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Abstract: Temporal phase unwrapping (TPU) is an essential algorithm in fringe projection
profilometry (FPP), especially when measuring complex objects with discontinuities and isolated
surfaces. Among others, the multi-frequency TPU has been proven to be the most reliable algorithm
in the presence of noise. For a practical FPP system, in order to achieve an accurate, efficient, and
reliable measurement, one needs to make wise choices about three key experimental parameters:
the highest fringe frequency, the phase-shifting steps, and the fringe pattern sequence. However,
there was very little research on how to optimize these parameters quantitatively, especially
considering all three aspects from a theoretical and analytical perspective simultaneously. In
this work, we propose a new scheme to determine simultaneously the optimal fringe frequency,
phase-shifting steps and pattern sequence under multi-frequency TPU, robustly achieving high
accuracy measurement by a minimum number of fringe frames. Firstly, noise models regarding
phase-shifting algorithms as well as 3-D coordinates are established under a projector defocusing
condition, which leads to the optimal highest fringe frequency for a FPP system. Then, a new
concept termed frequency-to-frame ratio (FFR) that evaluates the magnitude of the contribution
of each frame for TPU is defined, on which an optimal phase-shifting combination scheme is
proposed. Finally, a judgment criterion is established, which can be used to judge whether the
ratio between adjacent fringe frequencies is conducive to stably and efficiently unwrapping the
phase. The proposed method provides a simple and effective theoretical framework to improve the
accuracy, efficiency, and robustness of a practical FPP system in actual measurement conditions.
The correctness of the derived models as well as the validity of the proposed schemes have been
verified through extensive simulations and experiments. Based on a normal monocular 3-D FPP
hardware system, our method enables high-precision unambiguous 3-D shape measurement with
the highest fringe frequency up to 180 by using only 7 fringe patterns, achieving a depth precision
~ 38um across a field of view of 400 x 300 x 400 mm.

© 2017 Optical Society of America
OCIS codes: (110.5086) Phase unwrapping; (110.2650) Fringe analysis; (110.6880) Three-dimensional image acquisition.
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1. Introduction

Fringe projection profilometry (FPP) has been extensively developed for obtaining non-contact
3-D shape measurements in a variety of fields including mechanical engineering, industrial
monitoring, computer vision, virtual reality, biomedicine and other industrial applications [1-7].
In FPP, temporal phase unwrapping (TPU) is an essential procedure to recover an unambiguous
absolute phase even in the presence of large discontinuities or spatially isolated surfaces [8—17].
So far, there are typically three groups of TPU algorithms [16]: multi-frequency (hierarchical)
approach [10-12], multi-wavelength (heterodyne) approach [8], and number-theoretical approach
[9, 13]. We have detailedly discussed the noise-resistance ability of these three approaches in the
comparative review [16], proving out that multi-frequency approach has the strongest resistance
towards temporal noise.

For a practical FPP system, in order to achieve an accurate, efficient, and reliable measurement,
one needs to make wise choices about three key experimental parameters: the highest fringe
frequency, the phase-shifting steps, and the fringe frequency sequence. In this work, the fringe
frequency represents the total number of periods in the fringe pattern, with the unit of periods
per frame. The first parameter we talk about is the highest frequency. Generally speaking, higher
fringes frequency leads to higher precision of 3-D reconstruction [16, 18], so increasing the
fringe frequency is the most frequently used method to improve measurement results in FPP
system [19,20]. However, we find that because of the imperfection of the projection system,
projector defocusing is unavoidable, which suppresses the modulation of fringe patterns especially
when the fringe frequency is high. The reduction of the fringe modulation increases the phase
noise, thereby reducing the 3-D measurement precision. According to our analysis, higher fringe
frequency does not necessarily give better measurements. The second parameter we talk about
is phase-shifting steps. Phase-shifting profilometry (PSP) is the most widely used methods to
obtain phase [21,22]. There are two main trends in the application of PSP: one is in real-time
dynamic FPP system, which often chooses phase-shifting algorithm with less steps number,
such as “2+3” (two low-frequency fringe patterns and three high-frequency fringe patterns)
scheme, which is also termed of bi-frequency scheme [23]; another is in static high-precision
FPP system, which often chooses phase-shifting algorithm with more steps number, such as
“4+4+4+12” [24]. Are there any other differences between these different phase-shifting steps
in addition to different degrees of suppression on noise? What is the difference between ‘“2+3”
and “3+2” (three low-frequency fringe patterns and two high-frequency fringe patterns) for 5
frames fringe patterns to measure phase? For a FPP system that pursues both precision and
efficiency, which phase-shifting algorithm is the most cost-effective? These very interesting
questions are rarely discussed in previous work. The last parameter we talk about is fringe
frequency sequence. A commonly used fringe frequency sequence is {1, 2, 4, 8, ...} [19], which
increases in the form of an exponential power of 2, and has a strong anti-noise capability, but it
will undoubtedly result in huge time costs [25]. In order to improve the measurement efficiency,
it seems that the fringe frequency sequence {1, 10, 100} with a larger exponential power of 10
should be used. This practice is very reasonable when the projector is focusing. However, the
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actual projection system often has a certain degree of defocusing effect. In this case, even if the
same phase-shifting steps are used, the noise of the wrapped phases corresponding to the fringes
of the three frequencies are gradually increased. Therefore, noise effects in process of using the
absolute phase of single-period fringes to unwrap the wrapped phase of 10-period fringes is
not equivalent to that in process of using the absolute phase of 10-period fringes to unwrap the
wrapped phase of 100-period fringes. In view of the above three issues, we believe that for an
actual FPP system, to achieve high efficiency, high precision and robust 3-D measurement, the
following three questions should be taken into account: (1) Is the fringe frequency really the higher
the better? (2) Which phase-shifting combination is the most cost-effective in multi-frequency
approaches? (3) Whether the exponentially incrementing fringe frequency sequence gives the
best performance in terms of both robustness and efficiency?

For the first question, we establish noise models about phase-shifting algorithms as well as
3-D coordinates considering the effect of projector defocusing. According to these models, the
attenuation effect of fringe modulation can be more obvious than the enhancement effect of
fringe frequency when the fringe frequency is high. This indicates that the fringe frequency
is not the higher the better, but there is a compromise in it. And we determine the optimal
frequency f,p: by rigorous mathematical analysis and experimental verification. For the second
question, we define a new concept termed frequency-to-frame ratio (FFR), which can be used
to evaluate the magnitude of the contribution of each frame for TPU. According to the FFR,
two-step phase-shifting (the algorithm used in bi-frequency scheme, we will make a detailed
explanation later) is the most cost-effective. And a phase-shifting combination scheme which is
beneficial to the FPP system to achieve the highest measurement efficiency is proposed. Minimum
number of fringe frames are used to realize high precision measurement by the phase-shifting
combination scheme. For the last question, we establish a judgment criterion, which can be
used to judge whether the ratio between adjacent fringe frequencies is conducive to stably and
efficiently unwrapping the phase. According to this criterion, the high frequency can be estimated
based on the noise variance of low-frequency absolute phase, and a fringe frequency scheme is
proposed based on the criterion. Combination of efficiency and robustness of FPP system can be
achieved by the fringe frequency scheme.

This work provides a simple and effective theoretical framework to improve the accuracy,
efficiency, and robustness of a practical FPP system in actual measurement conditions. For
different FPP systems, the optimal fringe frequency and frequency sequence are different, but the
method and procedure to select the optimal scheme complying with the same principle. For our
system, the optimal fringe frequency is 180 periods/frame, the phase-shifting combination is
2-2-3, and the fringe frequency sequence is {1, 15, 180}. The correctness of the derived models
as well as the validity of the proposed schemes have been verified through extensive simulations
and experiments.

2. Principle

In this section, we detail our technique in four aspects. Firstly, PSP is introduced as a basis,
and based on which we derive the noise models about PSP as well as 3-D coordinates. Then,
we briefly introduce TPU, as well as the condition that should be satisfied in the TPU process.
Further, we present the effect of projector defocusing, and incorporate it into the noise models.
Finally, we determine the optimal frequency f,,; by the noise models, and propose a strategy to
determine the optimal pattern sequence.

2.1. Phase-shifting profilometry

PSP is the most widely used methods to get phase at present [26-32]. And it provides high
measurement resolution and precision since it can eliminates interferences from ambient light
and surface reflectivity. In PSP, multiple phase-shifting sinusoidal fringe patterns are projected
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sequentially by the projector onto an object surface and captured by the camera. The deformed
fringes captured by the camera can be represented as:

I, = A+ Bcos(¢ —2nn/N) (1)

where A is the average intensity relating to the pattern brightness and background illumination,
B is the intensity modulation relating to the pattern contrast and surface reflectivity, N is the
total number of phase-shifting steps, » is phase-shifting index and n = 0,1,..., N — 1, and ¢ is
the corresponding wrapped phase map which can be extracted by the following [33, 34]:

. Zf:’:_ol I, sin(2zn/N)
n .
ZnN:_Ol I,, cos(2nn/N)

o=t @)

Since there are three unknowns A, B and ¢ in Eq. (2), at least three images should be used to
calculate ¢, namely N > 3. The intensity modulation B, is calculated to remove the unreliable
points with weak reflectivity [23], which can be obtained by only a single frame in these
meaningful works [35,36]. However, in our work, we choose more commonly used method in
PSP to calculate the intensity modulation B:

) N-1 N-1
B= [Z I, sin2an/N)]? + [Z I, cos(2tn/N)]2 3)
n=0 n=0

Generally speaking, two or more different frequencies fringe patterns are utilized in TPU, and
the average intensity A of different frequencies fringe patterns are almost same. Therefore, there
are redundant information in fringe patterns with different frequencies. In order to utilize this
information redundancy, bi-frequency scheme is proposed in [23], reducing the fringe patterns
from N to 2. The average intensity A can be obtained by any set of sinusoidal patterns meeting

condition of N > 3: 1
pup2iil] @

N

The another two fringe patterns can be expressed as:
iy = A+ Bsin(p) 5
i» = A+ Bcos(p) (6)
Then, the wrapped phase can be obtained from the following [23]:

,1l.1—A
ih—A

¢ = tan @)
This algorithm is different from the standard N-step phase-shifting algorithm, for convenience
of narration, we call it two-step phase-shifting algorithm. Using this method of two-step phase-
shifting can reduce the number of fringe patterns, thereby improving the efficiency of measurement.
But at least one set of fringe patterns meeting condition of N > 3 are needed to provide average
intensity for this algorithm.

In fact, PSP not only can be used to get the phase, but also is a temporal filter, and the
phase-shifting steps number reflects the size of the filter window. Much more phase-shifting
steps have more obvious effect of noise suppression. The noise sources include ambient light,
shadowing, projector illumination noise, camera or projector flicker, and quantization error in the
frame grabber and the projector. In order to facilitate theoretical analysis, researchers assume a
Gaussian distributed additive noise with a mean of zero and a variance of o->. When the sensor
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noise is small compared to the true intensity signal, its effect can be considered as a small
perturbation on the measured phase, which leads to the following approximation of the variance
of phase error [16,37]:

s { (N+Do? 2-step phase-shifting; ®)

= NB? °
O—A<ﬁ 202
NB?’

standard N-step phase-shifting.

For the case of 2-step phase-shifting, N(> 3) is the number of phase-shifting steps of the
fringe patterns that provide the average intensity. According to Eq. (8), we can find that the
signal-to-noise ratio of N-step phase-shifting is much better than that of 2-step phase-shifting.
When we map the phase to the real world 3-D coordinates, the error variance of 3-D coordinates
o2, can be further reduced by a factor of fZ [16]:

2 N+1)o? o
2 Tap _ (N}ZZZTZ , 2-step phase-shifting; ©
AP p2 %, standard N-step phase-shifting.

where f is the fringe frequency.

2.2. Temporal phase unwrapping

Since the arctangent function only ranges from —x to &, phase unwrapping is necessary to
eliminate the ambiguities of the phase in Eq. (2) and Eq. (7). The rudimentary phase unwrapping
procedure is revealed as a process concerned with traversing through the wrapped phase vector
sequentially in the x direction and adding or subtracting integer multiples of 2z [25]. This results
in an unwrapped phase map which is given by Eq. (10):

=+ 21k (10)

where @ is the unwrapped phase, and k is the integer number called fringe orders. The key of
phase unwrapping is to solve the fringe order k, which can be acquired from:

Sul [i®r — o

k = Round| o=

] an
where Round| ] denotes to obtain the closest integer value, f; and f;, are the low and high
frequency respectively. @; is the unwrapped phase of low-frequency fringes, and it severs as
auxiliary phase to help unwrap the phase of high-frequency fringes, ¢y, is the wrapped phase of
high-frequency fringes. By this means the high-frequency phase ¢;, can be unwrapped.

The key to phase unwrapping is to determine the fringe order of each pixel. In order to
accurately unwrap the wrapped phase, it should be guaranteed that fringe order error Ak = 0, so
there are [18]:

|2 A0y - Agu| < 7 (12)
fi
Once the upper limit of I%A(Dl — Agpy| is less than or equal to 7, i.e.:

Ji
/i

Then a sufficient condition about Eq. (12) is naturally gained. Most frequently, the 3-sigma rule
of thumb is used in the empirical sciences, which expresses a conventional heuristic that “nearly
all” values are taken to lie within three standard deviations of the mean, that is, to treat 99.73%
probability as “near certainty”’. However, in FPP applications, we prefer to adopt a stricter limit at

|Aq)l|max + |A(ph|mux <n (13)
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4.5-sigma (99.9993% confidence) to get a more robust result [16]. Therefore, it can be considered
that |AD;|nax = 4.5080;, |A@RImax = 4.50 a4, - Thus Eq. (13) can be rewritten as:

h v/
—lO'Aqyl + Ay, < E (14)
(14) is a criterion used to check whether the phase unwrapping results are reliable.

After the absolute phase of the highest frequency fringes is obtained through TPU, then the
horizontal coordinate of corresponding points in projector can be calculated [20]:

Iy 15
Xp = 2 f (15)
where p,, is the horizontal resolution of projector, f is the frequency of the fringes. To determine
the 3-D coordinates of each point of the object, system calibration should be performed [38].
Once the system calibration is done, the parameter matrix of the camera and the projector can
be obtained, by which we can map the x,, to real world 3-D coordinates of the object through
triangulation [39].

2.3.  Projector defocusing effect

According to Eq. (9), the frequency of fringes is selected as higher as possible for improvement of
measurement precision. However, we find that the frequency should not be increased arbitrarily
not only due to the limitation of the resolution of projector but also more importantly the negative
effect of projector defocusing which reduces the signal strength for excessively dense patterns.
The defocusing effect can be considered as the convolution of the ideal gray distribution of
the object with the point spread function of the projector system. The point spread function
can usually be approximated as a Gaussian function [40,41], and is actually a low-pass filter
which has more attenuation on higher frequency signals. For sinusoidal fringes, its modulation is
attenuated by the projector system:

B(f) = BoH(f) = Boexp(-2n°c; %) (16)

where f is fringe frequency, B(f) is the modulation of the fringe patterns projected by projector,
By is the modulation of the fringe patterns sent to the projector system, which is generally pre-set,
H(f) is frequency response function of the system, o is proportional to defocusing levels. In
order to simulate the effect of the projector defocusing, we used MATLAB to generate sinusoidal
fringe patterns with By = 127, and f = 1, 10, 20, ..., 250, then applied a Gaussian filter with a
size of 39 X 39 pixels and a standard deviation of 3 pixels for these sinusoidal fringes patterns to
approximate the defocusing effect. B(f) is calculated through Eq. (3), and the results are shown
in Fig. 1(a). It can be seen from Fig. 1(a), the modulation of the fringe patterns declines following
Gaussian function after the application of the Gaussian filter. When the fringe frequency is 50
periods/frame, the modulation is already reduced by 23.62% compared with the case of no blur.
When the fringe frequency becomes 150 periods/frame, the modulation is reduced by as much
as 91.34% compared with the case of no blur. Figures 1(b) and 1(c) are the fringe patterns of
100-period before and after the application of the Gaussian filter respectively. In order to avoid
the misleading visual effects of excessive fringes, only a small portion of the whole fringe pattern
is shown here. It is clear that Fig. 1(b) has a stronger contrast than Fig. 1(c). This means that
projector defocusing makes the modulation of high-frequency fringe patterns a marked decline.
Equations (8) and (9) are noise model without considering the effect of projector defocusing
which is negligible if the fringe frequency is very low. However, high-frequency fringes are often
necessary for a high precision measurement, and the effect of projector defocusing becomes
pronounced when the fringe frequency is high. So the noise model should be improved by
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Fig. 1. (a) Influence of Gaussian blur on fringe modulation; (b) The fringe pattern of
100-period before the application of the Gaussian filter; (c) The fringe pattern of 100-period
after the application of the Gaussian filter.

introducing the effect of projector defocusing. When the effect of projector defocusing is in
consideration, Eq. (8) should be rewritten as:

2o =1 fal (a7

NB2(f)’

) Do 2-step phase-shifting;
standard N-step phase-shifting.

Similarly, Eq. (9) should be rewritten as:

2
o2 o Tng _ %, 2-step phase-shifting; (18)
AP p2 I%,Lwé, standard N-step phase-shifting.

where w = fB(f). It can be seen from Eq. (18) that the noise variance of 3-D coordinates can
be reduced by increasing the number of phase-shifting steps N and w when the light intensity
noise is constant. Though increasing N can reduce the noise variance of 3-D coordinates, we
do not recommend using this method because additional fringe patterns are required. The
more cost-effective method is to increase w, which has much more precision enhancement than
increasing N under the condition of the same consumption of fringes frames. According to Eq.
(16), it can be known:

w = fB(f) = Bofexp(-2n°0og ) (19)
If the projector is properly focused, namely o, = 0, then w = By f. This means that after the

projector defocusing introduced, the linearity relationship between w and f becomes nonlinear.
To estimate the change of w with respect to f, we take derivative of f in Eq. (19):

w = Bofexp(—27r20'§f2)(l - 47r20'§f2) (20)
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Making w’ = 0, it can be derived:

= 2y

1
2nog
means that the optimal frequency f,,, for the fringe Satterns is closely related to the degree
of defocusing 0. Assuming that o, = 0.001 and By = 127, the change of w with respect to f
is shown in Fig. 2. As can be seen from Fig. 2, after the projector defocusing introduced, the
linearity curve changes to a similar parabolic-like form, and there is always only one extreme
point determining the optimal frequency. In the simulation case, the extreme point f = 159,

1

which is the nearest integer from Ty When the frequency is 30 periods/frame, the value of w

is 3743, which means that its 3-D measurement precision just reach 30.53% (% ~ 30.53%) of
the highest precision.

According to the principle of differential, when f = w will get the maximum value, which

30000} _ ' ' R T
—Gaussianblur (T
..... No blur
20000 1 .
= . ﬁg~159.2
12260f === ======== == I oo — ]
___________ e 100%
8954 =~ 173.03% i
3743F - ">7130.53% | | |
1 1 1 1 1
CO 30 50 80 . 159 200 250

Fig. 2. The curve of the change of w (= fB) with respect to frequency f.

2.4. Pattern sequence selection strategy

As mentioned before, Eq. (14) is a criterion used to check whether the phase unwrapping
results are reliable. In fact, on the other hand, for a specific set of fringe patterns, Eq. (14)
can be used to estimate the range of high-frequency f;, in which the wrapped phase ¢, can be
unwrapped correctly provided that the multiples relationship between o, and oae, can be
known in advance. As can be seen from Eq. (17), when 2-step phase-shifting is used to generate
high-frequency fringe patterns, and N-step phase-shifting is used to generate low-frequency
fringe patterns, the ratio of o, t0 oap, Will be maximized:

(N+1)o?
Thgn N 'NBG) [N +1 B(fi)

one, ~ [202 V2 B(fi)
NBXf)

(22)

where B( f;) represents the modulation of the low-frequency auxiliary fringe patterns and B(f},)
represents the modulation of the high-frequency fringe patterns. From Eq. (22) we can see that
there is a quantitative relationship between the noise of high-frequency fringe phase and the
noise of low-frequency fringe phase. Thus, Eq. (14) can be rewritten as:

ES T /N+IB(fl) (23)
fi 4500, 2 B(fn)
In the pattern sequence selection strategy we proposed, phase-shifting steps number N ranges
from 2 to 4 (see the later section in this chapter for details) as listed in Table 2. So N = 4 should
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be selected to substitute into Eq. (23) to make sure that the left value of the inequality is less than

the minimum of the right value. The value of (_(;Pl; ) is equal to 1 if projector is properly focused,
and it becomes greater than 1 when projector is defocused. Based on the results of experiment

in section 3.1, we can find that g(()}:l)) < 4 under nine different kinds of measurement conditions

if J}—’l' < 200. Besides, to improve the stability of phase unwrapping results, we assume that the
phase noise variance in actual measurement is twice the detected phase noise variance, then Eq.
(23) can be rewritten as:

L VT
fi 9\/50'A<1>, @9

From Eq. (24), the range of ]% can be calculated based on a premise that the noise standard
deviation of auxiliary fringes oae, can be known beforehand.

The purpose of selecting a pattern sequence is to stably achieve a high precision measurement
with minimal fringe patterns. In order to better analyze the problem, we propose the concept of
frequency-to-frame ratio (FFR). The fringe parameter pair (f, N) is used to represent a group of
fringe patterns with frequency f and phase-shifting steps number N, and use ]{}(N =2,3,4,...)t0
represent the highest frequency fringe patterns whose wrapped phase can be correctly unwrapped
by the auxiliary phase corresponding to fringe patterns (f;, N). According to this definition, when
the unambiguous absolute phase corresponding to the fringe patterns (f;, N) is used as auxiliary
phase, it can correctly unwrap the wrapped phase corresponding to the fringe patterns ( ff’ ,3) but

fails to unwrap the wrapped phase corresponding to the fringe patterns ( fz{; + 1, 3), then the ratio
A
};lN is the so-called FFR. Obviously, the value of FFR reflects the magnitude of the contribution

of each frame for TPU and is determined by fringe parameter pair (f;, N). Selecting the number
of phase-shifting steps with high FFR can improve the efficiency of TPU. Assuming that the
unambiguous absolute phase corresponding to the fringe patterns (f;, 3) is used as auxiliary
phase, the wrapped phase corresponding to the fringe patterns (f;, < ff’, 3) can be unwrapped

correctly whereas the wrapped phase corresponding to the fringe patterns (f;, > ff’, 3) can not
be unwrapped correctly, then according to Eqgs. (14) and (17), we can derive:

ﬁ == _ (25)
Bz(ﬁ 4.5 332( ff

Similarly, assuming that the unambiguous absolute phase corresponding to the fringe patterns
(fi, N) is used as auxiliary phase, the wrapped phase corresponding to the fringe patterns
(fn < f,{ﬁ, 3) can be unwrapped correctly whereas the wrapped phase corresponding to the fringe

patterns (f;, > ff’, 3) can not be unwrapped correctly, then according to Egs. (14) and (17), we
can derive the following formula (if N < 10, it can be obtained that B( f]{}) ~ B( f3ﬁ ):

/22 - N
NB2(f;) 4.5 BZ(ffl T 45 BZ(ffl Bz(fl

It is available from Eq. (26) that:
N
nggg @7

Thus we can derive the FFR corresponding to the fringe patterns (f;, N):

i f1{11 3ﬁ /3 R
FFR! = ZN_ ~ | =FFR! (N > 3) (28)
NONfio \BNf VNP
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Assuming that the unambiguous absolute phase corresponding to the fringe patterns (7, 2) is
used as auxiliary phase, following the above analysis we can derive that (in the derivation process
we assume that B(f2f’) ~ B(f3f’) ):

i~ s (29)
V2
fi f 3
FFRI =22 ~ 3~ ~ FFRI (30)

2 2fl fl\/§~2\/§ 3

In order to verify our conclusion of FFR, we used MATLAB to generate sinusoidal fringes
patterns with (1, N)(N = 2, 3,4, ..., 10), then applied a Gaussian filter with a size of 39 X 39 pixels
and a standard deviation of 1.2 pixels for these sinusoidal fringes patterns to approximate the
defocusing effect, finally added Gaussian noise with a mean of zero and variance of 0.0006 to
these patterns. The absolute phase corresponding to fringe patterns (1, N) is used as auxiliary
phase to unwrap the wrapped phase corresponding to fringe patterns (f, 3) (f=2, 3, 4, ..., 50),
and the frequency ]{; is found by checking the unwrapped phase. The results are shown in Table

1, N=2 represents 2-step phase-shifting in bi-frequency scheme [23]. As can be seen from Table

Table 1. FFR of different number of phase-shifting steps.

Phase-shifting steps number(N) 2 3 4 5 6 7 8 9 10
Threshold frequency(fﬁ,) 15 21 24 27 29 31 33 36 38

T
FFR,(= 1) 75 7 6 54 48 44 41 4 338

1, 2-step phase-shifting has the largest FFR, meaning that it has the highest cost-effective, so we
should give priority to 2-step phase-shifting to improve measurement efficiency. But it should be
noted that at least one set of fringe patterns whose phase-shifting steps number is not less than 3
are needed to provide average intensity.

Through the previous discussion, we summarize five basic requirements for determining the
optimal fringe pattern sequence: (1) the highest frequency of the fringe patterns must be equal or
close to f,p; to achieve high precision measurements; (2) the ratio between adjacent frequencies

g
should not be greater than fflll; (3) at least one set of fringe patterns meeting condition of N > 3
are needed to provide average intensity; (4) giving priority to 2-step phase-shifting, so four-step
phase-shifting should be replaced by 2-2, and five-step phase-shifting should be replaced by 2-3
or 3-2; (5) giving priority to generating the highest frequency fringe patterns with larger number
of phase-shifting steps, because increasing the number of phase-shifting steps can suppress phase
random noise. Once these five requirements are met, the highest precision of the fringe projection
measurement system can be achieved with minimal fringe patterns. Some of the optimal fringe
pattern sequence are list in Table 2.

Explanations about the Table2 (1) (X) represents that the combination is not being considered.
Because the combination of 3-2 has been ruled out for f31 < fopt» so the combination of 2-4
and 3-3 should be ruled out too. (2) Bold numbers represent the phase-sifting steps number of
auxiliary fringes, which determines the value of the highest frequency whose wrapped phase can
be unwrapped correctly by the auxiliary fringes. (3) The order of the phase-shifting combination
represents its priority, the corresponding frequency sequence is used to judge whether the
phase-shifting combination can be used. (4) The order of the phase-shifting combination is
arranged according to the ability of unwrapping wrapped phase.
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Table 2. Fringe pattern sequence selection strategy.

Total frames Phase-shifting combination Frequency sequence

5 2-3 {1, fope(< £D}
3-2 {1, fopi(< £}
2-4 (x) {L fope(£ £} (%)

6 3-3 (%) {1, fope(< f3‘)} ()
4-2 {1, fope(< £}

2-2-3 {1, fi(< ) fopi(< fzz)}

7 3-2-2 {lﬁ(<f3)fo,,z(<f2 )}
2-3-2 {lﬁ(<f2)fop,(<f )}
2-2-4 (X) {1 fl(< fz) fopt(< fz )} (X)
2-3-3 (X {1, fi(< ) fope(< f3 )} (x)

8 4-2-2 {1, fi(< £ fope(S fz“ )}
2-4-2 {1, fi(< £ fopr(< f, )}
3-3-2 {1, fi(< fg)ﬁ,pt(<f3 )}

3. Experiment

The experiments are based on a 3D shape measurement system comprising a DMD projector
(M115HD, Dell) and a CMOS camera (daA1280-54um, Basler) with a computar M1214-MP2
lens F/1.4 with focal length of 12 mm. The resolution of the camera is 1280 x 960, with a
maximum frame rate of 54 frames per second. The projector has a resolution of 1280 x 720
with a lens of F/2.0 focal length of 14.95 mm. In order to reduce the influence of the non-linear
response of the projector on the phase accuracy [42], gamma correction of the projector was
performed by pre-distorting the ideal sinusoidal patterns based on a calibrated gamma curves
stored in a LUT [37]. In the following experiments, objects are scanned with a camera exposure
time of 33.33 ms.

3.1.  Determining the value of f,,,;

From Eq. (21), we can see that f,; is greatly influenced by the degree of projector defocusing,
so it is necessary to detect the degree of projector defocusing in the current state. However, in the
actual measurement, besides the main impact by projector defocusing, the fringe modulation
is also affected by camera exposure, the position of the measured object as well as projector
pixel discretization and so on. These factors should also be considered to improve the previous
model of modulation but they can not be analyzed theoretically. So in these experiments, we
directly test the modulation of fringe patterns of different frequency projected by the projector.
For the projector with horizontal resolution of 1280, the fringe frequency can be as high as
256 periods/frame (at least 5 pixels per fringe along the horizontal axis should be guaranteed
to avoid spatial aliasing of the peaks and troughs of the sinusoidal intensity profile), instead of
detecting and calculating so many frequencies one by one, we detect and calculate the fringe
modulation B(f) of fringe patterns with frequency 1, 5, 10, 20, 30, 40, 60, 100, 140, 180, 220
and 250 periods/frame reflected by standard ceramic plate. In order to highlight the change
of fringe modulation with respect to fringe frequency, we normalized the fringe modulation

by B(f) = B(l) Here, B(1) refers to the modulation of single-period fringes patterns and B( f)
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is the normalized modulation. B(1) is constant under a specific measurement environment,
so it will not change the value of f,,, and still can highlight the change of (fB(f ))?> with
respect to fringe frequency f. To determine the impact of camera exposure and the position

of the measured object, we separately detect the normalized modulation B(f) of these nine
cases of which include weak exposure (A=42.8, B(1)=32.82, B(1) refers to the modulation of
single-period fringes patterns), medium exposure (A=79.31, B(1)=60.17) and strong exposure
(A=128.55, B(1)=97.14), as well as close distance (400mm, referring to the distance between
measured surface and projector), medium distance (550mm) and long distance (700mm), and
three different angles (0°, 30°and 60°) between the measured surface and projector optical axis.
The experimental results are shown in Fig. 3, and we can easily find that the measured results of
different measurement conditions have large differences. In the actual measurement case, the
measured surface of the object often have problems of different exposure, different distance
and different angles. In order to improve the robustness of the system, we decide to find a
frequency reference range. In this range, the product of the square of frequency f,,; and square

of normalized modulation é( fopt) is not less than 90% of its own maximum value under above

nine kinds of measurement conditions, i.e.: 0.9[f B(f)2,ax < [fopt B(fopt)* < [f B(f)20ax-
Once obtaining the frequency reference ranges that meet the requirement under these nine kinds
of measurement conditions, the common range of these ranges will serve as the final reference
range. In our experiments, the nine frequency ranges are [158, 256], [140, 230], [117, 191], [119,
193], [146, 237], [128, 204], [146, 237], [149, 237] and [166, 255], and the common range of
these nine ranges is [166, 191]. Finally, we select the median value 180 of the common range as
the value of f, ;. Of course, selecting other values in the common range is also acceptable.

3.2. Determining the optimal fringe pattern sequence

In section 3.1, we have determined the value of f,,;, which means the optimal precision can
be obtained through 180-period fringes. Then comes the next step, confirming the efficient
and robust measurement scheme, to realize the optimal measurement precision. The efficiency
and stability of the measurement mainly depends on phase-shifting steps number and fringe
frequency sequence. In section 2.4, we have determined all possible optimal phase-shifting
combinations by quantitative analysis, and these possible optimal phase-shifting combinations
are listed in Table 2. What we need to do is to inspect which one can satisfy requirements of the
fringe frequency sequence. For example, when we intend to inspect phase-shifting combination
2-3, we should compare 180 with le, if 180< le, then phase-shifting combination 2-3 can
satisfy requirements of the fringe frequency sequence {1, 180}. Obviously, le is a criterion of
judgment whether the combination 2-3 can be chosen, however, we can not obtain the value of
it beforehand in the experiment. The value of f]{} is unknown in the experiment is an obstacle
to our next step. Fortunately, Eq. (24) provides us with a method to overcome it. Based on
Eq. (24), once the noise variance of the auxiliary phase is detected, it is possible to estimate
the f]{; in the current state. We experimentally detect that the unambiguous absolute phase
noise variance corresponding to the fringe patterns (1, 3) is approximately equal to 0.00028.
Substituting oap, = V0.00028 and f; = 1 into Eq. (24), we can derive fj, < 24, so f3l is equal
to 24. Substituting f; =24 and f3, = f,,,r = 180 into Eq. (27), we can derive N ~ 169, which
means that at least 169 fringe patterns are required to unwrap the wrapped phase corresponding
to the fringe patterns (180, 3) using the single-period unambiguous absolute phase as auxiliary
phase. Obviously, using bi-frequency fringe pattern sequence is not the optimal scheme, therefore,
we do not consider the case where the total number of frames are 5 or 6 in Table 2. According to
the order of the phase-shifting sequences listed in Table 2, we firstly consider the case where the
total number of frames are 7, and give priority to 2-2-3 combination. We experimentally detect
that the unambiguous absolute phase noise variance corresponding to the fringe patterns (1, 2)
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Fig. 3. (a),(c),(e) The normalized fringe modulation measured under different exposure,
different distance, and different angles; (b),(d),(f) The product of the square of frequency
and square of normalized modulation under different exposure, different distance ,and
different angles. The background color region represents the reference ranges under different
conditions, and the yellow line represents the common range of three reference range in the
graph.

is approximately equal to 0.00053. Substituting oap, = V0.00053 and f; = 1 into Eq. (24), we
can derive f; < 16, so f21 is equal to 16. Then we experimentally detect that the unambiguous
absolute phase noise variance corresponding to the fringe patterns (16, 2) is approximately equal
to 0.0007. Substituting oap, = V0.0007 and f; = 16 into Eq. (24), we can derive f; < 16 X 13,
SO 216 = 208(16 x 13). At last we choose frequency combination {1, 15, 180} as the optimal
frequency sequence.

Let us summarize the whole process of determining the optimal fringe pattern sequence.
Firstly, test the modulation of different frequency fringe patterns and find the optimal frequency
Jop: minimizing the 3-D coordinates noise. Then, starting from the case of 5 frames, inspect
these phase-shifting combinations sequentially, once a phase-shifting combination meets the
requirements, end the process, otherwise, inspect the next case of more frames. The whole
process of determining the optimal fringe pattern sequence is shown in Fig. 4(a), and inspection
process of phase-shifting combination 2-2-3 is shown as an example in Fig. 4(b). N, represents
the total number of fringe patterns.
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Determine the optimal frequency Estimate the absolute phase noise
fa]gt by the method proposed in vgrlance Oro, corresponding to
Section 3.1 fringe patterns (1, 2).
Ny =4 l

Substituting 0,4, and f; =1
Ny = NE—— into Eq. (24), to get f3.

~
Estimate the absolute phase noise
variance GA‘Df’ corresponding to
fringe patterns (£, 2).

Inspect the phase-shifting
combination corresponding to N

according to Table 2 )
N
Substituting %ra, and f; = f
2 1
Is there any one phase-shifting No into Eq. (24), to get f;2.
combination satisfies the J

requirements

Yes
End [ 1-fils - fopt ] [SZ;SET’\?:]
(a) (b)

Fig. 4. (a) The whole process of determining the optimal fringe pattern sequence; (b)
Inspection process of phase-shifting combination 2-2-3.

3.3. Experimental results
3.3.1. Comparison of anti-noise capability

To validate the robust anti-noise capability of the frequency sequence {1, 15, 180}, we reduced the
exposure of the camera to increase intensity noise, and then measured a standard ceramic plate
using fringe patterns with {1, 8, 180}, {1, 15, 180} and {1, 25, 180} respectively. Phase-shifting
combination all are 2-2-3. The experimental results are shown in Fig. 5. It can be seen from Fig.
5, when increasing light intensity noise, the frequency sequence {1, 15, 180} is still able to stably
unwrap the phase, while the other two sequences have different number abnormal points. For
frequency sequence {1, 8, 180}, the wrapped phase of 8-period fringes is correctly unwrapped
with the help of the single-period auxiliary phase, but the absolute phase of 8-period fringes
fails to unwrap the wrapped phase of 180-period fringes in some pixels. For frequency sequence
{1,25, 180}, the single-period phase fails to unwrap the wrapped phase of 25-period fringes in
some pixels. The excessive ratio of adjacent frequencies which does not meet Eq. (24) is the
failure reason of the two cases.

3.3.2. Comparison of measurement precision

According to Eq. (18), the noise of 3-D coordinates is in proportion to the normalized phase. In
order to prove that the fringe patterns with frequency 180 periods/frame has the highest precision
of normalized phase, we measured a standard ceramic plate using fringe patterns with {1, 15,90},
{1,15,180} and {1, 15, 256} respectively, and phase-shifting combinations all are 2-2-3. After
the phase data is obtained, we fitted it using a planar model to acquire quasi-standard phase data,
and the differences between the measured surface and the fitted surface represent the phase errors.
The experimental results are shown in Fig. 6, where the red and yellow planes represent i30’Afl ,

respectively, and we can easily find that the frequency combination {1, 15, 180} has the smallest
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Fig. 6. Comparison of phase noise. (a) {1, 15, 90}; (b) {1, 15, 180}; (c) {1, 15, 256}.

To compare 3-D measurement precision of the three frequency sequences, we measured the
standard sphere with radius R = 25.4 mm. After the sphere surface data is obtained, we fitted
it using a spherical model to acquire quasi-standard sphere center. Standard sphere radius, the
distance from the point on the sphere to the quasi-standard sphere center, are calculated according
to the distance formula of the 3-D space. And the differences between the measured radius and
the standard radius 25.4 mm represent the measurement errors. The measurement results are
shown in Fig. 7. In Fig. 7(a), the three graphs in the first row show the calculation results of the
standard sphere surface, the three graphs in the second row show the measurement results of
radius of standard sphere and the three graphs in the third row show radius error. Figure 7(b)
shows the probability distribution of the radius error.
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Fig. 7. Measurement results of standard sphere. (a) The reconstructed spherical surface,
spherical radius and spherical radius error; (b) Probability distribution of radius error.

3.3.3. Comparison of 3-D topography of complex objects

In section 3.3.2, we chose the frequency sequences {1, 15,90}, {1, 15, 180} and {1, 15,256} to
make a quantitative comparison. In this section, we will do a qualitative comparison among them.
The model of David is measured in the experiments. As can be seen from the experimental results
in Fig. 8, measurement result corresponding to frequency sequence {1, 15, 180} is the best for
the reason that its reconstructed surface is more smooth and no loss of details than other two. It is
should also be noted that some holes appear in the surface measurement results in the shadow
area, and obviously the higher the fringe frequency is, the more the number of holes appear. This
arise from the fact that the fringe modulation decreases with the increase of fringe frequency
due to projector defocusing. When the modulation decreases to small enough, the corresponding
region will be filtered as background, thus holes are formed.

3.3.4. Measurement of human face

In order to further prove the feasibility and validity of our proposed method, human face with
normal complexion was measured using the fringe patterns with frequency sequence {1, 15, 180}
and phase-shifting combination 2-2-3. The results are shown in Fig. 9. Due to the influence
of human complexion, the measurement precision decreases a lot compared with those white
objects. Despite this factor, the measurement precision is still very considerable because using
the optimal fringe frequency. As can be seen in Fig. 9(b), some local features on the face such as
naevi are still well preserved.

4. Conclusion

In this paper, we proposed a new scheme to determine the optimal fringe frequency and
pattern sequence to realize high precision, high efficiency and robust measurement. Firstly, we
established noise models about phase-shifting algorithms as well as 3-D coordinates under
projector defocusing condition. According to the models, the projector defocusing has a more
severe attenuation on the modulation of higher frequency fringes. So the precision of 3-D
reconstruction reaches the maximum only when the product of fringe frequency and modulation
reaches its maximum. We detected the modulation of twelve frequencies fringes under different
representative measurement conditions, acquiring the optimal fringe frequency f,p,, = 180
periods/frame that makes the product of the frequency and modulation reach more than 0.9 times
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Fig. 8. David surface measurement. (a) The physical map of David; (b) The 3-D map of
David surface when the frequency sequence is {1, 15, 90}; (c) The 3-D map of David surface
when the frequency sequence is {1, 15, 180}; (d) The 3-D map of David surface when the

frequency sequence is {1, 15, 256}.

Fig. 9. Human face measurement. (a) Gridding results of human face 3-D point cloud data;
(b) Human face 3-D point cloud of different perspectives.
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of its own maximum under different measurement conditions. In this way, the fringe frequency
fop: makes the FPP system have a greater robustness. We took such a tedious way to find the
fop: was entirely considering rigor. In fact, through a lot of experiments we found that there
is an approximate relationship between f;,; and the horizontal resolution p,, of projector in
experiments: f,p; = I’Tw, where T is fringe period representing the number of pixels per fringe,
and its value is usually between 6 and 8. Then, based on the noise models and the principle
of TPU, we derived the FFR corresponding to the fringe patterns of different phase-shifting
steps, and made simulation to prove the results derived from our theory. The value of the FFR
can be used to measure the efficiency of TPU. To unwrap the wrapped phase corresponding
to fringe patterns of frequency f,,:, we gave priority to 2-step phase-shifting and three-step
phase-shifting to generate fringe patterns. The three-step phase-shifting is needed to provide
the average intensity for the 2-step phase-shifting. Finally, in order to ensure that there is no
temporal noise propagation during the multi-frequency phase unwrapping, we established the
relationship between the noise of the low-frequency auxiliary phase and the frequency range
of high-frequency fringe patterns whose wrapped phase can be unwrapped correctly by the
auxiliary phase. This relationship can be expressed by Eq. (23). We chose to substitute the twice
of the detected noise variance of low-frequency absolute auxiliary phase into Eq. (23) to obtain
the frequency of high-frequency fringes. There are three reasons for choosing twice of noise
variance of the low-frequency absolute auxiliary phase to be the actual noise variance: (1) to
improve the system ability to resist noise; (2) twice of the noise variance is sufficient to ensure no
temporal noise propagation during the multi-frequency phase unwrapping in most cases; (3) more
multiples of the noise variance substituted will lead to more fringe patterns. So that choose twice
of noise variance of the low-frequency absolute auxiliary phase to be the actual noise variance is
a combination of measurement efficiency and measurement stability.

We proved the results of our theoretical derivation through the relevant experiments. In the
quantitative comparison experiment, we compared fringe frequency f,,; = 180 periods/frame
with frequency 90 periods/frame and frequency 256 periods/frame to prove that using fringe
patterns of frequency as coded fringes has the highest measurement precision. There are two
points here that need to be highlighted again: (1) f,,, = 180 periods/frame is not the only
available optimal frequency of fringes that can be used, and it is also possible to refer to other
values within the reference range; (2) using the frequency outside the reference range as coded
frequency maybe can achieve the same precision as the coded frequency in the reference range
under a certain measurement condition, however, for the case of nine kinds of measurement
conditions, the frequency in the reference range is the optimal choice.

It is should be noted that we increased the fringe frequency to 180 periods/frame by only 7
frames fringe patterns in our FPP system, and the FPP system achieved the precision ~ 38 ym
across a field of view of 400 x 300 x 400 mm. This means that the FPP system can realize high
efficiency and high precision 3-D measurements by the scheme we proposed. A human face was
measured, and the 3-D reconstruction results demonstrated the success of our proposed scheme,
which indicates that our scheme can be applied to practical application such as 3-D face data
acquisition. High-precision and effective 3-D data measurement technology can quickly and
accurately obtain 3-D geometric data of human face, so as to obtain more effective and accurate
3-D face features. And it will provide a strong support for the subsequent 3-D face recognition,
making up the lack of 2-D face recognition by the impact of ambient light and improving the
accuracy of face recognition.
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