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Micro Fourier transform profilometry (μFTP) is a recently developed computational framework for high-speed
dynamic 3D shape measurement of transient scenes based on fringe projection. It has been demonstrated that by
using high-frame-rate fringe projection hardware, μFTP can achieve accurate, denser, unambiguous, and motion-
artifact-free 3D reconstruction at a speed up to 10,000 Hz. μFTP utilizes a temporal phase unwrapping algorithm,
so-called projection distance minimization (PDM), in which multiple wavelengths are used to solve the phase
ambiguity optimally in the maximum-likelihood sense. However, it has been found that the choice of the wave-
lengths is essential to the unambiguous measurement range as well as the unwrapping reliability in the presence of
noise. In this work, the relations between the wavelength combination and the noise resistance ability of PDM are
analyzed and investigated in detail by analytical, emulational, and experimental means. This leads to a qualitative
conclusion that the noise resistance ability of PDM is fundamentally determined by the value of each item in
wavelength ratio: a smaller value of each item in wavelength ratio means better noise resistance ability in phase
unwrapping. Our result provides a guideline for optimal wavelengths selection in order to improve the noise
resistance ability of a practical fringe projection system. Simulations and experiments based on a microscopic
fringe projection system are demonstrated to validate the correctness of our conclusion. © 2018 Optical

Society of America

OCIS codes: (120.5050) Phase measurement; (120.0120) Instrumentation, measurement, and metrology; (150.6910) Three-dimen-

sional sensing; (330.1400) Vision - binocular and stereopsis.
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1. INTRODUCTION

Fringe projection profilometry (FPP) is widely employed in the
fields of industrial inspection, quality control, machine vision,
entertainment, and biomedicine due to its non-contact nature
and full-field performance in 3D shape measurement [1,2].
With the rapid development of the digital light processing
(DLP) technology, the measurement scenes of FPP not only
contain the static objects, but also extend to the motion or
deformation of dynamic objects. In FPP, phase-shifting profil-
ometry (PSP) [3–6] and Fourier transform profilometry (FTP)
[7–10] are the two mainstream techniques.

PSP has the advantages of high accuracy, robustness, and
flexibilities when coping with complex scenes that contain
sharp edges or varying surface properties. Theoretically, the

minimum number of projection patterns for getting the
wrapped phase in PSP is three. In order to eliminate the ambi-
guity of wrapped phase, a reliable phase unwrapping procedure
should be applied to obtaining the continuous phase map
[11–13]. Spatial phase unwrapping algorithms [14–16] use
spatial phase constraint to unwrap the phase, but the ambiguity
of phase cannot be eliminated correctly when there are multiple
isolated objects or abrupt surface changes in the measurement
scenes. Temporal phase unwrapping algorithms [17–20] can
solve this problem, but additional patterns are required to get
the extra phase information for phase unwrapping. Obviously,
for dynamic 3D measurement, additional projected patterns
will increase more potential motion artifacts. To decrease
the influence caused by the object motion, researchers have
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proposed many methods. Zuo et al. [21] and Liu et al. [22]
decreased the pattern number to five by utilizing the average
light of the three fringe patterns and the dual-frequency pattern
scheme, respectively. Zuo et al. [23] also presented a “2� 2”
phase shifting method in which four patterns are needed.
To further reduce the sensitivity to dynamic scenes, adding
speckle in the fringe pattern [24] and exploiting geometry con-
straint in a multi-camera system [25] are two methods which
can calculate the absolute phase of a complex surface using just
three fringe patterns. Another commonly used approach of FPP
is FTP [26], by which only one fringe pattern is sufficient to
retrieve the phase. However, when the measured scene contains
sharp edges, discontinuities, or large surface reflectivity varia-
tions, the spectrum overlapping problem will preclude high-
accuracy phase reconstruction. Modified FTP, which uses
another π-shift fringe pattern [27], has been proposed to
address this problem. But the phase information is encoded
in two sinusoidal fringes with π-shift FTP, thus the sensitivity
to object motion is increased. Although these above methods
can reduce the pattern number, the maximum frame rate of
current dynamic FPP 3D imaging has far been limited to a
speed less than 1000 Hz. Recently, Zuo et al. [28] have pro-
posed micro Fourier transform profilometry (μFTP), in which
two pattern projections are needed to recover an accurate,
unambiguous, and dense 3D point cloud. Furthermore, the
phase information is encoded within only one single high-
frequency fringe image, making the motion artifacts mini-
mized. By using high-frame-rate hardware, this technique
realizes capture of 3D shape of non-repetitive, time evolving
events at up to 10,000 fps.

In μFTP, n (n ≥ 2) high-frequency sinusoidal fringe
patterns with slightly different wavelengths (fringe pitches)
are projected to the measurement scene. Between every two
sinusoidal fringe patterns, a “white” pattern with all micro
mirror in the DMD at the “on” state is inserted in the pattern
sequence. n wrapped phase maps can be recovered based on
the background-normalized Fourier transform profilometry
(BNFTP). Then temporal phase unwrapping with projection
distance minimization (PDM) is applied to eliminate the am-
biguity of the wrapped phase by exploiting the information of
the neighboring wrapped phase maps with different frequency.
This technique is validated as the optimal multi-frequency tem-
poral phase unwrapping method. However, we find that the
wavelength combination influences the noise resistance ability
of phase unwrapping greatly in PDM; even if each wavelength
only changes one or two pixels, the noise resistance ability will
be quite different. This phenomenon makes it very prudent to
design the wavelength combination in μFTP for improving the
noise resistance ability of the practical fringe projection system.

In this work, we analyze the relations between the wave-
length combination and the noise resistance ability in PDM.
This problem is transformed into a geometric distance com-
parison problem for intuitive observation and analysis. The
minimum distance between the points which represent the
different fringe orders can reflect the noise resistance ability
of the different wavelength combination. Finally, we obtain
a qualitative conclusion: the noise resistance ability of the wave-
length combination is determined by the value of each item in

wavelength ratio: a smaller value of each item in wavelength
ratio means better noise resistance ability in PDM. This con-
clusion provides an optimal wavelength selection strategy for
PDM. Both simulations and experiments based on a micro-
scopic fringe projection system are carried out. The results
prove the correctness of our conclusion.

2. PRINCIPLE

A. Micro Fourier Transform Profilometry
μFTP projects n (n ≥ 2) high-frequency sinusoidal fringe
patterns with slightly different wavelengths (fringe pitches)
fλ1; λ2; � � � λng to the measured scenes. Between every two
sinusoidal fringe patterns, a “white” pattern with all mirror
in the DMD at the “on” state is inserted in the pattern
sequence. Thus, there are 2n patterns in total that need to
be projected. For μFTP, the fringe wavelength combination
fλ1; λ2; � � � λng must meet the following two conditions:
(1) λi should be sufficiently small (frequency is enough high)
as required for successful phase retrieval in convention FTP;
(2) the least common multiple (LCM) of the fringe wavelength
combination should be greater than the total pixel number in the
axis along which the sinusoidal intensity value varies. So that
the phase ambiguities can be theoretically excluded. The cap-
tured images are processed sequentially, with 2n-frame sliding
windows moving across all the images. Considering 2n-frame
within a window centered on the current frame at given time
point (t0), we have n sinusoid images fI 1; I 2; � � � ; I ng and cor-
responding n white images fI b1; I b2; � � � ; I bng. From these image
pairs, n wrapped phase maps fϕ1;ϕ2; � � � ;ϕng can be recovered
based on the BNFTP.

In BNFTP, the zero frequency term as well as the effect of
surface reflectivity variations can be effectively removed:

I d �xc; yc� �
2I1 − Ib1
I b1 � γ

� cos�2πf 0x
c � ϕ�xc; yc��; (1)

where �xc; yc� is the pixel coordinate in the camera space, γ is a
small constant to prevent divide-by-zero error, I 1 is the inten-
sity of the captured sinusoidal fringe image, I b1 is the captured
white image, f 0 is the carrier frequency of the captured fringe
image, and ϕ is the phase containing the depth information of
the measured object. Then the Fourier transform is applied on
the background normalized image I d to extract the phase
information. With the subtraction and normalization of the
white image, the effect of zero-order as well as surface reflec-
tivity variations is removed before the Fourier transform, so
that the spectrum overlapping in the frequency domain can
be prevented or at least significantly alleviated.

For μFTP, the phase of the current time point (t0) is
unwrapped temporally by exploiting information from neigh-
boring frames based on an algorithm so-called PDM. The
basic idea of PDM is to determine the optimum fringe order
combination fk1; k2; � � � ; kng (for each wrapped phase map
fϕ1;ϕ2; � � � ;ϕng) which the corresponding unwrapped phase
value combination �Φ1;Φ2; � � � ;Φn� is ”closest” (in the
Euclidean sense) to the following straight line in dimension n:

Φ1λ1 � Φ2λ2 � … � Φnλn: (2)
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Then the initial unwrapped phase map corresponding to t0
is further refined in the spatial domain with a reliability-guided
compensation algorithm to correct the fringe order errors in-
duced by low fringe quality and no negligible frame-by-frame
object motion. Finally, the refined unwrapped phase is used to
establish the projector-camera pixel correspondence, and the
3D coordinates of the object surface at time t0 can be recon-
structed based on the relationship derived from the parameters
for the triangulation configuration of the projector and the
camera. The flowchart of μFTP is shown in Fig. 1.

B. Temporal Phase Unwrapping with Projection
Distance Minimization
PDM is proposed to address the multi-frequency temporal
phase unwrapping in an optimum way. Suppose we have n rel-
ative phase maps arranged in a vector ϕ � �ϕ1;ϕ2; � � � ;ϕn�T ,
characterized by the fringe wavelengths (fringe pitches)
λ � �λ1; λ2; � � � ; λn�T , the corresponding unwrapped phase
maps Φ � �Φ1;Φ2; � � � ;Φn�T can be represented as

Φ � ϕ� 2πk; (3)

where k � �k1; k2; � � � ; kn�T is the integer fringe order vector.
The task of phase unwrapping is to determine the fringe
orders k from the knowledge of wrapped phase vector ϕ
only, and the continuous phase maps Φ can be recovered
by Eq. (3). To achieve this, the fringe wavelength combination
λ should be properly chosen so that the phase ϕ can be
successfully unwrapped without ambiguities within the desired
measurement range. This relies on the fact that for fringe wave-
lengths λ � �λ1; λ2; � � � ; λn�T , their least common multiple
LCM�λ1; λ2; � � � ; λn� determines the maximum range on the
absolute phase axis within which each fringe order combination
for wrapped phase values is unique. Considering the projection
pattern has W pixels in the horizontal axis along which the
sinusoidal intensity value varies (the pixels in the same column
all have equal intensity), the condition should be satisfied to
exclude ambiguity:

LCM�λ1; λ2; � � � ; λn� ≥ W : (4)

All unwrapped phase values can be connected with the
corresponding projector coordinate xp through the following
relation:

Φ ∘ λ � 2πxp ≡ t; (5)

where ∘ is the Hadamard product (entrywise product).
Equation (5) suggests that the trajectory of continuous phase

values �Φ1;Φ2; � � � ;Φn� forms a straight line passing through
the origin in dimension n. The direction vector of the line is
λ−1 � �

1
λ1
; 1λ2 ; � � � ;

1
λn

�
T and the line can be parameterized by

parameter t. For a given set of wrapped phase values
ϕ � �ϕ1;ϕ2; � � � ;ϕn�T , the problem of temporal phase un-
wrapping is recast as finding the integer fringe order vector
k � �k1; k2; � � � ; kn�T so that the final unwrapped phase values
Φ � �Φ1;Φ2; � � � ;Φn�T calculated from Eq. (3) can precisely
fall on the straight line described by Eq. (5). Since the ambi-
guity in the projector space is ruled out by condition Eq. (4),
there should be only one qualified fringe order vector k within
the range 0 ≤ xp < W [28].

However, in practice, there are many factors, such as
non-sinusoidality of the pattern intensity, random noise of
the projector and the camera, and object motion in the mea-
surement process, that may induce errors in obtained wrapped
phase maps. In such cases, the unwrapped phase values Φ �
�Φ1;Φ2; � � � ;Φn�T calculated from Eq. (3) may never precisely
fall on the straight line described by Eq. (5) for all possible
fringe order vectors. To solve the phase unwrapping problem
optimally in the presence of noise, the fringe orders that make
the unwrapped phase values Φ � �Φ1;Φ2; � � � ;Φn�T closest to
the straight line should be chosen. Thus, the distance from the
point �Φ1;Φ2; � � � ;Φn� to the line in Euclidean geometry
should be calculated to quantify how close they are. The dis-
tance d from the point to the line can be calculated by Eq. (6):

d 2 � tT t ;

t �
�Xn

i�1

�1λ2i �
�−1 Xn

i�1

Φiλiλ−1 −Φ: (6)

Select the fringe order vector that produces the minimum d 2
i

(denoted as d 2
min) as the optimum solution kopt. Meanwhile, the

corresponding unwrapped phase values Φopt can be obtained
by Eq. (3).

C. Optimum Choice of Wavelength Combination
As mentioned in Sections 2.A and 2.B, two prerequisites
must be satisfied when choosing the fringe wavelengths
for μFTP: (1) λi should be sufficiently small, and
(2) LCM�λ1; λ2; � � � λn� ≥ W . Therefore, the phase ambiguities
can be theoretically excluded. Obviously, the wavelength com-
bination that satisfies both of the prerequisites is not unique.
We find that the choice of wavelength combination makes
great influence on the noise resistance ability in PDM.

Fig. 1. Flowchart of μFTP.
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To analyze this problem intuitionally, we rewrite Eqs. (3)
and (5) as follows: 8>>>><

>>>>:

ϕ1 � 2π
λ1
x − 2πk1;i ;

ϕ2 � 2π
λ2
x − 2πk2;i ;

� � � ;
ϕn � 2π

λn
x − 2πkn;i;

(7)

where 1 ≤ i ≤ N , N is the total number of all the possible
fringe orders, which is finite. The system of equations in
Eq. (7) describes some parameterized straight lines in dimen-
sion n where x is the line parameter. It may be interpreted as
follows: due to the shared common independent variable x, all
observable values of wrapped phase are limited to the intersec-
tion of a set of lines in dimension n [29]. The number of the
straight lines is N . The direction vector of these lines
is �2πλ1 ;

2π
λ2
; � � � ; 2πλn �

T .
However, in practical measurements, the wrapped phase

point influenced by the noise will deviate from the line corre-
sponding to the correct fringe orders. In this case, the fringe
orders corresponding to the closest line with the wrapped phase
point should be chosen to unwrap the phase. Nevertheless,
once the noise makes the wrapped phase point deviate from
the line corresponding to the correct fringe orders so far that
the wrapped phase point is closer to the line corresponding to
another fringe order, the wrong unwrapped phases will be
obtained. Obviously, the minimum distance between the lines
is the parameter to judge the noise resistance ability of the
wavelength combination. Larger distance between the lines
makes better noise resistance ability of the wavelength combi-
nation. Therefore, the problem of the relations between the
wavelength combination and the noise resistance ability
becomes a geometric distance comparison problem.

Here, we take the wavelength combination {4, 6, 10} as an
example. The LCM of the wavelength combination is 60 and
the number of all the possible fringe orders is 22. Figure 2(a) is
the distribution of all the wrapped phase points in the wrapped

phase space without noise and these points form the straight
lines. The lines are parallel to each other, which verifies
Eq. (7). For a more intuitive observation, we project these lines
onto the plane perpendicular to them, as shown in Fig. 2(b).
From this perspective, these lines become points because they
have the same direction vectors, and the distances between the
points on this projection plane are as same as the distances be-
tween the lines. To analyze the relations between the distance
of the points and the wavelength combination, we project the
lines onto the ϕ1ϕ2, ϕ1ϕ3, and ϕ2ϕ3 planes, respectively,
which are shown in Figs. 2(c)–2(e). It can be seen that the pro-
jections of these lines on the projection planes are still parallel
to each other. It is worth noting that the intersections of the
lines on the projection plane and the coordinate axes ϕ1,
ϕ2, ϕ3 divide the coordinate axes into 2, 3, and 5 parts on
average, respectively. It is the same as the value of each item
in wavelength ratio 2∶3∶5. Therefore, the value of each item
in wavelengths ratio determines how many parts of the coor-
dinate axes on each projection plane will be divided on average.
The more parts of the coordinate axes being divided, the shorter
distance between the lines on the projection plane, which in-
dicates that the distance between the lines in the 3D space will
also be shorter and the noise resistance ability of the wavelength
combination will be worse. Based on the above analysis, we can
obtain a qualitative conclusion that the noise resistance ability
of the wavelength combination is determined by the value of
each item in wavelength ratio: a smaller value of each item in
wavelength ratio means better noise resistance ability in phase
unwrapping.

We illustrate this conclusion by designing the optimal wave-
length combination for a microscopic fringe projection system.
The pixel number of the projector in the axis along which the
sinusoidal intensity value varies is 608. For the balance of the
robustness of phase unwrapping and the influence of the object
motion, using three wavelengths is a good choice. First, in order
to guarantee the measurement accuracy of conventional FTP,
the fringe number is at least 30. In addition, the fringes cannot
be too dense for keeping the fringe contrast, thus the fringe
number is limited to 50. Therefore, the wavelength range is
between 13 and 21 pixels. Second, the LCM of three wave-
lengths must be larger than or equaled to 608. We can list
the following representative wavelength combinations, which
are shown in Table 1. The four wavelength combinations all
satisfy the prerequisites. We also list their wavelength ratio
and the LCM of the wavelengths in Table 1. According to
the conclusion that smaller value of each item in wavelength
ratio means better noise resistance ability, the order of the noise
resistance ability of the four wavelength combinations from

(a) (b)

(c) (d) (e)

Fig. 2. Example of the wrapped phases distribution in the wrapped
phases space (the pixel of each wavelength is {4, 6, 10}). (a) The
wrapped phases distribution in the 3D space. (b) The projection of
the wrapped phases on the plane perpendicular to direction vectors
of the straight lines. (c)–(e) The projection of the wrapped phases
on the ϕ1ϕ2 plane, ϕ1ϕ3 plane, and ϕ2ϕ3 plane, respectively.

Table 1. Four Wavelength Combinations that Meet the
Prerequisites

Index
Wavelength
Combination

Wavelength
Ratio

LCM of the
Wavelength

① {13 15 17} 13:15:17 3315
② {14 16 18} 7:8:9 1008
③ {15 18 21} 5:6:7 630
④ {16 17 18} 16:17:18 2448
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strong to weak should be ③②①④. Moreover, the noise resis-
tance ability of combination ③ and ② should be much stronger
than combination ① and ④, because their values of each item in
wavelength ratio are much smaller than those of two combina-
tions. This order of the noise resistance ability is based on our
proposed conclusion. We can verify the correctness of this
order by observing the points distribution on the plane
perpendicular to the straight lines of the four wavelength com-
binations, as shown in Fig. 3.

Figures 3(a)–3(d) correspond to the wavelength combina-
tion of ①–④, respectively. It can be seen from Fig. 3 that
the points of combination ② and ③ are obviously sparser than
those of ① and ④, and the points of ③ are sparsest. In addition,
the distribution of the points is regular hexagon, thus the
distances between the two neighboring points only exist three
possibilities and the smallest distance is the parameter to
evaluate the noise resistance ability of the corresponding wave-
length combination. We calculate out these distances, which
are shown in Table 2 and Fig. 4. Figures 4(a)–4(d) correspond
to the distance of the neighboring points with wavelength com-
bination of ①–④.

From Table 2 and Fig. 4, we can obtain that the order of the
minimum distance between the neighboring points from large

to small is ③②①④, which is consistent with the order we
inferred according to the proposed conclusion. This proves
the correctness of our conclusion.

3. SIMULATIONS

We performed the simulations to compare the performance of
the four wavelength combinations when Gaussian noise
presents. In simulations, we use PDM to unwrap the wrapped
phase maps. The Gaussian noise is used to emulate the camera
noise effect in real experiments. We compare the four
wavelength combinations under the situation of zero-mean
Gaussian noise with variance of 0.0005, 0.005, and 0.01,
respectively. The results are shown in Fig. 5. When the noise
variance is 0.0005, the phase unwrapping success rate of four
wavelength combinations are all 100%. When the noise vari-
ance is increased to 0.005, combinations ① and ④ are unable to
unwrap all the phases correctly while combinations ② and ③

X
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(b)

X
/r

ad

(a)

Y/rad

X
/r

ad
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(c)

X
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ad
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(d)

Fig. 3. Distributions of the points on the plane perpendicular to the
direction vectors with different wavelength combinations. (a)–(d) The
distances between the neighboring points of wavelength combination
{13, 15, 17}, {14, 16, 18}, {15, 18, 21}, and {16, 17, 18}, respectively.

Table 2. Distances between the Neighboring Points with
Different Wavelength Combinations

Index
Wavelength
Combination Distance

Shortest
Distance

① {13 15 17} 0.3462 0.3194 0.3650 0.3194
② {14 16 18} 0.6457 0.6023 0.6830 0.6023
③ {15 18 21} 0.8671 0.7869 0.9289 0.7869
④ {16 17 18} 0.3024 0.5859 0.5235 0.3024
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(a)

(b)

(c)

(d)

Fig. 4. Distances between the neighboring points on the plane
perpendicular to the direction vectors with different wavelength com-
binations. (a)–(d) The distances between the neighboring points of
wavelength combination {13, 15, 17}, {14, 16, 18}, {15, 18, 21},
and {16, 17, 18}, respectively.
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remain 100% success rate. When the noise variance is increased
to 0.01, the four wavelength combinations all have phase un-
wrapping error. But obviously, the success rate of combination
③ is the highest, and the success rate order from high to low
is ③②①④. The simulation results further demonstrate the

correctness of our proposed conclusion. The wrapped phase
distributions of the projection on the plane perpendicular to
the direction vectors of the four wavelength combinations
under the zero-mean Gaussian noise with variance of 0.005
are shown in Fig. 6. Figures 6(a)–6(d) correspond to the wave-
length combination of ①–④, respectively. It can be seen that the
wrapped phase point deviates from the former places shown in
Fig. 3 because of the noise influence. The advantage of far dis-
tance between the points in the presence of noise is obvious.
Combination ③ corresponding to Fig. 6(c) has the minimal
possibility of phase unwrapping error compared with the other
three wavelength combinations.

4. EXPERIMENTS

To validate the conclusions we obtained, experiments were
conducted with the microscopic fringe projection system com-
posed of a Greenough-type stereo microscope, a digital projec-
tor (LightCrafter based on a DLP3000 DMD chip) with
resolution of 608 × 684, and a high-speed CMOS camera
(Basler acA640-750 μm) with resolution of 640 × 480 [30].
The profile of the system is shown in Fig. 7.

A. Measurements with Different Wavelength
Combinations
To compare the performance of the four wavelength combina-
tions, we first measured a ceramic plate by μFTP. This ceramic
plate has the precision of 1 μm, thus it is qualified to serve as a
standard planar surface. In order to highlight the comparative
effect, we artificially increased the intensity noise by reducing
the camera exposure. The unwrapped phase maps of the
ceramic plate corresponding to the four different wavelength

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 5. Comparison of the phase unwrapping success rate between the four wavelength combinations under zero-mean Gaussian noise with
σ2Δϕ � 0.0005; 0.005; 0.01. (a)–(d) The unwrapped phases and success rate of the wavelength combination ①–④ under σ2Δϕ � 0.0005.
(e)–(h) The unwrapped phases and success rate of the wavelength combination ①–④ under σ2Δϕ � 0.005. (i)–(l) The unwrapped phases and success
rate of the wavelength combination ①–④ under σ2Δϕ � 0.01.

(a) (b)

(c) (d)

Fig. 6. Distributions of the wrapped phases points on the plane
perpendicular to the direction vectors with different wavelength com-
binations under Gaussian noise with σ2Δϕ � 0.0005. (a),(b) The dis-
tribution of the wrapped phases of wavelength combination {13, 15,
17}, {14, 16, 18}, {15, 18, 21}, and {16, 17, 18}, respectively.
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combinations and their success rates are shown in Fig. 8.
Figures 8(a)–8(d) correspond to the wavelength combinations
of ①–④. Obviously, the success rate of combination ③ is the
highest, and the success rate order from high to low is
③②①④. This result is consistent with the simulation. So that
we can get the conclusion that for this experimental system, the
wavelength combination ③ can provide the best ability of noise
resistance.

We also measured an earphone diaphragm to further prove
the conclusion. The 3D reconstruction results corresponding to
the four wavelength combinations of the earphone diaphragm
are shown in Fig. 9. The performance of the four wavelength
combinations is the same as the ceramic plate. Obviously,

wavelength combination ③ performs best, which is consistent
with our conclusions.

B. Static Measurement with the Optimal Wavelength
Combination
Next we tested a BGA chip to show the performance of the
optimal wavelength combination {15, 18, 21} for the measure-
ment object with complex surface. Figure 10(a) is the measured
BGA chip. The area in the yellow dotted line is the measure-
ment part. The reconstruction result is shown in Fig. 10(b). We
could clearly recognize the spherical structures representing
the balls which are very smooth and well reconstructed.
Figure 10(c) is the cross section corresponding to the red
dashed line in Fig. 10(b). The obtained 3D data may provide
sufficient information to analyze the features and to detect the
defect on the balls.

C. Dynamic Measurement with the Optimal
Wavelength Combination
Finally, we tested an earphone diaphragm vibrated with
different frequencies to illustrate the performance of optimal
wavelength combination for measuring dynamic scenes. The
vibration frequency of the earphone diaphragm was set as
1 Hz, 5 Hz, and 10 Hz, respectively. The measurement results
are shown in Fig. 11. Figure 11(a) is the picture of the earphone

Fig. 7. Microscopic fringe projection system.

Fig. 8. Unwrapped phase maps of the ceramic plate. (a)–
(d) Unwrapped phase maps of the ceramic plate of wavelength
combination ①–④, respectively.

Fig. 9. 3D reconstruction results of the earphone diaphragm.
(a) The measured part of the earphone diaphragm. (b)–(e) The 3D
reconstruction results of the earphone diaphragm of wavelength com-
bination ①–④, respectively.

Fig. 10. 3D reconstruction results of the BGA chips. (a) The mea-
sured BGA chips. (b) Reconstructed 3D data corresponding to the area
in the yellow dotted line of (a). (c) A cross section corresponding to the
red dotted line in (b).
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diaphragm and the area in the red dashed box is the measured
part. Figures 11(b) and 11(c) are the images captured by
the camera when the projector projected a white image
and high-frequency sinusoidal fringe pattern, respectively.
Figures 11(d)–11(f ), 11(g)–11(i), and 11(j)–11(l) are the
reconstruction results of the earphone diaphragm at different
heights with 1 Hz, 5 Hz, and 10 Hz vibration frequencies,
respectively. The corresponding videos are presented in
Visualization 1, Visualization 2, and Visualization 3, respec-
tively. The measurement results of the vibrating earphone
diaphragm demonstrate the robustness of the optimal wave-
length combination strategy for measuring dynamic scenes.

5. CONCLUSION

This paper analyzes the relations between the wavelength com-
bination and the noise resistance ability in PDM. By analytical,
emulational, and experimental means, we obtain a qualitative
conclusion: the noise resistance ability of the wavelength com-
bination is determined by the value of each item in wavelength
ratio and a smaller value of each item in wavelength ratio means
better noise resistance ability in phase unwrapping. This con-
clusion provides the optimal strategy for wavelength combina-
tion selection in PDM in order to improve the noise resistance

ability of the fringe projection system. However, this work only
stayed in qualitative analysis. Further research about this prob-
lem with quantitative calculation will also be carried out in the
future work.
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