detection
network. (a) the 3D reconstruction results without the saliency detection network. (b) the
3D reconstruction results with the saliency detection network. (c) the ground truth.

3. Experiments

To verify the actual 3D measurement performance of the proposed method, a common stereo
vision-based SPP system with a wide baseline is built as shown in Fig. 1, which consists of
two monochrome cameras (Basler acA640-750um with the resolution of 640 × 480) and a DLP
projector (LightCrafter 4500Pro with the resolution of 912 × 1140). Since the baseline between
the stereo cameras is about 270mm, the disparity constraint of our system should be suitably set
to -100 to 59 pixels to measure objects with a depth range of −100mm to 100mm. The distance
between the measurement system and the objects to be tested is about 900mm. In addition, the
projected speckle pattern has been designed and evaluated based on our previous work [31] to
obtain the best 3D measurement performance.

In our experiment, we collected the dataset including 1200 different scenes, which are randomly
composited of 30 simple and complex objects. The whole dataset has 1200 image pairs, which
are divided into 800 image pairs for training, 200 image pairs for validation, and 200 image pairs
for testing. During training, to monitor the accuracy of the neural networks for samples that
they have never seen, the scenes in these training, verification, and testing datasets are separate
from each other. In addition, to achieve high-robustness and high-accuracy stereo matching,
the proposed stereo matching network can only process a pair of stereo images at a time during
training, which occupies about 23GB graphic memories. The training epoch is set as 200 which
takes about 5 days. The proposed network takes 0.95 seconds for disparity prediction.

3.1. Experimental comparison of different methods

A comparative experiment is first carried out to reveal the high performance of the proposed
method compared with two traditional methods (ZNCC [57] and SGM_Census [41,42]) and two
learning-based methods (Luo’s method [46] and BM_DL proposed in our previous work [55]).
Measuring the objects with ridged, complex, or discontinuous surfaces is a challenging task
for a single-shot SPP. To verify the reliability of these methods for scanning these challenging
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surfaces, two different objects are measured including the David model and the statue of Voltaire.
The corresponding 3D reconstruction results obtained by ZNCC, SGM_Census, Luo’s method,
BM_DL, and our method are shown in Figs. 6(a) and (c).

Fig. 6. Comparison of the 3D reconstruction results using different methods. (a) the 3D
reconstruction results of the David model, (b) the matching errors of the David model, (c)
the 3D reconstruction results of the statue of Voltaire, (d) the matching errors of the statue
of Voltaire.

The ZNCC criterion is highly common for practical use, as it is insensitive to the offset and
scale changes in the intensity of the local matched block and provides the most accurate and
reliable displacement estimations compared with other criteria [57]. In ZNCC, block matching is
performed to calculate the matching costs and acquire the integer-pixel disparity maps, which then
can be refined to obtain the sub-pixel disparity maps by a five-point quadratic curve fitting model
[14]. In order to enhance the matching performance of ZNCC, the block size in block matching
is determined as 19 × 19 after an exhaustive empirical search. However, the fundamental
assumption made by block matching is that all the pixels in the matching window have similar
disparities. As a consequence, this assumption does not hold at disparity discontinuities, causing
the corresponding 3D results with the edge-fattening issue [58,59] in object boundaries and thin
structures as shown in Fig. 6.
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Compared with ZNCC, SGM_Census can provide dense 3D measurement results. In
SGM_Census, the census transform with the same block size of 19 × 19 is applied to calculate
the initial matching costs, which are then processed to obtain the 3D results using a series of
post-processing operations including 1D cost aggregation from 8 paths, Winner-Take-All (WTA),
and a quadratic curve fitting [41]. However, SGM_Census avoids mismatching by smoothing the
disparity map for achieving reliable stereo matching, at the cost of 3D measurement accuracy as
shown in Fig. 6. It can be found that there are some obvious mismatch areas and low-precision
3D measurement results using ZNCC and SGM_Census, which proves that these non-parametric
matching methods are so difficult to provide reliable and high-precision matching results on the
SPP system with a wide baseline.

Different from these traditional methods, two learning-based methods (Luo’s method and
BM_DL) are also implemented for comparison. In the two methods, matching cost calculation is
implemented using the network. In Luo’s method, a pair of block data (centered on the point
to be matched in the left image and its all corresponding candidate points in the right image)
is inputted into the network at the same time to search the correct candidate point within the
pre-defined local disparity range. To realize the high performance of stereo matching, a block
matching network based on the Siamese structure is adopted to generate better initial matching
costs. Similar to SGM_Census, a series of same post-processing operations are used to obtain
the 3D results as shown in Fig. 6. Furthermore, BM_DL proposed in our previous work is an
enhanced version of Luo’s method. In the block matching network of BM_DL, some additional
but necessary convolutional layers and residual blocks are stacked at the head of the network
to further enhance the ability of feature extraction. Besides, the fully connected layers with
shared weights are used instead of the original inner product to improve the accuracy of the
network’s similarity measurement. It is easy to find in Fig. 6 that BM_DL can output more
accurate and dense disparity results compared with SGM_Census and Luo’s method. However,
the measurement accuracy achieved by BM_DL cannot meet the requirements of high-precision
3D measurement applications. It is important that how to leverage the end-to-end network to
achieve more efficient three-dimensional matching is worth investigating.

Obviously, in Fig. 6, the proposed end-to-end stereo matching network yields the highest-
quality 3D reconstruction by the single-shot measurement. Compare with the ground truth using
the 12-step phase-shifting fringe patterns as shown in Fig. 6, due to the inherent characteristics
of local smoothness for stereo matching, there are some local details with slight distortion and
blurred surfaces in our 3D reconstruction results. However, it can be found that our method can
obtain high-precision 3D results that are closer to the ground truth. It is easy to conclude based
on these experimental results that our matching network can achieve 3D measurements with the
best performance among several SPP methods.

Besides, compared with the ground truth, the matching errors for different methods are shown
in Figs. 6(b) and 6(d) and the corresponding quantitative analysis results can be found in Table
1. To ensure the objectivity of the analysis results, the differences between the disparity results
obtained using these methods and the ground truth are used to make an accurate judgment.
The number of points is the sum of valid points in the ground truth. The missing ratio means
the proportion of points that are valid points in the ground truth but invalid points in these
disparity results. For ZNCC, SGM_Census, Luo’s method, and BM_DL, the 4-connected image
segmentation method is used to process the disparity maps to identify and remove segments with
fewer pixels [41]. For our method, the mask generated by the saliency detection subnetwork is
exploited to directly remove the invalid pixels in the disparity maps including occlusions and
backgrounds. Then the error ratio is easily obtained by counting the number of valid points where
their absolute disparity difference between the ground truth and these disparity results are more
than 1 pixel. All remaining valid points are regarded as correct points and then further subdivided
according to different disparity accuracies including 1 pixel, 0.5 pixels, and 0.2 pixels. It can
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be seen from Table 1 that the missing ratio and the error ratio using our method are lower than
2% and 6%. The correctness ratio achieved by our method is higher than 93%, and most of the
pixels have a disparity accuracy of lower than 0.5 pixels. The results illustrated that the matching
accuracy using the proposed method is improved by about 50% significantly compared with
traditional stereo matching methods. Our method can achieve robust 3D shape measurement with
a high correctness ratio and high completeness for objects with complex surfaces and geometric
discontinuities.

Table 1. Quantitative analysis results for different methods

Object Nopa Method Mmrb(%) Emrc(%)
Cmrd(%)

≤ 1e ≤ 0.5f ≤ 0.2g

David 62337

ZNCC 16.92 34.77 48.31 33.98 16.93

SGM_Census 10.09 22.18 67.73 49.21 23.73

Luo’s method 7.91 18.26 73.83 52.36 25.05

BM_DL 3.44 13.24 83.32 64.26 33.18

Our method 1.57 5.34 93.09 83.67 56.79

Voltaire 75403

ZNCC 10.91 28.07 61.02 45.92 22.63

SGM_Census 6.11 18.51 75.38 56.96 28.13

Luo’s method 6.97 14.71 78.32 59.06 39.31

BM_DL 2.29 9.69 88.02 72.11 39.48

Our method 0.68 2.84 96.48 89.48 62.64

aNop = Number of points,
bMmr =Missing matching rate,
cEmr = Error matching rate,
dCmr = Correct matching rate,
e≤ 1 = Less than 1 pixel,
f≤ 0.5 = Less than 0.5 pixels,
g≤ 0.2 = Less than 0.2 pixels.

3.2. Precision analysis

Further, to quantitatively evaluate the accuracy of our system using the proposed end-to-end
stereo matching network, a ceramic plane and a pair of standard ceramic spheres with a diameter
of 50.8mm are measured. Figures 7(a) and 7(b) show the corresponding 3D reconstruction results.
And then, based on the obtained 3D reconstruction data, the plane fitting is performed to acquire
the ideal plane as the ground truth. The difference between the measured plane and the ideal
plane is calculated to obtain the 3D measured errors as shown in Fig. 7(c). The quantitative
histograms of the differences are displayed as shown in Fig. 7(f). It can be easily found that the
major measured errors are less than 200µm with the RMS of 101.65µm, respectively. Likewise,
for the 3D measurement of a pair of standard ceramic spheres as shown in Fig. 7(b), the sphere
fitting is used to obtain the actual measurement error as shown in Figs. 7(d) and 7(e). Then, the
RMS of the 3D measurement accuracy is about 100µm as shown in Figs. 7(g) and 7(h).

In addition, the precision analysis results for different methods are presented in Table 2. For
the ceramic plane, the measurement errors achieved using ZNCC are less than 200µm with the
RMS of 103.04µm. The reason for this result is that based on the basic assumption of block
matching all pixels in the matching window have similar disparities. However, this assumption
does not hold for measuring objects with ridged, complex, or discontinuous faces. For the
standard ceramic spheres, ZNCC can only generate coarse 3D measurement results with many
matching errors as shown in Fig. 8. It is noted that by the sphere fitting the actual measurement
errors are greater than 1mm. After outlier removal, the measurement accuracy has been improved
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Fig. 7. Precision analysis for measuring a ceramic plane and a pair of standard ceramic
spheres using our method. (a) The 3D reconstruction results of a ceramic plane, (b) the
3D reconstruction results of a pair of standard ceramic spheres, (c)-(e) the corresponding
distributions of the measured errors of (a)-(b), and (f)-(h) the corresponding quantitative
histograms of the measured errors of (a)-(b).

significantly but is still greater than 300µm. And the radius error of the tested ceramic spheres
using ZNCC is greater than 1mm in Table 2. In contrast, SGM_Census provides measurement
results with similar accuracy for measuring planes and spheres. Similarly, Luo’s method and
BM_DL can also realize robust and more accurate measurements for measuring planes and
spheres. However, these methods all use the same post-processing operations to achieve reliable
stereo matching by smoothing the disparity map, at the cost of matching accuracy. Unlike these
methods, whether the planes or spheres are measured, and whether RMS or radius errors of
the spheres are calculated, our method can achieve robust 3D shape measurement with the best
accuracy. This result verifies that the proposed method can significantly increase the matching
accuracy of SPP and achieve high-precision 3D reconstruction results.

Table 2. Precision analysis results for different methods

Method
Ceramic plane Ceramic sphere A Ceramic sphere B

RMS RMS Radius error RMS Radius error

ZNCC 103.04µm 340.62µm 1.31mm 367.25µm 1.02mm

SGM_Census 279.39µm 332.11µm 244.35µm 345.76µm 260.72µm

Luo’s method 240.12µm 292.65µm 213.05µm 274.82µm 229.35µm

BM_DL 189.85µm 213.66µm 172.85µm 207.79µm 166.57µm

Our method 101.65µm 104.11µm 117.85µm 108.74µm 114.13µm



Research Article Vol. 29, No. 9 / 26 April 2021 / Optics Express 13403

Fig. 8. Precision analysis for measuring a pair of standard ceramic spheres using ZNCC.
(a) The 3D reconstruction results of ceramic spheres A, (b) the corresponding distributions
of the measured errors of (a), (c) the corresponding distributions of the measured errors
of (a) after outlier removal, (d) the 3D reconstruction results of ceramic spheres B, (e)
the corresponding distributions of the measured errors of (d), and (f) the corresponding
distributions of the measured errors of (d) after outlier removal.

Fig. 9. The 3D reconstruction results for a dynamic scene: a moving David model
(Visualization 1). (a)-(c) The David model moves along the Z axis and (d)-(f) the David
model rotates around the Y axis.

https://doi.org/10.6084/m9.figshare.13503444
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3.3. Fast 3D surface imaging

Last of all, our system is applied to record a dynamic scene for fast 3D shape measurement: a
moving David model as shown in Fig. 9. In this experiment, the exposure time of cameras is set
39.2ms to capture the speckle images at the speed of 25Hz for achieving 3D reconstruction at
25fps. Figure 9 shows the color-coded 3D reconstruction results at different time points. During
the whole dynamic measurement, the David model first moves forward along the Z axis, and
arrives at the boundary of the predefined measurement space at 2.8 seconds. Then, the David
model moves in reverse along the Z axis to another boundary of the predefined measurement
space at 5.76 seconds. Furthermore, the David model returns to the initial position and starts to
rotate around the Y axis. Finally, it is back to the origin position again in 15.8 seconds. The
whole 3D measurement results can refer to Visualization 1. In the whole measuring procedures,
the 3D surfaces of the David model are correctly and high-quality reconstructed, verifying the
reliability of the proposed method to perform the absolute 3D shape measurement with high
completeness at high speed.

4. Conclusion

In summary, we proposed a single-shot 3D shape measurement method using an end-to-end
stereo matching network based on a common stereo vision-based SPP system. To efficiently train
the stereo matching network, a high-quality SPP dataset is first built by combining phase-shifting
profilometry (PSP) and temporal phase unwrapping techniques in FPP. High-precision absolute
phase maps obtained using FPP are used to generate accurate and dense disparity maps with high
completeness as the ground truth of the dataset by phase matching. For the architecture of the
network, the proposed network first leverages a multi-scale residual subnetwork to synchronously
extract compact feature tensors with 1/4 resolution from speckle images for constructing the 4D
cost volume. Although some downsample operations have been done during feature extraction,
in fact, the 4D cost volume with 1/4 resolution still occupies a lot of GPU memories. Therefore,
a lightweight 3D U-net network is proposed to implemented efficient 4D cost aggregation for
achieving higher matching performance. Considering that the disparity maps (as the ground truth)
in the SPP dataset has valid values only in the foreground, a simple and fast saliency detection
network is proposed and integrated into our network to avoid enhancing the invalid pixels in the
disparity maps including occlusions and backgrounds, thereby implicitly enhancing the matching
accuracy for valid pixels. The experimental comparison of different methods illustrated that
compared with traditional methods our method can achieve robust 3D shape measurement with a
high correctness ratio and high completeness for objects with complex surfaces. Besides, the
quantitative analysis results proved again that the matching accuracy using the proposed method
is improved by about 50% significantly compared with traditional stereo matching methods.
The experiment results of the precision analysis demonstrated that the proposed method can
achieve absolute 3D shape measurement with an accuracy of about 100µm through only a single
speckle pattern. The dynamic measurement experiment has verified the success of the proposed
method in its ability to effectively achieve fast and accurate 3D shape measurements with high
completeness for complex scenes at 25fps.

Finally, there are several aspects that need to be further improved in the proposed method.
First, since there are many costly 3D convolutions for cost aggregation in the proposed network,
the initial cost volume is 1/4 downsampled in advance, which undoubtedly reduces the accuracy
of stereo matching significantly. Therefore, how to achieve more efficient cost aggregation is
still a problem to be solved. Second, it is easy to understand that projecting multiple speckle
images will improve the accuracy of 3D measurement, because more constraints can be exploited
to completely guarantee the global uniqueness of the measured scenes. How to improve the
measurement accuracy of the stereo matching network by inputting multiple speckle images
at the same time is another interesting direction for further investigation. Third, the proposed

https://doi.org/10.6084/m9.figshare.13503444
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network takes 0.95 seconds for disparity prediction that is slower compared with most of the
existing algorithms running on GPU. How to achieve fast stereo matching should be considered.
It can be found that cost aggregation in the proposed network take accounts for most of the total
run time. Similarly, the cost aggregation sub-network should be further optimized to improve
the accuracy of stereo matching and reduce the run time. At last, different from traditional
non-learning methods, it is noted that the generalization ability of learning methods needs to
be further researched and discussed for measuring different objects with complex reflection
characteristics or high reflectivity, enabling more reliable 3D shape measurement. Based on the
above analysis, we will explore more other methods to design a single-shot SPP system with
higher performance.
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