
Research Article Vol. 32, No. 21 / 7 Oct 2024 / Optics Express 37542

Noise sensitivity analysis of focal scanning light
field imaging

HONGMEI PENG,1,2 SIBO HUANG,1,2 CHAO ZUO,2 XIAOLI
LIU,1,3 AND ZEWEI CAI1,3,*

1Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong
Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong
518060, China
2Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering,
Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
3Key Laboratory of Intelligent Optical Measurement and Detection of Shenzhen, College of Physics and
Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
*zeweilinc@foxmail.com

Abstract: Light field imaging can simultaneously record spatial and angular information of light
signals to provide various computational imaging functions. However, traditional microlens array-
based light field cameras usually suffer from a trade-off between spatial and angular resolutions. In
contrast, focal scanning light field imaging (FSLFI) can digitally modulate an incident light field
through an image stack captured at different focal planes and then utilize the transport-of-intensity
property to computationally recover the full-resolution light field. This paper presents a unified
light field reconstruction algorithm framework, which involves different types of algorithms,
such as back-projection reconstruction and additive/multiplicative iterative reconstruction, for
FSLFI. Based on the unified algorithm framework, we systematically analyze and investigate
the FSLFI performance on noise sensitivity. Light fields are reconstructed at different noise
levels to quantitatively analyze the FSLFI performances with different types of algorithms.
Both simulation and actual experimental results demonstrate that the noise sensitivity and
reconstruction accuracy are constrained by each other for FSLFI. Back-projection reconstruction
is appropriate in high-efficiency light field reconstruction, while additive/multiplicative iterative
reconstruction is suitable for high-accuracy light field imaging at high/low noise levels. These
conclusions can apply to any FSLFI method covered by the unified algorithm framework, in which
appropriate algorithms can be selected for high-quality light field imaging and measurement
according to specific application scenarios.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Compared to traditional image detectors that only record two-dimensional intensity information,
light field imaging, as a typical computational optical imaging modality, can simultaneously
record four-dimensional (4D) spatio-angular information of light signals [1–3]. This enables
many novel computational imaging functions, such as digital refocusing, viewpoint switching,
depth-of-field extension, depth/three-dimensional (3D) sensing, and stereoscopic display. The
commonly used light field imaging devices adopt a microlens array [4–6] or camera array [7,8]
to directly sample spatio-angular information, having a difficult balance between high spatial
and continuous angular samplings. In contrast, computational light field imaging using optical
encoders, such as coded aperture [9–12], attenuation mask [13,14], diffuser [15,16], and graphene
layers [17], or digital modulation can pre-modulate an incident light field and then implement
light field reconstruction through spatio-angular sampling redundancy, overcoming the problem
of spatial and angular resolution trade-off.
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Focal scanning light field imaging (FSLFI), which uses light field propagation as digital
modulation, is a high-resolution light field reconstruction (LFR) technology that has gradually
gained increasing attention and research in recent years. By collecting an image stack from
different focal planes, the transport-of-intensity property can be used to recover the full-resolution
light field. In 2010, Levin et al. [18] pointed out that the energy of the image stack is mainly
concentrated in a 3D subset of the 4D light field spectrum, and light field information can be
retrieved by using an appropriate defocus blur kernel for deconvolution. In 2014, Park et al. [19]
proposed a direct back-projection reconstruction (BPR) method similar to computed tomography
for FSLFI. Subsequently, Mousnier et al. [20] and Chen et al. [21] overcame the defocus error
problem of BPR by selecting the focused information in the image stack. In 2017, Liu et al.
[22] proposed a filtered BPR method through light field projection modeling. However, because
of the limited depth of field, the image stack corresponds to a limited focal scanning range,
leading to low-accuracy BPR under the situation of data incompleteness. Recently, researchers
have put forward different iterative reconstruction methods to eliminate artifacts and improve
accuracy in incomplete reconstruction [22–27]. For example, Liu et al. [22] and Yin et al. [23]
optimally solved the LFR inverse problem constructed by discrete refocusing. Blocker et al. [25]
reconstructed light fields through a regularization optimization model of sparse low-rank tensors.
Gao et al. successively proposed the Landweber method based on fast-guided filtering [26] and
the alternating direction multiplier method [27] to achieve high-accuracy LFR. Currently, Le
Bon et al. [28] presented an end-to-end unrolling optimization method for LFR from a few-shot
image stack.

The aforementioned discussion shows that researchers have made significant achievements in
studying specific BPR, deconvolution, and iterative reconstruction methods for FSLFI. However,
comparing the FSLFI performance of each specific method remains challenging, and systematic
analysis of FSLFI is still rare. In this work, we systematically analyzed FSLFI performance
using noise sensitivity as a metric. Disturbance in the measurement environment may cause
changes in the incident light field, and noise contamination is inevitable in image acquisition
and signal transmission, ultimately affecting the LFR accuracy. To our knowledge, the noise
sensitivity analysis of FSLFI has not been studied yet. To this end, we constructed a unified
LFR algorithm framework involving multiplicative iterative reconstruction (MIR) and additive
iterative reconstruction (AIR), where BPR can be treated as a special case of AIR in a single-cycle,
unidirectional mode. Based on this unified reconstruction algorithm framework, we can analyze
and investigate the systematic performance of FSLFI with different types of algorithms at different
noise levels. Experimental results reveal a trade-off between noise sensitivity and reconstruction
accuracy, and different types of LFR algorithms are suitable for particular application scenarios.
These conclusions can apply to any FSLFI method the unified algorithm framework covers.
Therefore, appropriate LFR algorithms can be selected for specific applications to achieve
high-quality FSLFI.

2. Method

2.1. Light field parameterization

The term light field was first used to describe the radiometric properties of light rays in space [29]
and was characterized by the plenoptic function with seven-dimensional parameters, including
position, direction, wavelength, and time [30]. Light field with spatio-angular sampling is
usually parameterized as [31,32]: L(x, u), where L denotes the radiant intensity, and x = (x, y)T
and u = (u, v)T denote the spatial and angular coordinates, respectively. The captured two-
dimensional intensity signal I(x) is the light field integration along the angular dimensions, thus
losing the direction and depth information. Unlike the traditional imaging modality of “what you
see is what you get”, the additional angular information enables light field imaging many novel
computational imaging capabilities.
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When the light field propagates to different focal planes, the spatial coordinates are jointly
sheared by the angular coordinates and transmission distances. The integration of a sheared light
field along the angular dimensions is an image at a specific focal plane, expressed as [33]:

Ifp(x) = P
fp
α [L(x, u)] =

∑︂
u

L
(︃
x +

(︃
1 −

1
α

)︃
u, u

)︃
(1)

where α denotes the light field shear factor, which is the ratio of the transmission distances, Pfp
α

denotes the light field forward propagation, i.e., the refocused image formation of the light field
after forward shearing and spatial projection. Here, the scale of the spatial coordinates is ignored
for simplicity of treatment, which does not affect the following analysis and investigation.

Refocused images carry different parts of light field information during light propagation.
Changing the focal plane for imaging can capture an image stack, which thus not only carries
the spatial and textural information of objects but also describes the light field propagation and
contains rich light field structure information. FSLFI is to use this transport-of-intensity property
to recover 4D light field information from the image stack. Therefore, the goal of LFR is to make
the forward propagation of the reconstructed light field as close as possible to the raw image
stack, which can be treated mathematically as an inverse problem as:

arg min
L

∑︂
m

| |Im(x) − P
fp
αm [L(x, u)]| |

2
(2)

where Im(x), m = 1, 2, · · · , M is the captured image sequence. The light field information can
then be recovered by optimally solving Eq. (2). The number of captured images used for light
field reconstruction usually meets M ≥ 5, and the total image residual less than a user-defined
threshold can act as an optimization criterion. Besides, the focal planes corresponding to the
image stack can cover the objective depth range as far as possible while the plane spacing is not
strictly limited.

2.2. Unified LFR algorithm framework

In order to systematically analyze and investigate the FSLFI performance, we construct a unified
LFR algorithm framework, as shown in Fig. 1(a). The unified algorithm framework consists of
two main modules: image residual and light field update. The two modules are related by the light
field forward and backward propagations. A refocused image can be obtained through forward
propagation of the reconstructed light field and compared with the corresponding image in the
image stack. The difference between the two images is the image residual. Back-propagating the
image residual can obtain the light field error, which can be used to update the reconstructed
light field. Figures 1(b) and 1(c) show the schematic diagrams of image residual and light field
update for clear visualization, respectively. With the relation of light field forward and backward
propagations, the image residuals and light field update modules constitute a cyclic operation.
Repeating the cyclic operation on each image in the image stack can complete an overall update
of the reconstructed light field.

By adding an external loop, the reconstructed light field can be overall updated several times,
which constructs an iterative optimization architecture. Note that this algorithm architecture
looks similar to those iterative algorithms for inverse problems, such as volumetric reconstruction
from captured light field data [34]; however, their goals and principles may be quite different.
We represent the entire iterative optimization process as:

Lk,m+1(x, u) = Rk,m[I(x); L(x, u)]

= Lk,m(x, u)∗2P
bp
αm {Im(x)∗1P

fp
αm [Lk,m(x, u)]}

(3)

where Rk,m denotes the kth external, mth internal LFR, and cc denotes operator. Different
operators correspond to different LFR algorithms. Specifically, ∗1 and ∗2 are related to the image
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Fig. 1. Unified LFR algorithm framework: (a) iterative optimization architecture composed
of image residual and light field modules, which are connected by light field forward and
backward propagations; schematic diagrams of (b) image residual and (c) light field update.

residual and light field update, respectively, such that:

∆I(x) = I(x)∗1Ifp(x) (4)

where ∆I(x) is the difference evaluation between the captured image I(x) and refocused image
Ifp(x). Pbp

α represents the light field backward propagation, where the image residual forms the
light field error after angular allocation and backward shearing, expressed as:

∆Lbp(x, u) = P
bp
α [∆I(x)] = ∆I

(︃
x −

(︃
1 −

1
α

)︃
u
)︃
· ω(u) (5)

where ∆Lbp(x, u) is the light field error after backward propagation, ω(u) denotes angular weight
factor that represents the angular allocation of the image signal. Once the mth internal iteration
from 1 to M is finished, the final result of the kth external iteration is assigned to the start of the
next external one, i.e., Lk+1,1(x, u) = Rk,M[I(x); L(x, u)].

Equation (3) is the numerical solution to the inverse problem of Eq. (2). In such iterative
optimization architecture, LFR can be divided into two categories: MIR and AIR, according
to the approaches of image residual calculation. MIR and AIR perform the light field update
with the proportion and difference of image residuals, similar to Richardson-Lucy algorithm
[35,36] and Jansson-Van Cittert algorithm [37], respectively. For MIR, ∗1,2 are division and
multiplication operations. In this case, the iterative optimization process related to Eq. (3) can be
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expressed as:

LMIR
k,m+1(x, u) = LMIR

k,m (x, u) · Pbp
αm

⎧⎪⎨⎪⎩ Im(x)
P

fp
αm [LMIR

k,m (x, u)]

⎫⎪⎬⎪⎭ (6)

For AIR, ∗1,2 are subtraction and addition operations. Correspondently, the iterative optimiza-
tion process related to Eq. (3) can be expressed as:

LAIR
k,m+1(x, u) = LAIR

k,m (x, u) + P
bp
αm {Im(x) − P

fp
αm [L

AIR
k,m (x, u)]} (7)

Besides, AIR has one special case. Let k = 1, Ifp
m (x) = 0, and ω(u) = 1/M. According to

Eqs. (4) and (5), Eq. (7) can be simplified as:

LBPR(x, u) = 1
M
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)︃
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)︃

(8)

It is exactly the BPR method. This means that BPR is actually a special case of AIR in a
single-cycle (k = 1), unidirectional (Ifp

m (x) = 0) mode. BPR only performs one overall update for
the reconstructed light field without light field forward propagation in the cyclic update process.
In other words, it uses the image stack to update the reconstructed light field directly.

The unified algorithm framework of FSLFI covers both non-iterative BPR and iterative LFR.
Besides, FSLFI has a dimensionality gap from the image stack to the 4D light field, and the
image data used for LFR is incomplete due to the limited depth of field of imaging. To reduce
the impact of the dimensionality gap and data incompleteness on FSLFI performance, one can
add regularization constraints to the light field update, as illustrated in Fig. 1(a).

Most FSLFI methods can be grouped into the unified LFR algorithm framework to analyze
and investigate the FSLFI performance, such as comparing BPR and iterative reconstruction, the
difference between AIR and MIR, and the effect of regularization constraints on LFR. Those
analysis results of FSLFI performance are applicable to any FSLFI method covered by such a
unified algorithm framework.

3. Experiment and analysis

In this section, we experimentally analyzed and compared the FSLFI performance on noise
sensitivity based on the unified LFR algorithm framework. We employed light field data in
the public HCI dataset [38] as reference light fields and captured light field images with a light
field camera (Lytro) for experiments. Using the forward imaging model in Eq. (1) to compute
refocused images as a simulated image stack is equivalent to using a traditional camera to
capture images at different focal planes. The light field information was then retrieved from
the image stack using BPR, AIR, and MIR. A maximum of 100 iterations were set for iterative
reconstruction. Each iteration in AIR and MIR costs about 30 seconds, for example, in simulation
experiments using a laptop (i5-12490F CPU, 32 G RAM). A threshold value (e.g., 10−6) for
total image residual (e.g., Frobenius norm) was set for convergence status. Finally, the noise
sensitivity of different LFR algorithms was quantitatively compared and analyzed through the
difference between the reconstructed and reference light fields.

3.1. Back-projection LFR

The light field data in the HCI dataset were selected for simulation experiments. The spatial
and angular resolutions of the reference light field are 512× 512 and 9× 9, respectively. By
digitally refocusing the reference light field at different focal planes, nine refocused images were
obtained to form an image stack, as shown in Fig. 2(a). Digital refocusing was performed by
using Eq. (1) with light field shear factors corresponding to these focal planes. Figure 2(b)
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shows multi-view images of the reconstructed light field using BPR. The enlarged views and
their respective reconstruction error maps of the margin- and center-view images marked by
red, orange, and blue wireframes in Fig. 2(b) are shown in Fig. 2(c) and 2(d), respectively. The
reconstructed multi-view images are blurred compared to those in the image stack. The error
maps demonstrate visually larger reconstruction errors at the object edge, specifically the crown
with rich texture, where many details are already indistinguishable. Table 1 lists the data of root
mean square error (RMSE), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR)
of the reconstructed light field relative to the reference one in the margin and center views. It can
be seen that the reconstruction accuracy of the center-view image is better than the margin-view
one [39].

Fig. 2. BPR results: (a) image stack; (b) multi-view images of the reconstructed light field;
(c) enlarged views and (d) reconstruction error maps of the margin- and center-view images
marked by red, orange, and blue wireframes in (b).

Table 1. BPR errors in different views (PSNR/dB)

(u, v) RMSE SSIM PSNR

(1, 1) 0.0336 0.9122 29.47

(5, 5) 0.0196 0.9377 34.17

(9, 9) 0.0341 0.9122 29.34

Next, we added zero-mean Gaussian noise to the reference light field to simulate the impact of
environmental perturbation and detection noise on the FSLFI performance. The image stacks
with different noise levels (controlled by the variance σ) were generated to reconstruct light fields
using BPR. Figure 3(a) shows the center-view images of the reference light fields at different
noise levels, along with the local enlarged views of image regions marked by the white wireframe
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(see Visualization 1). When the noise level increases to a certain extent, the resolution of the
topological structure of the object surface is affected, as shown by the third and fourth columns
in Fig. 3(a). Correspondingly, the center-view images of reconstructed light fields and the
corresponding error maps are shown in Fig. 3(b) and 3(c), respectively. Comparing the local
enlarged views in Fig. 3(a) and 3(b), it can be seen that the BPR accuracy is not high but almost
remains the same overall for different noise levels. Table 2 lists the RMSE, PSNR, and SSIM
values of BPR results, showing that the BPR quality decreases slightly with increasing noise
levels. Figure 3(d) plots the cross-sectional distribution curves marked by the white line in
Fig. 3(c) to clearly show the details of reconstructed light fields in different views. It can be seen
that BPR can obtain consistent reconstruction results at different noise levels, regardless of the
margin or center views. Equation (8) demonstrates that BPR is mathematically equivalent to an
average operation of the sheared image stack. This average effect enables BPR to have anti-noise
ability, but at the same time, it reduces the LFR accuracy. Besides, since BPR is a special case of
AIR, it indirectly indicates that AIR may also have low noise sensitivity.

Fig. 3. BPR results at different noise levels: (a) – (b) center-view images of the reference
and (b) reconstructed light fields, respectively, along with local enlarged views of image
regions marked by the white wireframe; (c) reconstruction error maps corresponding to (b);
(d) cross-sectional distribution curves marked by the white line in (c) in different views.

https://doi.org/10.6084/m9.figshare.26588497
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Table 2. LFR errors of BPR, AIR, and MIR at different noise levels (PSNR/dB)

BPR AIR MIR

σ RMSE SSIM PSNR RMSE SSIM PSNR RMSE SSIM PSNR

0.000 0.0192 0.9377 34.17 0.0134 0.9650 37.46 0.0067 0.9804 43.48

0.001 0.0193 0.9371 34.16 0.0137 0.9566 37.23 0.0113 0.9118 38.92

0.003 0.0194 0.9359 34.14 0.0144 0.9419 36.81 0.0172 0.8035 35.29

0.005 0.0195 0.9347 34.12 0.0150 0.9290 36.47 0.0215 0.7223 33.36

3.2. Iterative LFR

To compare with BPR, iterative LFR was performed under the same experimental setup as in
Section 3.1. Figure 4(a) shows the center-view images of reconstructed light fields using AIR
and MIR at different noise levels (see Visualization 1), along with the local enlarged views of
image regions marked by the white wireframe. The comparison of the local enlarged views in
the first columns of Fig. 3(a), 3(b), and 4(a) reveals that in the ideal situation without noise, MIR
can obtain results having fine object structure as the reference light field, thus has the highest
reconstruction accuracy. Additionally, the AIR accuracy is slightly higher than BPR, so using an
iterative optimization strategy in additive reconstruction can improve the LFR accuracy. On the
other hand, AIR and MIR exhibited different reconstruction results with increasing noise levels.
Figure 4(b) shows the reconstruction error maps corresponding to Fig. 4(a). MIR is more sensitive
to noise than AIR. When the noise level increases to a certain extent, the MIR error is dominated
by random noise. Figure 4(c) plots the cross-sectional distribution curves of BPR, AIR, and MIR
results at different noise levels, marked the white line in Fig. 4(b). Table 2 simultaneously lists
the RMSE, PSNR, and SSIM values of BPR, AIR, and MIR results for convenient comparison.
Although MIR has the highest accuracy without noise, the reconstruction quality rapidly decreases
with increasing noise levels. In contrast, AIR has a better noise suppression ability similar to
BPR, as mentioned in Section 3.1, and the reconstruction accuracy is higher than MIR at high
noise levels.

To further analyze and compare the noise sensitivity of iterative LFR, we added total variation
(TV) regularization to AIR and MIR. Figure 5(a) shows the center-view images of reconstructed
light fields using regularized AIR and MIR at different noise levels (see Visualization 2), along
with local enlarged views of image regions marked by the white wireframe. The corresponding
reconstruction error maps are shown in Fig. 5(b). Compared with Fig. 4, it can be seen that
regularization constraints have a specific effect on noise suppression. In particular, regularized
MIR can significantly improve the influence of noise on FSLFI. Figure 5(c) plots the cross-
sectional distribution curves marked by the white line in Fig. 5(b), involving the results of AIR,
MIR, and their regularized versions. Table 3 simultaneously lists the relevant data of AIR, MIR,
regularized AIR, and regularized MIR results for convenient comparison. With the addition
of regularization constraints, AIR obtained more consistent reconstruction results. However,
the smoothing effect of TV regularization may cause reconstructed light fields to lose some
object information, in turn affecting the LFR accuracy. Therefore, the noise sensitivity and
reconstruction accuracy are constrained by each other for FSLFI. The accuracy of regularized
MIR outperforms regularized AIR at low noise levels, but is reversed with increasing noise levels.

3.3. Actual experiment

Through the simulation experiments, we quantitatively compared and analyzed the noise
sensitivity of FSLFI within the unified LFR algorithm framework. Here, we further verified
the aforementioned analysis and discussions through actual experiments. Light field images
were recorded at different noise levels by adjusting the gain and exposure time of the Lytro

https://doi.org/10.6084/m9.figshare.26588497
https://doi.org/10.6084/m9.figshare.26589046
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Fig. 4. AIR and MIR results at different noise levels: (a) center-view images of reconstructed
light fields using AIR and MIR, along with local enlarged views of image regions marked by
the white wireframe; (b) reconstruction error maps corresponding to (a); (c) cross-sectional
distribution curves marked by the white line in (b).

Table 3. LFR errors of AIR, MIR, and their regularization versions at different noise levels
(PSNR/dB)

AIR AIR+TV MIR MIR+TV

σ RMSE SSIM PSNR RMSE SSIM PSNR RMSE SSIM PSNR RMSE SSIM PSNR

0.000 0.0134 0.9650 37.46 0.0148 0.9561 36.58 0.0067 0.9804 43.48 0.0103 0.9669 39.74

0.001 0.0137 0.9566 37.23 0.0149 0.9544 36.52 0.0113 0.9118 38.92 0.0127 0.9632 37.91

0.003 0.0144 0.9419 36.81 0.0152 0.9514 36.39 0.0172 0.8035 35.29 0.0146 0.9349 36.73

0.005 0.0150 0.9290 36.47 0.0153 0.9485 36.29 0.0215 0.7223 33.36 0.0193 0.8758 34.31
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Fig. 5. Regularized AIR and MIR results at different noise levels: (a) center-view images of
reconstructed light fields using regularized AIR and MIR, along with local enlarged views of
image regions marked by the white wireframe; (b) reconstruction error maps corresponding
to (a); (c) cross-sectional distribution curves marked by the white line in (b).

light field camera with spatial and angular resolutions of 378× 379 and 11× 11, respectively.
Each light field image was used to generate an image stack consisting of nine refocused images
to perform LFR. Figure 6 shows the center-view images of raw and reconstructed light fields
using different LFR algorithms under three noise levels (increasing from left to right), along
with local enlarged views of image regions marked by the red, orange, and blue wireframes. At
each noise level, 20 light field images were recorded and averaged as a reference light field for
comparison and analysis. Additive reconstruction (i.e., BPR and AIR) exhibited excellent noise
suppression capability. In addition, the iterative optimization strategy significantly improved the
LFR accuracy, and the regularization constraint further reduced the noise sensitivity with the cost
of reconstruction accuracy. In comparison, MIR results had higher reconstruction accuracy to
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retain more object details but were more noise-sensitive. It seems that regularization constraints
are necessary for MIR to reduce the noise sensitivity. These results are consistent with those
from simulation experiments.

Fig. 6. Center-view images of raw and reconstructed light fields at different noise levels,
along with local enlarged views of image regions marked by the red, orange, and blue
wireframes.

In addition, we used the published biological light field data [40] to further expand the analysis
and verification. The spatial and angular resolutions of the light field data used are 153× 153
and 13× 13, respectively. Similarly, FSLFI was performed using BPR, AIR, and MIR with 13
refocused images. The reconstruction results are shown in Fig. 7, along with local enlarged
views of image regions marked by the white wireframe. It can be seen that all LFR algorithms
demonstrate anti-noise ability for biological data, which often suffers from noise. Specifically,
BPR and AIR results exhibit a certain degree of smoothness, while the MIR result has better
fidelity and denoising.
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Fig. 7. Center-view images of raw and reconstructed light fields of biological data, along
with local enlarged views of image regions marked by the white wireframe. Scale bar: 10
µm.

4. Discussion

The experimental results demonstrate various performances using different reconstruction
algorithms and strategies. We further plotted the distribution curves of RMSE, SSIM, and
PSNR values changing with the noise level for different FSLFI methods, as shown in Fig. 8. In
conjunction with the experimental results, we made the following discussions:

Fig. 8. Distribution curves of (a) RMSE, (b) SSIM, and (c) PSNR values changing with the
noise level for different FSLFI methods.

Equation (8) used in BPR can be treated as an approximate analytical solution for retrieving
4D light field information from image stack. Such non-iterative reconstruction has a simple and
efficient computational process. In particular, for high spatio-angular resolution LFR with a
large depth sampling rate, iterative reconstruction becomes very time-consuming, while BPR
still keeps lower computational expenses. Furthermore, the average operation of the approximate
solution enables BPR to have a consistent noise suppression capability no matter the noise level.
However, this in turn reduces the BPR accuracy and makes the reconstruction results blurred and
so hard to restore the object information accurately. Therefore, BPR is suitable for FSLFI when
relatively low accuracy but high efficiency is required.
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Iterative reconstruction can significantly improve LFR accuracy. Specifically, AIR remains low
noise sensitivity at different noise levels, similar to BPR. Besides, the addition of regularization
constraints does not improve AIR performance significantly. Therefore, AIR is more balanced
and suitable for FSLFI at high noise levels.

The MIR accuracy is the highest in the ideal situation without noise but decreases rapidly with
increasing noise levels. In the latter case, adding the regularization constraint can significantly
reduce the noise sensitivity of MIR. However, the smoothing effect of regularization will
simultaneously reduce reconstruction accuracy, which is mutually constrained by noise sensitivity.
Therefore, regularized MIR can be used for FSLFI at low noise levels.

Once high-resolution light fields are reconstructed by selecting appropriate LFR algorithms,
high-quality imaging functions, such as fine-structure multi-view display and high-accuracy 3D
sensing, can be performed. In future work, we will address the spatial inconsistency problem in
FSLFI and capture actual image data for further in-depth systematic analysis to improve FSLFI
performance and extend FSLFI to light field measurement applications.

5. Conclusion

In this work, we constructed a unified LFR algorithm framework based on which the FSLFI
performance on noise sensitivity was investigated. Under different noise levels, the comparison of
back-projection and iterative reconstructions, the difference between additive and multiplicative
reconstructions, and the effect of regularization constraint on LFR were analyzed in detail.
Experimental results demonstrate that different LFR algorithms are suitable for different ap-
plication scenarios and are subject to the balance between noise sensitivity and reconstruction
accuracy. For example, non-iterative and iterative reconstruction are suitable for high-efficiency
and high-accuracy FSLFI, and additive and multiplicative reconstruction for applications with
high and low noise levels, respectively. These investigations are applicable to any FSLFI method
covered by the unified algorithm framework, which can be used to select appropriate LFR
algorithms for high-quality FSLFI according to different application scenarios.
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