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When it comes to “phase measurement ” or “quantitative phase imaging ”, many people will automatically connect 

them with “laser ” and “interferometry ”. Indeed, conventional quantitative phase imaging and phase measurement 

techniques generally rely on the superposition of two beams with a high degree of coherence: complex interfero- 

metric configurations, stringent requirements on the environmental stabilities, and associated laser speckle noise 

severely limit their applications in optical imaging and microscopy. On a different note, as one of the most well- 

known phase retrieval approaches, the transport of intensity equation (TIE) provides a new non-interferometric 

way to access quantitative phase information through intensity only measurement. Despite the insufficiency 

for interferometry, TIE is applicable under partially coherent illuminations (like the Köhler’s illumination in a 

conventional microscope), permitting optimum spatial resolution, higher signal-to-noise ratio, and better image 

quality. In this tutorial, we give an overview of the basic principle, research fields, and representative applica- 

tions of TIE, focus particularly on optical imaging, metrology, and microscopy. The purpose of this tutorial is 

twofold. It should serve as a self-contained introduction to TIE for readers with little or no knowledge of TIE. On 

the other hand, it attempts to give an overview of recent developments in this field. These results highlight a new 

era in which strict coherence and interferometry are no longer prerequisites for quantitative phase imaging and 

diffraction tomography, paving the way toward new generation label-free three-dimensional microscopy, with 

applications in all branches of biomedicine. 
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. Introduction 

In physics and mathematics, the “phase ” of a periodic signal is a
eal-valued scalar that describes the relative location of each point on
he waveform within the span of each full period. The phase is typi-
ally expressed as an angle (in degrees or radians), in such a scale that
t varies by one full turn as the variable goes through each period. In
he branch of wave optics, the concept of phase is only limited to the
onochromatic coherent optical field, which can be described in terms

f a two-dimensional (2D) complex exponent with its argument so-called
he “phase ” [1,2] . In comparison to phase, the amplitude component of
n optical field is generally much easier to understand or comprehend.
ecause the square of the amplitude, also known as the “intensity ” of

ight (is also referred to as “irradiance ” in radiometry [3] ), is the only
isible component we can see with our eyes, representing the energy of
he light [4] . Human eyes or the imaging sensors can only detect the
ntensity (or amplitude) component of light but the phase information
annot be accessed directly. One important reason is that the oscillation
requencies of light waves are around 10 14 Hz [5] , which is much higher
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han the response speed of human eye (usually 30Hz) or photoelectric
maging device (the frame rate of the current high-speed camera can
nly reach 10 8 Hz level [6] ). 

The importance of phase can be illustrated by a simple and interest-
ng example in Oppenheim’s article [7] (see Fig. 1 ): Given two differ-
nt images, if we exchange their phase components in the frequency
omain while keeping their amplitude components unchanged, then
ourier transforming their spectra back to spatial domain, the general
ppearance of the two images will almost interchange. This simple ex-
mple shows that it is not the amplitude but the phase that bears most
f the information in the image (note that this example may not be very
ppropriate because the phase here is the phase component of the im-
ge spectrum rather than that of the optical field). The importance of
hase is particularly prominent in some specific fields, such as optical
etrology, material physics, adaptive optics, X-ray diffraction optics,

lectron microscopy, and biomedical imaging. Most samples of interest
elong to phase objects with very little absorption, but the spatial dis-
ribution of their refractive index (RI) or thickness is nonuniform. There-
ore, they have small amplitude variations but strong phase components.
n). 
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Fig. 1. A example illustrating the importance of phase of an image. A exchange 

of phase components in the frequency domain leads to the interchange of their 

general appearance. 

Fig. 2. The detector and the human eye are only sensitive to inten- 

sity/amplitude while phase information is lost. 
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Fig. 3. Two typical cell labeling techniques. (a) chemical staining turns trans- 

parent phase objects into absorptive objects; (b) fluorescent labeling turns trans- 

parent phase objects into self-luminous objects. 
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uman eyes or photodetectors are only sensitive to the amplitude vari-
tion rather than the phase variation, so they cannot “see ” phase object
irectly ( Fig. 2 ). In other words, it is impossible to distinguish different
omponents of the object with different thickness or RI. Thus, the ac-
uisition of phase information is of particular importance in such cases.

Phase retrieval is a key research subject in the fields of optical
etrology and imaging technologies. It plays an indispensable role in

oth industrial inspection and biomedical imaging applications. The
hase imaging techniques, especially for biological samples and weak-
bsorptive semi-transparent objects, have a long history of develop-
ent. The cytoplasm and most organelles of biological cells have very
eak absorption, so they produce very little contrast under normal il-

umination in a traditional bright-field microscope. To overcome this
ifficulty, the most common approach is staining or labeling. Differ-
nt components of the cell have various affinities to different dyes or
uorophores, producing enough intensity contrast or emitting differ-
nt fluorescence spectra ( Fig. 3 ). The most common modality utilizing
xogenous contrast is fluorescence microscopy [8] , in which a speci-
en is labeled with specific fluorescent molecules to provide targeted
orphological information. The structure of the organelle and protein

omplex can also be visualized in three dimension (3D) with the help
f the optical sectioning capability of laser confocal microscopy and
ulti-photon microscopy [9,10] . With the emergence of new fluorescent
olecular probes and the improvement of optical imaging technologies,

esearchers have developed a variety of super-resolved fluorescence
icroscopic methods that exceed the resolution limit of conventional

onfocal microscopy, e.g. , structured illumination microscopy (SIM)
11] , stimulated emission depletion microscopy (STED) [12] , photo-
ctivated localization microscopy (PALM) [13] , and stochastic optical
econstruction microscopy (STORM) [14] . These methods utilize the ex-
remely high localization accuracy of single-molecule imaging or the
uorescence excitation and bleaching properties of photoactivatable
uorescent protein, significantly breaking the resolution limit of con-
entional optical microscopy and revealing nanoscale structures of flu-
rescently labeled live cells. The relative importance of fluorescence
icroscopy has recently been made evident by the 2014 Nobel Prize

n chemistry for “the development of super-resolved fluorescence mi-
roscopy ”. However, such methods still require fluorescent dyes and
uorescent proteins as biomarkers and are thus ill-suited for samples
hat are non-fluorescent or cannot be easily fluorescently tagged. Be-
ides, the photobleaching and phototoxicity of the fluorescent agents
revent live cells imaging over extended periods of time [15] . 

Although most biological cells are transparent and do not change
he amplitude of the light passing through them, they introduce phase
elays due to different structural regions of nonuniform optical density
RI). In 1942, Zernike [16] invented the Zernike phase contrast (ZPC)
icroscopy [ Fig. 4 (a)] to visualize phase optically. The method uses a
hase mask to shift only the unperturbed incident field component by
 quarter of a wavelength, such that it interferes with scattered field
ith higher spatial frequencies, rendering the maximum contrast on the

nterference image. This provides a simple, efficient method for con-
erting phase difference into intensity contrast, thus greatly improves
he contrast of the transparent phase object under an optical micro-
cope [ Fig. 4 (b)]. This led to a revolution in biological imaging, as
he significant contrast gain enabled the observation of unstained bi-
logical cells and tissues that were nearly invisible before, and the in-
ention earned Zernike the 1953 Nobel Prize in physics. Subsequently,
omarski [17] invented the Differential Interference Contrast (DIC) mi-
roscopy based on the principle of polarization beam-splitting and shear
nterferometry in 1952. The phase contrast in DIC microscopy is propor-
ional to the phase gradient of the sample along the shear direction, giv-
ng the appearance of a 3D physical relief corresponding to the variation
f the optical density of a sample [ Fig. 4 (d)]. 

Although ZPC and DIC represent significant advancements in mi-
roscopy, these methods all suffer from one important drawback, that
he measured intensity has a nonlinear, and thus non-invertible, rela-
ionship with the phase of the specimen. Without the phase information,
orphologically relevant quantities of the sample, such as size, optical

hickness, dry mass density, and RI cannot be quantified. On the other
and, “halo ” [ Fig. 4 (b)] and “shadow off” [ Fig. 4 (d)] artifacts accom-
anied by these phase contrast methods also complicate the subsequent
mage analysis and processing (such as cell counting and segmentation).
hese limitations, when combined with the advent of digital image sen-
ors and advances in information optics, have resulted in the emerging
nd burgeoning field of phase measurement and quantitative phase imag-

ng (QPI) [18,19] , which combines innovations in optics, imaging the-
ry, and computational methods to image phase information of the sam-
le quantitatively. Quantitative phase profiles of cells allow the deter-
ination of cellular structure and biophysical parameters with minimal

ample manipulation. Especially in cases where conventional prepara-
ion techniques, such as fixation, staining, or fluorescent tagging, may
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Fig. 4. Zernike phase contrast microscopy and differential interference contrast 

microscopy and their imaging results on unstained check cells. (a) Zernike phase 

contrast microscopy; (b) Zernike phase contrast microscopic image of unstained 

check cells; (c) DIC microscopy; (d) DIC microscopic image of unstained check 

cells. 
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Fig. 5. Laser Interferometer Gravitational-wave Observatory (LIGO) in 

Louisiana and Washington, US. 
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ffect cellular functions and limit biological insight, QPI offers an im-
ortant alternative. 

With the invention of the laser and the development of optical
etrology for nearly half a century, the most well-established phase
easurement method is through interferometry. Since the principle of

ptical coherent interference was first proven to be a potential mea-
urement tool in the 1880s, interferometry has played a prominent role
n optical metrology. Nowadays, a high-precision laser interferometer
llows extremely sensitive phase measurements with the optical path
easurement accuracy up to 𝜆/100. The famous Laser Interferometer
ravitational-wave Observatory (LIGO) [20,21] that detected gravita-

ional waves in 2016 is essentially a giant Michelson interferometer
ith an arm span of 4 km ( Fig. 5 ), enabling it to detect a minute distance
ig. 6. Digital holography microscopy. (a) Schematic diagram of a typical digital holo

f the digital recording and numerical reconstruction. 
hange in length on the order of 1/10,000 th the width of a single proton,
epresenting the incredibly small scale of the effects imparted by pass-
ng gravitational waves. Despite the advances of optical interferometry
ver the decades, its basic principle remains unchanged: by superim-
osing an additional coherent reference beam with the original object
eam, the invisible phase information can be converted into a kind of
ntensity signal, i.e. , the interference pattern, which can be directly cap-
ured by traditional imaging devices. Through different types of fringe
nalysis algorithms, the phase can be demodulated from the interfero-
ram. After decades of development, the interferometry has grown more
atured and derived many branches, such as electronic speckle pattern

nterferometry (ESPI) [22,23] , interferometric microscopy [24–26] , and
igital holography [27–31] . Their basic principles are very similar, and
heir developments are almost parallel. In particular, digital holography,
ue to its unique advantages and flexibilities of digital recording and nu-
erical reconstruction, has made remarkable progress in the past two
ecades and has become a benchmark for quantitative phase measure-
ent and microscopy [32–35] ( Fig. 6 ). Nevertheless, the interferometric
graphy microscope with a Mach-Zehnder configuration; (b) The basic principle 
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Fig. 7. Two typical wavefront sensing techniques. (a) Shack-Hartmann wavefront sensor; (b) pyramid wavefront sensor. 
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uantitative microscopic imaging represented by digital holography has
ot shaken the position of traditional microscopic imaging technique,
ailing to trigger an expected technological revolution in life science.
he main reasons lie in the interferometric characteristics of “quantita-
ive phase measurement ”: 

1) Digital holographic microscopy generally relies heavily on the light
sources with a high degree of temporal coherence ( e.g. , laser) and
spatial coherence ( e.g. , pinhole filtering) as well as complex inter-
ferometric optical configurations ( i.e. , object beam and reference
beam); 

2) Due to the laser illumination sources typically used, digital holo-
graphic microscopy suffers from speckle noise arising from stray in-
terferences from imperfections in the optical system, which not only
limits the imaging resolution but also strongly deteriorates the image
quality; 

3) Because of the high degree of spatial coherence of the light source,
the imaging resolution is only limited to the coherent diffraction
limit (half of the incoherent diffraction limit as in traditional inco-
herent microscope); 

4) The additional reference beam path makes the measurement ex-
tremely sensitive to external disturbance ( e.g. , vibration, rapid air-
flow, etc. ); 

5) The phase demodulated from the interferogram is wrapped in the
range of (- 𝜋, 𝜋] (so-called “wrapped phase ”), and additional phase
unwrapping is needed to obtain the true absolute phase distribution.

In order to address or partially alleviate the above limitations of tra-
itional interferometric phase imaging techniques, in recent years, many
esearchers have gradually turned their attention to low-coherence
olography or white-light interferometric microscopy, e.g. , spatial light
nterference microscopy (SLIM) [36] , white-light diffraction phase mi-
roscopy (wDPM) [37] , quadriwave lateral shearing interferometry
QWLSI) [38] , and 𝜏 interferometry [39] . The combination of broadband
llumination with the common-path geometries significantly alleviates
he coherent noise problem and enhances the stability to mechanical
ibrations and air fluctuations that typically affect any interferometric
ystems. However, most of them require relatively complicated optical
ystems which are not typically available to most bio/pathologists, pro-
ibiting their widespread use in biological and medical science. 

On a different note, the other broad category of phase measure-
ent techniques do not rely on interferometry, which is known as non-

nterferometric phase measurement. A major branch of interferomet-
ic phase measurement techniques is called wavefront sensing, such as
hack-Hartmann wavefront sensor [40–42] [ Fig. 7 (a)], pyramid wave-
ront sensor [43–45] [ Fig. 7 (b)], and model-based wavefront sensor
46,47] . The Shack-Hartmann wavefront sensor is a geometric optics
ased phase measurement technique often used in adaptive optics sys-
ems with the main applications in telescope and astronomical observa-
ion. In such areas, “phase ” is often referred to as the “wavefront aber-
ation ”, representing the difference between the reference wavefront of
n ideal optical system and the distorted wavefront of an actual opti-
al system. The original prototype of the Shack-Hartmann wavefront
ensor is an array of holes in a mask (so-called Hartmann screen) that
as developed by the astronomer Hartmann [41] in 1900. Although
artmann’s method has a simple design, its measurement accuracy and

ight utilization efficiency are quite low. Later, in 1971, Shack and Platt
40] modified the Hartmann screen by replacing the apertures in an
paque screen with an array of lenslet, which focuses incoming ra-
iation to a spot array on the sensor [see Fig. 7 (a)]. The integrated
radient of the wavefront across the lenslet is proportional to the dis-
lacement of the centroid relative to the reference regular spacing spot
rray (ideal aberration-free case), and then the wavefront (phase) dis-
ribution can be reconstructed through integration. Nowadays, the ap-
lication of Shack-Hartmann wavefront sensor has expanded from as-
ronomical imaging to beam quality diagnosis [48,49] , optical testing
50,51] , atmospheric laser communication [52,53] , microscopic aber-
ation correction [54,55] , ophthalmology [56–58] etc. . However, due to
he limitation of the physical size of the microlens, the Shack-Hartmann
ensor does not make full use of all the pixel resolution of the image
ensor, resulting in low spatial resolution of the recovered wavefront.
onsequently, the Shack-Hartmann wavefront sensor is seldom directly
sed as an imaging tool, especially in the fields of QPI and optical
icroscopy. 

Another very famous and widely used non-interferometric phase
easurement technology is called phase retrieval. Since it is difficult

o measure the phase of the light directly but very easy to measure the
mplitude/intensity, we can consider the process of recovering (esti-
ating) the phase from the intensity distribution as a mathematical “in-

erse problem ”, and the solution to such kind of problem is so-called
hase retrieval. Phase retrieval techniques can be divided into two cate-
ories: iterative methods and deterministic methods. The iterative phase
etrieval has its origins in ideas in electron microscopy. In 1972, Ger-
hberg and Saxton [59,60] proposed the first iterative phase retrieval
lgorithm called Gerchberg-Saxton (GS) algorithm, which employs an it-
rative method in which the phase distribution within an object is found
hat is consistent with both an intensity image of it and with its far-field
iffraction pattern. The proposed algorithm has been found to be able to
onverge on the correct solution, and subsequently, the underlying ideas
ave been applied to a wide variety of fields such as X-ray diffraction
maging [61–64] (also referred to as coherent diffraction imaging , CDI)
 Fig. 8 (a)], adaptive optics [65,66] , and quantitative phase microscopy
67–71] . A practical issue in X-ray imaging is that the object scattering
s so weak that the unscattered beam will swamp the signal of interest.
his problem is mitigated by the introduction of a beam stop to prevent
he undiffracted beam from destroying the detector at the expense of a
ubstantial low spatial frequency information loss. Miao et al. [61] cir-
umvented this problem by using an additional electron microscope im-
ge of the object to recreate the missing low spatial frequency data, and
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Fig. 8. Schematic layout of two main iterative phase retrieval methods. (a) Co- 

herent diffraction imaging: a plane wave illuminates a sample, and the far-field 

diffraction pattern is measured by a detector; (b) Ptychography: a coherent 

probe is generated by an aperture of focusing optics. An extended sample is 

scanned through the probe on a 2D grid, and diffraction patterns are collected 

from a series of partially overlapping regions. 
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xperimentally demonstrated the validity of this approach with X-ray
ata. The rapid growth of interest in CDI has largely been driven by the
ork of Miao et al. [61] . 

However, the GS algorithm also has some problems and limitations.
ome of the problems may result from the iterative algorithm itself, for
xample, the convergence of the algorithm stagnates after early itera-
ions or even get trapped into local optima [72–74] . Various modified
lgorithms have been proposed to improve the convergence of the orig-
nal GS algorithm. In 1973, Misell [75] pointed out that the GS algo-
ithm is not only applicable for the intensity distributions of the image
lane and the far-field Fourier plane but also can be extended to two
r more diffraction patterns of different propagation distances. He then
sed more intensity constraints to improve the accuracy and conver-
ence of the iterative algorithm. Compared with the original GS algo-
ithm, Misell’s modified algorithm is more flexible and practical, which
pens up new ideas for improving the iterative phase retrieval algo-
ithm. Up to now, new improved and optimized algorithms have still
een emerging with a variety of techniques being used, such as mul-
iple propagation distances [76,77] , multiple illumination wavelengths
78] , phase modulation [79,80] , and speckle illumination modulation
81,82] . Other problems of the GS algorithm are inherent in solving in-
erse problems, such as the existence and uniqueness of the solution
83–86] . Clearly, if an object is so small that a near-field image cannot
e acquired (only the far-field diffraction pattern is available), then re-
onstruction via the GS algorithm is not possible. In general, there is
o unique mapping between a 2D signal and its Fourier magnitude (dif-
erent objects could produce identical far-field diffraction patterns) and
herefore, the problem is ill-posed. Bates [83] considered this problem
nd claimed (without proof) that an object can be uniquely determined
y its autocorrelation function ( i.e. , the far-field diffraction pattern) if
ts spatial extent is known (expect for several unimportant cases, such as
ranslation, phase conjugation, and inversion). In 1982, after carefully
nalyzing the optimization principle behind the GS algorithm, Fienup
87] pointed out that GS is equivalent to an error reduction algorithm,
hich is essentially the same as the steepest descent algorithm. Fienup’s
ork [87] has laid a solid theoretical foundation for the solvability of

he phase retrieval problem from the perspective of convex optimiza-
ion. It also provides a reasonable explanation for the stagnation prob-
em: due to the non-convexity of the phase retrieval problem itself, there
s no guarantee that the error reduction algorithm can finally reach the
lobal minimum. Fienup [87,88] demonstrated that a modification of
he GS algorithm based on the theories of cybernetics, so-called hybrid

nput-output (HIO) algorithm, could help prevent the iterative algorithm
rom getting stuck in local minima where only support information is
sed at the object plane. This algorithm has led to a number of analyses
nd improvements, primarily in the manner in which the object esti-
ate is updated. These include the hybrid projection reflection [89] ,
ifference map [90] , relaxed averaged alternating reflections [91] , and
harge flipping [92] . Though all of these ideas seem simple to imple-
ent, their success in application to experimental data requires con-

iderable skill and experience. A unified analysis of the methods has
een published by Marchesini [93] , suggesting that none of them have
ielded an algorithm that has been found to converge in all cases. An-
ther important innovation proposed by Marchesini et al. [63] is the
o-called “shrink-wrap ” algorithm, in which the support for the object
s refined dynamically. This method is very useful for reconstructing the
tomic distribution within nanocrystals. 

Ptychography is another iterative phase retrieval approach that has
ts roots in electron microscopy [94] . In 2004, Rodenburg and Faulkner
95,96] introduced the idea of “ptychography ” into the GS and HIO al-
orithms and presented a new iterative phase retrieval method so-called
tycholographic Iterative Engine (PIE). In the implementation of ptychog-
aphy, the object is illuminated by a field that is limited in extent and
he diffraction pattern is recorded, as illustrated in Fig. 8 (b). This pro-
ess is repeated until the area of interest has been completely scanned.
he resultant spatially overlapped “sub-aperture ” diffraction patterns
re used as intensity constraints, and the complex amplitude distribu-
ion of the area covered by the beam can be reconstructed by iterative
hase retrieval algorithm that is similar to GS and HIO. Compared with
S and HIO, the ptychographic phase retrieval is more stable and re-

iable due to the high data redundancy resulting from the large num-
er of spatially overlapped intensity data collected. Consequently, the
on-convexity of the phase retrieval problem is effectively alleviated,
nd the ambiguity between the true solution and its conjugate is elim-
nated [86] . In the ensuing decade, the ptychographic phase retrieval
ethods have been extensively studied and improved, and significant
rogress has been made in probe (illumination function) recovery [97–
02] , positional error correction [103–105] , coherent mode decomposi-
ion [106–109] , resolution improvement [110–113] , and depth section-
ng for multi-layer samples [114–117] . It has now become an important
pproach for high-resolution X-ray diffraction imaging [118–120] , elec-
ron microscopy [121–123] , and optical phase imaging and microscopy
124–126] . 

In 2013, Zheng et al. [127] extended ptychography from the spa-
ial domain to frequency domain, presenting its dual counterpart named
ourier ptychographic microscopy (FPM). In FPM, “ptychography ” exists
n the Fourier domain: the sample is no longer scanned in the spatial
omain by an aperture-limited illumination beam, but is successively
lluminated by plane waves from different angles (usually with an LED
rray); the intensity images are not acquired in the far field (Fourier
omain) but are low-resolution in-focus images captured directly in the
patial domain. The finite aperture of the imaging system becomes the
sub-aperture ” in the frequency domain, while the changes of illumi-
ation angle enable the overlapping scanning of the sub-aperture in the
requency domain, as illustrated in Fig. 9 . Because of the perfect duality,
he key issues in FPM, such as aberration correction [128] , positional
rror correction [129,130] , coherent mode decomposition [131–133] ,
epth sectioning for multi-layer samples [134,135] , have been succes-
ively addressed in just a few years. At present, it has been developed
lmost in parallel with conventional (spatial) ptychography. The ele-
ance of FPM lies in the fact that it not only retrieves the phase infor-
ation of the sample but achieves synthetic aperture naturally along
ith the ptychographic updating process in the frequency domain, im-
roving the imaging resolution effectively [130,136,137] . In general, a
ow-magnification objective with a low numerical aperture ( NA ) is used
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Fig. 9. Basic principle of Fourier ptychographic microscopy. The sample is suc- 

cessively illuminated from different directions with different LED elements in 

an LED array; the captured low-resolution images allow for simultaneous phase 

retrieval and synthetic aperture in the frequency domain. 
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Fig. 10. The representive applications of TIE in the fields of (a) adaptive optics 

[148] , (b) X-ray diffraction imaging [161] , (c) neutron radiography [164] , and 

(d) electron microscopy [166] . 
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n FPM to obtain an inherent large field of view (FOV), and then the
igh-angle illuminations are used to synthetic aperture. The final effec-
ive NA is the sum of the NA of the objective lens and the NA of the
llumination at the largest angle, and thereby, FPM generally achieves
 very large imaging space-bandwidth product (SBP). For example, in
017, Sun et al. [138] reported a high- NA illumination based resolution-
nhanced FPM (reFPM) platform, in which a LED-array-based digital oil-
mmersion condenser is used to create high-angle programmable plane-
ave illuminations, endowing a 10 × , 0.4 NA objective lens with the

ffective imaging performance of 1.6 NA (308 nm lateral resolution for
oherent imaging) across a wide FOV of 2.34 mm 

2 ( Fig. 9 ). 
As mentioned above, the iterative phase retrieval effectively over-

omes the problem of “direct phase reconstruction from intensity mea-
urements ”, and promotes the evolution of phase measurement from
nterferometric to non-interferometric. In particular, the defocus-based
terative phase retrieval and ptychographic imaging have contributed
ignificantly to the development and progress of adaptive optics, X-ray
iffraction imaging, and electron microscopy. However, there are still
wo limitations: (1) a large amount of intensity data is often required to
nsure stable convergence; (2) a large number of iterations are needed
o obtain a reliable solution. These two shortcomings preclude their use
or high-speed and real-time imaging applications. Besides, the phase
etrieval algorithms relate the scattered field at the object to the scat-
ered field at the detector via a Fourier transform, a relationship that is
nly valid for an optical field that is completely coherent. Thus, a re-
iable reconstruction was critically dependent on a very high degree of
oherence [139] , which is an assumption that does not hold for many
artially coherent sources. 

In contrast to iterative methods, another category of phase retrieval
ethod uses propagation to recover phase directly, in a non-iterative
anner. This idea was arguably first proposed by Teague [140,141] . In
982, he first pointed out that under the paraxial approximation, one
ould employ the conservation of energy on propagation (Helmholtz
quation) to derive a second-order elliptic partial differential equation
hat outlines the quantitative relationship between the variation of in-
ensity along the optical axis to the phase of the optical field at the
lane perpendicular to the optical axis [140] . Teague believed that the
quation could be used as a phase retrieval approach. He termed this
quation transport of intensity equation (TIE), and this will be the main
heme of this tutorial. In his latter paper in 1983, Teague [141] proposed
 tentative approach to the solution of the equation based on Green’s
unctions. Different from the iterative phase retrieval methods, TIE does
ot employ traditional scalar diffraction formula to recover the phase
teratively. When the intensity distribution at the in-focus plane (mea-
ured directly) and the axial intensity derivative (estimated by the finite
ifference between two defocused intensities) are known, the phase in-
ormation can be retrieved directly (deterministically) by solving TIE
ithout iterative operations. Compared with traditional interferometric
ethods, TIE has many unique advantages of being non-interferometric

without using reference beam), simple calculation (without iterations),
apabilities to temporally/spatially partially coherent beams ( e.g. , LED
llumination, halogen lamp, and built-in Köhler illumination of conven-
ional microscopes), does not need phase unwrapping (directly obtain
he absolute phase), complicated optical setups, and stable measurement
nvironment. Shortly thereafter, in 1984, Streibl [142] found that TIE
s applicable to optical microscopy as a tool for phase-contrast imaging
f transparent phase objects. Since the numerical solution to TIE has
ot been proposed at that time, he only demonstrated the phase gradi-
nt enhancement effect of unstained cells by taking the axial intensity
erivative. Nevertheless, this pioneering work laid a preliminary theo-
etical foundation for the subsequent extensive applications of TIE in
he field of optical microscopy. In 1988, Ichikawa and Takeda [143] ex-
erimentally verified TIE for the first time. They solved TIE by Fourier
ransform method and obtained the quantitative phase distribution of
he one-dimensional sample. However, rather than solving the partial
ifferential equation, this method was only found to be a special case
f grating shear interferometry [144] . In parallel, the research team of
he University of Hawaii led by Roddier [144–148] was also exploring
he possibilities of using TIE to correct the wavefront distortion intro-
uced by atmospheric turbulence in adaptive optics [ Fig. 10 (a)]. Assum-
ng that the amplitude of the wavefield is almost uniform, TIE can be
implified from a more complicated elliptic partial differential equation
nto a standard Poisson equation. This Poisson equation reveals that the
xial intensity derivative of the optical field is proportional to its wave-
ront curvature (second derivative, i.e. , Laplacian), so this technique is
ften called curvature sensing (CS). There is no doubt that Roddier’s re-
earch work has greatly promoted the TIE phase retrieval method. His
ontribution is not only applying TIE to adaptive optics but more impor-
antly, he first proposed the numerical solutions to the simplified form of
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IE based on successive over-relaxation (SOR) method [145] and iterative
ourier transform method [149] . In 1988, Roddier estimated the axial
ntensity derivative by measuring the in-focus and slightly defocused
ntensity signals at the entrance pupil of a telescope and fed it directly
ack to the circuit of the deformable mirror to correct the atmospheric
avefront distortion in real-time [145,146] . Then, in 1991, Roddier

150] constructed the 13-unit low-order curvature sensing adaptive op-
ics system and presented preliminary laboratory experimental results.
he defocusing was realized through the rapid vibration of a curvature
ariable membrane mirror so that the overfocus and underfocus inten-
ities can be measured simultaneously. The wavefront curvature signal
as measured by an avalanche photodiode array, and the deformable
irror was driven based on the response matrix control method. Subse-

uently, the curvature sensing has been widely adopted in the US [the
.6 m -aperture CFHT (Canada-France-Hawaii Telescope) [151] and the
 m -diameter Gemini North telescope [152] ], Europe [the 8.2 m -aperture
LTI (Very Large Telescope Interferometer)] [153] , Japan (the 8.2 m -
perture Subaru Telescope) [154] , and other countries’ large-scale as-
ronomical telescopes. 

In the mid-to-late 1990s, the theoretical aspect of TIE developed
ery rapidly and made fruitful achievements, wherein the X-ray diffrac-
ion imaging research group of the University of Melbourne was the
rimary driving force. In 1995, Gureyev et al. [155] first proven the
ell-posedness and uniqueness of the solution to TIE based on strict
athematics: if the intensity of the optical field is strictly greater than 0

precluding the case of optical vortex) and under the appropriate bound-
ry conditions, the solution of TIE exists and is unique (for the Neumann
oundary condition, the solution is unique up to a trivial additive con-
tant). This work has laid the theoretical foundation for the subsequent
IE phase retrieval and QPI applications. In 1996, Gureyev and Nugent
156,157] proposed to solve TIE based on the orthogonal expansion,
uch as Zernike polynomial expansion or Fourier expansion, and pointed
ut that when the intensity distribution is uniform, TIE can be solved
y using fast Fourier transform (FFT) efficiently [158] . Shortly thereafter,
aganin and Nugent [159] extended the FFT-based solution so that it can
e effectively accommodated to the case of the nonuniform intensity dis-
ribution. This simple and effective FFT-based method has now become
he most widely used numerical solution to TIE. The establishment of
he mathematical basis and the numerical solution of TIE have become
 powerful vehicle that motivates its rapid development and widespread
pplications in different fields. In 1995, Snigirev et al. [160] recognize
hat propagation-based non-iterative phase retrieval techniques could
e applied in the field of X-ray imaging. Soon after, in 1996, Nugent
161] et al. reported the quantitative phase image of a thin carbon foil
sing 16 keV hard X-rays based on TIE [ Fig. 10 (b)]. These papers trig-
ered the rapid growth of interest of TIE in the applications of X-ray
ptics [162,163] . Subsequently, the applications of TIE have also been
xtended to the fields of neutron radiography [164,165] [ Fig. 10 (c)]
nd transmission electron microscopy (TEM) [166–174] [ Fig. 10 (d)]. The
ommon feature of these fields is that it is difficult to obtain a highly co-
erent light source so that TIE became a simple and effective alternative
o interferometry. 

In the late 1990s, on the one hand, the theoretical framework of TIE
as well established; on the other hand, researchers engaged in the field
f QPI were increasingly aware of the importance of using low coher-
nce illumination for improving the resolution and image quality. These
wo aspects then became the catalyst for the widespread application of
IE in the field of optical imaging and microscopy. In 1998, Paganin
nd Nugent [159] reinterpreted the meaning of “phase ” of partially co-
erent fields and pointed out that it is a scalar potential whose gradient
orresponds to the time-averaged Poynting vector. The importance of
his work is that it gives a more generalized and meaningful definition
f the “phase ”, laying a theoretical basis for the subsequent TIE phase
etrieval under partially coherent illuminations. In the same year, Barty
t al. [175] briefly reported the QPI results of cheek cells and optical
bers based on TIE, which was the first appearance of TIE in quantita-
ive optical phase-contrast imaging. Then Barty et al. [176] extended this
ethod to quantitative phase tomography, based on a similar approach

s the “holotomography ” earlier demonstrated by Cloetens et al. [163] in
999. Owing to its successful applications in the field of QPI and opti-
al microscopy, at the beginning of the 20th century, the theory of the
IE phase retrieval happened to coincide with the optical transfer func-

ion (OTF) theory of optical microscopy. In 2002, Barone-Nugent et al.

177] theoretically analyzed the image formation of weak phase objects
nder an optical microscope based on the 3D OTF theory developed by
triebl [178] , further confirmed the applicability of TIE under partially
patially coherent illuminations. In the same year, Sheppard [179] an-
lyzed the TIE phase retrieval under the first-order Born approximation
nd pointed out that the low-frequency component of the axial intensity
erivative is proportional to the phase Laplacian (second-order deriva-
ive). The conclusion is consistent with the case of the simplified version
f TIE under uniform intensity analyzed by Roddier [144–146] . The ini-
ial establishment of TIE in the field of optical microscopy and the ex-
erimental results of Barty et al. led the application of TIE into the fields
f biological and biomedical imaging. Curl et al. [180,181] used TIE to
uantitatively detect the morphology and growth rate of cells, indicating
hat quantitative phase information is very conducive to data processing
nd quantitative analysis, such as cell segmentation and counting. Ross
t al. [182] utilized TIE to enhance the imaging contrast of unstained
ells under microbeam irradiations. Dragomir et al. [183] successfully
pplied TIE to the quantitative measurement of the birefringence effect
f unstained isolated cardiomyocytes. Not just limited to biological sam-
les, TIE was also successfully applied to the quantitative measurement
f phase and RI distribution of optical fibers and other technical phase
bjects [184–187] . 

From 2010 to date, the TIE phase retrieval reached another prime
ue to the brilliant achievements in visible light imaging and mi-
roscopy. During this period, the basic theory of TIE (especially for the
heory of partially coherent imaging) and related applications (espe-
ially for the applications of quantitative phase microscopy and tomog-
aphy) have made a great leap forward again, reaching new and un-
recedented heights. Kou et al. [188] demonstrated that TIE could be
irectly implemented based on an off-the-shelf DIC microscope to re-
lize QPI, and successfully obtained the quantitative phase images of
uman cheek cells. In the same year, Waller et al. [189] proposed a
ethod named high-order TIE by using more intensity measurements

t multiple defocused planes to enhance the accuracy and robustness
f phase retrieval. The simple and straightforward descriptions of these
ork greatly boosted the popularity of TIE in the fields of optical imag-

ng and microscopy. Meanwhile, Waller et al. also proposed single-shot
IE optical configurations based on volume holography [190] and chro-
atic aberration [191] , enabling acquisition of intensity images at dif-

erent defocus distances from a single exposure. In 2011, Kou et at.

192] put forward an OTF deconvolution method for QPI under par-
ially coherent illuminations and quantitatively compared it with the
onventional TIE. In 2012, Almoro et al. [193] used speckle field illumi-
ation to enhance the phase contrast of the defocused intensity images
or smooth objects. In the same year, Gorthi and Schonbrun [194] first
pplied TIE to flow cytometry and realized the automatic collection of
hrough-focus intensity images by tilting the microfluidic channel verti-
ally. In the meantime, there are a large number of publications focusing
n optimizing the finite-difference scheme phase retrieval to improve
he accuracy and robustness of TIE under noisy conditions [195–200] .
ince 2012, our group has carried out systematic research work on the
IE phase retrieval, and several key theoretical issues in TIE have been
horoughly and comprehensively studied: 

1) Efficient numerical solution under inhomogeneous boundary condi-
tions [201–203] ; 

2) Phase discrepancy analysis and compensation [204] ; 
3) Optimal axial intensity derivative estimation [205,206] ; 
4) Phase space extension for partially coherent fields [207,208] ; 
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Fig. 11. Classification of the phase imaging techniques. 

Fig. 12. Timeline of TIE research fields. Key developments in both theoretical and experimental aspects are shown. 
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Table 1 

List of acronyms used in the tutorial 

Acronym Full Name 

1D One-Dimensional 

2D Two-Dimensional 

2.5D Two-Point-Five-Dimensional 

3D Three-Dimensional 

4D Four-Dimensional 

AOTF Amplitude Optical Transfer Function 

AF Ambiguity Function 

ATF Amplitude Transfer Function 

BC Boundary Condition 

CARS Coherent Anti-Stokes Raman Scattering 

CCF Complex Coherence Factor 

CDC Complex Degree of Coherence 

CDI Coherent Diffraction Imaging 

CT Computerized Tomography 

CTF Contrast Transfer Function 

CSD Cross-Spectral Density 

DC Direct Current 

DCT Discrete Cosine Transform 

DIC Differential Interf erence Contrast 

DOE Diffractive Optical Element 

DPC Differential Phase-Contrast 

FFT Fast Fourier Transform 

FOV Field of View 

FPM Fourier Ptychographic Microscopy 

FTS Fourier Transform Spectrometer 

GFST Geometric-Flow Speckle Tracking 

GTIE Generalized Transport of Intensity Equation 

GSM Gaussian-Schell Model 

LHS Left Hand Side 

LMI Light Field Moment Imaging 

MCF Mutual Coherence Function 

MI Mutual Intensity 

MSE Mean Square Error 

NA Numerical Aperture 

ODT Optical Diffraction Tomography 

OFS Optimal Frequency Selection 

OTF Optical Transfer Function 

PAM Partitioned/Programmable Aperture Microscopy 

PGTF Phase Gradient Transfer Function 

PIE Ptycholographic Iterative Engine 

POTF Phase Optical Transfer Function 

PTF Phase Transfer Function 

PSD Power Spectral Density 

PSF Point Spread Function 

PST Phase Space Tomography 

PWM Pulse Width Modulation 

QPI Quantitative Phase Imaging 

RHS Right Hand Side 

RI Refractive Index 

SBP Space-Bandwidth Product 

SCF Self-Coherence Function 

SGDF Savitzky-Golay Differential Filter 

SNR Signal-to-Noise Ratio 

TCC Transmission Cross-Coefficient 

TEM Transmission Electron Microscopy 

TIDT Transport of Intensity Diffraction Tomography 

TIE Transport of Intensity Equation 

TV Total Variation 

WDF Wigner Distribution Function 

WOTF Weak Object Transfer Function 

ZPC Zernike Phase Contrast 

GS Gerchberg-Saxton 

HIO Hybrid Input-Output 

PIE Ptycholographic Iterative Engine 

CS Curvature Sensing 

SOR Successive Over-Relaxation 

IFFT Inverse Fast Fourier Transform 

NRR Noise Reduction Ratio 

GP Gaussian Process 

ROC Radius of Curvature 

LUT Lookup Table 

MFPI Multi-Filter Phase Imaging 

RMSE Root Mean Square Error 
5) Resolution enhancement via illumination engineering [209–211] . 
6) Diffraction tomography under partially coherent illuminations

[212–214] ; 

In experimental aspects, instead of including a mechanical refocus-
ng system ( e.g. , piezo-stage) to provide the through-focus scanning, we
roposed to introduce an electrically tunable lens [215] or a spatial light

odulator (SLM) [216] placed in the Fourier conjugated plane of the de-
ector in a conventional wide-field transmission microscope. This pro-
ides fast high-speed acquisition of through-focus intensity stack, mak-
ng the dynamic TIE phase imaging for live cells possible. We have
uccessfully applied these systems for investigations of drug-induced
orphology changes and phagocytosis of macrophages [216] , imaging

f cellular dynamics of cancer cells [215,217] , and characterization of
icro-optical elements [202] . To date, the TIE phase retrieval attracts
ore and more attention from both academia and industry, and related
ew theories and technologies are still constantly emerging. 

As previously mentioned, we have briefly summarized the develop-
ent of phase imaging and measurement technologies, suggesting that

hese technologies can be divided into two main categories: phase vi-
ualization method (phase-contrast imaging) and phase measurement
ethod (quantitative phase imaging). The essential difference between

hese two categories is whether they can recover the “quantitative ”
hase information. For the phase measurement, it can also be divided
nto interferometry, wavefront sensing, and phase retrieval. Interfer-
metry and phase retrieval also have their independent sub-branches.
ig. 11 illustrates the classification of phase imaging and measurement
echnologies. In the following parts, the emphasis will be focused on
he non-interferometric phase measurement technology based on TIE.
s discussed above, although the phase retrieval and quantitative phase
icroscopic imaging based on TIE have been extensively reported in

ecent years, there has been no new comprehensive review of TIE focus-
ng on the basic principle, technical details, and practical applications
f this emerging technology. Therefore, at present, there appears to be a
oment in time for this tutorial, which describes the fundamental prin-

iples and latest progress of TIE in a rigorous and comprehensive way is
f interest to the community of optical scientists and engineers, physi-
ists, and biologist interested in optical microscopy and phase imaging.
efore we start, a timeline of TIE research developments is outlined

n Fig. 12 , which provides an overview of the relevant research fields
nd summarizes the key developments in both theoretical and exper-
mental aspects. We have also included Tables 1 and 2 at the begin-
ing with a list of all the acronyms, notations, and symbols used in the
utorial. 

The remaining parts of this paper are organized as follows: In
ection 2 , we start with the motivations behind the development of TIE,
escribe its fundamental principle, outline its derivations, and physi-
al implications. From Sections 3 to Section 8 , several key theoretical
ssues of TIE are discussed in detail, including its solutions, image for-
ation model under coherent illumination, axial intensity derivative es-

imation, QPI under partially coherent illuminations, and 3D diffraction
omography based on the transport of intensity. In Section 9 , the sys-
em configurations and typical applications of TIE are presented with an
mphasis on optical imaging, metrology, and microscopy in the visible
ight band. Finally, the challenging problems, as well as future research
irections, are outlined in Section 10 . 

. Basic concept of TIE 

TIE is a partial differential equation that describes the quantitative
elationship between the phase and the axial intensity variation of the
ptical field. In this section, we will start from the simplest physical
henomenon without invoking complicated mathematics. Then we will
se plain words to explain the transport of intensity phenomenon and
ts cause ( Subsection 2.1 ). In the following Subsection 2.2 , we will use
hree different approaches to derive TIE based on strict mathematical
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Table 2 

List of notations and symbols used in the tutorial 

Notation or Symbol Definition 

𝐱 = ( 𝑥, 𝑦 ) Lateral 2D spatial coordinate ( 𝜇m ) 

z Longitudinal spatial coordinate ( 𝜇m ) 

𝐫 = ( 𝐱, 𝑧 ) 3D spatial coordinate ( 𝜇m ) 

𝐮 = ( 𝑢, 𝑣 ) Lateral 2D spatial frequency coordinate ( 𝜇𝑚 −1 ) 

𝜂 Longitudinal spatial frequency coordinate ( 𝜇𝑚 −1 ) 

𝐟 = ( 𝐮 , 𝜂) 3D spatial frequency coordinate ( 𝜇𝑚 −1 ) 

𝑟 = |𝐱 | = √𝑥 2 + 𝑦 2 , 𝜃 = tan −1 ( 𝑦 ∕ 𝑥 ) 2D polar coordinates 

𝜌 = |𝐮 | = √𝑢 2 + 𝑣 2 , 𝜗 = tan −1 ( 𝑣 ∕ 𝑢 ) 2D spatial-frequency polar coordinates 

k ≡ ( k x , k y , k z ) 3D spatial frequency coordinate in k space 

( 𝑢 𝑥 , 𝑢 𝑦 , 𝑢 𝑧 ) ≡ ( 𝑢, 𝑣, 𝜂) 3D spatial frequency coordinate ( 𝜇𝑚 −1 ) 

( 𝑥, 𝑦, 𝑢, 𝑣 ) = ( 𝐱, 𝐮 ) 4D coordinate in phase space 

𝜆 Wavelength ( 𝜇m ) 

k 0 Wave number in vacuum ( 𝜇𝑚 −1 ) 

k m Wave number in medium ( 𝜇𝑚 −1 ) 

n 0 Background refractive index 

n ( r ) Refractive index distribution of the object 

Δn Refractive index difference between object and medium 

j Imaginary unit 

𝛿 Delta function 

𝜔 Angular frequency 

( 𝛼, 𝛽 , 𝛾) Direction angle 

∇ Transverse gradient 

Ω Open bounded domain in 2D space 

𝜕Ω Piecewise smooth boundary of Ω
Ω̄ Closed bounded domain in 2D space 

ℝ 2 2D real space 

ℝ 𝑁 N-dimensional real space 

∇ x Gradient in 3D space 

⊗ Convolution 

⊗
𝐱 

2D spatial convolution in phase space 

⊗
𝐮 

2D spatial-frequency convolution in phase space 

⊗
𝐱, 𝐮 

4D convolution in phase space 

⋅̂ Fourier transform of the corresponding viable 

⋅̃ Estimated value of the corresponding viable 
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nd physical theories. At last, in Subsection 2.3 , the mathematical ex-
ression of TIE and its physical meaning are explained to echo the earlier
ubsection 2.1 . 

.1. Transport of intensity effect 

Since the traditional photodetectors ( e.g. , CMOS and CCD) are only
ensitive to the intensity of the optical field and the phase information
annot be directly detected, most of the phase measurement methods
eed to convert the invisible phase information into the visible intensity
nformation for recording and reconstruction. For example, the classi-
al interferometry transforms the invisible phase information into visi-
le fringe patterns by spatial superposition of two coherent light beams,
nd the fringe pattern can be then recorded by photodetectors. Finally,
he quantitative phase distribution can be demodulated from the inter-
erogram through fringe analysis algorithms. 

The phase-to-intensity conversion does not only exist in the interfer-
nce phenomena, and the propagation of the optical field is another kind
f spontaneous phase-to-intensity conversion process. We can imagine
hat a swimming pool in the sunshine and the slight ripples appear on
he surface of the pool because of the breeze or a dropped swimming
ing. Looking towards the bottom of the pool, we can see the wave-like
attern created by the refraction of the light at the pool surface (see left
f Fig. 13 ). The ripples on the water surface act as lenses in a variety
f shapes, and the transmitted light is redistributed and may be concen-
rated in some regions of the pool bottom, instead of evenly distributed
t the whole bottom. If the continuously changing curvature on the wa-
er surface is large enough, the water wave will focus the sunlight onto
he bottom of the pool, forming some bright line network structure, as
hown in the middle figure of Fig. 13 . 
So, what is the relationship between the above phenomenon and
hase retrieval? In fact, the water surface with ripples is essentially a
hase object, and it only changes the phase of the incoming light. The
ight-and-dark network structure at the bottom of the swimming pool is
xactly the “manifestation of phase via propagation ”. We call this kind
f phenomenon “transport of intensity effect ”. In this context, there is
either laser nor interference, but the intensity pattern at the bottom of
he swimming pool closely resembles the interference pattern in optical
nterferometry. This phenomenon suggests that the phase can be con-
erted into intensity without resorting to interferometry, and this kind
f intensity is often referred to as “phase contrast ”. Similar to the sit-
ation that the light-and-dark intensity structure at the bottom of the
wimming pool reflects the shape of the water surface, the aim of the
on-interferometric TIE phase retrieval is to recover the quantitative
hase distribution by measuring the phase-induced intensity variation
phase contrast signal) at the defocused plane. In this case, the mor-
hology of the water surface is retrieved from the intensity pattern at
he bottom of the swimming pool, as illustrated in the right image of
ig. 13 . 

We are no strangers to the transport of intensity effect: the twin-
ling of stars in the night, the distorted scene outside the window in
he rain, and the above-mentioned network of bright lines at the bot-
om of a swimming pool in the sunshine. These are all manifestations
f phase, implying the inextricable ties between phase and intensity of
he light wave. All these phenomena show that although phase objects
annot be observed directly, they incessantly, and implicitly manifest
heir existence. Nevertheless, the transport of intensity effect is not al-
ays observable. For instance, when the water surface is completely still
nd almost flat, the intensity patterns will disappear. The transport of
ntensity effect can be explained qualitatively based on geometric op-
ics, as shown in Fig. 14 . If the observed optical field is a perfect plane
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Fig. 13. The wave-like pattern at the bottom of a swimming pool in sunlight. The pool surface refracts the incident sunlight to produce the light-and-dark network 

structure at the bottom of the swimming pool. 

Fig. 14. The influence of phase on the beam propagation. (a) For on-axis plane waves, the intensity does not change during propagation; (b) non-planar phase 

change the intensity during propagation; (c) an intuitive geometric-optics interpretation of transport of intensity effect. 
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ave, the intensity will not change with the propagation distance Δz , as
hown in Fig. 14 (a). This is because the plane wave can be regarded as
 cluster of parallel rays with the propagation direction parallel to the
ptical axis (perpendicular to the wavefront, i.e. , equiphase surface), as
hown in Fig. 14 (c). Since light rays spread along straight lines in free
pace, the intensity distribution maintains the same regardless of the lo-
ation. However, for non-planar waves, the intensity will change with
he propagation distance, as shown in Fig. 14 (b). Fig. 14 (c) gives the in-
uitive geometric interpretation of this phenomenon. Though wavefront
istribution is not uniform, it can still be regarded as the combination of
everal piece-wise uniform functions. In each small area, the distribution
f wavefront can be approximated as a plane wave, and the propagation
irection of light rays in these areas is perpendicular to their wavefront.
owever, the phase distribution is not uniform for the whole region, and

he distribution and propagation direction of light rays in different ar-
as may be different from each other. The convergence or divergence of
ight rays in different areas will inevitably cause intensity variation dur-
ng the propagation. On the other hand, there is a certain requirement of
ransport of intensity effect on the spatial coherence of the illumination.
f it is cloudy, and the sunlight can no longer illuminate the pool sur-
ace directly due to the multiple scattering of the cloud, we can hardly
bserve the transport of intensity phenomenon (the relevant part will
e discussed in detail in Section 6 ). Based on the transport of intensity
ffect mentioned above, the quantitative relationship between the axial
ntensity variation and the phase is established by TIE, and the quan-
itative phase distribution can be directly recovered by solving TIE. In
he next subsection, we will introduce TIE and its detailed derivation. 

.2. Derivation of TIE 

In 1982, Teague [140,141] first established the quantitative rela-
ionship between the longitudinal intensity variation and phase of a
oherent beam with use of a second-order elliptic partial differential
quation, so called TIE. Considering a paraxial monochromatic coherent
eam propagating along z -axis, its complex amplitude can be expressed
s 𝑈 ( 𝐱, 𝑧 ) = 

√
𝐼 ( 𝐱, 𝑧 ) exp [ 𝑗𝜙( 𝐱 ) ] , and TIE can be expressed as 

 𝑘 
𝜕𝐼 ( 𝐱, 𝑧 ) = ∇ ⋅ [ 𝐼 ( 𝐱, 𝑧 ) ∇ 𝜙( 𝐱 ) ] (1)
𝜕𝑧 
here k is the wave number 2 𝜋/ 𝜆; x is the transverse coordinates
 = ( 𝑥, 𝑦 ) ; I ( x , z ) is intensity distribution at the plane located at the prop-
gation distance z , and ∇ is gradient operator (Hamiltonian) over x . In
eague’s original TIE paper, he introduced the expression of complex
mplitude into Helmholtz equation under the paraxial approximation
paraxial wave equation), and then separated the real part and the imag-
nary part to obtain TIE. In fact, TIE can be also derived from Poynting
heorem or Fresnel diffraction formula Under the paraxial approxima-
ion and the limit of small propagation distance. Next, we will show
hree different ways to derive TIE. 

.2.1. Derivation of TIE from paraxial wave equation 

TIE can be derived from the paraxial wave equation, which is also the
pproach adopted by Teague [140,141] when TIE was first derived. We
now that the free space propagation of the monochromatic coherent
eam obeys Helmholtz equation [5] , 

∇ 

2 + 𝑘 2 
)
𝑈 ( 𝐫) = 0 (2)

here ∇ is the Hamiltonian in 3D space 𝐫 = ( 𝑥, 𝑦, 𝑧 ) . The complex am-
litude of coherent beams must satisfy Helmholtz equation, and plane
aves and spherical waves are the basic solutions to Helmholtz equa-

ion. Considering a paraxial monochromatic coherent beam propagating
long z -axis, it can be expressed as 

( 𝐫) ≈ 𝑈 ( 𝐱, 𝑧 ) 𝑒 𝑗𝑘𝑧 (3)

he scalar complex amplitude of the paraxial optical field is denoted
s U ( x , z ), which is a slowly varying function with respect to z . Note
n Eq. (3) , the time-dependent part 𝑒 − 𝑗𝜔𝑡 (has no effect on intensity)
as been omitted, where 𝜔 is the angular frequency of the light wave.
he paraxial wave equation can be obtained by substituting Eq. (3) into
elmholtz equation 

 

2 𝑈 ( 𝐱, 𝑧 ) + 2 𝑗𝑘 𝜕𝑈 ( 𝐱, 𝑧 ) 
𝜕𝑧 

= 0 (4)

t is the propagation law that the complex amplitude of a paraxial
onochromatic coherent beam must obey. Note ∇ in Eq. (4) is now
efined over x . Next, we substituted the scalar complex amplitude ex-
ression 𝑈 ( 𝐱, 𝑧 ) = 

√
𝐼 ( 𝐱 ) exp [ 𝑗𝜙( 𝐱 ) ] into the paraxial wave equation, and
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eparate the real part (in the following derivation, the spatial coordinate
s omitted for notation simplicity) 

 

(
𝑈 

∗ ∇ 𝑈 − 𝑈 ∇ 𝑈 

∗ )+ 2 𝑗𝑘 
( 

𝑈 

∗ 𝜕𝑈 

𝜕𝑧 
+ 𝑈 

𝜕 𝑈 

∗ 

𝜕𝑧 

) 

= 0 (5)

here 

 𝑈 = 𝑗𝑈∇ 𝜙 (6)

 

∗ ∇ 𝑈 = 𝑈 

∗ 𝑗𝑈∇ 𝜙 = 𝑗𝐼∇ 𝜙 (7)

 

∗ ∇ 𝑈 − 𝑈 ∇ 𝑈 

∗ = 2 𝑗𝐼∇ 𝜙 (8)

 

( 

𝑈 

∗ 𝜕𝑈 

𝜕𝑧 
+ 𝑈 

𝜕 𝑈 

∗ 

𝜕𝑧 

) 

= 𝑗 
(
𝜕 

𝜕𝑧 
𝑈 𝑈 

∗ 
)
= 𝑗 

𝜕𝐼 

𝜕𝑧 
(9)

Substituting Eqs. (8) and (9) into Eq. (5) , we can deduce TIE 

 𝑘 
𝜕𝐼 

𝜕𝑧 
= ∇ ⋅ ( 𝐼∇ 𝜙) (10)

t is a second order elliptic partial differential equation about the phase
unction 𝜙. Similarly, “transport of phase equation ” can be obtained
rom the imaginary part of the paraxial wave equation 

2 𝑘 𝐼 2 𝜕𝜙
𝜕𝑧 

= 

1 
2 
𝐼 ∇ 

2 𝐼 − 

1 
4 
( ∇ 𝐼 ) 2 − 𝐼 2 ( ∇ 𝜙) 2 + 𝑘 𝐼 2 (11)

ecause the phase is not directly accessible, this equation is difficult to
e applied directly. We just give the expression of this equation here
onsidering the completeness of this tutorial. 

.2.2. Derivation of TIE from Fresnel diffraction formula 

The diffraction law of coherent light field can be accurately described
n the spatial domain or in the spatial frequency domain from the view-
oint of “system ”. In this subsection, we use the Fresnel diffraction for-
ula to derive TIE in the spatial and frequency domain, respectively. 

1) Using Fresnel diffraction integral to derive TIE in the spatial

domain 

Based on the Huygens-Fresnel principle, Kirchhoff [218] derived the
igorous Kirchhoff diffraction formula based on the Helmholtz equation
nd Green’s theorem, under certain boundary conditions at the diffrac-
ion plane. The basic idea is based on the principle of linear superpo-
ition: since any complex light source can be regarded as a combina-
ion of individual point sources, the complex light waves can always be
ecomposed into linear combinations of simple spherical waves. And
he linearity of the wave equation allows each spherical wave to ap-
ly the above principles respectively. Then their contributions on the
iffraction plane are superposed to create the resultant diffraction field.
onsidering that the complex amplitude of the light wave in 3D space

s 𝑈 0 ( 𝐫) = 𝑎 ( 𝐫) 𝑒 𝑗 𝜙( 𝐫 ) (in order to simplify the representation, we denote
 = ( 𝐱, 𝑧 ) as the 3D spatial coordinate vector), the complex amplitude
f the optical field obtained after propagating a distance of Δz can be
xpressed as 

 Δ𝑧 ( 𝐫) = ∫ 𝑈 0 ( 𝐫 ′) ℎ 
(
𝐫 ′, 𝐫 

)
𝑑 𝐫 ′ (12)

he above formula shows that wave propagation can be regarded as a
inear system, and the impulse response function of the system h ( r ′ , r )
s exactly the complex amplitude on the diffraction plane generated by
he spherical wavelet propagated from r ′ 

 Δ𝑧 
(
𝐫 ′, 𝐫 

)
= 

1 
𝑗𝜆

𝐾 ( 𝜃) 
exp 

(
𝑗 𝑘 ||𝐫 − 𝐫 ′||)|𝐫 − 𝐫 ′| (13)

here 
exp ( 𝑗 𝑘 |𝐫 − 𝐫 ′|) |𝐫 − 𝐫 ′| is an ideal spherical wave emitted from r ′ and prop-

gated to r . 𝐾 ( 𝜃) = 

1 
2 (1 + cos 𝜃) is the obliquity factor , where cos 𝜃 =

Δ𝑧 |𝐫 − 𝐫 ′| is the angle between z -axis and the line connecting 𝐫 and 𝐫 ′.

i

q. (12) suggests that the complex amplitude distribution in the diffrac-
ion plane is the weighted linear (interferential) superposition of spher-
cal wavelets from all points r ′ in the original plane. However, it is
nown that Kirchhoff’s boundary conditions lead to physical solutions
ontaining a grave mathematical inconsistency. Rayleigh and Sommer-
eld [219,220] solved this problem by deriving two possible integration
ormulas with use of two different Green’s functions under “physically
orrect ” boundary conditions. The Rayleigh-Sommerfeld integrals for-
ulas only differ slightly with Kirchhoff’s formula, the resulting obliq-
ity factors become 𝐾 ( 𝜃) = cos 𝜃 for the first Rayleigh-Sommerfeld inte-
ral (RS-I type), and 𝐾 ( 𝜃) = 1 for the second Rayleigh-Sommerfeld in-
egral (RS-II type). A comparison of these obliquity factors reveals that
he Kirchhoff’s solution is the arithmetic average of the two Rayleigh-
ommerfeld solutions [2,5] . The existence of obliquity factor suggests
hat the amplitude contribution in the original plane of each spheri-
al wavelet emitted from each point may not be isotropic. However, if
he diffraction angle is so small that the paraxial approximation is sat-
sfied, K ( 𝜃) ≈1 (regardless its form), the effect of the obliquity factor
an be neglected. Then the diffraction becomes a “linear shift invariant
ystem ”

 Δ𝑧 ( 𝐫) = 𝑈 0 ( 𝐫) ∗ ℎ ( 𝐫) (14)

he system is uniquely determined by its spatially invariant impulse
esponse function in the spatial domain 

 ( 𝐫 ) = 

1 
𝑗𝜆

exp ( 𝑗 𝑘 |𝐫 |) |𝐫 | (15) 

ere we assume that the original plane and the diffraction plane are lo-
ated at ( x , 0) and ( x , z ), respectively. The expression of the impulse re-
ponse function can be further simplified and expressed as the 2D scalar
orm 

 Δ𝑧 ( 𝐱 ) = 

1 
𝑗𝜆

exp 
( 

𝑗𝑘 

√ 

Δ𝑧 2 + |𝐱 |2 ) 

√ 

Δ𝑧 2 + |𝐱 |2 (16)

or a paraxial beam propagating along z -axis, the expression of the im-
ulse response function can be further simplified as follows 

 Δ𝑧 ( 𝐱) = 

1 
𝑗𝜆Δ𝑧 

exp ( 𝑗 𝑘 Δ𝑧 ) exp 
{ 

𝑗 𝜋

𝜆Δ𝑧 
|𝐱 |2 } 

(17)

ubstituting Eq. (17) into Eq. (14) , we can get the Fresnel diffraction
ntegral [2] 

 Δ𝑧 ( 𝐱) = 

exp ( 𝑗𝑘 Δ𝑧 ) 
𝑗𝜆Δ𝑧 ∫ 𝑈 0 ( 𝐱 0 ) exp 

{ 

𝑗𝜋

𝜆Δ𝑧 
||𝐱 − 𝐱 0 ||2 } 

𝑑 𝐱 0 (18)

f in addition to the Fresnel approximation the stronger Fraunhofer ap-

roximation is satisfied, then the quadratic phase factor inside the inte-
ral of Eq. (18) is approximately unity, and the diffraction field can
e found (up to a multiplicative phase factor in x ) directly form a
ourier transform of the original field. Thus in the region of Fraun-
ofer diffraction (or equivalently, in the far field), aside from multi-
licative phase factors preceding the integral, the diffraction field is sim-
ly the Fourier transform of the original field, evaluated at frequencies
 = 𝐱∕ 𝜆Δ𝑧 . 

Next, we derive TIE based on Fresnel diffraction integral. Consider-
ng a complex amplitude 𝑈 0 ( 𝐱) = 𝑎 ( 𝐱) 𝑒 𝑗𝜙( 𝐱) of a paraxial monochromatic
oherent beam propagating along the optical axis, the distance between
he diffraction plane and the object plane is Δz . According to Eq. (18) ,
he intensity distribution in the diffraction plane can be expressed as 

 Δ𝑧 ( 𝐱) = 𝑈 Δ𝑧 ( 𝐱 ) 𝑈 * Δ𝑧 ( 𝐱 ) = 
1 

𝜆Δ𝑧 ∫ 𝑈 0 ( 𝐱 1 ) 𝑈 * 0 ( 𝐱 2 ) exp 
[ 
𝑗𝜋

𝜆Δ𝑧 

(||𝐱 − 𝐱 1 ||2 − ||𝐱 − 𝐱 2 ||2 )] 𝑑 𝐱 1 𝑑 𝐱 2 
= 1 

𝜆Δ𝑧 ∫ 𝑈 0 ( 𝐱 1 ) 𝑈 * 0 ( 𝐱 2 ) exp 
[ 
𝑗𝜋

𝜆Δ𝑧 

(||𝐱 1 ||2 − ||𝐱 2 ||2 )] exp (2 𝜋𝑗𝐱 ⋅ 𝐱 2 − 𝐱 1 𝜆Δ𝑧 

)
𝑑 𝐱 1 𝑑 𝐱 2 

(19) 

Taking Fourier transform on Eq. (19) , we get the intensity spectrum
n the spatial frequency domain [221] 
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Fig. 15. The geometric illustration of the angular spectrum propagation. 
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̂
 Δ𝑧 ( 𝐮 ) = ℱ 

{
𝐼 Δ𝑧 ( 𝐱 ) 

}
= 1 

𝜆Δ𝑧 ∫ 𝑈 0 ( 𝐱 1 ) 𝑈 ∗ 0 ( 𝐱 2 ) 

exp 
[ 
𝑗𝜋

𝜆Δ𝑧 

(||𝐱 1 ||2 − ||𝐱 2 ||2 )] ℱ 

{ 
exp 

(
2 𝜋𝑗𝐱 ⋅

𝐱 2 − 𝐱 1 
𝜆Δ𝑧 

)} 
𝑑 𝐱 1 𝑑 𝐱 2 

= 1 
𝜆Δ𝑧 ∫ 𝑈 0 ( 𝐱 1 ) 𝑈 ∗ 0 ( 𝐱 2 ) exp 

[ 
𝑗𝜋

𝜆Δ𝑧 

(||𝐱 1 ||2 − ||𝐱 2 ||2 )] 𝛿(𝐮 − 𝐱 2 − 𝐱 1 𝜆Δ𝑧 

)
𝑑 𝐱 1 𝑑 𝐱 2 

𝐱 1 = 𝐱− 
𝜆Δ𝑧 𝐮 
2 , 𝐱 2 = 𝐱+ 

𝜆Δ𝑧 𝐮 
2 = ∫ 𝑈 0 

(
𝐱 − 𝜆Δ𝑧 𝐮 

2 

)
𝑈 ∗ 0 

(
𝐱 + 𝜆Δ𝑧 𝐮 

2 

)
exp { −2 𝑗𝜋𝐱 ⋅ 𝐮 } 𝑑𝐱 

(20) 

Note that the constant scale factor in above formula is omitted. When
he propagation distance Δz →0, the first-order Taylor expansion of

 0 

(
𝐱 − 

𝜆Δ𝑧 𝐮 
2 

)
can be written as 

 0 

(
𝐱 ± 

𝜆Δ𝑧 𝐮 
2 

)
≈ 𝑈 0 ( 𝐱 ) ± 

𝜆Δ𝑧 𝐮 
2 

⋅ ∇ 𝑈 0 ( 𝐱 ) (21)

ubstituting Eq. (21) into Eq. (20) and only retaining the linear term of
z [210,216] 

 Δ𝑧 ( 𝐱) = 𝐼 0 ( 𝐱) − 

Δ𝑧 
𝑘 

∇ ⋅ [ 𝐼 0 ( 𝐱)∇ 𝜙( 𝐱)] (22)

hen Δz →0, 
𝐼 Δ𝑧 ( 𝐱 )− 𝐼 0 ( 𝐱 ) 

Δ𝑧 ≈ 𝜕𝐼( 𝐱) 
𝜕𝑧 

, and TIE is obtained. 

2) Using Fresnel angular spectrum diffraction formula to derive

TIE in the spatial frequency domain 

On the other hand, the diffraction of the coherent beam can also
e described from the viewpoint of “system ” in the spatial frequency
omain: the scalar coherent field U ( x, y , 0) (assuming 𝑧 = 0 ) can be
ecomposed into the coherent superposition of different angular spec-
rum (plane wave) components �̂� ( 𝑢 𝑥 , 𝑢 𝑦 , 0) in the 2D spatial frequency
omain. It can be presented by the following 2D Fourier transform [2] 

( 𝑥, 𝑦, 0) = 

∞

∫
−∞

∞

∫
−∞

�̂� ( 𝑢 𝑥 , 𝑢 𝑦 , 0) 𝑒 𝑗2 𝜋( 𝑢 𝑥 𝑥 + 𝑢 𝑦 𝑦 ) 𝑑 𝑢 𝑥 𝑑 𝑢 𝑦 (23)

̂
 ( 𝑢 𝑥 , 𝑢 𝑦 , 0) = 

∞

∫
−∞

∞

∫
−∞

𝑈 ( 𝑥, 𝑦, 0) 𝑒 − 𝑗2 𝜋( 𝑢 𝑥 𝑥 + 𝑢 𝑦 𝑦 ) 𝑑 𝑥𝑑 𝑦 (24)

here the exponential term 𝑒 𝑗2 𝜋( 𝑢 𝑥 𝑥 + 𝑢 𝑦 𝑦 ) represents a monochromatic
lane wave with unit amplitude, and the direction cosine vector of its
ropagation direction is (cos 𝛼, cos 𝛽), i.e. , 

 𝑥 = 

cos 𝛼
𝜆

, 𝑢 𝑦 = 

cos 𝛽
𝜆

(25)

he geometric propagation of a plane wave 𝑒 𝑗2 𝜋( 𝑢 𝑥 𝑥 ) parallel to y -axis is
llustrated in Fig. 15 . The angle between the propagation direction and
 -axis is denoted as 𝛼. 

After propagation of a distance Δz , the optical path travelled in free
pace and the corresponding phase delay can be represented as 

𝑑 = Δ𝑧 sin 𝛼 = Δ𝑧 
√ 

1 − ( cos 𝛼) 2 = Δ𝑧 
√ 

1 − ( 𝜆𝑢 𝑥 ) 2 (26)

= 𝑘 Δ𝑑 = 𝑘 Δ𝑧 
√ 

1 − ( 𝜆𝑢 𝑥 ) 2 (27)

herefore, the plane wave after the propagation of a distance Δz is
 

𝑗2 𝜋( 𝑢 𝑥 𝑥 ) 𝑒 𝑗𝜙. It can be seen from the Fourier transform that the point in
he Fourier spectrum corresponding to this plane wave is also multiplied
y an exponential term, i.e. , 

̂
 ( 𝑢 𝑥 , 0 , Δ𝑧 ) = �̂� ( 𝑢 𝑥 , 0 , 0) 𝑒 𝑗𝜙

= �̂� ( 𝑢 𝑥 , 0 , 0) 𝑒 𝑗𝑘 Δ𝑧 
√

1− ( 𝜆𝑢 𝑥 ) 2 (28) 

Generally, for plane waves in arbitrary directions, we can get 

̂
 ( 𝑢 𝑥 , 𝑢 𝑦 , Δ𝑧 ) = �̂� ( 𝑢 𝑥 , 𝑣 𝑦 , 0) 𝑒 

𝑗𝑘 Δ𝑧 
√

1− ( 𝜆𝑢 𝑥 ) 2 − ( 𝜆𝑢 𝑦 ) 2 (29)

To sum up, here we reveal the geometric significance of the angu-
ar spectrum propagation: the scalar coherent optical field U ( x, y , 0)
ocated at the plane 𝑧 = 0 can be regarded as the linear superposition of
ifferent plane wave components. After propagation of a distance Δz ,
he coherent field U ( x, y, z ) is still composed of these plane waves prop-
gating along their original directions. The amplitudes of these plane
aves remain unchanged, but their optical paths traveled in each di-

ection are different, i.e. , their phase delays are different, which can

e represented as 𝑘 Δ𝑧 
√ 

1 − ( 𝜆𝑢 𝑥 ) 2 − ( 𝜆𝑢 𝑦 ) 2 . In the spatial frequency do-

ain, each point in the Fourier spectrum is multiplied by an exponential

erm 𝑒 𝑗𝑘 Δ𝑧 
√

1− ( 𝜆𝑢 𝑥 ) 2 − ( 𝜆𝑢 𝑦 ) 2 , which is equivalent to the whole 2D spectrum
ultiplied by a 2D transfer function H Δz ( u x , u y ). Under the precondition

f 1 − ( 𝜆𝑢 𝑥 ) 2 − ( 𝜆𝑢 𝑦 ) 2 > 0 , we get 

 Δ𝑧 ( 𝑢 𝑥 , 𝑢 𝑦 ) = 

�̂� ( 𝑢 𝑥 , 𝑢 𝑦 , Δ𝑧 ) 

�̂� ( 𝑢 𝑥 , 𝑢 𝑦 , 0) 
= 𝑒 𝑗𝑘 Δ𝑧 

√
1− ( 𝜆𝑢 𝑥 ) 2 − ( 𝜆𝑢 𝑦 ) 2 (30)

rom the perspective of linear shift invariant system, the propagation
henomenon may be regarded as a linear spatial filter with a finite
andwidth, i.e., H Δz ( u x , u y ), so so-called the angular spectrum transfer

unction [2,5] . The amplitude of H Δz ( u x , u y ) is zero outside a circu-
ar region of radius 𝜆−1 in the frequency domain. Within that circular
andwidth, the modulus of the transfer function is unity but frequency-
ependent phase shifts are introduced. It should be noted that as well as
ropagating plane waves, solutions of the wave equation are also given
y evanescent waves (from the latin evanescare , to diminish). When
 − ( 𝜆𝑢 𝑥 ) 2 − ( 𝜆𝑢 𝑦 ) 2 < 0 , the evanescent waves at high spatial frequencies
iminishes exponentially with the increase of z . It decays to zero after
he propagation of a distance about several wavelengths [2,5] . In most
pplications of optical imaging, evanescent waves have a very limited
ange and can therefore be neglected. It should be mentioned the re-
arkable fact that, Eq. (30) is proven to be the Fourier transform of

he impulse response function [ Eq. (13) ] with the RS-I type obliquity
actor, which suggests that the angular spectrum approach and the first
ayleigh-Sommerfeld integral are essentially identical in predictions of
iffracted fields [2,5] . 

Under the paraxial approximation, the higher order terms in the Tay-
or expansion of the phase factor in Eq. (30) can be neglected 

√ 

1 − ( 𝜆𝑢 𝑥 ) 2 − ( 𝜆𝑢 𝑦 ) 2 

= 1 − 

1 
2 
𝜆2 
(
𝑢 2 𝑥 + 𝑢 2 𝑦 

)
+ 

1 
8 
𝜆4 
(
𝑢 2 𝑥 + 𝑢 2 𝑦 

)2 
+ ... 

≈ 1 − 

1 
𝜆2 
(
𝑢 2 𝑥 + 𝑢 2 𝑦 

)
(31) 
2 
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Fig. 16. The physical implication of TIE. 
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o we can get the angular spectrum transfer function under Fresnel
paraxial) approximation 

 

𝐹 
Δ𝑧 ( 𝑢 𝑥 , 𝑢 𝑦 ) = exp ( 𝑗𝑘 Δ𝑧 ) exp 

[
− 𝑗𝜋𝜆Δ𝑧 

(
𝑢 2 𝑥 + 𝑢 2 𝑦 

)]
(32)

imilarly, it is not difficult to prove that Eq. (32) is the Fourier trans-
orm of the Fresnel impulse response function [ Eq. (17) ]. In Eq. (32) ,
he first phase factor exp ( jk Δz ) is only related to the propagation dis-
ance Δz , so it can be neglected because it has no effect on the intensity
nd complex amplitude distribution. Furthermore, when the propaga-
ion distance Δz →0, the Fresnel angular spectrum transfer function can
e further rewritten as 

 

𝐹 
Δ𝑧 ( 𝐮 ) = 𝑒 − 𝑗𝜋𝜆Δ𝑧 |𝐮 |2 

= 1 − 𝑗𝜋𝜆Δ𝑧 |𝐮 |2 − 

( 𝜋𝜆Δ𝑧 ) 2 |𝐮 |4 
2 

− ... 

Δ𝑧 →0 
≈ 1 − 𝑗𝜋𝜆Δ𝑧 |𝐮 |2 (33)

here u is the spatial frequency vector ( u x , u y ). Considering the com-
lex amplitude of an optical field to be recovered as 𝑈 ( 𝐱) = 𝑎 ( 𝐱) 𝑒 𝑗𝜙( 𝐱) ,
ts Fourier transform is �̂� ( 𝐮 ) = ℱ [ 𝑈 ( 𝐱) ] . So the intensity at a distance
z can be expressed as 

( 𝐱, Δ𝑧 ) = 

|||ℱ 

−1 { ̂𝑈 ( 𝐮 ) 𝐻 

𝐹 
Δ𝑧 ( 𝐮 )} 

|||2 
Δ𝑧 →0 
≈ |||ℱ 

−1 { ̂𝑈 ( 𝐮 )(1 − 𝑗𝜋𝜆Δ𝑧 |𝐮 |2 )} |||2 
= 

|||𝑈 ( 𝐱) − 𝑗𝜋𝜆Δ𝑧 ℱ 

−1 [|𝐮 |2 �̂� ( 𝐮 ) 
]|||2 (34)

ased on the differential properties of Fourier transform, the multiplica-
ive frequency vector u in the Fourier domain is equivalent to the gra-
ient operator in the spatial domain, i.e., j 2 𝜋u →∇ . So the Laplacian
perator can be represented as Δ = ∇ 

2 → −4 𝜋2 |𝐮 |2 . Substituting it into
q. (34) , we can get 

( 𝐱, Δ𝑧 ) = 

||||𝑈 ( 𝐱) + 

𝑗𝜋𝜆Δ𝑧 
4 𝜋2 ∇ 

2 𝑈 ( 𝐱) 
||||2 

= 𝐼( 𝐱) − 

Δ𝑧 
𝑘 

∇ ⋅ [ 𝐼( 𝐱 )∇ 𝜙( 𝐱 ) ] (35)

hen the propagation distance Δz →0, 𝐼 ( 𝐱, Δ𝑧 )− 𝐼 ( 𝐱) Δ𝑧 ≈ 𝜕𝐼( 𝐱) 
𝜕𝑧 

, and TIE is
btained. 

.2.3. Derivation of TIE based on Poynting theorem 

Poynting theorem [4] is in the nature a statement of conservation
f energy for the electromagnetic field. In physics, the Poynting vector
epresents the directional energy flux of an electromagnetic field, and
oynting theorem states that the total dissipated energy flow through
 closed surface s of a bounded volume V in the electromagnetic field
s equal to the change over time of the complete electromagnetic en-
rgy inside V . Since energy may be neither created nor destroyed in free
pace, the time-averaged Poynting vector S must obey a conservation
quation expressed as 

𝑠 

⟨𝐒 ⟩𝑑𝑠 = 0 (36)

ts corresponding differential form is 

 ⋅ ⟨𝐒 ⟩ = 0 (37)

here ∇ is the Hamiltonian in 3D space, ⟨S ⟩ is the vectorial representa-
ion of time-averaged Poynting vector in 3D space. The time-averaged
oynting vector corresponds to the intensity ( irradiance in definitions of
adiometry) or flux density I of a surface element perpendicular to the
oynting vector. When the vector potentials of electromagnetism is ne-
lected (in the absence of phase vortices), the time-averaged Poynting
ector can be written in the form [159] 

𝐒 ⟩ = 

1 
𝐼( 𝐱 , 𝑧 )∇ 𝜙( 𝐱 , 𝑧 ) (38)
𝑘 
nder the paraxial approximation, the time-averaged Poynting vector
an be explicitly decomposed into the transverse component and the
ongitudinal component 

𝐒 ⟩ = 

1 
𝑘 
𝐼( 𝐱 , 𝑧 ) 

[
∇ 𝜙( 𝐱 ) + 𝑘 𝐳 0 

]
(39)

here 𝐳 0 represents the unit vector along the z-direction. Substituting it
nto Eq. (37) , we can get TIE 

 𝑘 
𝜕𝐼( 𝐱, 𝑧 ) 

𝜕𝑧 
= ∇ ⋅ [ 𝐼( 𝐱 , 𝑧 )∇ 𝜙( 𝐱 ) ] (40)

t should be noted that the time-averaged Poynting vector in Eq. (32) is
ell defined for both coherent fields and partially coherent fields.
aganin and Nugent [159] use this formulation as the definition of
phase ”, which is a scalar potential of the time-averaged Poynting vec-
or. If the wave is coherent, then this is equivalent to the conventional
hase. 

.3. The physical implication of TIE 

Before entering the next section about the solution of TIE, let us
rst examine this beautiful equation. Viewed as a whole, TIE is essen-
ially an expression of the energy conservation law. Under the paraxial
pproximation, the longitudinal energy flux of the optical field can be
pproximated by the intensity. Transverse energy flux is determined by
 ∇ 𝜙, and I ∇ 𝜙 represents the transverse component of the time-averaged
oynting vector, as shown in Eq. (39) . Its divergence ∇ · ( I ∇ 𝜙) represents
or the total of energy variation in the transverse plane. Longitudinal and
ransverse energy dissipation should always be equal according to the
nergy conservation law (as shown in Fig. 16 ). Examining both sides of
IE, the left hand side (LHS) is the axial intensity derivative. In the sim-
lest situation, it can be estimated by the finite difference between two
ntensity images collected at different propagation distances along the
ptical axis. More details about the axial intensity derivative estimation
ill be given in Section 5 . Expanding the right hand side (RHS) of TIE,
e obtain 

 𝑘 
𝜕𝐼 

𝜕𝑧 
= ∇ ⋅ ( 𝐼∇ 𝜙) = ∇ 𝐼 ⋅ ∇ 𝜙 + 𝐼 ∇ 

2 𝜙 (41)

here the two terms contain the phase gradient (slope, the first deriva-
ive) term and phase curvature (the second derivative), respectively. Ax-
al variation of intensity is determined by both phase slope and phase
urvature. Phase slope induces the intensity translation, just like a prism,
hile phase curvature induces intensity convergence or divergence, just

ike a lens. So these two terms are also called prism term (slope and gra-
ient) and lens term (curvature) [143] (as illustrated in Fig. 16 ). 

At last, let us consider some special cases of TIE: if the phase is con-
tant, the RHS of TIE is equal to 0, so there will be no transport of
ntensity effect. It is in accordance with the plane wave case discussed
bove. Another more meaningful situation is when the in-focus intensity
s uniform I ≈ constant, corresponding to the situation of a pure phase
bject, TIE can be simplified as 

 𝑘 
𝜕𝐼 

𝜕𝑧 
= 𝐼 ∇ 

2 𝜙 (42)

his is a standard Poisson equation, revealing that a weak defocusing of
 pure phase object produces intensity contrast that is proportional to
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Fig. 17. Three typical boundary conditions used in TIE solvers. 
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he phase Laplacian (curvature). This is exactly the physical implication
f the light-and-dark network structure at the bottom of the swimming
ool in Fig. 13 . 

. Solutions to TIE 

In this section, we will discuss how to solve TIE, which is the funda-
ental premise for the success of TIE phase retrieval. In TIE, the inten-

ity I on the RHS can be directly measured, and the LHS is the intensity
erivative along the optical axis 𝜕 I / 𝜕 z which cannot be directly mea-
ured. Fortunately, it can be approximated by finite differences with a
inimum of two defocused intensity images taken at distinct planes sep-

rated by a small distance orthogonal to the optical axis (discussed in
ection 5 ). Thus, the only one unknown quantity in TIE is the phase func-
ion 𝜙. When the intensity I and intensity derivative 𝜕 I / 𝜕 z are known,
olving the phase function is a typical inverse problem. 

.1. Boundary conditions of TIE 

There are two prerequisites for uniquely determining a solution
o a partial differential equation: the partial differential equation and
oundary conditions [222] . Thus, the TIE phase retrieval is essentially a
oundary value problem: seeking a solution to TIE that also satisfies the
iven boundary conditions. We then adopt a more rigorous mathemati-
al description to express this problem: we assume the region governed
y TIE to be a general open and bounded domain Ω ⊂ ℝ 

2 with a piece-
ise smooth boundary 𝜕Ω. The intensity distribution I is a continuous,
onnegative function defined on the enclosure Ω̄ (including the region
nside Ω and the boundary 𝜕Ω), and is continuous and strictly positive
n Ω. The axial intensity derivative 𝜕 I / 𝜕 z is assumed to be a continuous
unction in Ω. The phase 𝜙 is expected to be single-valued and smooth in
̄ (in the absence of phase vortices). In the following part, we shall con-
ider three classes of possible boundary conditions that could be applied
o solve TIE (see Fig. 17 ): 

1) Dirichlet boundary conditions 

The values of phase function 𝜙 are specified on the domain boundary

𝜙|𝜕Ω = 𝑔 (43)

ere g is a smooth function on the boundary 𝜕Ω. 

2) Neumann boundary conditions 

The product of the normal derivative of 𝜙 is specified on the domain
oundary 

𝐼 
𝜕𝜙

𝜕𝑛 

||| = 𝑔 (44)
|𝜕Ω
ere g is a smooth function on the boundary 𝜕 Ω, and 𝜕 𝜙/ 𝜕 n is the out-
ard normal derivative. 

3) Periodic boundary conditions 

The phase at the boundary repeats cyclically, e.g. , for a rectangular
omain, the phase at the right boundary is the same as the phase at the
eft boundary. 

.2. Well-posedness and uniqueness of the solution 

The “well-posedness ” and the “uniqueness ” of the solution are two
ssential problems of the TIE phase retrieval. The well-posedness means
hat the equation must exist at least one solution to ensure the solvability
f the problem. The uniqueness of the solution means that the solution
f the equation must be unique. Obviously, the phase of the object to
e measured is well and uniquely defined. If the solution to TIE is not
nique, it will be impossible to determine whether the obtained solution
orresponds to the true phase of the object. In 1995, the well-posedness
nd uniqueness of the TIE solution were first proven by Gureyev et al.
223] : with the determined intensity I , axial intensity derivative 𝜕 I / 𝜕 z ,
nd boundary conditions specified on 𝜕Ω, the phase can be uniquely
etermined by solving the corresponding boundary value problem. For
he case of Dirichlet boundary conditions, the solution to TIE always
xists and is unique [222] . The case of Neumann boundary conditions
emands special attention because a solution may or may not exist (de-
ending on whether the compatibility condition [ Eq. (45) ] is satisfied
223,224] ). The compatibility condition can be obtained by integrating
oth sides of TIE over the region Ω and then applying the divergence
heorem 

𝜕Ω
𝐼 ( 𝐱 ) 𝜕𝜙( 𝐱 ) 

𝜕𝑛 
d 𝑠 = ∬Ω

− 𝑘 
𝜕𝐼 ( 𝐱 ) 
𝜕𝑧 

d 𝐱 (45) 

here s is a parameterization of 𝜕Ω, and 𝜕I / 𝜕z can be obtained by actual
easurement. Thus, the RHS of Eq. (45) is known a priori , since the func-

ion 𝜕 I / 𝜕 z can be experimentally obtained, and the LHS is determined
olely by Neumann boundary conditions [ Eq. (44) ]. Mathematically, all
hese possible Neumann boundary conditions must satisfy Eq. (45) in
rder for there to be a nontrivial solution to TIE. In addition, notice that
f 𝜙 is a solution to the Neumann boundary problem, then 𝜙 + 𝐶 is also
 solution for an arbitrary constant C . In other words, the solution of
IE subject to Neumann boundary conditions should be unique up to an
rbitrary additive constant, assuming that the solution exists in the first
lace. This constant is not essential for the phase retrieval problem. The
roof of the uniqueness theorem is straightforward: we can first assume
hat two qualified solutions have been exhibited and then prove they
an only differ from one additive constant using the maximum princi-
le for elliptic equations [225] . In general, the periodic boundary con-
ition is widely adopted in the fields of lattice vibrations and electron
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Fig. 18. Phase retrieval simulations for different types of objects. (a) An isolated object located in the central field of view (FOV) (the FFT-based solver gives accurate 

reconstruction); (b) a complex object extending outside the image boundary (the FFT-based solver produces large boundary artifacts); and (c) the DCT solver with a 

hard aperture (the inhomogeneous boundary conditions can be measured at the boundary, which produces accurate phase reconstruction even if the object is located 

at the aperture boundary). 
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heory of metals, wherein most objects of interest are characterized by
eriodicity. In most cases of QPI, the samples are not periodically dis-
ributed, so periodic boundary conditions are difficult to meet. The pur-
ose of introducing periodic boundary conditions into the solution of
IE is to simplify the numerical implementation, which will be detailed

n Subsection 3.3 . For periodic boundary conditions, the solution to TIE
s also unique up to an arbitrary additive constant. 

In summary, regarding the well-posedness and uniqueness of the so-
ution to TIE, the following conclusions can be drawn: 

1) For Dirichlet boundary conditions, the solution to TIE always exists
and is unique. 

2) For Neumann boundary conditions, the solution to TIE may or
may not exist, depending on whether the compatibility condition of
[ Eq. (45) ] is satisfied. When the compatibility condition is satisfied,
the solution to TIE exists and is unique up to an arbitrary additive
constant. 

3) For periodic boundary conditions, the solution to TIE always exists
and is unique up to an arbitrary additive constant. 

.3. Compatibility condition and energy conservation law 

It is very interesting to examine the physical picture described by the
ompatibility condition [ Eq. (45) ]: actually, it can be thought as an ex-
ression of local energy conservation law in bounded domains: the loss
f energy (intensity) inside the domain arising from energy flow across
he boundary. If the boundary condition does not satisfy Eq. (45) , it is
ot physically grounded so that the correct solution cannot be obtained.
f we extend the bounded domain Ω to unbounded free space, the con-
our integral vanishes and the compatibility condition becomes 

ℝ 2 

𝜕𝐼 ( 𝐱 ) 
𝜕𝑧 

d 𝐱 = 0 (46)

t represents the law of energy conservation for unlimited free space. In
ssence, the energy conservation expressed by Eqs. (45) and (46) is a
niversal law of physics, so it imposes an implicit physical constraint on
he solution of TIE. 
.4. Solutions to TIE 

The essence of TIE retrieval is to solve the partial differential equa-
ion under appropriate boundary conditions, and how to solve TIE ac-
urately and efficiently has become one of the most popular and chal-
enging research directions since its inception. In the paper of Teague
141] in 1983, he tried to simplify TIE into standard Poisson equations
y introducing an auxiliary function. This auxiliary function 𝜓 is so-
alled “Teague’s auxiliary function ”, which satisfies 

 ( 𝐱 ) ∇ 𝜙( 𝐱 ) = ∇ 𝜓 ( 𝐱 ) (47)

he physical meaning of this auxiliary function has been discussed in
ubsection 2.2 . I ∇ 𝜙 can be interpreted as the time-averaged transverse
oynting vector [159] and can be characterized by the scalar potential
. With this auxiliary function 𝜓 , TIE can be simplified into two stan-
ard Poisson equations [76,141,201] 

𝜕𝐼 ( 𝐱 ) 
𝜕𝑧 

= − 

1 
𝑘 
∇ 

2 𝜓 ( 𝐱 ) (48)

 ⋅
[
𝐼 ( 𝐱 ) −1 ∇ 𝜓 ( 𝐱 ) 

]
= ∇ 

2 𝜙( 𝐱 ) (49)

he Teague’s auxiliary function 𝜓 can be solved from Eq. (48) , and
hen substituted into Eq. (49) , the phase function can be uniquely de-
ermined by phase integration (up to an arbitrary additive constant). In
rder to solve these two Poisson equations, Teague [141] introduced the
reen’s function method to derive the first analytical solution to TIE, al-

hough, to our knowledge, this has never been implemented. After that,
arious numerical TIE solvers have been proposed, such as the multi-
rid method [76,226–228] , the Zernike polynomial expansion method
156,229,230] , the FFT-based method [76,149,158,159,231,232] , and
he discrete cosine transform (DCT) method [201–203] . Multi-grid
ethod is a common method to solve partial differential equations,
hich is mainly used for the rectangular domain and relatively com-
licated to implement [76,226–228] . Since Zernike polynomials are or-
hogonal functions defined on the unit circle, the Zernike polynomial
xpansion method is used primarily in wavefront sensing and optical
berration characterization [156,229,230] . The FFT-based method is
robably the most popular TIE solvers especially in the field of QPI for
ts simplicity, efficiency, and applicability for the case of non-uniform
ntensity distribution. The present widely used version of the FFT solver
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s developed by Paganin and Nugent [159] , which can be considered
 generalization of the Gureyev and Nugent’s approach [158] as it re-
uces to that form in the case of nonuniform intensity. Under general
onuniform intensity, it takes the following form [159] 

( 𝐱 ) = − 𝑘 ∇ 

−2 ∇ ⋅
[ 
𝐼 −1 ( 𝐱 ) ∇ ∇ 

−2 𝜕𝐼 ( 𝐱 ) 
𝜕𝑧 

] 
(50)

here ∇ 

−2 is the inverse Laplacian operator, denoting a simplified rep-
esentation of the solution to the corresponding Poisson equation. Note
hat the inverse Laplacian operator is effectively implemented with
FT based on differential properties of the Fourier transform ( ∇ 

−2 →
 

1 
4 𝜋2 |𝐮 |2 ) [76,159,232] . 

.4.1. Solving TIE without boundary values 

Despite the mathematical well-posedness, the rigorous implementa-
ion of TIE phase retrieval tends to be difficult because the associated
oundary conditions are difficult to measure or to know as a priori . For
xample, in Teague’s Green function solution [141] , one needs to know
he phase value at the region boundary as the Dirichlet boundary con-
ition, which is lack of feasibility because the phase function is exactly
hat we want to measure. Generally speaking, it is difficult to obtain any
rior information about the measured object before taking any measure-
ent (Teague recommends that the boundary value can be measured by
sing a Shack-Hartmann wavefront sensor, which is indeed very incon-
enient for practical implementation). Parvizi et al. [233] pointed out
hat the Dirichlet boundary condition can be obtained by manually se-
ecting the “smooth region ” inside the FOV (the region without the ob-
ect is considered ‘flat’ and has a constant phase value). However, this
ethod also needs the prior information about the object and requires
uman intervention. The FFT-based method does not need to impose
he boundary condition explicitly, but it assumes that the finite field is
eriodic and repetitive. This implies periodic boundary conditions due
o the cyclic nature of the discrete Fourier transform. However, this sit-
ation is rather restrictive and does not reflect general experimental
onditions. When the actual experimental situation violates those im-
osed assumptions, e.g. , objects are located at the image borders, severe
oundary artifacts will appear, seriously affecting the accuracy of the
hase reconstruction [201,202,234] . 

Because the boundary signals are not easy to acquire experimen-
ally, some researchers sought new ways to solve TIE without taking any
oundary measurements. Coincidentally, all these efforts aim to nullify
he LHS of Eq. (45) , making boundary conditions unnecessary 

𝜕Ω
𝐼 ( 𝐱 ) 𝜕𝜙( 𝐱 ) 

𝜕𝑛 
d 𝑠 = 0 𝑜𝑟 equivalently ∬Ω

𝜕𝐼 ( 𝐱 ) 
𝜕𝑧 

d 𝐱 = 0 (51)

his is actually equivalent to applying the energy conservation law for
nbounded space to a bounded domain directly. Generally, Eq. (51) does
ot hold for a bounded region unless the contour integral [LHS of
q. (45) ] vanishes. Physically, it is equivalent to the special case that
here is no overall energy transfer through the domain boundary. To
olve TIE without boundary values, there are three common ways to
atisfy Eq. (51) : 

1) “Soft-edged ” illumination 

The soft-edged illumination suggested by Gureyev and Nugent
157] represents a special case that the intensity is smooth and strictly
reater than 0 inside the domain ( I > 0) but strictly vanishes at the
oundary 𝐼 𝜕Ω = 0 . In this case, they proven that the solution to TIE ex-
sts and is unique to an arbitrary additive constant. Although Gureyev
nd Nugent [157] called this special case as a kind of “unconventional ”
oundary condition, by comparing it with Eq. (44) , it can be found that it
ust corresponds to a special case of the homogeneous Neumann bound-
ry conditions ( 𝐼 𝜕𝜙∕ 𝜕𝑛 |𝜕Ω = 0 ). The disadvantage of this method is that
efining the boundary of the domain tends to be very difficult in prac-
ice since “very-near zero ” and “at zero ” may seem almost the same but
an be entirely different vis-a-vis the well-posed TIE. 
2) “Flat ” boundary 

This is the simplest and the most common way to bypass the diffi-
ulty associated with the boundary condition problem. One can place
he sample carefully so that it is centrally isolated in the image FOV,
urrounded by an unperturbed plane wave, so that the boundary of
he image is “empty ” (sample-free). Then the phase at the boundary
an be considered as “flat ”, and zero phase changes at the boundary
corresponding to homogeneous Neumann boundary conditions) can be
ssumed thus the Eq. (51) can be satisfied. In fact, in this case one
an define not only homogeneous Neumann boundary conditions (con-
tant phase 𝜙|𝜕Ω = 𝐶 at the boundary), but any homogeneous Dirichlet
oundary conditions ( 𝐼 𝜕𝜙∕ 𝜕𝑛 |𝜕Ω = 0 ) or even periodic ones (the phase
t the boundary repeats cyclically). In such a case, the phase can be re-
overed accurately regardless of the selected boundary conditions, for
xample, using the FFT-based method with periodic boundary condi-
ions. However, this configuration does not reflect general experimental
onditions, and is impractical when the object is larger than the cam-
ra FOV. This kind of boundary error is problematic when dealing with
 extended object that must cover the image boundary, e.g. , microlens
rrays [201,202,234] . 

3) Mirror padding 

This method is proposed by Volkov et al. [231] to solve TIE with-
ut boundary value measurements. It has no additional requirements
bout the test object and experimental conditions, but only needs to
ymmetrically extend the intensity images into a four times larger size
o that the homogeneous Neumann boundary conditions can be satisfied
 𝜕𝜙∕ 𝜕𝑛 |𝜕Ω = 0 ), and the LHS of Eq. (45) vanishes. Although Volkov et al.

231] demonstrated that this method performs better than the tradi-
ional FFT-based method in certain circumstances, it is only a pure math-
matical trick to nullify the energy flow across the boundary through
ppropriate symmetrization of input images. It assumes there is no en-
rgy dissipation through the image boundary, which generally does not
atisfy the compatibility condition [ Eq. (45) ], and thus, is not physically
rounded. Note severe boundary errors can be observed when objects
re located at the image boundary. Such kind of artifacts are not just
imited to the boundary region but may propagate inside the domain
nd degrade the reconstruction accuracy prevailingly [201,202] . 

.4.2. Solving TIE with boundary value measurements 

The simplified solutions to TIE discussed in Subsection 3.4.1 can
olve TIE without boundary value measurements, but it does not mean
hat we can solve TIE without imposing any boundary conditions. To be
ore specific, we have to restrict the test objects or experimental con-
itions to certain “implicit boundary conditions ”. On the other hand,
or certain phase functions (such as tilt, defocus, astigmatism, and other
hase aberrations with zero or constant curvature), the defocus-induced
ntensity derivative signals are all concentrated at the boundary region.
f the boundary conditions are not considered, the phase can never be
ecovered [235–237] . The only solution to issues mentioned above is
o solve TIE with correct boundary conditions, and the key problem is
ow to obtain the boundary signals experimentally. Roddier’s research
roup [145,146] first explored this problem and found that the bound-
ry values required for the simplified version of TIE [ Eq. (42) ] with
niform intensity can be obtained from the intensity measurements at
he pupil boundary. Because the boundary signals can be acquired ex-
erimentally, Roddier et al. [145,146] used the SOR and the iterative
ourier transform [149] to solve the simplified TIE effectively. Later this
ethod was adopted by Woods and Greenaway [238] , and the Green’s

unction method was used to solve the simplified TIE. Although Rod-
ier’s method addresses the problem of boundary value measurements,
t is still necessary to distinguish the boundary signals from the interior
ntensity derivative, which has been known to cause serious difficulties
147,156,235,239] . Moreover, it relies on one major assumption: the in-
ensity distribution should be uniform within the domain ( I ≈ constant).
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Fig. 19. Helmholtz decomposition of the transverse flux field. The x and y com- 

ponents of the vector fields are shown in the first row and the second row, re- 

spectively. The term ∇ × 𝜂 is missing in Teague’s assumption. 
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his may be a reasonable assumption in the field of adaptive optics, but
t is difficult to satisfy in the field of QPI, especially for objects with
trong absorptions. 

To solve the above-mentioned problems, Zuo et al. [201] found that
ven if the intensity distribution is non-uniform, the inhomogeneous
eumann boundary conditions can still be obtained when a hard-edged
perture (the aperture function 𝐴 Ω = 1 when 𝐫 ∈ Ω̄, 𝐴 Ω = 0 when 𝐫 ∉ Ω̄)
s introduced at the object plane ( 𝑧 = 0 or its conjugated plane). Sub-
tituting the aperture function into TIE, the intensity transport can be
ritten in the following form 

 𝑘 
𝜕𝐼 

𝜕𝑧 
= 𝐴 Ω

(
𝐼 ∇ 

2 𝜙 + ∇ 𝐼 ⋅ ∇ 𝜙
)
− 𝐼 

𝜕𝜙

𝜕𝑛 
𝛿𝜕Ω (52)

here 𝛿𝜕Ω is the Dirac delta function around the aperture edge.
q. (52) suggests that the axial intensity derivative signals consist of
wo non-overlapping components: 

1) The intensity variation inside the domain due to the phase slope and
curvature as if the aperture is not present. 

2) A delta-function-like signal sharply peaked at the aperture bound-
ary, which provides the exact Neumann boundary conditions for TIE
[ Eq. (44) ]. 

Since the whole axial intensity derivative [the LHS of Eq. (52) ] is
xperimentally measurable through finite-difference scheme (note the
perture should be smaller than the image FOV so that all the bound-
ry signals can be captured), and the two RHS terms do not overlap in
pace, there is enough information to solve TIE uniquely without requir-
ng prior knowledge of the boundary conditions. The inhomogeneous
oundary value problem has been proven to be well-posed because it
utomatically satisfies the following compatibility condition [derived
rom integrating both sides of Eq. (52) over the whole space] 

Ω̄
− 𝑘 

𝜕𝐼 ( 𝐱 ) 
𝜕𝑧 

d 𝐱 = ∬Ω
− 𝑘 

𝜕𝐼 ( 𝐱 ) 
𝜕𝑧 

𝑑𝐱 − ∮𝜕Ω
𝐼 ( 𝐱 ) 𝜕𝜙( 𝐱 ) 

𝜕𝑛 
d 𝑠 = 0 (53)

his is the same expression as the compatibility condition of the Neu-
ann boundary problem [ Eq. (45) ], which leads to the inescapable con-

lusion that the solution to this Neumann boundary problem always ex-
sts and is unique up to an arbitrary additive constant. On this basis,
uo et al. [201] developed the DCT-based TIE solver using experimen-
ally measurable boundary conditions. The solution takes the following
orm 

( 𝐱 ) = − 𝑘 ∇ 

−2 
𝐷𝐶𝑇 

∇ 𝐷𝐶𝑇 ⋅
[ 
𝐼 −1 ( 𝐱 ) ∇ 𝐷𝐶𝑇 ∇ 

−2 
𝐷𝐶𝑇 

𝜕𝐼 ( 𝐱 ) 
𝜕𝑧 

] 
. (54)

q. (54) is very similar to the FFT-based method proposed by Paganin
nd Nugent [ Eq. (50) ] [158,159] , and the only difference is that the
nverse Laplacian operator ∇ 

−2 
𝐷𝐶𝑇 

and the gradient operator ∇ DCT are
mplemented by the DCT rather than FFT (because the eigenfunctions
f the Green’s function associated with this Neumann boundary value
roblem is the Fourier cosine harmonics, rather than the general Fourier
xponential harmonics). In addition, it should be noted that all the
ource data and related computations must be strictly defined on the
losed rectangular region Ω̄, which includes both the aperture boundary
nd the region inside it (so that all the boundary signals can be enclosed
n Ω̄). In this way, the measured intensity derivative can be treated as
ne entity without requiring special-purpose detection schemes to ex-
licitly extract the boundary signals. Therefore, this approach solves
 series of problems associated with the generation, acquisition, and
eparation of boundary signals in actual experimental conditions. The
ffectiveness of this method has been experimentally verified by the
haracterization of micro-optical elements [202] . Despite its success in
olving TIE under inhomogeneous Neumann boundary conditions, the
CT-based solver still has two limitations: 

1) The fast DCT algorithm is limited to the rectangular region, and thus,
the DCT-based solver cannot be directly applied to non-rectangular
(such as circle, ring, etc .) or irregular regions. 
2) The effectiveness of the method relies on the hard-edged aperture.
For the case of “soft-edged ” aperture such as a Gaussian beam, al-
though the energy conservation law can be satisfied, the algorithm
is still not applicable in this case. 

To address these problems, Huang et al. [203] further extended the
CT solver to an arbitrarily shaped aperture by an iterative compensa-

ion mechanism. This method takes the DCT-based solution as the initial
alue, and then it is refined by the iterative compensation algorithm to
btain an accurate solution. Thus, the DCT-based method can be ex-
ended to an arbitrarily shaped aperture. Ishizuka et al. [240,241] suc-
essfully applied the iterative DCT solver to recover the additional phase
erm corresponding to the curvature of field on the image plane in
EM. A similar iterative TIE solver based on FFT was also proposed by
ehrabkhani et al. [242] . 

.5. Phase discrepancy analysis and compensation 

Another important issue regarding the solution of TIE is “phase dis-
repancy ”, which represents the difference between the ground truth
hase and the phase retrieval by TIE. This is because most of TIE
olvers, such as FFT and DCT, introduce the Teague’s auxiliary func-
ion [141] [ Eq. (47) ] to simplify TIE into standard Poisson equations.
he Teague’s assumption suggests that the transverse flux is conserva-
ive so that a scalar potential 𝜓 exists and satisfies Eq. (48) . However,
t is important to remark that the Teague’s auxiliary function does not
lways exist in practical situations since the transverse energy flux may
ot be conservative [ I ( x ) ∇ 𝜙( x ) is an ordinary 2D scalar field]. Accord-
ng to the Helmholtz’s theorem, the transverse flux can be decomposed
n terms of the gradient of a scalar potential 𝜓 and the curl of a vector
otential 𝜂

 ( 𝐱 ) ∇ 𝜙( 𝐱 ) = ∇ 𝜓 ( 𝐱 ) + ∇ × 𝜂( 𝐱 ) (55)

ith certain (Dirichlet, Neumann, or periodic) boundary conditions, this
ecomposition is unique (or unique up to a vectorial constant that may
oat between the two components). Compared with Eq. (47) , it is plain
o see that the term ∇ × 𝜂( x ) is ignored in Teague’s assumption, making
 silent hypothesis that the transverse flux I ( x ) ∇ 𝜙( x ) is irrotational (see
ig. 19 ). However, it is important to remark that the Teague’s auxiliary
unction does not always exist in practical situations since the transverse
nergy flux may not be conservative, and consequently it would produce
esults that would not adequately match the exact solution. 

In fact, Allen and Oxley [76] had noticed this phase discrepancy
roblem as early as 2001. Ten years later, Schmalz et al. [244] made
 detailed theoretical analysis on the phase discrepancy problem based
n Helmholtz decomposition theorem. They also provided a simulation
xample to demonstrate that the phase discrepancy induced by Teague’s
uxiliary function can be significant [ mean square error (MSE) larger
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han 9%]. In 2014, Zuo et al. [204] examined the effect of the missing
otational term on phase reconstruction and derived the necessary and
ufficient condition for the validity of Teague’s assumption 

 𝐼 ( 𝐱 ) −1 × ∇ 

−2 { ∇ ⋅ [ ∇ 𝐼 ( 𝐱 ) × ∇ 𝜙( 𝐱 ) ] } = 0 (56)

q. (56) shows that if the in-focus intensity distribution is nearly uni-
orm, the phase discrepancy resulting from the Teague’s auxiliary func-
ion is quite small and negligible. This is why the issue of “phase dif-
erences ” has not received enough attention before. However, when the
easured sample exhibits strong absorption, the phase discrepancy may

e relatively large and cannot be neglected, just as shown in the paper
f Schmalz et al. [244] . To compensate the phase discrepancy owing to
eague’s assumption, Zuo et al. [204] further developed a Picard-type

terative algorithm, in which the phase is gradually accumulated until
 self-consistent solution is obtained. A similar iterative compensation
ethod was also proposed by Shanker et al. [245] . Within two to four

terations, the phase discrepancy can be reduced to a negligible level,
nd the exact solution to TIE can be thus obtained. 

At the end of this section, we can conclude that there are at least
our issues need to be addressed for a desired TIE solver: 

1) It should account for inhomogeneous boundary conditions with ex-
perimentally measured boundary signals. 

2) It provides an accurate solution that is free from phase discrepancy.

3) For periodic boundary conditions, the solution to TIE always exists
and is unique up to an arbitrary additive constant. 

4) It should be computationally efficient and strictly convergent (if it
is iterative). 

A further attempt to this objective was recently reported by Zhang
t al. [243] , where a universal solution to TIE is proposed with the
eatures of high accuracy, strict convergence guarantee, applicability
o arbitrarily-shaped regions, and simplified implementation and com-
utation. This method is formally similar to previous iterative solvers
203,204,242,245] except that the maximum intensity assumption is
ntroduced to guarantee the rigorous convergence and simplify the im-
lementation of the iterative algorithm. The comparisons of the different
IE solvers and the associated boundary conditions are summarized in
able 3 . 
able 3 

omparison of the solutions and the boundary conditions of TIE 

Issues Techniques Pros 

TIE solvers Green’s function [141,238] Theoretical anal

Multi-Grid [76,227] Simple and fast 

Zernike polynomials [156,157] Precisely repres

FFT [76,157–159] Fast, easy to im

regularization in

DCT [201,202] Fast, inhomogen

conditions 

Iterative DCT [203] Inhomogeneous

conditions, arbit

Iterative Universal Solution [243] Inhomogeneous

conditions, arbit

convergence gua

Boundary conditions Homogeneous Dirichlet/Neumann 

[231,234] 

Easy to apply, c

different solvers

Periodic [76,157–159] Can be impleme

Inhomogeneous Dirichlet [141] - 

Inhomogeneous Neumann [201–203] Can be measure

aperture 

Phase discrepancy Picard-type iteration [204] Can compensate
To aid the reader, we have uploaded the MATLAB source codes

or 4 typical TIE solvers described in this section: the FFT-based solver
roposed by Paganin and Nugent [159] , the DCT-based solver proposed
y Zuo et al. [202] , the iterative DCT-based solver proposed by Huang
t al. [203] , and the iterative universal solution proposed by Zhang et al.

243] . The code is composed of 4 simulation demo files, 3 experimen-
al demo files, and supplemental experimental data and functions, as
resented in the uploaded files. 

In the simulations, the intensity measurements are designed at a
avelength of 0.633 𝜇m , and the image is composed of 256 ×256
ixels with a pixel pitch of 2.2 𝜇m . The defocused image is taken
t a distance of 1 𝜇m from the object plane. In the first simulation
 “Main_Sim1_Isolated.m ”), we create an isolated object located in the
entral FOV with different types of intensity distribution [ e.g. , uniform
ntensity (Case 1), nonuniform intensity without small intensity val-
es (Case 2), nonuniform intensity with small intensity values (Case
), nonuniform intensity with intensity zeros (Case 4)]. In the second
imulation ( “Main_Sim2_Extended.m ”), the object is extended over the
OV boundary, and the intensity distributions are same as those in the
rst simulation. In the third simulation ( “Main_Sim3_Wave front.m ”),
e simulate a smooth wavefront defined on a circular aperture with
ifferent types of intensity distribution [ e.g. , uniform intensity (Case
), hard-edged Gaussian intensity without small intensity values (Case
), and soft-edged Gaussian intensity with small intensity values (Case
)]. In the fourth simulation ( “Main_Sim4_Arbitrary.m ”), we change the
hape of the aperture arbitrarily, including elliptical aperture (Case 2),
ncomplete elliptical aperture (Case 3), annular aperture (Case 3), in-
omplete annular aperture (Case 4), telescope aperture (Case 5), and
ncomplete telescope aperture (Case 6). 

Three experimental demo files are also provided to validate these TIE
olvers. In the first experiment ( “Main_Exp1_SingleCell.m ”), the sam-
le is an individual HeLa cell located in the central FOV. In the second
xperiment ( “Main_Exp2_Microlens.m ”), the sample is a microlens ar-
ay limited by a (imperfect) rectangular aperture. In the third experi-
ent ( “Main_Exp3_MultipleCells.m ”), several HeLa cells are randomly
istributed within the FOV limited by an (imperfect) octagonal aper-
ure. All experiment data are collected using an off-the-shelf wide-field
icroscope with the built-in Köhler illumination. The condenser aper-

ure diaphragm of the microscope is closed down, and an interference
lter (central wavelength 550 nm ) is inserted in the illumination path
o produce quasi-monochro matic, spatially coherent illumination. For
Cons 

ysis Lack of feasibility 

Low-frequency noise 

ent the optical aberration Circular domain only, difficult to follow 

details 

plement, incorporate 

 reconstruction 

Imply periodic boundary conditions 

eous Neumann boundary Rectangular domain only, aperture required to 

limit the FOV 

 Neumann boundary 

rarily-shaped apertures 

Need several iterations 

 Neumann boundary 

rarily-shaped apertures, strict 

rantee 

Need several iterations 

an be implemented by 

 

“Flat ” (constant phase) at boundary 

nted by FFT-based solver Periodic phase at boundary 

Phase values at boundary required 

d by introducing a hard - 

 the phase discrepancy Need 2-4 iterations 



C. Zuo, J. Li and J. Sun et al. Optics and Lasers in Engineering 135 (2020) 106187 

Fig. 20. Schematic of a wide-field microscope based on the Köhler illumination configuration - 6 f imaging system. 
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ore detailed explanations about the MATLAB source codes, readers can
efer to the associated “Data in Brief ” article entitled “MATLAB source

odes and dataset for transport of intensity equation: a tutorial ”. 

. Image formation of coherent imaging and microscopy 

The basic idea of the computational phase microscopy based on TIE
s to build an accurate forward image formation model and then imple-
ent the phase retrieval algorithm by solving the corresponding inverse
roblem. Although TIE describes the quantitative relationship between
ntensity and phase in the wave propagation, it depends on two restric-
ive assumptions: paraxial approximation and the weak defocusing. On
he other hand, the derivation of TIE, as we discussed in Subsection 2.2 ,
oes not consider the finite aperture effect of the microscopic system.
herefore, in this section, we will consider a more practical microscopic

maging system and present the corresponding image formation models
nder coherent illumination. In addition, the relationship between these
hase imaging models and the original TIE will be discussed. 

.1. Illumination coherence and apertures of a microscopic imaging system 

A typical microscopic imaging system based on Köhler illumination
an be described by the 6 f system [142,178,246] , as shown in Fig. 20 . In
öhler illumination, an image of the light source is focused at the con-
enser aperture diaphragm to produce parallel light through the plane
f the specimen or object. In this imaging system, the incoherent light
ource (the condenser aperture diaphragm) is collimated by the con-
enser lens to produce parallel light through the plane of the specimen
r object. Then the object is imaged by the objective lens to form the fre-
uency spectrum in the objective aperture plane. This spectrum is lim-
ted by the aperture diaphragm of the objective lens and then produces
he image of the object on the image plane. In this imaging model, axial
efocus is usually modeled as an angular spectrum transfer function ap-
lied to the objective aperture. In the following, the formal description
f the imaging is limited to unit (1.0 × ) magnification. An extension to
rbitrary magnification is straightforward. 

In a microscope based on the Köhler illumination configuration,
here are two important apertures that should be considered. The first
s the objective pupil defined by the NA of the objective lens, which
s a dimensionless number that characterizes the range of light angles
ver which the imaging system can accept. The NA of the objective lens
s a very important parameter because it determines the spatial resolu-
ion of the microscope imaging system. For a diffraction-limited optical
maging system, higher NA means it can gather light with larger an-
les, thereby having a more powerful ability to resolve fine specimen
etail. The condenser (illumination) aperture is another very important
perture of a microscope. Generally, people often only notice that the
maging resolution of a microscope is determined by the NA of the ob-
ective lens. In fact, the NA of the illumination has equal importance as
ell [247] (more detailed discussions can be found in Section 6 ). The

ize of the condenser aperture diaphragm can be used to control the NA

f the light cone that illuminates the sample, or equivalently, the spatial
oherence of the illumination. 

Why is the concept of “coherence ” so important in optical imaging?
ecause the coherence is the basic characteristic of light as a wave to
orm interference or diffraction phenomenon, it describes all properties
f the correlation between physical quantities of a single wave, or be-
ween several waves or wave packets. Two beams of light are coherent
hen the phase difference between their waves is constant; they are

ncoherent if there is a random or changing phase relationship. Stable
nterference patterns are formed only by radiation emitted by coherent
ources, ordinarily produced by splitting a single beam into two or more
eams. A laser, unlike an incandescent source, can produce a beam in
hich all the components bear a fixed relationship to each other. When
e discuss the propagation characteristics of light and the derivation of
IE in Section 2 , the optical field is assumed to be perfectly coherent,

.e. , the object is illuminated with a plane wave obtained by collimating
 monochromatic point source. However, in practice, the light source
ay not be strictly monochromatic and is of finite extent. These two

spects are related to the temporal coherence (spectrum) and spatial
oherence (size) of light source, respectively [5,248] . More intuitively,
emporal coherence is a measure of the correlation of light wave’s phase
t different points along the direction of propagation (longitudinal di-
ection). It tells us how monochromatic a source is. Generally, a laser
ith good monochromaticity can be considered as a temporally coher-

nt source. In contrast, a broadband source is temporally incoherent,
uch as the light emitted from the incandescent lamp or the sun. The
patial coherence is a measure of the correlation of a light wave’s phase
t different points transverse to the direction of propagation. It tells us
ow uniform the phase of a wavefront is and is related to the dimension
f the light source. Thus, the light emitted from an ideal point source is
patially coherent, while the light from a highly extended source is spa-
ially incoherent. Fig. 21 gives several typical examples of light sources
ith different degrees of temporal coherence and spatial coherence. In

he general concept, the sunlight is considered completely incoherent,
ut the fact that it would not always be the case. The reason is that al-
hough sunlight is a broadband source (temporally incoherent), it can
e approximated as a point source because the sun is far enough from
s. When the sky is cloudless (the atmospheric scattering effect can be
eglected), the sunlight reaching the earth’s surface can be considered
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Fig. 21. Several typical examples of light sources with different degrees of tem- 

poral coherence and spatial coherence. 

Fig. 22. Illustration of light wave coherence. An incoherent light source emits 

spherically shaped wave-fronts and propagates a certain distance, then passes 

through a pinhole so that the spatial coherence of light is improved. It then 

passes through a narrow wavelength filter to yield quasi-monochromatic light, 

achieving in this way temporal and spatial coherence. 
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Fig. 23. Varying the illumination aperture to control the spatial coherence by 

opening up the condenser diaphragm of a phase contrast microscope. (a) 𝑠 = 
0 . 15 ; (b) 𝑠 = 0 . 3 ; (c) 𝑠 = 0 . 55 ; (d) 𝑠 = 0 . 8 ; (e) 𝑠 = 1 . 0 . 
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patially coherent. Similarly, the laser is not always completely coher-
nt. It is only temporally coherent. In some special cases, e.g. , when the
aser light passes through strongly scattering medium ( e.g. , a rotating
round glass), the spatial coherence of the light will completely vanish.

Let us go back to the microscopic imaging system. In the simplified
llumination path of Fig. 22 , we assume the source is an extended source
ith a broad spectrum (temporally and spatially incoherent). The light

mitted from the source is firstly limited by the condenser aperture di-
phragm (a circular mask with diameter d ), and then passes through
n ideal monochromatic filter (wavelength 𝜆) to form the illumination
eld in the object plane. At this time, if the aperture diaphragm is closed
o the minimum (like an ideal pinhole), the illumination reaching the
bject plane can be regarded as spatially coherent (perfect spherical or
lane waves). However, if the aperture diaphragm is gradually opened
p, the spatial coherence of the illumination field will decrease accord-
ngly. In a microscopic system, the spatial coherence of the illumination
s often quantified by the coherence parameter, which is defined as the
atio of the illumination NA to the objective NA [177,178,246,249] 

 = 

𝑁 𝐴 𝑖𝑙𝑙 

𝑁 𝐴 𝑜𝑏𝑗 

(57) 

he ratio of the illumination NA to the objective NA is equivalent to
he radius ratio of the aperture diaphragm of the condenser to that of
he objective lens. Therefore, by inserting a Bertrand lens or a phase
elescope into the beam path to image the back focal plane of the ob-
ective lens, the coherence parameter can be estimated by measuring
he ratio of the condenser aperture diaphragm to the objective aperture
iaphragm (dashed line in Fig. 23 ). In fact, although s is called “coher-

nce parameter ”, it represents the degree of “incoherence ” of the imaging
ystem. Specifically, a larger s means weaker spatial coherence, so strict
patial coherence requires s →0, and s →∞ refers to complete incoher-
nce. The coherence parameter of the microscopic imaging system is
losely related to image formation. In the case of incoherent imaging,
he sample’s phase component will no longer affect the intensity distri-
ution of the image. For weak phase objects, the microscope behaves
ike a completely incoherent system when s ≥ 1, which means the phase
ffect vanishes [178,179,249] . Therefore, 0 < s < 1 is generally consid-
red partially coherent, which is a beneficial setting for phase imaging.
t can provide higher imaging signal-to-noise ratio (SNR) and improved
maging resolution. The relevant content will be discussed in detail in
ection 6 . In this section, we mainly discuss the image formation model
nd phase retrieval problem under an ideal coherent imaging system. 

.2. Ideal imaging model under coherent illumination 

In the following section, we only consider the case of coherent il-
umination: the light source is a geometric point on the optical axis of
he condenser aperture plane, and it has strict monochromaticity. The
maging process satisfies the ideal coherent imaging model, and can be
escribed as a linear system for complex amplitude. Considering a thin
bject with complex transmittance 𝑇 ( 𝐱) = 𝑎 ( 𝐱) exp [ 𝑗𝜙( 𝐱)] illuminated by
 monochromatic plane wave, the complex amplitude distribution in the
bject plane can be expressed as 

 0 ( 𝐱 ) = 𝑇 ( 𝐱 ) = 𝑎 ( 𝐱 ) exp [ 𝑗𝜙( 𝐱 ) ] (58)

ithout loss of generality, we assume that the plane wave illumina-
ion has unit intensity. The complex amplitude distribution in the image
lane U i ( x ) can be represented as the convolution of the complex am-
litude distribution of the ideal object field U 0 ( x ) and the point spread

unction (PSF) of the imaging system h ( x ) 

 𝑖 ( 𝐱 ) = 𝑈 0 ( 𝐱 ) ∗ ℎ ( 𝐱 ) (59)

hus, the captured image intensity can be expressed as 

 𝑖 ( 𝐱 ) = 𝑈 𝑖 ( 𝐱 ) 𝑈 

∗ ( 𝐱 ) = 

||𝑈 0 ( 𝐱 ) ∗ ℎ ( 𝐱 ) ||2 (60)
𝑖 
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Fig. 24. The first four orders of Bessel function of the first kind. 

Fig. 25. Intensity distribution of Airy disk. (a) 2D intensity distribution of Airy 

disk; (b) cross-sections of Airy disk intensity and Airy function; (c) the zero- 

crossings of the intensity distribution of Airy disk. 
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aking Fourier transform on both sides of Eq. (59) , the following ex-
ression in the frequency domain can be obtained: 

̂
 𝑖 ( 𝐮 ) = �̂� 0 ( 𝐮 ) 𝐻 ( 𝐮 ) (61)

he Fourier transform of the intensity passing through the imaging sys-
em can be expressed as 

 ̂𝑖 ( 𝐮 ) = �̂� 𝑖 ( 𝐮 ) ⊗ �̂� 

∗ 
𝑖 ( 𝐮 ) = ℱ 

{ |||ℱ 

−1 [�̂� 0 ( 𝐮 ) 𝐻 ( 𝐮 ) 
]|||2 
} 

(62)

here 𝑈 0 ( 𝐮 ) and �̂� 𝑖 ( 𝐮 ) are the Fourier transforms of the complex
mplitudes U 0 ( u ) and U i ( u ), respectively, and 𝐻 ( 𝐮 ) = ℱ { ℎ ( 𝐱 ) } is the
ransfer function under coherent illumination. For a diffraction-limited
berration-free imaging system, the coherent transfer function is just
he pupil function of the objective 𝐻 ( 𝐮 ) = 𝑃 ( 𝐮 ) , which is a standard circ
unction with unit amplitude across the passband (without attenuation)
2,5] . This indicates that we cannot get an ideal point when imaging of
n ideal point object even with a perfect aberration-free lens, instead,
e can only obtain a diffraction spot determined by the limited lens
perture. In addition, when the sample is located at a defocused plane
ith a defocus distance Δz , the coherent transfer function is determined
y the product of the pupil function and the angular spectrum transfer
unction of the objective lens [ Eq. (30) ] 

 ( 𝐮 ) = 𝑃 ( 𝐮 ) 𝐻 Δ𝑧 ( 𝐮 ) = 𝑃 ( 𝐮 ) 𝑒 𝑗𝑘 Δ𝑧 
√

1− 𝜆2 |𝐮 |2 , 
𝑃 ( 𝐮 ) = 𝑐 𝑖𝑟𝑐 

( 

𝐮 
𝑁𝐴 ∕ 𝜆

) 

= 

{ 

1 |𝐮 | ≤ 

𝑁𝐴 

𝜆

0 else 
(63)

here NA denotes the numerical aperture of the objective lens. Com-
ared with the pupil function, this expression includes one addi-
ional phase factor to account for the defocusing effect, thus this co-
erent transfer function is often referred to as the defocused pupil
unction. There are two points need to be further elaborated here:
rst, the coherent transfer function is sometimes written as 𝐻 ( 𝐮 ) =

 ( 𝐮 ) exp 
[ 
𝑗𝑘 Δ𝑧 

( √ 

1 − 𝜆2 |𝐮 |2 − 1 
) ] 

, in order to guarantee that it can be

implified into a form without the z -dependence [the term of exp ( jk Δz )].
nder the paraxial approximation without affecting the transverse in-

ensity and phase distribution calculated from Eq. (32) . In addition,
icroscopic systems are generally axisymmetric with respective to the

ptical axis, thus the coherent PSF and transfer function can be more
onveniently expressed with the Fourier (inverse) transform in polar
oordinates 

 ( 𝑟, 𝜃) = ∫
2 𝜋

0 ∫𝜌 𝐻 ( 𝜌, 𝜗 ) 𝑒 𝑗2 𝜋𝑟𝜌 cos ( 𝜃− 𝜗 ) 𝜌𝑑 𝜌𝑑 𝜗 (64)

here ( r, 𝜃) are the polar coordinates corresponding to the spatial coor-
inates ( x, y ) 

 = 𝑟 cos 𝜃

𝑦 = 𝑟 sin 𝜃 (65)

imilarly, ( 𝜌, ϑ) are the polar coordinates corresponding to the spatial
requency coordinates ( u, v ). When the imaging system is axisymmet-
ic, the coherent transfer function is only related to the variable 𝜌, so
q. (64) can be further simplified as 

 ( 𝑟 ) = ∫𝜌 𝐻 ( 𝜌) 𝐽 0 ( 2 𝜋𝑟𝜌) 2 𝜋𝜌𝑑𝜌 (66)

here J 0 is a zero-order Bessel function of the first kind, which is defined
s 

𝐽 0 ( 𝑥 ) = 

1 
2 𝜋 ∫

2 𝜋

0 
𝑒 𝑗𝑥 cos ( 𝜃− 𝜗 ) 𝑑𝜗 

𝜃 independent integration 
= 

1 
2 𝜋 ∫

2 𝜋

0 
𝑒 𝑗𝑥 cos 𝜗 𝑑𝜗 (67)

Eq. (66) is so-called Hankel transform, which is the Fourier trans-
orm for the axially symmetric function, and is also a special case of
he traditional Fourier transform. It is not difficult to prove that the
ankel forward transform has exactly same form as its inverse trans-

orm. For an ideal in-focus diffraction-limited optical system, the co-
erent transfer function is just the pupil function of the objective lens

 ( 𝜌) = 𝑃 ( 𝜌) = c 𝑖𝑟𝑐 
(

𝜌

𝑁𝐴 ∕ 𝜆

)
, and the corresponding PSF can be expressed

s 

 ( 𝑟 ) = ∫𝜌 c 𝑖𝑟𝑐 

( 

𝜌

𝑁𝐴 ∕ 𝜆

) 

𝐽 0 ( 2 𝜋𝑟𝜌) 2 𝜋𝜌𝑑𝜌 = 

𝑁𝐴 

𝑟𝜆
𝐽 1 

(
2 𝜋𝑟 𝑁𝐴 

𝜆

)
= 𝜋

(
𝑁𝐴 

𝜆

)2 [ 2 𝐽 1 ( ̄𝑟 ) 
�̄� 

] 
(68) 

here J 1 is the first-order Bessel function of the first kind, as plotted in
ig. 24 . �̄� is the normalized version of r , �̄� = 2 𝜋 𝑁𝐴 

𝜆
𝑟 . Then the intensity

istribution corresponding to Eq. (68) becomes 

 𝑃𝑆𝐹 ( 𝑟 ) = |ℎ ( 𝑟 ) |2 = 𝜋
(
𝑁𝐴 

𝜆

)4 [ 2 𝐽 1 ( ̄𝑟 ) 
�̄� 

] 2 
(69)

q. (69) is called intensity PSF, which is usually used to describe the
maging characteristics of an incoherent imaging system. Since 

𝐽 1 ( ̄𝑟 ) 
�̄� 

is
lso an Airy function, this intensity distribution is also called “Airy disk ”,
s shown in Fig. 25 . It can be observed that 83.8% of the incident light
nergy is concentrated in the central bright spot, and the first intensity
ero-crossing appears at the position of 0 . 611 𝜆 . 
𝑁𝐴 
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Similarly, when there is a defocus of distance Δz , the coherent trans-
er function [ Eq. (63) ] can be expressed as 

 ( 𝜌) = 𝑃 ( 𝜌) 𝑒 𝑗𝑘 Δ𝑧 
√
1− 𝜆2 𝜌2 , 

𝑃 ( 𝜌) = 𝑐 𝑖𝑟𝑐 

( 

𝜌

𝑁𝐴 ∕ 𝜆

) 

= 

{ 

1 𝜌 ≤ 

𝑁𝐴 

𝜆

0 else 
(70) 

nder the paraxial approximation, the angular spectrum diffraction
erm in Eq. (70) can be approximated by the Fresnel angular spectrum
ransfer function [ Eq. (32) ] 

 ( 𝜌) = 𝑃 ( 𝜌) 𝑒 − 𝑗𝜋𝜆Δ𝑧 𝜌2 (71)

ere the z dependence factor has been omitted. It should be noted that
n most literature concerning the OTF [250–252] , Eq. (71) is often repre-
ented in a normalized coordinate system to simplify the relevant anal-
sis and calculation, i.e. , the following normalized variables are intro-
uced 

̄ = 

2 𝜋
𝜆
𝑁𝐴 𝑟 = 𝑘 𝑁𝐴 𝑟 (72)

̄ = 2 𝑘 
( 

1 − 

√ 

1 − 𝑁𝐴 

2 
) 

𝑧 
𝑝𝑎𝑟𝑎𝑥𝑖𝑎𝑙 

≈ 𝑘𝑁𝐴 

2 𝑧 (73)

̄ = 

𝜌

𝑁𝐴 ∕ 𝜆
(74) 

here k denotes the wave number, 𝑃 ( ̄𝜌) is the pupil function of the
bjective lens, �̄� is the normalized radical transverse coordinate, �̄� is
he normalized axial coordinate, and �̄� is the normalized radial spatial
requency (more detailed discussions about the normalized coordinate
ystem can be found in Section 8 ). In such a normalized coordinate sys-
em, the paraxial coherent transfer function of Eq. (67) can be rewritten
s 

 ( ̄𝜌) = 𝑃 ( ̄𝜌) 𝑒 − 
1 
2 𝑗 ̄𝑧 ̄𝜌

2 
(75)

ubstituting Eq. (75) into Eq. (66) , we can get the expression of the
efocused PSF in the normalized coordinate 

 �̄� ( ̄𝑟 ) = ∫�̄� 𝑃 ( ̄𝜌) 𝑒 − 
1 
2 𝑗 ̄𝑧 ̄𝜌

2 
𝐽 0 ( ̄𝑟 ̄𝜌) 2 𝜋�̄�𝑑 ̄𝜌 (76) 

n fact, the defocused PSF represented by Eq. (76) is also called 3D PSF
ecause it describes the 3D complex amplitude distributions in the im-
ge space formed by an ideal point source. This expression will be dis-
ussed in detail in Section 8 when we talk about 3D phase imaging. 

Under coherent illumination, the image formation process is linear
bout the complex amplitude. However, due to the effect of the com-
lex conjugation operator [ Eq. (60) ], the captured intensity is linearly
elated neither to the amplitude nor to the phase of the sample, posing a
ajor obstacle for phase retrieval. On the other hand, for an aberration-

ree imaging system with an infinite aperture, ( H ( u ) ≡1 and ℎ ( 𝐱 ) = 𝛿( 𝐱 ) ),
 𝑖 ( 𝐱 ) = 𝐴 

2 ( 𝐱 ) , which means that in the in-focus plane the phase compo-
ent of the object cannot be observed at all. Therefore, the basic idea
f the TIE phase retrieval is to generate phase contrast by introducing
efocusing into the pupil function, so that the phase information can be
onverted into the intensity information. Then the inverse problem of
hase recovery can be solved by linearizing the quantitative relationship
etween the intensity and the phase distribution. 

.3. Image formation model, phase transfer function and linearization 

onditions 

The major obstacle in the phase retrieval problem is the nonlinear
elationship between the intensity (amplitude) and phase of the sample
n the image formation process. Although this nonlinear inverse prob-
em can be solved by the iterative phase retrieval algorithms [59,60,87] ,
hey rely on computationally intensive iterative operations, and there is
o theoretical convergence guarantee. Therefore, deterministic phase
etrieval methods are more attractive in this regard. The key to deter-
inistic phase retrieval is how to linearize the quantitative relationship

etween the intensity and phase information. 
.3.1. Contrast transfer function model under the weak object 

pproximation 

In Subsection 2.2 , we derived TIE in three different ways. However,
ll these derivations rely on two restrictive conditions: paraxial approx-
mation and weak defocusing approximation. TIE is valid if and only
f the two conditions are satisfied simultaneously, and thus, the linear
elationship between the intensity and the quantitative phase can be
stablished. However, these two conditions are sometimes difficult to
eet in practical experimental conditions. For example, when imaging
ith a high NA objective, the paraxial approximation is untenable. On

he other hand, when the defocus distance is too large to meet the weak
efocusing approximation, the phase solved by TIE will also be deviated
detailed discussions about this issue can be found in Section 5 ). 

It should be noted that there is more than one approach to achieve
inearization. The phase contrast transfer function (CTF) method based
n weak object approximation is another classical method for determin-
stic phase retrieval [163,221,253–256] . In the following section, we
ill derive the transfer functions of weak objects under coherent illumi-
ations based on the scalar diffraction theory. When a weak object (the
bsorption and phase of the object is sufficiently small) is illuminated by
 coherent plane wave, the complex amplitude of the field just behind
he object can be simplified as 

 0 ( 𝐱 ) = 𝑇 ( 𝐱 ) = 𝑎 ( 𝐱 ) exp [ 𝑗𝜙( 𝐱 ) ] 
𝜙( 𝐱 ) ≪ 1 
≈ [ 𝑎 0 + Δ𝑎 ( 𝐱)][1 + 𝑗𝜙( 𝐱)] (77) 

Δ𝑎 ( 𝐱 ) ≪ 𝑎 0 ≈ 𝑎 0 + Δ𝑎 ( 𝐱 ) + 𝑗 𝑎 0 𝜙( 𝐱 ) 

here a 0 denotes the direct current (DC) component of the incident
lane wave undisturbed by the object. The other two terms represent
he diffracted light components. The second term can be further writ-
en as Δ𝑎 ( 𝐱 ) = 𝑎 0 𝜂( 𝐱 ) , representing the contribution from the absorption
ariations 𝜂( x ); and ja 0 𝜙( x ) represents the contribution of the phase
omponent. Taking Fourier transform of Eq. (77) , the spectrum of the
ransmitted complex amplitude can be expressed as 

̂
 0 ( 𝐮 ) = 𝑎 0 

[
𝛿( 𝐮 ) + ̂𝜂( 𝐮 ) + 𝑗 ̂𝜙( 𝐮 ) 

]
(78) 

ubstituting Eq. (78) into Eq. (62) and after appropriate simplification,
nd the spectral distribution of the intensity image at the propagation
istance z can be obtained as 

 ̂Δ𝑧 ( 𝐮 ) = 𝐼 0 { 𝛿( 𝐮 ) − 2 cos 
[ 
𝑘 Δ𝑧 

( √ 

1 − 𝜆2 |𝐮 |2 − 1 
) ] 

�̂�( 𝐮 ) 

− 2 sin 
[ 
𝑘 Δ𝑧 

( √ 

1 − 𝜆2 |𝐮 |2 − 1 
) ] 

�̂�( 𝐮 )} 
(79) 

here 𝐼 0 = 𝑎 2 0 . Noted that when deriving Eq. (79) , the high-order diffrac-
ion term (the interaction between the intensity component and the
hase component is neglected, leaving only their first-order terms) and
he finite-aperture effect are omitted (assume the objective aperture is
nfinite, i.e., P ( u ) ≡1). By further invoking the paraxial approximation,
he angular spectrum diffraction terms in Eq. (79) can be approximated
y the Fresnel transfer function of Eq. (33) , thus Eq. (79) can be further
implified as [163,221,253] 

 ̂Δ𝑧 ( 𝐮 ) = 𝐼 0 { 𝛿( 𝐮 ) − 2 cos 
(
𝜋𝜆Δ𝑧 |𝐮 |2 )�̂�( 𝐮 ) + 2 sin 

(
𝜋𝜆Δ𝑧 |𝐮 |2 )�̂�( 𝐮 )} (80) 

t can be seen from the above equation that 𝐼 Δ𝑧 consists of three
omponents: the DC component I 0 𝛿( u ) (average intensity or back-
round intensity), the intensity component associated with the absorp-
ion 2 𝐼 0 cos 

(
𝜋𝜆Δ𝑧 |𝐮 |2 )�̂�( 𝐮 ) , and the intensity component associated with

he phase 2 𝐼 0 sin 
(
𝜋𝜆Δ𝑧 |𝐮 |2 )�̂�( 𝐮 ) . In this case, the intensity now has a lin-

ar relationship with the absorption function a ( x ) and the phase function
( x ). The cosine and sine coefficients in front of the absorption function
nd the phase function are usually termed as absorption transfer function

ATF, H A ( u )] and phase transfer function [PTF, H P ( u )], respectively. 

 𝐴 ( 𝐮 ) = cos 
(
𝜋𝜆Δ𝑧 |𝐮 |2 ) (81) 

 𝑃 ( 𝐮 ) = sin 
(
𝜋𝜆Δ𝑧 |𝐮 |2 ) (82) 
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The ATF and PTF demonstrate the relative strengths of the
nformation-bearing portion (amplitude or phase) of the image and the
ver-present background. Although the linearization between the inten-
ity and the phase has been achieved based on weak object approxima-
ion, the effects of absorption and phase are still coupled together in
he captured intensity images. In order to recover the phase, these two
omponents need to be decoupled. It can be found from Eqs. (81) and
82) that the absorption and phase transfer functions, i.e. , cosine and
ine functions are the even and odd functions of the defocusing distance
z , respectively. This indicates that the intensity variation induced by

he equal but opposite defocusing is the same for the absorption com-
onents, but is opposite for the phase components. Therefore, it can
e similar to TIE to collect an in-focus image and two defocused images
ith an equal amount and opposite direction as I 0 and I ± Δz respectively.
hus, similar to the axial intensity derivative estimation in TIE, we can
apture two intensity images with equal and opposite defocus. The sub-
raction of these two images gives a pure phase-contrast image with the
ffect of the absorption component canceled out 

𝐼 Δ𝑧 ( 𝐮 ) − 𝐼 −Δ𝑧 ( 𝐮 ) 
4 𝐼 0 

= 𝐻 𝑃 ( 𝐮 ) ̂𝜙( 𝐮 ) (83)

his leads to a linear relationship between the phase and the inten-
ity, and the quantitative phase information can then be reconstructed
y Fourier space deconvolution with the PTF H P ( u ). It should also be
oted that since H P ( u ) tends to oscillate with the increase in the spa-
ial frequency gradually, it contains zero-crossings, especially at higher
patial frequencies. In order to avoid the zero crossings in the pass-
and, the defocus distance should be sufficient small Δz →0 [256,257] ,
nd thus the sinusoidal term in the PTF H P ( u ) can be approximated
s sin 

(
𝜋𝜆Δ𝑧 |𝐮 |2 ) ≈ 𝜋𝜆Δ𝑧 |𝐮 |2 , so that the oscillation can be effectively

voided. However, it may reduce the phase contrast for lower spatial
requencies, which compromises the SNR of the phase reconstruction
254,258] . In addition, based on this weak defocusing approximation,
q. (83) can be further simplified to TIE with uniform intensity distri-
ution [ Eq. (42) ]. We will study this case in detail in Subsection 5.1 .
nother possible solution to zero-crossings is to synthesize and opti-
ize the PTF by using more than two images at multiple defocusing
istances [200,256,259,260] . This method allows the response of PTF
o be optimized over a wider range of spatial frequency at the expense
f additional data acquisition and processing, which will be discussed
n Subsection 5.2 . 

.3.2. Mixed transfer function model under the slowly varying object 

pproximation 

As seen above, the TIE or CTF methods rely on different assump-
ions. TIE is valid for short propagation distances and the paraxial ap-
roximation. On the other hand, the CTF method effectively extends
he linearization range from weak defocusing to an arbitrary defocus-
ng distance (no longer requires Δz →0), but the derivation is based on
he assumption that the object has weak absorption and phase distribu-
ions. When the object is thick or strongly absorptive, the approximation
f Eq. (78) is no longer valid. In order to extend the validity of the ap-
roximations made in CTF, some researchers attempted to replace the
eak object approximation with an alternative approximation so-called

slowly varying object ” [221,256,259–262] . First, based on Eq. (20) , the
ourier spectrum of the intensity distribution can be represented in the
ifferential spatial domain [221] 

 ̂Δ𝑧 ( 𝐮 ) = ∫ 𝑇 
(
𝐱 − 

𝜆Δ𝑧 𝐮 
2 

)
𝑇 * 
(
𝐱 + 

𝜆Δ𝑧 𝐮 
2 

)
exp { −2 𝑗𝜋𝐱 ⋅ 𝐮 } 𝑑𝐱 (84)

here 𝑇 ( 𝐱 ) = 𝑎 ( 𝐱 ) exp [ 𝑗𝜙( 𝐱 ) ] is the complex transmittance of the object.
n the slowly varying object approximation, the phase change is assumed
o be much smaller than 1 within a small spatial neighborhood ( ± 

𝜆Δ𝑧 𝐮 
2 )

𝜙
(
𝐱 − 

𝜆Δ𝑧 𝐮 
2 

)
− 𝜙

(
𝐱 + 

𝜆Δ𝑧 𝐮 
2 

)|||≪ 1 (85)
|
n addition, we assume that the absorption is also slowly varying and
atisfies the following first-order Taylor approximation 

 

(
𝐱 ± 

𝜆Δ𝑧 𝐮 
2 

)
≈ 𝑎 ( 𝐱 ) ± 

𝜆Δ𝑧 𝐮 
2 

⋅ ∇ 𝑎 ( 𝐱 ) (86)

ubstituting Eq. (85) and Eq. (86) into Eq. (84) yields 

 

(
𝐱 − 

𝜆Δ𝑧 𝐮 
2 

)
𝑇 * 
(
𝐱 + 

𝜆Δ𝑧 𝐮 
2 

)
= 𝑎 

(
𝐱 − 

𝜆Δ𝑧𝑢 
2 

)
𝑎 
(
𝐱 + 

𝜆Δ𝑧 𝐮 
2 

)
exp 

{ 

𝑗 
[
𝜙
(
𝐱 − 

𝜆Δ𝑧 𝐮 
2 

)
− 𝜙

(
𝐱 + 

𝜆Δ𝑧 𝐮 
2 

)]} 

𝑎 
(
𝐱 − 

𝜆Δ𝑧 𝐮 
2 

)
𝑎 
(
𝐱 + 

𝜆Δ𝑧 𝐮 
2 

){ 

1 + 𝑗 
[
𝜙
(
𝐱 − 

𝜆Δ𝑧 𝐮 
2 

)
− 𝜙

(
𝐱 + 

𝜆Δ𝑧 𝐮 
2 

)]} 

(87) 

Substituting Eq. (87) into Eq. (84) and then simplifying the equation
sing the weak absorption approximation 

 ̂Δ𝑧 ( 𝐮 ) = ∫ 𝑎 
(
𝐱 − 

𝜆Δ𝑧 𝐮 
2 

)
𝑎 
(
𝐱 + 

𝜆Δ𝑧 𝐮 
2 

)
{ 

1 + 𝑗 
[
𝜙
(
𝐱 − 

𝜆Δ𝑧 𝐮 
2 

)
− 𝜙

(
𝐱 + 

𝜆Δ𝑧 𝐮 
2 

)]} 

exp { −2 𝑗𝜋𝐱 ⋅ 𝐮 } 𝑑𝐱 

≈ 𝐼 
𝜙= 0 
Δ𝑧 ( 𝐮 ) + 2 sin 

(
𝜋𝜆Δ𝑧 |𝐮 |2 )ℱ 

{
𝐼 0 ( 𝐱 ) 𝜙( 𝐱 ) 

}
+ cos 

(
𝜋𝜆Δ𝑧 |𝐮 |2 )𝜆Δ𝑧 

2 𝜋
ℱ 

{
∇ ⋅

[
𝜙( 𝐱 ) ∇ 𝐼 0 ( 𝐱 ) 

]}
(88) 

here 

 ̂

𝜙=0 
Δ𝑧 ( 𝐮 ) = ∫ 𝑎 

(
𝐱 − 

𝜆Δ𝑧 𝐮 
2 

)
𝑎 * 
(
𝐱 + 

𝜆Δ𝑧 𝐮 
2 

)
exp { −2 𝑗𝜋𝐱 ⋅ 𝐮 } 𝑑𝐱 (89)

epresents the Fourier transform of the intensity distribution at a dis-
ance Δz when the object phase component is neglected (the object is
ssumed to be purely absorptive). Eq. (88) is called the mixed trans-
er function proposed by Guigay et al. [259] . Compared with Eq. (80) ,
hese two equations share some similarities. For example, the sine and
osine terms of ATF and PTF [ Eqs. (81) and (82) ] are still clearly
xpressed in Eq. (88) . In addition, the mixed model is more compli-
ated, and the phase information is not completely linearized with the
ntensity. Therefore, the phase cannot be directly retrieved based on
n-step deconvolution based on the PTF, and nonlinear iterative algo-
ithms are needed to get the accurate solution. Unlike the weak ob-
ect approximation, the derivation of the mixed model relies on the
lowly varying object approximation, which imposes restrictions on the
hase/absorption spatial gradients rather than their absolute values.
hus, the slowly varying object is a more relaxed and reasonable as-
umption than the weak object approximation [260] . In this case, if
e expand the third term of Eq. (88) by the chain rule (according to
 

2 [𝜙( 𝐱 ) 𝐼 0 ( 𝐱 ) ] = ∇ ⋅
[
𝜙( 𝐱 ) ∇ 𝐼 0 ( 𝐱 ) 

]
+ ∇ ⋅

[
∇ 𝜙( 𝐱 ) 𝐼 0 ( 𝐱 ) 

]
) and combine similar

erms, the following expression can be obtained [259] 

 ̂Δ𝑧 ( 𝐮 ) = 𝐼 
𝜙=0 
Δ𝑧 ( 𝐮 ) + 2 sin 

(
𝜋𝜆Δ𝑧 |𝐮 |2 )ℱ 

[
𝐼 0 ( 𝐱 ) 𝜙( 𝐱 ) 

]
+ cos 

(
𝜋𝜆Δ𝑧 |𝐮 |2 )𝜆Δ𝑧 

2 𝜋
ℱ 

{
∇ ⋅ 𝐼 0 ( 𝐱 ) ∇ 𝜙( 𝐱 ) 

}
(90) 

It is not difficult to prove that under weak defocusing approxima-
ion, Eq. (88) can be simplified to the standard TIE [ Eq. (10) ]. On the
ther hand, if the absorption is assumed to be weak 𝑎 ( 𝐱 ) = 𝑎 0 + Δ𝑎 ( 𝐱 ) ,
a ( x ) ≪ a 0 , Eq. (90) can be reduced to the CTF model [ Eq. (80) ]. This
eans that the weak phase approximation 𝜙( u ) ≪ 1 used in the CTF
odel [ Eq. (80) ] can be relaxed to slowly varying phase approximation

𝜙
(
𝐱 − 

𝜆Δ𝑧 𝐮 
2 

)
− 𝜙

(
𝐱 + 

𝜆Δ𝑧 𝐮 
2 

)||||≪ 1 . In particular, the weak phase approx-

mation requires that the phase value is much smaller than 1, which is
ifficult to satisfy for most biological samples. In contrast, the slowly
arying object approximation only requires that the phase variation is
uch less than 1 within a small spatial neighborhood ( ± 

𝜆Δ𝑧 𝐮 
2 ), and thus

s more universal than the weak object approximation. 

.3.3. Intensity difference model without approximations 

In 2015, Sun et al. [206] further proposed an intensity difference
odel without approximations. This method is derived based on the an-

ular spectrum diffraction formula, and invokes no approximations in
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Table 4 

Comparison of phase retrieval methods and required approximation conditions 

Methods Approximation conditions Phase reconstruction algorithms 

TIE [141,159,202] Paraxial approximation 

𝜆2 |u |2 ≪ 1 
− 𝑘 𝜕𝐼( 𝐱) 

𝜕𝑧 
= ∇ ⋅ [ 𝐼( 𝐱 )∇ 𝜙( 𝐱 )] 

Fourier solution: 

𝜙( 𝐱) = − 𝑘 ℱ −1 { 𝑗2 𝜋u 

4 𝜋2 |u |2 + 𝜀 ℱ [ 1 
𝐼( 𝐱) ℱ 

−1 { 𝑗2 𝜋u 

4 𝜋2 |u |2 + 𝜀 ℱ [ 𝜕𝐼( x ) 𝜕𝑧 
]}]} 

𝜀 > 0 is a small constant. 
Weak defocusing approximation 

Δz → 0 

Weak absorption TIE 

[158,263] 

Paraxial approximation 

𝜆2 |u |2 ≪ 1 
− 𝑘 𝜕𝐼( 𝐱) 

𝜕𝑧 
= 𝐼 0 ∇ 2 𝜙( 𝐱) 

Fourier solution: 

𝜙( 𝐱) = 𝑘 
𝐼 0 
ℱ −1 { 1 

4 𝜋2 |u |2 + 𝜀 ℱ [ 𝜕𝐼( 𝐱) 𝜕𝑧 
]} 

𝜀 > 0 is a small constant. 

Weak defocusing approximation 

Δz → 0 

Weak absorption approximation 

𝑎 ( 𝐱 ) = 𝑎 0 + Δ𝑎 ( 𝐱 ) , Δ𝑎 ( 𝐱 ) ≪ 𝑎 0 

CTF [163,221,253] Paraxial approximation (optional) 

𝜆2 |u |2 ≪ 1 
𝐼 Δ𝑧 ( u ) = 𝐼 0 [ 𝛿( u ) − 2 cos ( 𝜋𝜆Δ𝑧 |u |2 ) ̂𝜂( u ) + 2 sin ( 𝜋𝜆Δ𝑧 |u |2 ) ̂𝜙( u )] 

Least-square solution: 

𝜙( 𝐱) = ℱ −1 
⎧ ⎪ ⎨ ⎪ ⎩ 

𝐷( u ) 
𝑁 ∑
𝑗=1 

𝐼 Δ𝑧 𝑗 ( u ) sin ( 𝜋𝜆Δ𝑧 𝑗 |u |2 ) − 𝐶( u ) 𝑁 ∑
𝑗=1 

𝐼 Δ𝑧 𝑗 ( u ) cos ( 𝜋𝜆Δ𝑧 𝑗 |u |2 ) 
2 𝐼 0 [ 𝐶( u ) 𝐷( u )− 𝐸 ( u ) 2 ]+ 𝜀 

⎫ ⎪ ⎬ ⎪ ⎭ 
where, 

𝐶( u ) = 
∑𝑁 

𝑗=1 sin 
2 ( 𝜋𝜆Δ𝑧 𝑗 |u |2 ) 

𝐷( u ) = 
∑𝑁 

𝑗=1 cos 
2 ( 𝜋𝜆Δ𝑧 𝑗 |u |2 ) 

𝐸( u ) = 
∑𝑁 

𝑗=1 sin ( 𝜋𝜆Δ𝑧 𝑗 |u |2 ) cos ( 𝜋𝜆Δ𝑧 𝑗 |u |2 ) 
𝜀 > 0 is a small constant. 

Solution of of multi-plane symmetrical defocusing: 

𝜙( 𝐱) = ℱ −1 
⎧ ⎪ ⎨ ⎪ ⎩ 

𝑁 ∑
𝑗=1 

|sin ( 𝜋𝜆Δ𝑧 𝑗 |u |2 ) |2 [ ̂𝐼 Δ𝑧 𝑗 ( u )− ̂𝐼 − Δ𝑧 𝑗 ( u )] 
4 𝐼 0 sin ( 𝜋𝜆Δ𝑧 𝑗 |u |2 ) 𝑁 ∑

𝑗=1 
[ |sin ( 𝜋𝜆Δ𝑧 𝑗 |u |2 ) |2 + 𝜀 ] 

⎫ ⎪ ⎬ ⎪ ⎭ 
Solution of two plane symmetrical defocusing: 

𝜙( 𝐱) = ℱ −1 
[
sin ( 𝜋𝜆Δ𝑧 |u |2 )[ ̂𝐼 Δ𝑧 ( u )− ̂𝐼 − Δ𝑧 ( u )] 

4 𝐼 0 sin 
2 ( 𝜋𝜆Δ𝑧 |u |2 )+ 𝜀 

]
or 

𝜙( 𝐱) = ℱ −1 
[

𝐼 Δ𝑧 ( u )− ̂𝐼 − Δ𝑧 ( u ) 
4 𝐼 0 sin ( 𝜋𝜆Δ𝑧 |u |2 ) 

]

Weak absorption approximation 

𝑎 ( 𝐱 ) = 𝑎 0 + Δ𝑎 ( 𝐱 ) , Δ𝑎 ( 𝐱 ) ≪ 𝑎 0 
Weak phase approximation 

| 𝜙( x )| ≪ 1 or 

Slowly varying phase approximation ||||𝜙(𝐱 − 𝜆Δ𝑧 𝐮 2 

)
− 𝜙

(
𝐱 + 𝜆Δ𝑧 𝐮 

2 

)||||≪ 1 

Mixed CTF transfer 

function [259] 

Paraxial approximation 

𝜆2 |u |2 ≪ 1 

𝐼 Δ𝑧 ( u ) = ̂𝐼 
𝜙=0 
Δ𝑧 ( u ) +2 sin ( 𝜋𝜆Δ𝑧 u 

2 ) ℱ [ 𝐼( 𝐱 ) 𝜙( 𝐱 )] 
+ 𝜆Δ𝑧 

2 𝜋
cos ( 𝜋𝜆Δ𝑧 u 2 ) ℱ {∇ ⋅ [ 𝜙( 𝐱 )∇ 𝐼( 𝐱 )]} 

Iterative solution: 

𝜙( 𝑛 +1) ( 𝐱) = ℱ −1 
{ ∑𝑁 

𝑗=1 {2 sin ( 𝜋𝜆Δ𝑧 𝑗 u 
2 )[ ̂𝐼 Δ𝑧 𝑗 ( u )− ̂𝐼 

𝜙=0 
Δ𝑧 𝑗 

( u )− Δ𝑧 ( 𝑛 ) 
𝑗 
( u )]} ∑𝑁 

𝑗=1 4 𝐼 0 sin 
2 ( 𝜋𝜆Δ𝑧 𝑗 u 2 )+ 𝜀 

} 

where, 

Δ𝑧 ( 𝑛 ) 
𝑗 
( u ) = 𝜆Δ𝑧 𝑗 

2 𝜋
cos ( 𝜋𝜆Δ𝑧 𝑗 u 2 ) ℱ {∇ ⋅ [ 𝜙( 𝑛 ) ( 𝐱 )∇ 𝐼( 𝐱 )]} 

𝜀 > 0 is a small constant. 

𝜙( n ) ( x ) represents the phase of n th iterations. 

Slowly varying absorption approximation 

𝑎 
(
𝐱 ± 𝜆Δ𝑧 𝐮 

2 

)
≈ 𝑎 ( 𝐱 ) ± 𝜆Δ𝑧 𝐮 

2 
⋅ ∇ 𝑎 ( 𝐱 ) 

Intensity difference 

without approximations 

[206] 

None 𝐼 Δ𝑧 ( u ) − 𝐼 − Δ𝑧 ( u ) = 4 𝐴 ( 𝑛 ) 𝑚 
sin [ 𝜔 ( u )] ̂𝜙( u ) + �̂� ( u ) 

Iterative solution: 

𝜙( 𝑛 +1) ( x ) = arctan { ℱ −1 
∑N 

j=1 sin [ω j ( u )][ ̂I Δz j ( u )− ̂I − Δz j ( u )− ̂R 
(n) ( u )] ∑N 

j=1 {2 A 
(n) 
m sin [ω j ( u )]} 2 +ε 

} 

where, 𝜔 𝑗 ( u ) = 𝑘 Δ𝑧 𝑗 (1 − 
√ 

1 − 𝜆2 |u |2 ) 
𝑅 ( 𝑛 ) ( 𝐱) = 𝐴 ( 𝑛 ) 

𝑚 
ℱ −1 { sin [ 𝜔 ( u )] ℱ { 𝐴 ( 𝑛 ) 

𝑒 
( 𝐱 ) 𝑡𝑎𝑛 [ 𝜙( 𝑛 ) ( 𝐱 )]}} 

+ ℱ −1 { cos [ 𝜔 ( u )] ℱ { 𝐴 ( 𝑛 ) 
𝑒 
( 𝐱)}} ℱ −1 { sin [ 𝜔 ( u )] ℱ { 𝐴 ( 𝐱 ) sin [ 𝜙( 𝑛 ) ( 𝐱 )]}} 

− ℱ −1 { sin [ 𝜔 ( u )] ℱ { 𝐴 ( 𝑛 ) 
𝑒 
( 𝐱)}} ℱ −1 { cos [ 𝜔 ( u )] ℱ { 𝐴 ( 𝐱 ) sin [ 𝜙( 𝑛 ) ( 𝐱 )]}} 

𝐴 ( 𝑛 ) 
𝑚 

= 𝑀𝑒𝑎𝑛 { 𝐴 ( 𝐱 ) cos [ 𝜙( 𝑛 ) ( 𝐱 )]} , Mean is the mean value. 

𝐴 ( 𝑛 ) 
𝑒 
( 𝐱) = 𝐴 ( 𝐱) cos [ 𝜙( 𝑛 ) ( 𝐱)] − 𝐴 ( 𝑛 ) 

𝑚 
with 𝐴 ( 𝐱) = 

√
𝐼( 𝐱) 

𝜀 > 0 is a small constant. 

𝜙( n ) ( x ) represents the phase of n th iterations. 
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t  
he derivation process, further extend the validity and universality of the
lgorithm. From the above discussions, we can summarize the various
inearization methods for phase retrieval. The phase retrieval problem is
n ill-posed inverse problem. In general, we have four different models
o solve the inverse problem, which rely on different assumptions: (1)
IE; (2) CTF; (3) mixed transfer function model; (4) intensity difference
odel without approximations. TIE is only established under the condi-

ions of the paraxial approximation and weak defocusing. The advantage
s that it imposes no restrictions on absorption and phase distributions.
he establishment of the CTF method requires to satisfy the weak object
pproximation (or weak absorption and slowly varying phase approxi-
ation) and does not require the paraxial approximation and weak de-

ocusing. The mixed model proposed by Guigay et al. [259] relaxes the
imitations of weak defocusing and weak object approximation (but still
eeds the paraxial approximation). Furthermore, the method can be re-
uced to TIE when the weak defocus approximation is considered and
s equivalent to the CTF method when incorporating the weak absorp-
ion approximation. Finally, the intensity difference model does not rely
n any approximate conditions. However, the disadvantage is that they
annot recover the phase deterministically, and a nonlinear iterative so-
ution is needed. In Table 4 and Fig. 26 , we summarize the mathemati-
al models, establishment conditions, the reconstruction algorithms, and
he intrinsic relationship of these methods. Due to the limited space, this
utorial will not elaborate on their corresponding phase reconstruction
lgorithms. The basic idea behind these nonlinear iterative algorithms
s straightforward: they are both based on the principle of “principal
omponent linearization ”. More specifically, the principal components
f the intensity model contributed by the DC term, and the phase term is
nitially retained, and more complicated higher-order nonlinear terms
such as the last cosine term in Eq. (88) ] are neglected. In this way,
he initial value can be solved in a linearized manner. Then, the resid-
al intensity component is considered as a perturbation term and can
e substituted back into the reconstruction equation to further refine
he obtained phase distribution. In general, compared with the iterative
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Fig. 26. Mathematical models, establishment conditions, and the intrinsic relationship of different phase retrieval algorithms 
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hase retrieval method, the convergence of such “principal component
inearization ” algorithms is much faster and more stable (usually con-
erges within 3-5 iterations). 

.3.4. Finite aperture effect of imaging systems 

When deriving the image formation models and the corresponding
TFs in previous subsections, the limited aperture effect of the objective
ens is neglected [the objective aperture is assumed infinite, i.e., P ( u ) ≡1
n Eq. (63) ]. Obviously, for a practical imaging system, especially for a
icroscope, the limited aperture effect of the objective is one of the

ey factors that restrict the resolution of phase imaging, so it cannot be
eglected. Fortunately, the effect of the objective NA is very simple for
 coherent imaging system. It can be seen from Eq. (62) that the Fourier
ransform of the intensity at the image plane can be expressed as 

 ̂Δ𝑧 ( 𝐮 ) = �̂� Δ𝑧 ( 𝐮 ) ⊗ �̂� 

∗ 
Δ𝑧 ( 𝐮 ) = ℱ 

{ |||ℱ 

−1 [�̂� 0 ( 𝐮 ) 𝑃 ( 𝐮 ) 𝐻 Δ𝑧 ( 𝐮 ) 
]|||2 
} 

(91)

here P ( u ) is the pupil function of the objective lens, and H Δz ( u ) is
he angular spectrum transfer function [ Eq. (63) ]. It is not difficult to
nd that for an ideal coherent imaging system, the effect of the ob-

ective’s NA is equivalent to a low-pass filter in the frequency domain.
he information with spatial frequencies lower than NA / 𝜆 can reach
he image plane, and propagates a distance Δz to form a defocused in-
ensity image [2,4,5] . Thus, when considering the NA of the imaging
ystem, we can simply assume that the measured object is a low-pass
ltered version of the original ideal object. Then all conclusions drawn

n Subsection 4.3 can be directly applied by incorporating a pupil func-
ion P ( u ) into the transfer functions. For example, when considering the
imited NA of an imaging system, the ATF and PTF [ Eqs. (81) and (82) ]
hould be rewritten as 

 𝐴 ( 𝐮 ) = 𝑃 ( 𝐮 ) cos 
(
𝜋𝜆Δ𝑧 |𝐮 |2 ) (92)

 𝑃 ( 𝐮 ) = 𝑃 ( 𝐮 ) sin 
(
𝜋𝜆Δ𝑧 |𝐮 |2 ) (93)
heir curves are plotted in Fig. 27 . Limited by the lens aperture, the
ighest spatial frequency of the recovered phase under coherent illumi-
ation is limited to the coherent diffraction limit, i.e., NA / 𝜆. 

. Axial intensity derivative estimation 

In previous sections, it was shown that the in-focus intensity image
nd the axial intensity derivative are required for solving TIE. However,
he axial intensity derivative 𝜕 I / 𝜕 z cannot be measured directly, but it
an be estimated from multiple intensity images captured at different
efocus distances. The accuracy of the derivative estimation is critical
or reliable phase retrieval based on TIE. In this section, we will discuss
his issue in detail. 

.1. Two-plane axial intensity derivative estimation 

In order to estimate the axial intensity derivative 𝜕 I / 𝜕 z , Teague
141] proposed the classical two-plane finite-difference method in his
riginal TIE paper. He suggested to capture two intensity images with
lightly defocusing, and the defocus distances of the two images are
qual and opposite relative to the central in-focus image. Then, the
entral finite-difference formula is used to estimate the axial intensity
erivative 

𝜕𝐼 ( 𝐱 ) 
𝜕𝑧 

≈ 𝐼 ( 𝐱, Δ𝑧 ) − 𝐼 ( 𝐱, −Δ𝑧 ) 
2Δ𝑧 

(94) 

In this section, we explicitly represent the intensity as a function of
he defocus distance Δz . The two-plane-based finite-difference formula
 Eq. (94) ] is simple and easy to implement. But it also poses a problem:
ow to choose an appropriate defocus distance Δz [141,171,264] . As
hown in the simulation results of Fig. 28 , the accuracy of the deriva-
ive estimation increases with the decrease of the defocus distance Δz ,
nd the spatial resolution of the corresponding reconstructed phase is
lso improved. However, when the defocus distance Δz becomes larger,
he accuracy of the differential approximation will decrease, leading to
phase blurring ” effect, i.e. , the degradation of the spatial resolution, as
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Fig. 27. Transfer functions of a limited aperture imaging system for different defocus distances under coherent illumination. (a) Amplitude transfer function; (b) 

Phase transfer function. 

Fig. 28. The effect of defocus distances on the TIE phase reconstruction under noise-free condition. (a) Small defocus distance: original intensity image (left); axial 

intensity derivative (middle), and recovered phase distribution (right); (b) medium defocus distance; (c) large defocus distance; the square areas with red lines are 

magnified for clarity. 
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hown in Fig. 28 (c). The “phase blurring ” effect is also referred to as
non-linearity error ”. This is because that the locally linear approxima-
ion is assumed in Eq. (94) , and the increase in Δz will inevitably induce
arger errors due to the nonlinear terms of the actual intensity signal.
herefore, mathematically, the smaller the defocus distance Δz is, the
ore accurate the two-plane finite difference can be approximated to

he ideal derivative. 
However, real measurements yield data with noise and discretiza-

ion, which makes the problem more complicated. Under noisy condi-
ions, the defocus distance Δz cannot be too small. Otherwise, the in-
ensity derivative estimate will be overwhelmed by noise, as shown in
ig. 29 (a). The cloud-like low-frequency noise will appear in the recon-
tructed phase, so the defocus distance Δz has to be large enough in
rder to secure an adequate level of SNR, as shown in Fig. 29 (b). The
hase blurring effect becomes apparent when the defocus distance Δz

ecomes large. Thus a compromise is made where Δz is chosen to bal-
nce the high-order (or non-linearity) error and the noise effect. It is
nderstandable that the optimal Δz should depend on both the maxi-
um physically significant frequency of the object and the noise level. 

.1.1. Causes of low-frequency noise and high-frequency phase blurring 

From simulation results shown in the previous section, it can be
ound that when the intensity images are noisy, the phase reconstructed
y TIE will be contaminated by cloud-like low-frequency artifacts. This
s a notorious problem in TIE, and the causes of the strong sensi-
ivity to low-frequency artifacts will be analyzed in this subsection.
or simplicity, let us consider the simplified TIE under the uniform
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Fig. 29. The effect of defocus distance on the TIE phase reconstruction in the presence of noise. (a) Small defocus distance: original intensity image (left), axial 

intensity derivative (middle), and recovered phase distribution (right); (b) large defocus distance: original intensity image (left), axial intensity derivative (middle), 

and recovered phase distribution (right); the square areas with red lines are magnified for clarity. 
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Fig. 30. Comparison of phase transfer functions of TIE and CTF under different 

defocus distances. 
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ntensity [ Eq. (42) ] 

 𝑘 
𝜕𝐼( 𝐱) 
𝜕𝑧 

= 𝐼( 𝐱 ) ∇ 

2 𝜙( 𝐱 ) (95)

t can be written as ∇ 

−2 ↔ − 

1 
4 𝜋2 |𝐮 |2 in the Fourier domain 

̂( 𝐮 ) = 

1 
2 𝜋𝜆|𝐮 |2 ℱ 

{ 

1 
𝐼( 𝐱) 

𝜕𝐼( 𝐱) 
𝜕𝑧 

} 

Δ𝑧 →0 
≈ 1 

4 𝜋𝜆Δ𝑧 |𝐮 |2 𝐼 ( 𝐮 , Δ𝑧 ) − 𝐼 ( 𝐮 , −Δ𝑧 ) 
𝐼 ( 𝐮 ) 

(96)

here �̂�( 𝐮 ) is the Fourier transform of the phase to be recovered, and the
HS is the Fourier transform of the normalized axial intensity derivative
stimated by the two-plane finite difference. Comparing Eq. (96) with
q. (83) , 𝜋𝜆Δz | u | 2 in the denominator of Eq. (96) can be regarded as
he PTF of TIE 

 𝑇 𝐼𝐸 ( 𝐮 ) = 𝜋𝜆Δ𝑧 |𝐮 |2 (97)

he PTF represents the weights of different spatial frequency compo-
ents of the phase that can be transferred into the intensity via defo-
using. The solution to TIE can be interpreted by an inverse filtering
rocess in frequency domain based on the PTF (multiplying the inverse
aplacian 1/ 𝜋𝜆Δz | u | 2 ). It should be noted that the response of the PTF
 TIE ( u ) decrease to 0 with | u | →0 quadratically, so the low-frequency
hase components can hardly be transferred into the intensity via de-
ocusing. For the limiting case of the zero-frequency component, the
onstant phase does not produce any phase contrast. In other words,
ince the low-frequency phase information in the captured intensity sig-
al is weak, it requires a higher gain in the inverse filtering process in
requency domain (the inverse Laplacian has a singularity at the zero-
requency, and the gain near the zero-frequency tends to infinity accord-
ngly). When there is noise, the low-frequency noise components (espe-
ially for the components close to the zero-frequency) will be amplified
y the inverse Laplacian to create cloud-like artifacts superimposed on
he reconstructed phase. 

Next, let us turn to the high-frequency phase blurring effect
hown in Fig. 30 . For a weak phase object, it can be known from
ubsection 4.3.2 that the PTF in the CTF model under weak object ap-
roximation can be represented as 

 𝐶𝑇𝐹 ( 𝐮 ) = 𝑠𝑖𝑛 ( 𝜋𝜆Δ𝑧 |𝐮 |2 ) (98)

Note that the establishment of the linearization does not impose any
estrictions on the defocus distance Δz , so Eq. (83) is still valid for a large
efocus distance. Comparing Eqs. (97) with (98) , it can be found that
ince H TIE ( u ) is not equal to H CTF ( u ), the phases reconstructed from the
TF and TIE may not be identical. In Fig. 30 , we compare the curves of
 TIE ( u ) and H CTF ( u ) with different defocus distances. It can be seen that

he two curves almost overlap at low frequencies as Δz approaches to 0.
evertheless, with the increase in defocus distance Δz , the two functions
egin to diverge. The underlying assumption of TIE’s PTF H TIE ( u ) is the
hase contrast increases linearly with defocus distance and quadrati-
ally with spatial frequencies. This assumption is obviously unreason-
ble since the phase contrast cannot arbitrarily increase with defocus
istance or spatial frequencies (violate the energy conservation law).
hile H CTF ( u ) is valid for large defocusing, the curve tends to gradu-

lly oscillate with the increase in the spatial frequency and the defocus
istance Δz . Therefore, the overestimation of the phase contrast at high
patial frequencies is the primary cause of the phase blurring effect if
ne misuses TIE beyond the small-defocus regime. 

.1.2. Unified framework based on Savitzky-Golay differential filter 

In general, the multiple-plane axial intensity derivative estimation
ethod can improve the high-order error and reduce the noise effect

ompared to the two-plane method. While these strategies have been
hown to work well in many situations, their performance, however,
epends heavily on the noise level and the characteristics of the exper-
mental data [197–199] . With a given set of intensity measurements,
aking an appropriate choice of a suitable algorithm is difficult. For the
igh-order finite-difference with noise-reduction and the least-squares
tting methods, it is also necessary to determine the fitting order, which
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Fig. 31. Frequency domain properties of SGDFs with different orders (n = 15). 

(a) Frequency domain response of the SGDF; (b) frequency domain responses of 

the low-pass filters implied in SGDFs. 
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s quite similar to the case that how to select the optimal defocus dis-
ance in the two-plane finite-difference method. Therefore, it is neces-
ary to establish a theoretical framework that can more systematically
nderstand, analyze, compare, and even improve the existing axial in-
ensity derivative estimation methods. 

To address this problem, Zuo et al. [205] proposed a unified frame-
ork of TIE axial intensity derivative estimation based on the Savitzky-
olay differential filter. The Savitzky-Golay filter was proposed by Sav-

tzky and Golay [265] in 1964. They proven that fitting a polynomial
o a set of input samples and then evaluating the resulting polyno-
ial at a single point within the approximation interval is equivalent

o discrete convolution with a fixed impulse response function ( i.e. , the
avitzky-Golay filter). More specifically, the Savitzky-Golay differential

lter (SGDF) is equivalent to the convolutional expression of the least-
quares fitting method proposed by Waller et al. [189] . To evaluate the
 th derivative at point t using a polynomial of m th degree on 2 𝑛 + 1 data
oints, the coefficients of the SGDF, i.e. , the weights of the convolution
ernel can be calculated as [266] 

 𝑖 = 

𝑚 ∑
𝑘 =0 

( 2 𝑘 + 1 ) ( 2 𝑛 ) ( 𝑘 ) 

( 2 𝑛 + 𝑘 + 1 ) ( 𝑘 +1 ) 
𝑃 𝑛 
𝑘 
( 𝑖 ) 𝑃 𝑛, 1 

𝑘 
( 0 ) (99)

here ( a ) ( b ) is a generalized factorial function ( 𝑎 ) ( 𝑎 − 1 ) ... ( 𝑎 − 𝑏 + 1 ) with

 𝑎 ) ( 0 ) = 1 , and 𝑃 𝑛 
𝑘 
( 𝑡 ) is the Gram polynomial, and 𝑃 𝑛,𝑠 

𝑘 
( 𝑡 ) is its s -order

erivative defined as 

 

𝑛,𝑠 
𝑘 

( 𝑡 ) = 

(
𝑑 𝑠 

𝑑 𝑥 𝑠 
𝑃 𝑛 
𝑘 
( 𝑥 ) 
)
𝑥 = 𝑡 

(100)

implifying the Eq. (99) by setting the fitting order as 𝑚 =
 𝑛, 1 , 𝑚 ( 𝑚 < 2 𝑛 + 1 ) in Eq. (58) , Zuo et al. [205] establish the correspon-
ence between the different finite-difference methods and SGDFs, i.e. ,
east-squares fitting, in particular: 

Conclusion 1: The high-order finite-difference method corresponds
o the SGDF with degree 2 n . 

Conclusion 2: The noise-reduction finite-difference method corre-
ponds to the SGDF with degree 1. 

Conclusion 3: The higher order finite-difference with noise-
eduction method corresponds to the SGDF with degree m ( 𝑚 < 2 𝑛 + 1 ).

Finally, it should be mentioned that the unequally spaced multi-
lane methods [265–267] fall in the class of SGDF without exception,
ince the Savitzky-Golay filter has also been generalized for unequally or
on-uniformly spaced data as its offspring. Even the two-plane method
an be viewed as a special case of the SGDF when 𝑛 = 1 , 𝑚 = 1 . 

The advantage of unifying all of the above derivative estimation
trategies under the framework of SGDF is that it provides great insights
nto the behaviors, the shortcomings, and the performance of these ex-
sting intensity derivative estimation algorithms by only analyzing the
roperties of the corresponding SGDFs. SGDF has many good properties
268] : 

1) The convolution operation is simple and is much faster and easier to
implement than the standard least-squares fitting; 

2) The convolution kernel (weight coefficients) can be easily obtained
using a look-up table generated from the explicit solution, or pre-
calculated using existing routines; 

3) They are optimal differential filters that minimize the NRR subject
to moments preservation constraints [267] . 

Among them, the property (3) is the most important one. From the
erspective of probability and statistics: if the signal can be perfectly
odeled by an m -order polynomial and the observed data are with in-
ependent Gaussian white noise, the m 

th degree SGDF is an unbiased
stimator of the derivative, and the estimation accuracy can reach the
ramer-Rao lower bound [268] . However, in practice, the signal order

s unknown, and hence using a nonoptimal degree ( i.e. , “underfitting ” or
over-fitting ”) will inevitably affect the accuracy and the effect of noise
eduction. From the perspective of signal processing, the NRR 

∑𝑛 
𝑖 =− 𝑛 𝑎 

2 
𝑖 

etermines the noise resistance ability of the SGDF. Through the fre-
uency response decomposition, a SGDF (frequency response H ( e j 𝜔 ))
SG 
an be regarded as the combination of an ideal first-order derivative
lter (frequency domain response is 𝐻 𝑖𝑑𝑒𝑎𝑙 

(
𝑒 𝑗𝜔 

)
= 𝑗𝜔 ) and a low-pass

lter (frequency domain response is H LP ( e 
j 𝜔 )): 

 𝑆𝐺 

(
𝑒 𝑗𝜔 

)
= 𝑗 𝜔 

𝐻 𝑆𝐺 

(
𝑒 𝑗𝜔 

)
𝑗 𝜔 

= 𝐻 𝑖𝑑𝑒𝑎𝑙 

(
𝑒 𝑗𝜔 

)
𝐻 𝐿𝑃 

(
𝑒 𝑗𝜔 

)
(101) 

q. (101) suggests that SGDF is equivalent to calculating the ideal first-
rder differentiation derivative on a smoothed (denoised) version of the
ata. Higher-order SGDFs can approach the ideal differential filter in the
igher frequency range in the frequency domain response. However, the
arger the noise suppression factor, the more sensitive it is to noise. On
he contrary, although the response of the high-frequency part of the
ow-order filter is attenuated, its inherent low-pass filtering has a strong
esistance to noise. From the frequency response (in log scale) of the
ow-pass filter plotted in Fig. 31 , it can be seen the filters have very
at frequency responses in their passbands with modest attenuation in
heir stop band. The frequency response of SGDF is flatter and closer to
he ideal derivative filter at low frequencies as the polynomial degree
ncreases. The increase of the flatness is coincident with a relatively
igher cut-off frequency or a wider low-pass range. Conversely, as the
egree of fitting polynomial decreases, the effect of low-pass filtering
ecomes more evident. 

In summary, when estimating the axial intensity derivative based
n multi-plane intensity measurements, merely modifying of the finite-
ifference scheme in the spatial domain cannot fully utilize all the in-
ensity information of multiple planes. Instead, it converts the contra-
iction in the selection of the defocus distance into the selection of the
lter degree. A higher-degree SGDF gives a more intact phase (with a
ider range of spatial frequencies can be accurately recovered) than a

ower degree one. However, it results in larger NRR than the one as-
umes a smaller order. In other words, lower-order SGDFs always give
stimates of the low-frequency phase with higher SNR, but they suffer
rom the problem of poor response for high-frequency phase variations.
herefore, the tradeoff between low-frequency artifacts and the high-
rder error can still not be fundamentally reconciled by only using a
ingle degree of SGDF. 

.1.3. Convergence with the transfer function theory 

TIE is sensitive to noise in the low-frequency range, due to the weak
ransfer of the low-frequency information in the beam propagation. On
he other hand, another important aspect is the spatial resolution, which
an be refined if the nonlinear contribution is taken into account. Instead
f optimizing the finite-difference schemes in the spatial domain, many
esearchers tried to address the contradiction between low-frequency
oise and high-order error by optimizing the PTF in the frequency do-
ain. The optimal estimation of the axial intensity derivative is closely

elated to the transfer function theory discussed in Subsection 4.3 . The
TF can be utilized to quantitatively analyze the relationship between
hase contrast and defocus distance, thus providing theoretical guid-
nce for optimizing the derivative estimation. There are two options for
olving this problem: 
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Fig. 32. The block diagram of the multi-plane TIE phase recovery method based on OFS. 
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1) Combining TIE with nonlinear phase retrieval algorithms 

The nonlinear contributions in the image contrast formation are non-
egligible when large propagation distances are used. The limitation due
o the linearization can be refined by other methods which take into ac-
ount the nonlinearity of the phase problem. One of such composite
hase retrieval methods was proposed by Gureyev [269] , in order to
mprove the phase solution. This method uses the phase map obtained
ith TIE as an initial approximation and then is refined by Gerchberg-
axton and Fienup method. By using the linear TIE solution as a starting
oint, the amount of computations is reduced, and stagnation traps are
voided. Donnadieu et al. [270] pointed out that the PTF of TIE does
ot coincide with the CTF model under weak object approximation at
arge defocus distance, so the high-frequency phase information cannot
e reconstructed correctly. He also found that iterative phase retrieval
an effectively alleviate the sensitivity of TIE to low-frequency noise,
nd proposed a combined phase recovery scheme similar to Gureyev’s
ethod [269] . Subsequently, Gureyev et al. [256] unified the first-order
orn approximation and TIE into the same theoretical framework, ex-
anding the linearization range of TIE from the weak defocus to near
resnel region. Guigay et al. [259] combined the CTF method with TIE
o derive a mixed transfer function model (discussed in Subsection 4.3 ).
he model reduces to the standard TIE in the small defocus regime and

s equivalent to the CTF model under the weak object approximation.
anger et al. [260] compared TIE, CTF, and the mixed model by simu-
ations and experiments. The mixed model seems to be more accurate
nd robust to noise than the other two methods, but TIE is most accu-
ate without noise. The mixed model combines the advantages of TIE
or strong absorptive samples and the CTF for large defocusing, effec-
ively extending the valid range of TIE phase retrieval. However, the
athematical model becomes more complicated and cannot be fully

inearized. Therefore, it is generally necessary to use TIE or the CTF
ethod to get an initial solution, and then the initial solution is refined

y an iterative procedure to get the final exact solution. 

2) Optimum frequency selection based on multi-plane finite-

difference schemes: 

The simulation results in Subsection 5.1.1 show that in the tradi-
ional two-plane TIE, when the defocus distance is too small, high-
requency details can be well preserved, but the low-frequency noise
s strong. In contrast, when the defocus distance is too large, the low-
requency noise can be suppressed, but high-frequency details vanish.
lthough it is difficult to make a good compromise between these two
spects, it inspires us with a straightforward idea: if the intensity images
t both small and large defocus distances are recorded, we can recon-
truct two different phase images separately. Then, the high-frequency
omponent of the reconstructed phase with small defocus and the high-
requency component of the reconstructed phase with large defocus can
e combined to overcome low-frequency noise and high-order error si-
ultaneously. Based on this idea, Paganin et al. [264] used a pair of

omplementary Gaussian low-pass/high-pass filters to decompose the
hases recovered with both small and large defocusing. Based on the
ransfer function analysis, they derived the optimal cut-off frequency of
he complementary filter. Although this method can effectively improve
he noise robustness of TIE, it is only limited to the case of two defo-
us distances. As an extension of the traditional two-plane TIE, it does
ot make full use of all the captured intensity information. Regarding
he multi-plane finite-difference schemes, Zuo et al. [205] analyzed the
TFs of TIE and CTF, and found that the phase recovered by TIE based
n SGDF can be regarded as a low-pass filtered version of the ideal phase

̂( 𝐱 ) = 𝜙( 𝐱 ) ∗ ℱ 

−1 
{ 

𝐻 𝐿𝑃 

(
𝑒 𝑗𝜔 

)|||𝜔 =Δ𝑧𝜋𝜆𝑢 2 } 

(102)

he frequency response of the low-pass filter H LP is exactly the same as
q. (101) , suggesting that the frequency characteristic of the retrieved
hase using SGDF is determined by the frequency response of the low-
ass filter that is implicit in the SGDF. Considering the phase informa-
ion lies within a certain frequency bandwidth such that it can be cor-
ectly reconstructed by both a lower degree SGDF and a higher degree
ne (here “correct reconstruction ” is quantitatively defined in [205] as
o that the spatial frequencies of the phase infomation is below the 0.3dB
ut-off frequency of the low-pass filter H LP ( e 

j 𝜔 ) implied in the SGDF with
 specific degree), the lower degree filter is preferred for its lower NRR,
r in another word, higher SNR. Higher-order SGDFs are used if and only
f none of the lower-order filters can correctly reconstruct the phase in-
ormation for that given frequency band. Based on this idea, Zuo et al.
205] proposed the optimal frequency selection (OFS) method. Based on
he unified framework based on SGDF, the optimal cut-off frequencies
or SGDFs with different orders are derived, and the best frequency com-
onents of the phase images obtained from SGDFs with various degrees
re extracted by a properly designed complementary filter bank. The
xtracted spatial frequency components of the phase are finally recom-
ined into an optimal composite phase. Compared with the method of
aganin et al. [264] , OFS is more flexible and can be easily extended to
nequally-spaced and arbitrary number of measurement planes. In addi-
ion, SGDF makes full use of all the intensity measurements for the axial
ntensity derivative estimation so that better reconstruction results can
e obtained. However, the disadvantage of this method is that it assumes
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hat the defocus distances are evenly distributed, so a large amount of
ntensity data is still needed. Besides, the selection of the defocus in-
erval was not discussed. To address this problem, Martinez-Carranza
t al. [271] used the noise-reduction finite-difference method of Soto
nd Acosta [272] as an example to discuss the optimal defocus distance
election for multi-plane finite-difference schemes. The selection crite-
ion of the optimal defocus distance can be maximum derivative estima-
ion accuracy [271] or minimum phase reconstruction error [271] , and
he latter one proven to provide better phase reconstruction accuracy.
ased on the findings of Falaggis et al. [200] , Zhong et al. [273] pro-
osed a Gaussian process (GP) regression algorithm to accurately esti-
ate the axial intensity derivative based on exponentially distributed
efocus intervals. Thereby, the number of required images can be sig-
ificantly reduced without compromising the reconstruction accuracy.
artinez-Carranza et al. [274] pointed out that the selection of the defo-

us distance should also be based on the minimum phase reconstruction
rror criterion rather than the maximum derivative estimation accuracy
riterion, and further optimized the defocus distances (unequal inter-
als) based on the OFS principle. Sun et al. [206] further deduced the
onlinear intensity difference model under non-paraxial and non-weak
bject conditions. When the object to be measured has strong absorp-
ion, it firstly adopt the OFS scheme under unequal spacing to obtain
he initial solution. Then the phase is iteratively optimized based on the
onlinear intensity difference model to obtain a more accurate recon-
truction result. 

.2. Regularization methods for ill-posed inverse problems 

No matter which axial intensity derivative estimation methods are
sed, the TIE phase retrieval is an inherently ill-posed inverse problem.
nder uniform intensity approximation, TIE becomes a standard Pois-

on equation [ Eq. (42) ]. The phase retrieval by solving TIE is essentially
 deconvolution based on inverse Laplacian in the frequency domain
 Eq. (96) ]. Similarly, in the CTF method discussed in Subsection 4.3 ,
he defocus-induced phase contrast of a phase object is modeled as the
roduct of the phase distribution and the PTF. The phase reconstruc-
ion also boils down to a frequency-domain deconvolution based on
he corresponding PTF. Alternatively, the frequency-domain deconvo-
utions used in these phase retrieval algorithms can be discretized and
epresented as an energy minimization problem in the spatial domain 

̂ = arg min 
𝚽

1 
2 
‖𝐇𝚽 − 𝐛 ‖2 2 (103) 

here 𝐇 ∈ ℝ 

𝑁×𝑁 represents the matrix representation of the discrete
aplacian or the corresponding PTF, 𝚽 ∈ ℝ 

𝑁 represents the phase vec-
or to be solved, and 𝐛 ∈ ℝ 

𝑁 represents the measurable quantity (the
ormalized axial intensity derivative). In this subsection, we consider
he image contains N pixels and is lexicographically row-stacked into a
ingle column vector. 

As mentioned earlier, due to the presence of noise and the zero-
requency singularity in the PTF of TIE H TIE ( u ), the deconvolution is
ll-conditioned: the solution is highly sensitive to small perturbations
 e.g. , noise and system misalignment) in the measured data. The ill-
osedness is more pronounced for the CTF method because the PTF
 CTF ( u ) is strongly oscillatory at higher spatial frequencies, leading to
umerous zero-crossings. The discussions in previous sections focus on
ow to minimize the ill-posedness by optimizing the defocus distance or
sing multiple intensity measurements. While in mathematics, statistics,
nd computer science, an alternative approach is so-called “regulariza-
ion ”. The principle of regularization is to convert the ill-posed problem
nto a set of well-posed problems by adding prior information to prevent
nrealistic solutions 

̂ = arg min 
𝚽

1 
2 
‖𝐇𝚽 − 𝐛 ‖2 2 + 𝜏𝑅 ( 𝚽) (104)

here 𝑅 ( 𝚽) ∈ ℝ 

𝑁 is the regularization function (also known as the
enalty term), and 𝜏 is the corresponding regularization parameter. Fun-
amentally, the ill-posedness of the deconvolution optimization prob-
em [ Eq. (103) ] is due to the fact that the solution space is too wide,
hereby leading to instability. The regularization method, by introduc-
ng additional constraints, defines a compact set enclosing the true so-
ution, then we can search a physically reasonable solution within the
ntersection between the original solution space and the defined com-
act set such that the obtained solution is stable and continuously de-
endent on the observed data. The well-known and commonly used reg-
larization models, such as Tikhonov [159,275–277] and total variation

TV) [275,278,279] were successfully applied to TIE to suppress the low-
requency artifacts introduced by the ill-posedness of inverse Laplacian.
he most popular Tikhonov regularization approximates the solution
f the inverse problem through a minimization problem by adding a
uadratic regularization term to Eq. (103) . It is very simple and easy to
mplement. However, the denoising ability is limited and often accom-
anied by the excessive suppression of low-frequency components of the
bject. TV regularization is remarkably effective at simultaneously pre-
erving edges whilst smoothing away noise in flat regions, even at low
NR. It is very suitable for the reconstruction of step-like phase sam-
les. However, the algorithm is complex in calculation and sensitive to
he selection of regularization parameters, and the reconstructed phase
uffers from the so-called “staircase effect ”. On the other hand, prior in-
ormation about the sample, such as non-negativity constraints, support
onstraints, and the phase-attenuation duality commonly used in X-ray
iffraction imaging [276,280] can also be effectively integrated into the
ptimization model. The solution space is further constrained based on
he a priori , and thereby the phase reconstruction quality can be further
mproved. 

. Image formation under partially coherent illuminations 

No matter completely coherent fields, partially coherent fields, or
ompletely incoherent fields, the intensity of the optical field is well-
efined and directly accessible. Nevertheless, the definition of “phase ” is
nly limited to fully coherent fields. Teague’s derivation of TIE was also
ased on the assumption of complete coherence [141] , i.e. , a monochro-
atic coherent beam with a well-defined phase. However, as discussed

n Subsection 4.1 , any physically achievable light sources are not strictly
oherent, and in the field of optical microscopy, partially coherent illu-
ination is beneficial to enhance the imaging resolution, improve the

mage quality, and suppress the coherent noise. Therefore, in this sec-
ion, we will introduce the basic knowledge about statistics optics and
oherence theory, and derive the image formation models under par-
ially coherent illuminations. It provides a theoretical basis for the next
ection where the generalization of TIE for partially coherent fields is
iscussed. 

.1. Correlation function representations of partially coherent fields 

The light emitted by most of the light sources in the real world is
enerated by different independent radiation oscillators. They produce
elds that vary in time with highly complicated and irregular wave-

orms. Because of diffraction, these waveforms are greatly modified as
he fields propagate. All photodetectors measure the time-averaged in-
ensity over the waveform. This measurement depends on the integra-
ion time of the detector and the waveform of the light at the detector.
enerally, this waveform is not precisely known. Coherence theory is a
athematical model that is very successful in describing the effects of

his unknown waveform on the observed measurement of time-averaged
ntensity. It is based on the electromagnetic wave theory of light as for-
ulated from Maxwell’s equations and uses statistical techniques to an-

lyze the effects due to fluctuations in the waveform of the field in both
ime and space. As in scalar diffraction theory, it is much more conve-
ient to treat monochromatic fields than it is to deal with fields that
ave complicated time dependencies. Therefore, each of these scalar
omponents is usually represented at some typical points in space by a
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uperposition of monochromatic scalar components. Thus the field am-
litude for a typical monochromatic field U ( x , t ) with angular frequency
 0 is given by can be expressed as 

( 𝐱, 𝑡 ) = 𝑈 ( 𝐱 ) exp 
(
− 𝑗 𝜔 0 𝑡 

)
= 𝐴 ( 𝐱 ) exp 

[
𝑗 
(
𝜙 − 𝜔 0 𝑡 

)]
(105)

he amplitude of the optical field does not change over time, while the
hase changes linearly with time. For a monochromatic deterministic
ptical field, the optical oscillation at each spatial point is the same
n time and spatially infinitely extended, therefore, the time-dependent
nd fast-fluctuating part exp 

(
− 𝑗 𝜔 0 𝑡 

)
of U ( x , t ) are usually ignored, it can

e described deterministically by the 2D scalar complex amplitude U ( x )
r a “phasor ”. In addition, since the exponential term exp 

(
− 𝑗 𝜔 0 𝑡 

)
is the

igenfunction of the linear time-invariant system, the Fourier transform
f the time variable t for the monochromatic coherent field U ( x , t ) can
e expressed as 

 { 𝑈 ( 𝐱, 𝑡 ) } = 𝐴 ( 𝐱 ) exp [ 𝑗𝜙( 𝐱 ) ] 𝛿
(
𝜔 − 𝜔 0 

)
(106)

t seems self-evident that there should be only one spectral peak for the
onochromatic optical field. In the following part, we denote the 2D

calar complex amplitude of the monochromatic coherent field U 𝜔 ( x )
ith angular frequency 𝜔 as the subscript 

 𝜔 ( 𝐱) = 𝐴 𝜔 ( 𝐱) exp 
[
𝑗 𝜙𝜔 ( 𝐱) 

]
(107)

owever, for practical light sources, from the quantum nature of light
mission, the amplitude and phase of the optical field are inevitably
isturbed under the influence of external temperature, humidity, vibra-
ion, and other factors, together with the statistical fluctuations and in-
omogeneous attenuation of the light-emitting atoms. Therefore, the 2D
omplex amplitude function U ( x ) cannot fully describe the random dis-
urbances at different moments or different spatial positions for partially
oherent fields. For the simplest case, we know that for two beams of
he same frequency U 𝜔 1 ( x ) and U 𝜔 2 ( x ) meet in space, and whether the
nterference fringes can be formed are determined by their interference
erms 𝐴 𝜔 1 ( 𝐱) 𝐴 𝜔 2 ( 𝐱) cos 

[
𝜙𝜔 2 ( 𝐱) − 𝜙𝜔 1 ( 𝐱) 

]
. If the phase difference between

he two beams cannot keep stable during the observation time due to the
ight-emitting mechanism or other factors, the interference term may be
ttenuated or even vanish by the random disturbances of the phase in
he time average, thereby directly affecting to the formation of inter-
erence effects. In this case, the complex amplitude representation for
eterministic fields is insufficient. Instead, we need to resort to statisti-
al approaches to describe the coherence of the field. According to the
heory of stochastic processes, the scalar function U ( x , t ) is regarded as
 typical member from the “ensemble ” that characterizes the statisti-
al properties at point 𝐱 and time t of the optical field, or so-called a
realization ”. Without loss of generality, the optical field is assumed to
e a stationary and ergodic process, and its statistical properties do not
hange over time. Fig. 33 shows a typical “realization ” in time (optical
scillations at a fixed point in space over time) in a partially coherent
eld and a typical “realization ” in space (optical oscillations at different

ocations at a given time point). 
From the perspective of temporal frequency (spectrum), the random

isturbance of the optical field U ( x , t ) can also be regarded as the inco-
Fig. 33. The analytic signal: a typical realization (a) as a function of time for
erent superimposition of the deterministic monochromatic fields with
ifferent frequencies. So U ( x , t ) can be written as the following Fourier
ransform 

( 𝐱, 𝑡 ) = ∫ 𝑈 ( 𝐱, 𝜔 ) exp ( − 𝑗𝜔𝑡 ) 𝑑𝜔 (108)

here U ( x , 𝜔 ) is the (time-dependence-free) scalar complex amplitude
f the deterministic monochromatic optical field of the frequency 𝜔
to be distinguished from the monochromatic deterministic field U 𝜔 ( x ),
ere U ( x , 𝜔 ) explicitly includes the variable 𝜔 to represent polychro-
atic decomposition of the partially coherent field], and exp ( − 𝑗𝜔𝑡 )

s the corresponding time-dependent part with high-frequency tempo-
al oscillations. The integral represents the incoherent superposition of
onochromatic optical components of different frequencies. For the de-

cription of the properties of partially coherent fields, U ( x , 𝜔 ) and U ( x ,
 ) are of equal importance (because they are Fourier transform pairs),
hich represent a “realization ” at the spatial point 𝐱 from the ensemble
f an optical field with an arbitrary state of coherence in the temporal
requency domain, characterized by the angular frequency 𝜔 . 

.1.1. Mutual coherence function and cross-spectral density 

As we mentioned in the beginning of this tutorial, the oscillation fre-
uencies of light waves are very high, which is far beyond the temporal
esolution of the current photoelectric imaging device. In fact, the quan-
ity that can be measured is the time-averaged intensity of the optical
eld. For example, for a partially coherent field U ( x , t ), the intensity
aptured by photodetector can be represented as 

( 𝐱) = 

⟨|𝑈 ( 𝐱, 𝑡 ) |2 ⟩ = ⟨𝑈 ( 𝐱 1 , 𝑡 1 ) 𝑈 

∗ ( 𝐱 2 , 𝑡 2 ) ⟩||𝐱 1 = 𝐱 2 = 𝐱, 𝑡 1 = 𝑡 2 
𝑡 = 𝑡 1 

𝜏= 𝑡 2 − 𝑡 1 = ⟨𝑈 ( 𝐱 1 , 𝑡 ) 𝑈 

∗ ( 𝐱 2 , 𝑡 + 𝜏) ⟩||𝐱 1 = 𝐱 2 = 𝐱,𝜏=0 (109) 

here the sharp bracket indicates the time average. Similarly, for co-
erent fields, we can create its two copies U 1 ( x 1 , t 1 ) and U 2 ( x 2 , t 2 ) by
mplitude or wavefront splitting, and then superimpose them in space
o produce interference. The interference pattern captured by the pho-
odetector can be written as [281] 

( 𝐱) = 

⟨ ||𝑈 ( 𝐱 1 , 𝑡 1 ) + 𝑈 ( 𝐱 2 , 𝑡 2 ) ||2 ⟩ 
𝑡 = 𝑡 1 

𝜏= 𝑡 2 − 𝑡 1 = 

⟨ ||𝑈 ( 𝐱 1 , 𝑡 ) + 𝑈 ( 𝐱 2 , 𝑡 + 𝜏) ||2 ⟩ 
= 

⟨ ||𝑈 ( 𝐱 1 , 𝑡 ) ||2 ⟩ + 

⟨ ||𝑈 ( 𝐱 2 , 𝑡 + 𝜏) ||2 ⟩ + 

2Re ⟨𝑈 ( 𝐱 1 , 𝑡 ) 𝑈 

∗ ( 𝐱 2 , 𝑡 + 𝜏) ⟩
= 𝐼( 𝐱 1 ) + 𝐼( 𝐱 2 ) +2Re ⟨𝑈 ( 𝐱 1 , 𝑡 ) 𝑈 

∗ ( 𝐱 2 , 𝑡 + 𝜏) ⟩ (110) 

Comparing Eq. (109) with Eq. (110) , we can find that there is a
ommon correlation function in both of the intensity distributions. This
unction represents the cross-correlation of the light signals at two dif-
erent points 𝐱 𝟏 and 𝐱 𝟐 , which is termed as the mutual coherence function

MCF) [282] . It plays a fundamental role in the coherence theory. For
 stationary and ergodic optical field, MCF is more strictly defined as a
 a fixed point in space; (b) as a function of space for one point in time. 
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Table 5 

Spectral widths of typical light sources together with their coherence times and 

coherence lengths 

Source Δ𝜈c (Hz) 𝜏𝑐 = 1∕ Δ𝜈𝑐 𝑙 𝑐 = 𝑐 𝜏𝑐 

Filtered sunlight 
(
𝜆0 = 400 − 800 𝑛𝑚 

)
3.74 ×10 14 2.67 fs 800 nm 

Light-emitting diode 
(
𝜆0 = 500 𝑛𝑚, Δ𝜆0 = 50n 𝑚 

)
6 ×10 13 16.7 fs 5 𝜇m 

Low-pressure sodium lamp 5 ×10 11 2 ps 600 𝜇m 

Multimode HeNe laser 
(
𝜆0 = 633 𝑛𝑚 

)
1.5 ×10 9 0.67 ns 20 cm 

Single-mode HeNe laser 
(
𝜆0 = 633 𝑛𝑚 

)
1 ×10 6 1 𝜇s 300 m 
orrelation function of the optical oscillations at two points x 1 and x 2 
ith a relative time delay 𝜏 [282] . 

12 ( 𝜏) = Γ
(
𝐱 1 , 𝐱 2 , 𝜏

)
= 

⟨
𝑈 

(
𝐱 1 , 𝑡 1 

)
𝑈 

∗ (𝐱 2 , 𝑡 2 )⟩
= 

⟨
𝑈 

(
𝐱 1 , 𝑡 

)
𝑈 

∗ (𝐱 2 , 𝑡 + 𝜏
)⟩

(111) 

here 𝜏 = 𝑡 2 − 𝑡 1 , the sharp bracket indicates an ensemble average. For
tationary and ergodic processes, the ensemble average is equivalent
o time average, and thus, the correlation functions in Eqs. (109) and
110) are identical. Using the definition of MCF, the intensity can also
e simply expressed as 𝐼( 𝐱) = Γ( 𝐱, 𝐱, 0 ) , and the interference pattern gen-
rated by the superposition of two beams can be expressed as 

( 𝐱) = Γ
(
𝐱 1 , 𝐱 1 , 0 

)
+ Γ

(
𝐱 2 , 𝐱 2 , 0 

)
+2Re Γ

(
𝐱 1 , 𝐱 2 , 𝜏

)
(112)

It should be noted that the MCF is a measurable function that can
e characterized through interferometry, as Eq. (112) shows. The co-
erence theory is to describe or characterize the physical characteristics
f the optical field through its second-order or higher-order statistics
hat can be experimentally measured. The normalized version of MCF is
lso called complex degree of coherence (CDC), which can be defined as
283] 

12 ( 𝜏) = 

Γ12 ( 𝜏) √
Γ11 (0) Γ22 (0) 

= 

Γ12 ( 𝜏) √
𝐼 1 𝐼 2 

(113)

CF and CDC are two very important physical quantities that charac-
erize the degree of correlation between optical oscillations at two dif-
erent locations in the optical field. It is not difficult to understand from
q. (110) that the physical meaning of CDC represents the contrast of
he interferometric fringe pattern formed by the superposition of the
wo beams (for example, it can be explained by the Yang’s double slit
nterference experiments of stationary optical fields [284] : x 1 and x 2 
epresent the position of two pinholes, and 𝜏 = 𝑡 2 − 𝑡 1 represents the
ime delay between the two beams emitted from the two pinholes at a
iven location). The intensity at a given location is proportional to the
eam intensity and the real part of the CDC. It can be proven by using
he Schwarz’s inequality that 0 ≤ | 𝛾12 ( 𝜏)| ≤ 1. It is a properly normalized
orrelation coefficient, so that 𝛾11 (0) = 𝛾22 (0) = 1 . This indicates that the
eld at a point in space must always be perfectly coherent with itself.
ll other values of 𝛾12 ( 𝜏) are generally complex with an amplitude no
ore than one. This indicates that the fields at two different points, or at

he same point after a time delay 𝜏, are generally less than perfectly co-
erent with each other. The magnitude of the complete degree of spatial
oherence (from zero to one) is a measure of the mutual coherence be-
ween the fields at the two test points and after a time delay 𝜏. When the
alue of | 𝛾12 ( 𝜏)| reaches the maximum, i.e. , 1, the optical oscillations
f the two points x 1 and x 2 with a time delay 𝜏 is completely coherent,
nd the fringe contrast reaches the maximum of 1. When the value of
 𝛾12 ( 𝜏)| becomes 0, the optical oscillations of the two points x 1 and x 2 
re completely incoherent, i.e. , no interference fringes can be observed.
n the case of 0 < | 𝛾12 ( 𝜏)| < 1, the optical oscillations of the two points
 1 and x 2 are partially coherent. 

We have already discussed in Subsection 4.1 that the coherence of
he optical field is determined by the temporal characteristics (spec-
ral distribution) and spatial characteristics (spatial extension) of the
ight source. Therefore, there exists two types of coherence quantities,
amely, temporal coherence and spatial coherence, which are included
n the concept of MCF. For example, when x 1 ≠ x 2 , the spatial coherence
f the optical field is included in Γ( x 1 , x 2 , 𝜏), and when 𝜏 ≠0, the tem-
oral coherence of the optical field is included in Γ( x 1 , x 2 , 𝜏). Although
CF completely describes the coherence of the field theoretically, the

elationship between spatial coherence and temporal coherence are en-
angled together. In some cases, we need to analyze the effects of spatial
oherence and temporal coherence separately. First, let us consider the
emporal coherence. In the definition of MCF [ Eq. (111) ], when the two
oints x 1 and x 2 coincide with each other, MCF degenerates into self
oherence function (SCF) at points x 1 and x 2 separately [282] . 

11 ( 𝜏) = Γ
(
𝐱 1 , 𝐱 1 , 𝜏

)
= 

⟨
𝑈 

(
𝐱 1 , 𝑡 + 𝜏

)
𝑈 

∗ (𝐱 1 , 𝑡 )⟩ (114)
22 ( 𝜏) = Γ
(
𝐱 2 , 𝐱 2 , 𝜏

)
= 

⟨
𝑈 

(
𝐱 2 , 𝑡 + 𝜏

)
𝑈 

∗ (𝐱 2 , 𝑡 )⟩ (115)

It can be seen that in the SCF, we only consider the influence of
elative time delay on the correlation function. Therefore, the SCF is
 direct reflection of the temporal coherence of the optical field. Ob-
iously, when 𝜏 = 0 , Γ11 (0) and Γ22 (0) represent the intensities at the
wo points x 1 and x 2 and can be directly measured. It can be seen from
qs. (114) and (115) that the SCF is an autocorrelation function that as-
umes optical oscillations as a temporal stochastic process, which can be
xperimentally measured with use of a Michelson interferometer. The
iener-Khinchin theorem of the stochastic process tells us that the auto-

orrelation function of a stationary stochastic process is closely related
o its power spectral density (PSD) [285] . For a process that is at least
ide-sense stationary, the autocorrelation function Γx ( 𝜏) and PSD S x ( 𝜈)

orm a Fourier transform pair 

 𝐱 ( 𝜔 ) = ∫ Γ𝐱 ( 𝜏) exp ( 𝑗𝜔𝜏) 𝑑𝜏 (116)

𝐱 ( 𝜏) = 

1 
2 𝜋 ∫ 𝑆 𝐱 ( 𝜔 ) exp ( − 𝑗𝜔𝜏) 𝑑𝜔 (117) 

here 𝜔 = 2 𝜋𝜈 = 2 𝜋𝑐 ∕ 𝜆 is the angular frequency of the optical wave,
here 𝜈 is the temporal frequency, c is the speed of light, and 𝜆 is the
avelength. PSD is commonly known as the spectral distribution of the

ight source, so the spectral distribution of the source directly deter-
ines the temporal coherence of the optical field. A light source of

road spectrum has a low degree of temporal coherence, whereas a
ight source with narrow linewidth has a high degree of temporal co-
erence, as illustrated in Fig. 34 . The coherence time of a light source
an be increased by using an optical filter to reduce its spectral width.
he resultant gain of coherence comes at the expense of losing light
nergy. 

In order to quantify the temporal coherence more straightforwardly,
e can define the coherence time and the coherence length based on the
alf-power bandwidth (spectral width) of the source 

𝑐 = 

1 
Δ𝜈

(118) 

 𝑐 = 𝑐 𝜏𝑐 = 

𝑐 

Δ𝜈
= 

�̄�2 

Δ𝜆
(119)

hey are rough measures of the maximum allowable time delay and
ath difference between the beam and its replica for forming the in-
erference. Though not as rigorous as the SCF, the coherence time and
oherence length have been widely used due to their simple and in-
uitive physical implications ( e.g. , the coherence length of a 532 nm

ontinuous laser (0.1 nm spectral width) is 532 nm × 532 nm ÷ 0.1
m = 2.83 mm ). Representative spectral bandwidths for different light
ources, and their associated coherence times and coherence lengths are
rovided in Table 5 . Conversely, we can also measure the PSD of the
ight source by measuring the SCF of the corresponding optical field
as illustrated in Fig. 35 , the interference patterns generated by the
ichelson interferometer with adjustable arm lengths are recorded, the

nterferometric signal is then converted into the spectrogram by Fourier
ransform), which is the basic principle of Fourier transform spectrometer

FTS). 
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Fig. 34. Two random optical fields with different degrees of temporal coherence. (a) Low temporal coherence: optical ossification, complex degree of temproal 

coherence, and power spectral density (from left to right); (b) high temporal coherence: optical ossification, complex degree of temporal coherence, and power 

spectral density (from left to right). 

Fig. 35. The basic principle of Fourier transform spectrometer. 

Fig. 36. Michelson stellar interferometer: measuring the spatial coherence of a 

quasi-monochromatic field by interferometry to infer the dimension of the light 

source. (a) Optical configuration; (b) photograph of a real system. 
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Next, we turn to the spatial coherence. Similar to the SCF, we can de-
ne the Fourier transform of the MCF as the cross-spectral density (CSD)
286] 

 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 

1 
2 𝜋 ∫

∞
Γ12 ( 𝜏) exp ( 𝑗𝜔𝜏) 𝑑𝜏 (120)
−∞
he above equation is also referred to as the generalized Wiener-
hinchin theorem. CSD is a central physical quantity in coherence the-
ry, which is the ensemble-averaged correlation function between a typ-
cal monochromatic component of the field at two different locations 𝐱 𝟏 
nd 𝐱 𝟐 . It can also be expressed as 

 𝜔 

(
𝐱 1 , 𝐱 2 

)
𝛿
(
𝜔 − 𝜔 0 

)
= 

⟨
𝑈 

(
𝐱 1 , 𝜔 0 

)
𝑈 

∗ (𝐱 2 , 𝜔 0 
)⟩

(121)

here U ( x , 𝜔 ) is the Fourier transform of U ( x , t ), defined by Eq. (108) ,
hich represents a frequency-domain realization of the ensemble of the

tatistic properties of the optical field at the point 𝐱, characterized by the
ngular frequency 𝜔 . The sharp brackets indicate the ensemble average
or different frequency components. Eq. (121) shows that the compo-
ents of different frequencies in the partially coherent field are uncorre-
ated (unable to form stable interference), so CSD represents the correla-
ion between the optical oscillations of the same frequency component
t two different points in space. It quantitatively describes the spatial
oherence of the optical field. A very important property of CSD is that
t is a semi-definite Hermitian matrix. From the basic definition of CSD
 Eq. (120) ], the MCF can be expressed as an inverse Fourier transform
f CSD 

12 ( 𝜏) = ∫
∞

0 
𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
exp ( − 𝑗𝜔𝜏) 𝑑𝜔 (122)

imilar to Eq. (108) , Eq. (122) indicates that the MCF of a partially
oherent field results from the superposition of the CSD of different
onochromatic components. Similar to MCF, we can also define the nor-
alized CSD as complex degree of spectral coherence (at frequency 𝜔 ). 

𝜔 

(
𝐱 1 , 𝐱 2 

)
= 

𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)√ 

𝑊 𝜔 

(
𝐱 1 , 𝐱 1 

)
𝑊 𝜔 

(
𝐱 2 , 𝐱 2 

)
= 

𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)√ 

𝑆 𝜔 
(
𝐱 1 
)
𝑆 𝜔 
(
𝐱 2 
) (123) 

here S 𝜔 ( x ) is the PSD, which represents the energy of a particular
onochromatic field component 

 ( 𝐱 ) = 𝑊 ( 𝐱 , 𝐱 ) (124)
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ecause different monochromatic field components are uncorrelated
nd cannot interfere, the total intensity can be expressed as the sum
f different monochromatic components 

 ( 𝐱 ) = ∫
∞

−∞
𝑆 𝜔 ( 𝐱 ) 𝑑𝜔 (125)

From the definition of complex degree of spectral coherence, it is
lain to see that this function is a properly normalized correlation co-
fficient, which is always equal to unity if the two points are brought
ogether, and is always less than or equal to unity as they are separated.
f the magnitude of | 𝜇𝜔 ( x 1 , x 2 )| is unity, it indicates that the monochro-
atic field component with angular frequency 𝜔 is perfectly coherent

etween the two points x 1 and x 2 . If the magnitude of this function is
ess than unity, it indicates less-than-perfect coherence. If the magnitude
s zero, it indicates complete incoherence between the field amplitudes
t the two points. For most partially coherent fields, CSD has signifi-
antly large values only for point separations which keep the two field
oints within the same coherence volume. This function depends only
n the positions of the points and the single angular frequency that the
eld components at the two points share. Field components of different

requencies are always uncorrelated (and therefore incoherent), even at
he same point. 

.1.2. Mutual intensity of quasi-monochromatic fields 

In some earlier literature, in order to more conveniently analyze the
patial coherence, it is generally assumed that the optical field satis-
es the so-called “quasi-monochromatic conditions ”, i.e. , the “narrow-band

ondition ” (the spectral bandwidth Δ𝜔 of the light source is much smaller
han its central frequency �̄� ) plus “small path difference condition ” (the
ptical path difference within the observation area is much smaller than
he coherence length of the light source): 

𝜔 << �̄� (126)

𝐱 1 − 𝐱 2 || << 𝑙 𝑐 (127) 

n such cases, Eq. (122) can be simplified as 

12 ( 𝜏) = ∫
∞

0 
𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
exp ( − 𝑗𝜔𝜏) 𝑑𝜔 

= exp ( − 𝑗 ̄𝜔 𝜏) ∫
∞

0 
𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
exp [ − 𝑗 ( 𝜔 − �̄� ) 𝜏] 𝑑𝜔 

exp ( − 𝑗Δ𝜔𝜏) =1 
≈ exp ( − 𝑗 ̄𝜔 𝜏) ∫

∞

0 
𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
𝑑𝜔 

= exp ( − 𝑗 ̄𝜔 𝜏) Γ12 ( 0 ) (128) 

he above equation shows that under quasi-monochromatic conditions,
hether two points in the field can form interference fully depends on

he spatial coherence. Therefore, the characteristics of the optical field
t this time can be expressed by the zero-delay MCF Γ12 (0), which is
lso called the mutual intensity (MI) J 12 at points 𝐱 𝟏 and 𝐱 𝟐 . 

 12 = 𝐽 
(
𝐱 1 , 𝐱 2 

)
= Γ12 

(
𝐱 1 , 𝐱 2 , 0 

)
= 

⟨
𝑈 

(
𝐱 1 , 𝑡 

)
𝑈 

∗ (𝐱 2 , 𝑡 )⟩ (129) 

herefore, a quasi-monochromatic optical field can be fully described by
 single-frequency harmonic. It is not difficult to find that the MI J 12 is
lso a Hermitian matrix. Similarly, the complex coherence of the quasi-
onochromatic light is defined as the complex coherence factor (CCF),
hich is the CDC at zero time delay 

12 = 

Γ12 (0) 
[ Γ11 (0) Γ22 (0)] 1∕2 

= 

𝐽 12 √
𝐼 1 𝐼 2 

= 𝛾12 ( 0 ) (130)

aking Fourier transform of Eq. (128) with respect to the time variable
ields 

 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 𝐽 12 𝛿( 𝜔 − �̄� ) (131) 

he above equation shows that the CSD of the quasi-monochromatic
eld contains only one non-zero frequency component located at 𝜔 . This
eans that the quasi-monochromatic field can be approximated to be of
 single frequency component �̄� , or equivalently, its temporal coherence
s close to that of the monochromatic (fully temporally coherent) field.
herefore, if we neglect the 𝜔 dependence of W 𝜔 ( x 1 , x 2 ), and interpret

t as a quantity which represents the ensemble characteristics of a given
onochromatic field component ( 𝜔 is not a variable but a constant, i.e. ,

̄  ), the MI representation J 12 and CSD representation 𝑊 �̄� 

(
𝐱 1 , 𝐱 2 

)
for a

uasi-monochromatic field are equivalent in essence 

 �̄� 

(
𝐱 1 , 𝐱 2 

) ≡ 𝐽 
(
𝐱 1 , 𝐱 2 

) ≡ Γ12 
(
𝐱 1 , 𝐱 2 , 0 

)
(132) 

The temporal coherence is closely related to the spectral distribution
f the light source. The spectral bandwidth of the light source is a di-
ect reflection of the temporal coherence, e.g. , the coherence length and
he coherence time. Similarly, the spatial coherence is closely related
o the size of the light source (for a quasi-monochromatic incoherent
ight source, the CCF of the corresponding far-field diffraction and the
ntensity of the light source constitute a Fourier transform pair; see dis-
ussions about the Van Cittert-Zernike theorem in Subsection 6.1.5 for
ore details). For an incoherent light source with evenly distributed in-

ensity of arbitrarily-shaped area A s , we can introduce a rough measure
f spatial coherence, i.e., coherent area A c at the distance z from the light
ource as 

 𝑐 = 

�̄�2 𝑧 2 

𝐴 𝑠 

= 

�̄�2 

Ω𝑠 

(133) 

ts physical implication is the maximum allowable area at a plane lo-
ated at a distance of z away from the quasi-monochromatic incoher-
nt source within which visible interference fringes can be formed.
onversely, we can also measure the spatial coherence of the quasi-
onochromatic field through interferometry to infer the physical size of

he light source (as shown in Fig. 35 , the interference pattern of the light
ource is recorded by a Michelson interferometer with an adjustable
rm. When the fringe contrast is reduced from the maximum to 0, the
aximum arm distance is obtained, and thus the angular diameter of

he light source can be calculated), which is the basic principle of the
ichelson stellar interferometer. 

.1.3. Propagation of mutual coherence function 

For a monochromatic coherent field, the optical field distribution
an be fully described by the complex amplitude distribution, which
s a function of spatial coordinate. When the complex amplitude is
nown at one plane, the field distribution at an arbitrary distance Δz

an be determined based on the scalar diffraction theory discussed in
ubsection 2.2.2 . For a partially coherent field, the optical oscillations
t one point in space change irregularly with time, and we need to fo-
us on its statistical properties, i.e. , investigate the correlation of optical
scillations at two different points in the time-space coordinate system.
hus, MCF is the fundamental physical quantity describing the prop-
rties of the statistical field. The MCF of the optical field may change
uring propagation. In this sense, the coherence of the optical field also
ropagates along with beam propagation. More specifically, for a par-
ially coherent field propagating in free space, its temporal coherence
oes not change because it is only related to the spectral distribution of
he source. However, the spatial coherence changes significantly with
he propagation of the optical field. Therefore, this section focuses on
he transmission characteristics of spatial coherence, i.e. , the propaga-
ion of MI/CSD. 

In Subsection 2.2.2 , we know that the Huygens-Fresnel principle of
he wave diffraction is based on the principle of linear superposition:
ince any complex optical wave field can be interpreted as a collection
f point sources, it can always be decomposed into a linear combina-
ion of simple spherical wavelets. The linear property of the wave equa-
ion allows each spherical wave to propagate independently, and then
heir contributions on the diffraction plane are superimposed to obtain
he entire diffraction field. Considering a monochromatic field with a
omplex amplitude distribution U 0 ( x , t ), the complex amplitude of the
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Fig. 37. Gain of coherence by propagation as a result of the spreading of light. 

Even if the light is completely incoherent in the source plane, the optical fluctu- 

ations at at points x 1 and x 2 shared a common region, and are therefore partially 

correlated. 
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ptical field after propagating a distance Δz can be expressed as 

 Δ𝑧 ( 𝐱, 𝑡 ) = ∫ 𝑈 0 ( 𝐱 ′, 𝑡 ) ℎ Δ𝑧 ( 𝐱 ′, 𝐱) 𝑑𝐱 ′= 𝑈 0 ( 𝐱, 𝑡 ) ⊗ ℎ Δ𝑧 ( 𝐱) (134)

here h Δz ( x ) is the impulse response function for free space propagation
f coherent fields. Under the paraxial approximation, the oblique factor
an be neglected, and the impulse response function becomes spherical
ave represented by Eq. (16) (for quasi-monochromatic fields, 𝜆 should
e replaced by �̄�). Based on the scalar diffraction theory and the defini-
ion of MI, we can express the 4D MI function at the plane located at a
istance Δz as 

 Δ𝑧 
(
𝐱 1 , 𝐱 2 

)
= 

⟨
𝑈 Δ𝑧 ( 𝐱 1 , 𝑡 ) 𝑈 

∗ 
Δ𝑧 ( 𝐱 2 , 𝑡 ) 

⟩
= ∬

⟨
𝑈 0 ( 𝐱 1 , 𝑡 ) 𝑈 

∗ 
0 ( 𝐱 2 , 𝑡 ) 

⟩
ℎ Δ𝑧 ( 𝐱 ′1 , 𝐱 1 ) ℎ ∗ Δ𝑧 ( 𝐱 

′
2 , 𝐱 2 ) 𝑑 𝐱 ′1 𝑑 𝐱 ′2 

= 𝐽 0 
(
𝐱 1 , 𝐱 2 

)
⊗

𝐱 1 , 𝐱 2 
ℎ Δ𝑧 ( 𝐱 1 , 𝐱 2 ) (135)

here h Δz ( x 1 , x 2 ) is the mutual point spread function for the free space
ropagation of coherent fields, which is defined as 

 Δ𝑧 ( 𝐱 1 , 𝐱 2 ) = ℎ Δ𝑧 ( 𝐱 1 ) ℎ ∗ Δ𝑧 ( 𝐱 2 ) (136)

herefore, when the 4D MI J 0 ( x 1 , x 2 ) at a given plane is known, the
D MI at a different propagation distance Δz can also be obtained.
q. (135) shows that the propagation of MI can also be regarded as a
inear system in 4D space, and the response function of MI for each point
air in space ( x 1 , x 2 ) is determined by 4D function h Δz ( x 1 , x 2 ). Consid-
ring J 0 ( x 1 , x 2 ) as a weight factor, the MI J Δz ( x 1 , x 2 ) at the plane Δz

an be obtained by linear superimposition of all the response functions.
Similar to the angular spectrum diffraction theory discussed in

ubsection 2.2.2 , we can also analyze the propagation of partially co-
erent fields in the spatial frequency domain. By performing 4D Fourier
ransform of ( x 1 , x 2 ) on both sides of Eq. (135) , we can get 

 ̂Δ𝑧 
(
𝐮 1 , 𝐮 2 

)
= 𝐽 0 

(
𝐮 1 , 𝐮 2 

)
𝐻 Δ𝑧 ( 𝐮 1 , 𝐮 2 ) (137)

here 𝐽 Δ𝑧 
(
𝐮 1 , 𝐮 2 

)
, 𝐽 0 

(
𝐮 1 , 𝐮 2 

)
and H Δz ( u 1 , u 2 ) are the corresponding 4D

ourier transforms of J Δz ( x 1 , x 2 ), J 0 ( x 1 , x 2 ) and h Δz ( x 1 , x 2 ), respec-
ively. ( u 1 , u 2 ) are the 4D spatial frequency coordinates corresponding
o ( x 1 , x 2 ) in the frequency domain. H Δz ( u 1 , u 2 ) is called the transfer
unction of MI for free space propagation, which is defined as 

 Δ𝑧 ( 𝐮 1 , 𝐮 2 ) = 𝐻 Δ𝑧 ( 𝐮 1 ) 𝐻 

∗ 
Δ𝑧 ( 𝐮 2 ) (138)

here H Δz ( u ) is the angular spectrum transfer function for free space
ropagation of coherent fields, defined by Eq. (30) [under the paraxial
pproximation, its form reduces to Eq. (32) ]. 

.1.4. Wave equations for the propagation of mutual coherence function 

In the previous section, the propagation characteristics of spatial co-
erence was analyzed based on the scalar diffraction theory. However,
t is of some general interest to examine the propagation problem at
 more fundamental level. As we know that the light propagation es-
entially obeys the wave equation, we can derive a pair of scalar wave
quations governing the propagation of the MCF 

 

2 
1 Γ12 ( 𝜏) = 

1 
𝑐 2 

𝜕 2 

𝜕 𝜏2 
Γ12 ( 𝜏) (139)

 

2 
2 Γ12 ( 𝜏) = 

1 
𝑐 2 

𝜕 2 

𝜕 𝜏2 
Γ12 ( 𝜏) (140)

 

2 is the Laplacian operator in 3D space ( x , z ). Based on the differential
roperty of Fourier transform, a pair of Helmholtz equations for CSD
ropagation are obtained 

 

2 
1 𝑊 12 + 𝑘 2 𝑊 12 = 0 (141)

 

2 
2 𝑊 12 + 𝑘 2 𝑊 12 = 0 (142)

t is easy to verify that MI propagates in accord with the same pair of
elmholtz equations 

 

2 𝐽 12 + ̄𝑘 2 𝐽 12 = 0 (143)
1 
 

2 
2 𝐽 12 + ̄𝑘 2 𝐽 12 = 0 (144)

here ̄𝑘 = 2 𝜋∕ ̄𝜆 is the average wave number. It can be seen that although
he correlation functions of the partially coherent field are 6D function
efined in two respective 3D spatial coordinates ( x 1 , z 1 ) and ( x 2 , z 2 ),
hey also satisfy the Helmholtz equation [ Eq. (2) ] of the monochromatic
oherent field in each 3D spatial coordinate. In addition, it should be
oted that the Helmholtz equations for the propagation of CSD and MI
hare the same form. The only difference is that the general wave num-
er k used in Eqs. (141) and (142) should be replaced by the average
ave number �̄� in Eqs. (143) and (144) . Because of the similarity be-

ween wave equations of CSD and MI, the properties of MI discussed in
his section can be directly applied to CSD. 

.1.5. The Van Cittert-Zernike theorem 

In general, light gains spatial coherence by the mere act of prop-
gation. This is not surprising. Even if the source is completely inco-
erent, the radiation from each point spreads and overlaps with that
rom the neighboring points. The light reaching two points in the out-
ut plane comes from many points of the input plane, some of which are
ommon (see Fig. 37 ). These common contributions create partial cor-
elation between fluctuations at the output points. As one of the most
mportant theorems of modern optics, the Van Cittert-Zernike theorem

283,287,288] describes the characteristics of the MI function produced
y a quasi-monochromatic incoherent extended source. As the name
mplies, the theorem was first demonstrated in papers by Van Cittert
287] and Zernike [283,288] . In nearly all optical problems involving
ight that does not originate from a laser, the original optical source con-
ists of an extended collection of independent radiators. Such a source
an reasonably be modeled as incoherent in the sense 

 0 
(
𝐱 1 , 𝐱 2 

)
= 𝐼 0 

(
𝐱 1 
)
𝛿
(
𝐱 1 − 𝐱 2 

)
(145)

ote that if CSD is used to characterize the source distribution,
q. (145) should be written as 𝑊 0 

(
𝐱 1 , 𝐱 2 

)
= 𝑆 

(
𝐱 1 
)
𝛿
(
𝐱 1 − 𝐱 2 

)
. Starting

rom Eq. (135) , and substituting Eq. (16) into Eq. (145) , we can deduce 

 Δ𝑧 
(
𝐱 1 , 𝐱 2 

)
= ∬ 𝐼 0 

(
𝐱 ′
)
ℎ Δ𝑧 ( 𝐱 ′, 𝐱 1 ) ℎ ∗ Δ𝑧 ( 𝐱 

′ , 𝐱 2 ) 𝑑 𝐱 ′

= 1 
�̄�2 ∬ 𝐼 0 

(
𝐱 ′
) exp 

( 
𝑗𝑘 

( √ 

Δ𝑧 2 + ||𝐱 1 − 𝐱 ′||2 − √ 

Δ𝑧 2 + ||𝐱 2 − 𝐱 ′||2 ) ) √ 

Δ𝑧 2 + ||𝐱 1 − 𝐱 ′||2 √ 

Δ𝑧 2 + ||𝐱 2 − 𝐱 ′||2 𝑑 𝐱 ′

(146)

The phase factor in the integral can be interpreted as the interfero-
etric superposition of two copies of the spherical wave at points x 1 and
 emitted from the light source at point x ′ in the diffraction plane. The
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ontributions from the interference fields generated by all source points
re weightedly added based on their respective intensities. Noted that
he constant factor is omitted here for simplicity. 

Under the paraxial approximation, the spherical wave of the impulse
esponse function in the integral can be approximated by the Fresnel im-
ulse response [ Eq. (17) ], and the following Van Cittert-Zernike theorem
283,287,288] can be obtained 

 Δ𝑧 
(
𝐱 1 , 𝐱 2 

)
= 𝐽 Δ𝑧 

(
𝐱 1 − 𝐱 2 

)
= 

1 
�̄�2 Δ𝑧 2 

exp ( 𝑗𝜓 ) ∬ 𝐼 0 
(
𝐱 ′
)
exp 

( 

− 

2 𝜋
�̄�Δ𝑧 

𝐱 ′ ⋅
(
𝐱 2 − 𝐱 1 

)) 

𝑑 𝐱 ′ (147) 

here the phase factor is 

xp ( 𝑗𝜓 ) = exp 

[ 
𝑗 

𝜋

�̄�Δ𝑧 

(||𝐱 1 ||2 − 

||𝐱 2 ||2 )] (148) 

he phase factor can be interpreted as the interferometric superposition
f two copies of the spherical wave at points x 1 and x 2 emitted from
n on-axis point source. The Van Cittert-Zernike theorem, stated mathe-
atically in Eq. (147) , can be expressed in words as follows: aside from

he factor exp( j 𝜓) and scaling constants, the MI in the diffraction plane
s given by a 2D Fourier transform of the intensity distribution across the
ource. This relationship can be likened to the relationship between the
eld across a coherently illuminated aperture and the field observed in
he Fraunhofer diffraction pattern of that aperture, although the physi-
al quantities involved are entirely different. 

We can also use the intensity in the diffraction plane 𝐼 Δ𝑧 
(
𝐱 1 
)
=

 Δ𝑧 
(
𝐱 2 
)
= 

1 
�̄�2 Δ𝑧 2 

[ i.e. , 𝐱 1 = 𝐱 2 in Eq. (147) ] to normalize J Δz ( x 1 , x 2 ) and
ewrite it in terms of CCF 

Δ𝑧 
(
𝐱 1 , 𝐱 2 

)
= exp ( 𝑗𝜓 ) 

∬ 𝐼 0 
(
𝐱 ′
)
exp 

(
− 

2 𝜋
�̄�Δ𝑧 𝐱 

′ ⋅
(
𝐱 2 − 𝐱 1 

))
𝑑 𝐱 ′

∬ 𝐼 0 ( 𝐱 ′) 𝑑 𝐱 ′
(149) 

ote that the phase factor exp( j 𝜓) in Eq. (149) does not affect the mod-
lus of the CCF | 𝜇Δz ( x 1 , x 2 )|, i.e. , it does not affect the contrast of the
nterference fringes produced by two points x 1 and x 2 in Young’s in-
erference experiment, so | 𝜇Δz ( x 1 , x 2 )| depends only on the difference
f coordinates 𝐱 2 − 𝐱 1 in the diffraction plane. The mathematical state-
ent of the Van Cittert-Zernike theorem is simply a precise statement

f this relationship between the intensity distribution across the source
nd resulting fringe contrast for given locations of the pinholes. Just as
 point source will create interference fringes of perfect visibility, each
oint on an incoherent source will create a separate fringe of high vis-
bility. If the source size is too large, these elementary fringe patterns
dd with significantly different spatial phases, and the contrast of the
verall fringe pattern is reduced. When the propagation distance Δz is
arge enough, the phase factor exp( j 𝜓) disappears, and the far field MI
nd the source intensity become a precise 2D Fourier transform pair. 

When studying the properties of a partially coherent imaging system,
t is often necessary to consider an illumination system with lenses ( i.e. ,
ondenser), such as the most commonly used Köhler illumination con-
guration in microscopic imaging systems. In this case, the incoherent

ight source (condenser aperture) is placed in the front focal plane of the
ens (condenser lens) and imaged at infinity. As a consequence, nonuni-
ormities of the source brightness distribution are not imaged onto the
bject, and a highly uniform field of illumination is provided. It is not
ifficult to prove that in such an optical configuration, the relationship
etween the MIs in the front focal plane and the object plane (back focal
lane) of the lens can be represented as 

 𝑓 

(
𝐱 1 , 𝐱 2 

)
= 1 

�̄�2 𝑓 2 ∬ 𝐽 0 
(
𝐱 ′𝟏 , 𝐱 

′
𝟐 
)
exp 

{ 

2 𝜋
�̄�𝑓 

[
𝐱 ′𝟐 ⋅

(
𝐱 2 − 𝐱 1 

)
− 𝐱 ′𝟏 ⋅

(
𝐱 2 − 𝐱 1 

)]} 

𝑑 𝐱 ′𝟏 𝑑 𝐱 
′
𝟐 

(150) 

The above equation shows the MIs in the front and back focal
lanes of the thin positive lens form a 4D Fourier transform pair,

.e. , 𝐽 𝑓 
(
𝐱 1 , 𝐱 2 

)
= 𝐽 0 

(
𝐮 1 , 𝐮 2 

)|||𝐮 1 , 2 =± 𝐱 1 , 2 �̄�𝑓 

= ℱ 

{
𝐽 0 
(
𝐱 1 , 𝐱 2 

)}|||𝐮 1 , 2 =± 𝐱 1 , 2 �̄�𝑓 

. This re-

ationship is similar to the relationship between the coherent fields in
he front and back focal planes of a thin lens, although the physical
uantities involved are entirely different. We further consider the source
s quasi-monochromatic and incoherent by substituting Eq. (145) into
q. (150) 

 𝑓 

(
𝐱 1 , 𝐱 2 

)
= 𝐽 𝑓 

(
𝐱 1 − 𝐱 2 

)
= 

1 
�̄�2 𝑓 2 ∬ 𝐼 0 

(
𝐱 ′
)
exp 

( 

− 

2 𝜋
�̄�𝑓 

𝐱 ′ ⋅
(
𝐱 2 − 𝐱 1 

)) 

𝑑 𝐱 ′ (151) 

side from the scaling constants, the MI in the object plane is precisely
he Fourier transform of the source intensity. Note that comparing with
q. (147) , the phase factor exp( j 𝜓) disappears. The MI in the object
lane is a function only of the differences of coordinates in the object
lane and can easily be found by 2D Fourier transforming the source
ntensity distribution. 

.1.6. Coherent mode decomposition 

Although MCF and CSD can characterize the basic properties of par-
ially coherent fields, including propagation and diffraction. However,
hey are both 4D functions, so the relevant analysis and calculation are
uite complicated. Coherent mode decomposition [286,289–291] provides
n effective tool to simplify this problem. It has shown that any par-
ially coherent field can be represented as the sum over component fields
hat are each perfectly self-coherent, but mutually incoherent with each
ther. Thus, the CSD for any field can be represented in the form 

 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 

∑
𝑛 

𝜆𝑛 ( 𝜔 ) 𝜓 𝑛 

(
𝐱 1 , 𝜔 

)
𝜓 

* 
𝑛 

(
𝐱 2 , 𝜔 

)
(152) 

here 𝜓 n ( x , 𝜔 ) is a complex amplitude called “coherent mode ”, and is
utually incoherent. 𝜆n is a positive number representing the weight of

he corresponding mode. A coherent mode 𝜓 n ( x , 𝜔 ) can be interpreted as
 monochromatic deterministic field of frequency 𝜔 with a well-defined
mplitude and phase, and its propagation obeys the Helmholtz equation
escribed by Eq. (2) . When 𝐱 1 = 𝐱 2 , Eq. (152) just represents that the
SD of the partially coherent field is the incoherent superposition of
SDs of different coherent modes 

 𝜔 ( 𝐱 ) = 

∑
𝑛 

𝜆𝑛 ( 𝜔 ) 𝜓 𝑛 ( 𝐱, 𝜔 ) 𝜓 

* 
𝑛 ( 𝐱, 𝜔 ) = 

∑
𝑛 

𝜆𝑛 ( 𝜔 ) 𝑆 𝜔𝑛 ( 𝐱 ) (153) 

o 𝜆n can be interpreted as the proportion of the PSD occupied by the
orresponding coherent mode. 

Coherent mode decomposition provides a simple and intuitive way
o understand the underlying physical mechanism of partially coher-
nt fields. Nevertheless, the coherent mode is derived from the CSD.
hen the CSD is unknown, it is very difficult to obtain the coherent
ode of a partially coherent field. In order to apply the idea of coher-

nt mode decomposition more conveniently, researchers are not only
imited to standard the coherent modes extracted from the CSD, but
irectly use some pre-defined non-orthogonal complete basis functions
s “suboptimum ” coherent modes to represent the partially coherent
eld. For example, when studying the multimode output beam of a laser,
ermite-Gaussian modes [292] or Laguerre-Gaussian modes [293] are
ften adopted. Hermite-Gaussian modes form an orthogonal basis for
he solutions to the paraxial wave equation in the Cartesian coordinate
ystem, and the Laguerre-Gaussian modes form an orthogonal basis for
he solutions to the paraxial wave equation in the cylindrical coordinate
ystem. The prorogation of these two types of modes can be represented
ased on the Huygens-Fresnel scalar diffraction theory. Thus, coherent
ode decomposition provides a more convenient way to characterize

he propagation properties of some special partially coherent fields. 

.1.7. Various models for partially coherent fields 

From Subsection 6.1.5 , we know that under the paraxial approxima-
ion, the CSD in the diffraction plane generated from an incoherent ex-
ended light source follows the Van Cittert-Zernike theorem [ Eq. (147) ].
pecifically, the CSD in the diffraction plane can be generally repre-
ented as 

 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 𝜓 𝜔 

(
𝐱 1 
)
𝜓 

* 
(
𝐱 2 
)
𝑔 
(
𝐱 1 − 𝐱 2 

)
(154)
𝜔 
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Fig. 38. Physical picture for understanding the physical meaning of the various 

models for partially coherent fields [296] . (a) A coherent field; (b) a partially co- 

herent field described by the generalized Schell model, where �̂� ( 𝛉) is the Fourier 

transform of the source distribution (direction factor). 
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q. (154) shares certain similarities with the coherent mode decompo-
ition expressed by Eq. (152) . We call 𝜓 𝜔 ( x ) in Eq. (154) coherent com-

onent wave . Compared with Eq. (147) , its form can be represented as

 𝜔 ( 𝐱 ) = − 

𝑗 

�̄�Δ𝑧 
exp 

( 

𝑗 
𝜋

�̄�Δ𝑧 
|𝐱 |2 ) 

(155)

t can be regarded as the spherical wave at the diffraction plane formed
y an on-axis point source. Different from coherent mode decomposi-
ion that the mode weight can only be a positive constant, the “weight ”
 

(
𝐱 1 − 𝐱 2 

)
in Eq. (154) is a function of coordinate difference 𝐱 1 − 𝐱 2 , we

all it direction factor . Compared with Eq. (147) , the form of direction
actor g ( x ) is given by 

 ( 𝐱 ) = ∬ 𝐼 0 
(
𝐱 ′
)
exp 

( 

− 

2 𝜋
�̄�Δ𝑧 

𝐱 ′ ⋅ 𝐱 
) 

𝑑 𝐱 ′ (156)

n fact, it is just the Fourier transform of the intensity distribution of the
ight source, so the direction factor and the CCF are closely related. Gen-
rally speaking, the maximum value of g ( x ) is located at 𝐱 = 0 , and the
ecay rate with the two-point distance determines the spatial coherence
f the field. 

In Eq. (156) , point x ′ at the source plane represents the inclined plane
ave component in the corresponding angular spectrum. Although the

oherent component wave in Eq. (154) is fixed, when multiplied with
 𝜔 ( x ), its direction is modulated thus it becomes another component
ave of a different direction. According to this idea, we can reinter-
ret the Van Cittert-Zernike theorem of Eq. (147) : different point radia-
ors of the incoherent source produce spherical component waves with
ifferent tilted angles. The spherical component waves are weighted
y the direction factor determined by the source intensity distribution
 0 ( x ′ ), and then incoherently superposed to create the CSD of the en-
ire field, as illustrated in Fig. 38 . When the CSD can be written in the
orm of Eq. (154) , we consider it satisfying the generalized Schell model

223,294,295] . 
If the distance between the source and the diffraction plane is far

nough to satisfy the Fraunhofer approximation, 𝜓 𝜔 ( x ) can be simplified
s a plane wave. In this case, the generalized Schell model reduces to
he Schell model [294] . 

 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 

√ 

𝑆 𝜔 
(
𝐱 1 
)
𝑆 𝜔 
(
𝐱 2 
)
𝑔 
(
𝐱 1 − 𝐱 2 

)
(157)

ombined with the definition of Eq. (123) , it can be found that in
chell model, the direction factor 𝑔 

(
𝐱 1 − 𝐱 2 

)
becomes the CCF 𝜇𝜔 ( x 1 ,

 2 ), which only depends on the two-point coordinate difference. It is
asy to verify 𝑔 ( 𝐱 ) = 𝑔 ∗ ( − 𝐱 ) and 𝑔 ( 𝟎 ) = 1 . 

In the field of laser technology, the Gaussian Schell-model

286,291] is more commonly used to describe the partially coherent
elds emitted from multimode lasers. GSM is a special case of the Schell
odel [ Eq. (157) ], in which S ( x ) and g ( x ) both take the forms of Gauss
𝜔 
unction 

 𝜔 ( 𝐱 ) = 𝑆 𝜔 0 exp 

( 

− 

|𝐱 |2 
2 𝜎2 𝑠 

) 

(158)

 𝜔 ( 𝐱 ) = exp 

( 

− 

|𝐱 |2 
2 𝜎2 𝑔 

) 

(159)

here S 𝜔 0 is a constant representing the central (maximum) PSD value;

s and 𝜎g denote the spatial correlation length and the beam waist width
f the GSM beam, respectively. When 𝜎s ≫𝜎g , the source is spatially
oherent, and when 𝜎s ≪ 𝜎g , the source is almost spatially incoherent.
he ratio between the two factors 𝑞 = 𝜎𝑔 ∕ 𝜎𝑠 is related to the the well-
nown M 

2 (beam quality factor) [297] 

 

2 = 

√ 

1 + 

2 
𝑞 2 

(160)

hen the intensity of the partially coherent field is relatively uniform,
nd the spatial coherence of the source is relatively low [| g ( x )| decays
apidly with the increase of the two-point distance], then S 𝜔 ( x ) is a
lowly varying function compared with g ( x ) so that the following ap-
roximation can be satisfied 
 

𝑆 𝜔 
(
𝐱 1 
)
𝑆 𝜔 
(
𝐱 2 
)
≈ 𝑆 𝜔 

( 𝐱 1 + 𝐱 2 
2 

) 

(161) 

ombining Eq. (161) with the Schell’s model [ Eq. (157) ], the quasi-

omogeneous model is obtained. In the early literature, the sources satis-
ying the quasi-homogeneous model are more intuitively called “slowly
arying homogeneous source ”. 

 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 𝑆 𝜔 

( 𝐱 1 + 𝐱 2 
2 

) 

𝑔 
(
𝐱 1 − 𝐱 2 

)
(162)

urthermore, at the end of Subsection 6.1.5 , we also consider the case
hen the incoherent light source (condenser aperture diaphragm) is
laced at the front focal plane of the lens and imaged at infinity. If the
nite aperture effect of the lens is neglected, the intensity of the illumi-
ation field is perfectly homogeneous. Compared with Eq. (147) , it can
e found that 𝜓 𝜔 ( x ) can be reduced to an plane wave with uniform in-
ensity distribution. In this case, we consider the optical field satisfying
he spatially stationary model (also called statistically stationary model ) 

 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 𝑆 𝜔 0 𝑔 

(
𝐱 1 − 𝐱 2 

)
(163)

or a spatially stationary field, it can be interpreted as the incoherent
uperposition of plane component waves of different directions with
eighting coefficients determined by the source intensity distribution.
he highly homogeneous illumination field produced by the built-in
öhler illuminations of most current microscopes can be well described
y the spatially stationary model. The coherence models discussed in
his subsection is summarized in Table 6 . 

.2. Phase space representations of partially coherent fields 

In addition to correlation functions, another powerful new tool
or understanding and characterizing partially coherent fields is called
phase-space optics ”. As we know, Fourier transform is widely used in
he research of deterministic signals. However, for non-stationary sig-
als ( e.g. , partially coherent optical fields), the joint space and spatial-
requency representation, i.e. , the phase-space representation should be
sed. The phase-space optics refers to a representation of optical signals
n an artificial configuration space simultaneously providing informa-
ion about spatial properties of the signal and its angular spectrum. In
932, Wigner [298] introduced the Wigner distribution function (WDF)
n mechanics that permitted a description of mechanical phenomena in
hase space. Such a Wigner distribution was introduced in optics by
olin [299] and Walther [300,301] in the 1960s, to relate partial co-
erence to radiometry. A few years later, the Wigner distribution was
ntroduced in optics again by Bastiaans [302–304] . He illustrated how
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Table 6 

Coherence models of different partially coherent fields 

Type of models Cross spectral density Coherent Component 

Generalized Schell model (Van Cittert-Zernike theorem) 𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 𝜓 𝜔 

(
𝐱 1 
)
𝜓 * 
𝜔 

(
𝐱 2 
)
𝑔 
(
𝐱 1 − 𝐱 2 

)
Spherical wave 𝜓 𝜔 ( 𝐱 ) = − 

𝑗 

�̄�𝑧 
exp 

(
𝑗 

𝜋

�̄�𝑧 
|𝐱 |2 )

Schell model (far-field Van Cittert-Zernike theorem) 𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 
√ 

𝑆 𝜔 
(
𝐱 1 
)
𝑆 𝜔 
(
𝐱 2 
)
𝑔 
(
𝐱 1 − 𝐱 2 

)
Plane wave (nonuniform intensity) 𝜓 𝜔 = 

√
𝑆 𝜔 ( 𝐱 ) 

Gaussian Schell-model 𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 
√ 

𝑆 𝜔 
(
𝐱 1 
)
𝑆 𝜔 
(
𝐱 2 
)
𝑔 
(
𝐱 1 − 𝐱 2 

)
Gaussian Beam 𝑆 𝜔 ( 𝐱 ) = 𝑆 𝜔 0 exp 

(
− |𝐱 |2 

2 𝜎2 
𝑆 

)
Quasi-homogeneous model 𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 𝑆 𝜔 

(
𝐱 1 + 𝐱 2 

2 

)
𝑔 
(
𝐱 1 − 𝐱 2 

)
Plane wave (smooth intensity) 𝜓 𝜔 = 

√
𝑆 𝜔 ( 𝐱 ) 

Spatially stationary model (Statistically stationary model) 𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 𝑆 𝜔 0 𝑔 

(
𝐱 1 − 𝐱 2 

)
Plane wave (uniform intensity) 𝜓 𝜔 = 

√
𝑆 𝜔 0 
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Fig. 39. The relation between the spatial frequency and the direction of prop- 

agation under the paraxial approximation. 
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pace-frequency representations are well-suited for gaining physical in-
ight and developing novel engineering applications for partially coher-
nt imaging. On the other hand, the concept of ambiguity function (AF)
as introduced by Woodward [305] in the signal processing of radar and

onar measurements in 1953. Twenty years later, Papoulis [306] rein-
roduced this concept into the research of optical imaging system. In
act, AF and WDF form a Fourier transform pair. Phase space, and in
articular WDF and AF, can be recognized as one common platform for
nderstanding and applying the physics of more traditional models for
escribing electromagnetic signals as they evolve and propagate through
n optical system [307] . 

.2.1. Wigner distribution function and ambiguity function 

In the classical coherence theory, MCF in the space-time domain and
he CSD in the space-frequency domain are the most commonly used
ools to describe partially coherent fields. However, their inherent bilin-
ar, stochastic, and wave-optical nature often lead to complicated math-
matics and difficulties in comprehension. The WDF representation can
ffectively overcome these shortcomings and provide a particularly con-
enient tool for modeling and analyzing of partially coherent fields due
o its simplicity and intuitiveness. For a partially coherent field U ( x , t ),
ts WDF is defined as the Fourier transform of the corresponding CSD in
 differential space coordinate system 

 𝜔 ( 𝐱, 𝐮 ) = ∫ 𝑊 𝜔 

( 

𝐱 + 

𝐱 ′
2 
, 𝐱 − 

𝐱 ′
2 

) 

exp 
(
− 𝑗2 𝜋𝐮𝐱 ′

)
𝑑 𝐱 ′ (164)

here u is the coordinate in frequency domain corresponding to x . By
onvention, we denote WDF with the same character W 𝜔 , but it should
e distinguished from CSD by its variables ( x, u ). There are two points
eed to be noted. On the one hand, similar to the CSD W 𝜔 ( x 1 , x 2 ), the
D WDF W 𝜔 ( x, u ) only describes the spatial coherence of one single fre-
uency component 𝜔 in a polychromatic partially coherent field. On the
ther hand, the WDF W 𝜔 ( x, u ) is defined in phase space, i.e. , it has joint
oordinates of both the spatial domain and the spatial frequency domain
 x, u ), which should be distinguished from the CSD W 𝜔 ( x 1 , x 2 ) where
wo 2D spatial coordinates are involved. The relationship between the
ifferential space coordinate system ( x, x ′ ) used in WDF and the original
pace coordinate system ( x 1 , x 2 ) is defined as 
 

𝐱 = 

𝐱 1 + 𝐱 2 
2 

𝐱 ′ = 𝐱 1 − 𝐱 2 
𝑜𝑟 

{ 

𝐱 1 = 𝐱 + 

𝐱 ′
2 

𝐱 2 = 𝐱 − 

𝐱 ′
2 

(165) 

ote that this is a unitary transformation and the corresponding Jaco-
ian is equal to unity. It can be seen that the WDF arises “midway ” be-
ween the CSD W 𝜔 ( x 1 , x 2 ). The physical meaning of WDF can be strictly
nderstood as the probability density distribution of photon position and
omentum. In Subsection 2.2.2 , we know that the spatial frequencies

f the scalar coherent field correspond to the plane wave components
angular spectrum) propagating in different directions, so we can (ap-
roximately) interpret 𝐮 of the WDF W 𝜔 ( x, u ) as the direction of light
ays at point 𝐱. Considering the 1D simplified case shown in Fig. 39 , the
patial frequency u of WDF and the ray direction (the angle 𝜃 between
he ray and optical axis) has the following relationship 

 = 

cos 𝛼 = 

sin 𝜃 𝑝𝑎𝑟𝑎𝑥𝑖𝑎𝑙 
≈ 𝜃

(166)

𝜆 𝜆 𝜆
In geometric optics, an optical ray through one point can be uniquely
etermined by its position and direction. Therefore, the WDF can be
nderstood as a more rigorous ray model, defined as “generalized radi-
nce ” [300,301] . However, different from traditional radiance, general-
zed radiance can be negative. It not only considers that light ray travels
n straight lines but also accurately describes the wave optical effects of
ight waves, such as interference and diffraction. More discussion about
he physical meaning of WDF can be found in Subsection 6.2.6 . 

When 𝜔 is fixed, the WDF W 𝜔 ( x, u ) can only describe the spatial co-
erence of one single frequency component. For the sake of brevity,
e will omit the subscript 𝜔 and only consider the case of (quasi-)
onochromatic field (ignore the temporal coherence). Note that for a
olychromatic field, the temporal coherence can be simply incorporated
y the integral over all optical frequencies. 

Next, we consider a perfectly coherent (both spatially and tempo-
ally) field, its CSD can be expressed as 𝑊 

(
𝐱 1 , 𝐱 2 

)
= 𝑈 

(
𝐱 1 
)
𝑈 

∗ (𝐱 2 ), the
orresponding WDF can be expressed as 

 ( 𝐱, 𝐮 ) = ∫ 𝑈 

( 

𝐱 + 

𝐱 ′
2 

) 

𝑈 

* 

( 

𝐱 − 

𝐱 ′
2 

) 

exp 
(
− 𝑗2 𝜋𝐮𝐱 ′

)
𝑑 𝐱 ′ (167) 

imilarly, we can define the AF 

 

(
𝐮 ′, 𝐱 ′

)
= ∫ 𝑊 

( 

𝐱 + 

𝐱 ′
2 
, 𝐱 − 

𝐱 ′
2 

) 

exp 
(
− 𝑗2 𝜋𝐮 ′𝐱 

)
𝑑𝐱 (168) 

t is not difficult to prove that AF and WDF form a Fourier transform
air: 

 

(
𝐮 ′, 𝐱 ′

)
= ∬ 𝑊 ( 𝐱, 𝐮 ) exp 

[
− 𝑗2 𝜋

(
𝐮 ′𝐱 − 𝐮𝐱 ′

)]
𝑑𝐱𝑑 𝐮 

= ℱ { 𝑊 ( 𝐱, 𝐮 ) } 
(
𝐮 ′, 𝐱 ′

)
(169) 

herefore, as two central physical quantities in phase space optics, the
DF and the AF representations are equivalent in essence. In the next

ubsection, we will focus on the properties of WDF. 
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Fig. 40. Fractional Fourier transform. (a) Setup (Type I) for performing a frac- 

tional Fourier transform. Parameters R and Q determine the degree P and the 

angle 𝜙 = 𝑃 𝜋∕2 . The singals are 2D; the lens is spherical; (b) setup (Type II) for 

performing a fractional Fourier transform. 
.2.2. Properties of Wigner distribution function 

The popularity of WDF for characterizing partially coherent fields
oots from its unique properties. In this subsection, we give a brief in-
roduction to the most commonly used properties of WDF. 

1) Realness 

W ( x, u ) is always a real function 

 ( 𝐱, 𝐮 ) ∈ ℝ , ∀𝐱, ∀𝐮 (170)

his property can be derived from the positive semidefiniteness and
ermitian symmetry of CSD. Note that, W ( x, u ) is not necessarily non-
egative; this prohibits a direct interpretation of the WDF as an energy
ensity function (or radiance function). 

2) Spatial marginal property 

𝑊 𝜔 ( 𝐱, 𝐮 ) 𝑑𝐮 = 𝑊 𝜔 ( 𝐱 , 𝐱 ) = 𝑆 𝜔 ( 𝐱 ) (171)

The equation shows that the integral of WDF over the frequency vari-
ble represents the PSD at optical frequency 𝜔 and position x . When the
ignal is quasi-monochromatic, the spatial marginal of WDF is just the
ntensity. More strictly speaking, for polychromatic fields, the intensity
s the total energy obtained by integrating the PSD over all wavelengths

𝑊 𝜔 ( 𝐱, 𝐮 ) 𝑑 𝐮 𝑑 𝜔 = ∫ 𝑆 𝜔 ( 𝐱 ) 𝑑𝜔 = 𝐼 ( 𝐱 ) (172)

3) Spatial frequency marginal property 

𝑊 𝜔 ( 𝐱, 𝐮 ) 𝑑𝐱 = 𝐺 𝜔 ( 𝐮 ) (173)

G 𝜔 ( u ) is the Fourier transform of the spectral density, called direc-
ional power spectrum. For a monochromatic coherent field U ( x ), G ( u )
s the power spectrum in the spatial frequency domain, i.e. , | U ( u )| 2 . 

4) Convolution property 

When 𝑈 ( 𝐱 ) = 𝑈 1 ( 𝐱 ) 𝑈 2 ( 𝐱 ) , then 

 ( 𝐱, 𝐮 ) = 𝑊 1 ( 𝐱, 𝐮 ) ⊗𝐮 
𝑊 2 ( 𝐱, 𝐮 ) (174)

here ⊗
𝐮 

indicates convolution over 𝐮 , W 1 ( x, u ) and W 2 ( x, u ) are the

DFs of U 1 ( x ) and U 2 ( x ), respectively. 
When 𝑈 ( 𝐱 ) = 𝑈 1 ( 𝐱 ) ⊗𝐱 

𝑈 2 ( 𝐱 ) , then 

 ( 𝐱, 𝐮 ) = 𝑊 1 ( 𝐱, 𝐮 ) ⊗𝐱 
𝑊 2 ( 𝐱, 𝐮 ) (175)

𝐱 
indicates the convolution over 𝐱. 

5) Instantaneous frequency 

For monochromatic coherent fields 𝑈 ( 𝐱 ) = 𝑎 ( 𝐱 ) 𝑒 𝑗𝜙( 𝐱 ) , the instanta-
eous frequency of U ( x ) is associated with the phase gradient ∇ 𝜙( x )
the concept of “instantaneous frequency ” for 1D signal [308] is adopted
ere to represent the phase gradient, see Subsection 6.2.2 for detailed
iscussions), which has the following relationship with the WDF 

∫ 𝐮 𝑊 ( 𝐱, 𝐮 ) 𝑑𝐮 
∫ 𝑊 ( 𝐱, 𝐮 ) 𝑑𝐮 

= 

1 
2 𝜋

∇ 𝜙( 𝐱 ) . (176)

or the proof of Eq. (176) , readers can refer to [307] . 

.2.3. Optical transformation of Wigner distribution function 

The concept of WDF is very close to the optical ray in geometric op-
ics. Although it cannot be fully equivalent to energy density function
n a strict sense, its propagation and optical transformation properties
trictly follow the ray model, making it a bridge between geometric op-
ics (radiometry) and wave optics. In this subsection, we outline the
ptical transformation properties of WDF. 
1) Fresnel propagation 

Under the paraxial approximation, the Fresnel propagation property
f WDF can be derived from the Fresnel propagation formula of coherent
elds [ Eq. (18) ] and partially coherent fields [ Eq. (135) ] 

 Δ𝑧 ( 𝐱, 𝐮 ) = 𝑊 0 ( 𝐱 − 𝜆Δ𝑧 𝐮 , 𝐮 ) (177)

hich is an x -shear of the input WDF, and the amount of shear is linearly
roportional to the propagation distance. 

2) Chirp modulation (lens) 

When the optical field passes through a lens or a quadratic phase

ask, a quadratic phase factor exp 
(
𝑗 

𝜋

𝜆𝑓 
|𝐱 |2 ) is induced, where f is the

ocal length representing the curvature of the phase factor. The WDF of
he output field can be expressed as 

 𝑓 ( 𝐱, 𝐮 ) = 𝑊 0 

( 

𝐱, 𝐮 + 

𝐱 
𝜆𝑓 

) 

(178)

hich is a u -shear of the input WDF, and the amount of shear is inversely
roportional to f . 

3) Fourier transform (Fraunhofer diffraction) 

The WDF corresponding to the Fourier transform �̂� ( 𝐮 ) of the origi-
al signal U ( x ) can be realized by interchanging the space and spatial
requency coordinates of the original WDF. 

 �̂� ( 𝐱, 𝐮 ) = 𝑊 𝑈 ( − 𝐮 , 𝐱 ) (179)

4) Fractional Fourier transform 

Fractional Fourier transform is an extension of traditional Fourier
ransform to fractional order [309–312] , which is generally defined as
 function of rotation angle 𝜃

 𝜃( 𝐱 ) = ℱ 𝜃

{
𝑓 
(
𝐱 𝑖𝑛 
)}

= 
⎡ ⎢ ⎢ ⎢ ⎣ 
exp 

(
𝑗 
1 
2 
𝜃
)

√
𝑗 sin 𝜃

⎤ ⎥ ⎥ ⎥ ⎦ ∫ 𝑓 
(
𝐱 𝑖𝑛 
)
exp 

⎡ ⎢ ⎢ ⎢ ⎣ 𝑗𝜋
(||𝐱 𝑖𝑛 ||2 + |𝐱 |2 ) cos 𝜃 − 2 𝐱 𝑖𝑛 ⋅ 𝐱 

sin 𝜃

⎤ ⎥ ⎥ ⎥ ⎦ 𝑑 𝐱 𝑖𝑛 (180) 

here 𝜃 is the rotation angle and 𝜃 ≠ n 𝜋. The fractional order of
he transform is defined as 𝜃/( 𝜋/2). In particular, when 𝜃 = 0 , 𝑓 ( 𝐱 ) =
 0 { 𝑓 ( 𝐱 ) } is the original signal; when 𝜃 = 𝜋, 𝑓 ( − 𝐱 ) = ℱ 𝜋{ 𝑓 ( 𝐱 ) } is the
irror image of the original signal; when 𝜃 = 𝜋∕2 , 𝑓 ( 𝐮 ) = ℱ 

𝜋
2 
{ 𝑓 ( 𝐱 ) }

s the traditional (1st order) Fourier transform of the original signal;
hen 𝜃 = − 𝜋∕2 , 𝑓 ( 𝐱 ) = ℱ − 𝜋2 

{
𝑓 ( 𝐮 ) 

}
is the traditional inverse (-1st or-

er) Fourier transform of the original signal. In optics, the fractional
ourier transform can be realized by single lens or double lens setups
respectively referred to as type I (RQR setup) and type II (QRQ setup)]
310,311] , as shown in Fig. 40 . By changing the focal length or spac-
ng of the lens [for type I setup 𝑅 = tan ( 𝜃∕2 ) ; 𝑄 = sin 𝜃, for type II setup
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Fig. 41. Beam amplification (compression). Output plane is located at 𝑧 2 = 𝑧 1 + 
(1 + 𝑓 ∕ 𝐹 ) 𝑓 . The output-plane wave amplitude is 𝑈 𝑧 2 ( 𝐱 ) = ( −1∕ 𝑀 ) 𝑈 0 (− 𝐱∕ 𝑀) , 
where 𝑀 = 𝑓∕ 𝐹 . 
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𝑎  
 = tan ( 𝜃∕2 ) ; 𝑅 = sin 𝜃], fractional Fourier transform pairs of different
rders can be obtained at the input plane and the output plane. 

It can be proven that the WDF corresponding to the fractional Fourier
ransform �̂� 𝜃( 𝐮 ) of the original signal U ( x ) can be expressed as phase-
pace rotation of the original WD 

 �̂� 𝜃
( 𝐱, 𝐮 ) = 𝑊 𝑈 ( 𝐱 cos 𝜃 − 𝐮 sin 𝜃, 𝐮 cos 𝜃 + 𝐱 sin 𝜃) (181) 

imilarly, we can take a projection of 𝑊 �̂� 𝜃
( 𝐱, 𝐮 ) over 𝐮 , the obtained

ntensity ∫ 𝑊 �̂� 𝜃
( 𝐱, 𝐮 ) 𝑑𝐮 is actually the Radon transform of the orig-

nal WDF W U at angle 𝜃 (see Subsection 6.2.5 for details) [313] .
𝑊 �̂� 𝜃

( 𝐱, 𝐮 ) 𝑑𝐮 is also known as the generalized marginal or generalized
rojection of WDF, which is proven to be nonnegative. If we change the
ractional order (rotation angle 𝜃) of the Fourier transform and collect
he corresponding intensity distributions, we can reconstruct WDF based
n the principle similar to computerized tomography (CT). Such a coher-
nce measurement technique, which reconstructs WDF by phase-space
otation and projection, is called phase-space tomography [314–317] ,
relevant contents will be discussed in Subsection 6.2.6 ). 

5) Beam amplifier (compressor) 

If the optical signal passes through a 4 f optical system with two lens
f different focal lengths ( Fig. 41 ), the size of the beam will be magnified
or compressed) M times ( M is the focal length ratio between two lenses),
hen the WDF of the output field can be represented by the scaling of
he original WDF 

 𝑀 

( 𝐱, 𝐮 ) = 𝑊 0 

(
𝑀𝐱, 𝐮 

𝑀 

)
(182)

6) First order optical system 

he first-order optical system is one of the most common optical systems
318] . Similar to the matrix transformations in geometric optics, the ge-
metric optical characteristics of the axisymmetric paraxial optical sys-
em can be described by a 2 ×2 ABCD-matrix [319] . Similarly, in wave
ptics, the transformation of a first-order optical system on the input
eld can also be described by Collins diffraction integral transformation
quation based on ABCD-matrix [320] . Similar to the ABCD-matrix in
atrix optics, the WDF of the original signal U after passing through a
rst-order optical system can be expressed as 

 𝑈 1 𝑠𝑡 
( 𝐱, 𝐮 ) = 𝑊 𝑈 ( 𝐴 𝐱 + 𝐵𝐮 , 𝐶𝐱 + 𝐷𝐮 ) (183)

n phase space, the transformation between input and output coordi-
ates is 
 

𝐱 ′
𝐮 ′
] 
= 

[ 
𝐴 𝐵 

𝐶 𝐷 

] [ 
𝐱 
𝐮 

] 
(184) 
here the ABCD-matrix is symplectic and the determinant equals unity.
t can be seen that the five fundamental optical transformations de-
cribed above can be regarded as special cases of the first-order optical
ystem, and their corresponding ABCD-matrices are 
 

1 − 𝜆𝑧 

0 1 

] 
, 

[ 
1 0 

( 𝜆𝑓 ) −1 1 

] 
, 

[ 
0 −1 
1 0 

] 
, 

[ 
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] 
, 

[ 
𝑀 0 
0 1∕ 𝑀 

] 
(185) 

he typical optical transformations in phase space are summarized in
ig. 42 . 

.2.4. Wigner distribution representations of typical optical signals 

We shall illustrate the concept of WDF by some typical examples
rom Fourier optics. For monochromatic deterministic fields, i.e. , it
an be completely represented by a given complex amplitude function
 ( 𝐱 ) = 𝑎 ( 𝐱 ) 𝑒 𝑗𝜙( 𝐱 ) . The WDFs of five typical coherent signals are shown

n Fig. 43 . 

1) Point source 

A monochromatic point source located at x 0 can be expressed by the
mpulse signal 𝑈 ( 𝐱 ) = 𝛿

(
𝐱 − 𝐱 0 

)
. Its WDF takes the form 

 ( 𝐱, 𝐮 ) = 𝛿
(
𝐱 − 𝐱 0 

)
(186) 

his is a 2D section of the 4D phase space in 𝐱-plane. For the simplified
D case [see Fig. 41 (a)], it corresponds to a line perpendicular to the
-axis and at a distance x 0 from the 𝐮 -axis in phase space. 

2) Plane wave 

A plane wave with a spatial frequency u 0 can be described by 𝑈 ( 𝐱 ) =
xp ( 𝑗2 𝜋𝐮 0 𝐱 ) . Its WDF takes the form 

 ( 𝐱, 𝐮 ) = 𝛿
(
𝐮 − 𝐮 0 

)
(187) 

his is a 2D section of the 4D phase space in 𝐮 -plane. For the 1D case
see Fig. 43 (b)], it corresponds to a line perpendicular to the 𝐮 -axis and
t a distance u 0 from the 𝐱-axis in phase space. 

3) Spherical wave 

A spherical wave under the paraxial approximation can be de-
cribed by a quadratic-phase signal 𝑈 ( 𝐱 ) = exp ( 𝑗2 𝜋𝑎 𝐱 2 ) . Its WDF takes
he form 

 ( 𝐱, 𝐮 ) = 𝛿( 𝐮 − 𝑎 𝐱 ) (188) 

or the 1D case, it corresponds to a straight line across the origin of
hase space [see Fig. 43 (c)]. 

4) Slow varying wave 

For a smooth phase signal in the spatial domain, 𝑈 ( 𝐱 ) = exp [ 𝑗𝜙( 𝐱 ) ]
here 𝜙( x ) is a smooth function of 𝐱, its WDF takes the form [321] 

 ( 𝐱, 𝐮 ) ≈ 𝛿
(
𝐮 − 

1 
2 𝜋

∇ 𝜙
)

(189) 

or more general slowly varying field 𝑈 ( 𝐱 ) = 𝑎 ( 𝐱 ) exp [ 𝑗𝜙( 𝐱 ) ] (the ampli-
ude a ( x ) is a nonuniform but smooth function of 𝐱). Its WDF takes the
orm [208] 

 ( 𝐱, 𝐮 ) ≈ 𝐼 ( 𝐱 ) 𝛿
(
𝐮 − 

1 
2 𝜋

∇ 𝜙
)

(190) 

ore details about Eq. (190) will be introduced in Subsection 7.2.4 . For
he 1D case, it corresponds to a curve in phase space [see Fig. 43 (d)].
he proof of Eq. (190) can be found in [208] , and the required “slow
arying ” condition is strictly defined as ( 

𝐱 + 

𝐱 ′
2 

) 

− 𝜙

( 

𝐱 − 

𝐱 ′
2 

) 

≈ 𝐱 ′ ⋅ ∇ 𝜙( 𝐱 ) (191) 

 

( 

𝐱 + 

𝐱 ′
2 

) 

𝑎 

( 

𝐱 − 

𝐱 ′
2 

) 

≈ 𝑎 2 ( 𝐱 ) = 𝐼 ( 𝐱 ) (192)
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Fig. 42. Typical optical transformations in phase space. (a) Fresnel propagation; (b) Chirp modulation (lens); (c) Fourier transform; (d) fractional Fourier transform; 

(e) magnifier. 

Fig. 43. WDFs of typical coherent signals. (a) Point source; (b) plane wave; (c) spherical wave; (d) slow-varying wave; (e) Gaussian beam. 
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5) Gaussian beam 

The WDF of the Gaussian signal 𝑈 ( 𝐱 ) = exp 
{ 

− 

𝜋

𝜎2 

(
𝐱 − 𝐱 0 

)2 } 

is 

 ( 𝐱, 𝐮 ) = exp 
{ 

− 

( 

𝜋

𝜎2 

(
𝐱 − 𝐱 0 

)2 + 

𝜎2 

2 𝜋
𝐮 2 
) } 

(193)

hich is still a Gaussian signal in both 𝐱 and 𝐮 . For the 1D case, it cor-
esponds to a 2D Gaussian function in phase space [see Fig. 43 (e)]. 

For partially coherent fields, it cannot be described by the complex
mplitude. Its statistical characteristics need to be represented by CSD
r WDF. Here, we introduce the WDFs of three typical partially coherent
elds. 

1) Spatially incoherent field 

For spatially incoherent fields, the CSD can be expressed as
 Eq. (145) ] 

 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 𝑆 𝜔 

(
𝐱 1 
)
𝛿
(
𝐱 1 − 𝐱 2 

)
(194)

For quasi-monochromatic spatially incoherent fields 

 

(
𝐱 1 , 𝐱 2 

)
= 𝐼 

(
𝐱 1 
)
𝛿
(
𝐱 1 − 𝐱 2 

)
(195)
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here the PSD S 𝜔 ( x ) or intensity I ( x ) is a nonnegative function. In the
entral differential space coordinate defined by Eq. (165) , the CSD be-
omes 

 𝜔 

( 

𝐱 + 

𝐱 ′
2 
, 𝐱 − 

𝐱 ′
2 

) 

= 𝑆 𝜔 ( 𝐱 ) 𝛿
(
𝐱 ′
)

(196)

ts corresponding WDF is 

 𝜔 ( 𝐱, 𝐮 ) = 𝑆 𝜔 ( 𝐱 ) (197)

hich is a function only of the space variable 𝐱 and that it does not
epend on 𝐮 . This suggests that the power density of spatially incoherent
eld is independent with the spatial frequency (ray direction). 

2) Spatially stationary field 

The CSD of quasi-monochromatic fields satisfying the spatially sta-
ionary model can be expressed as [ Eq. (163) ] 

 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 𝑆 0 𝑔 

(
𝐱 1 − 𝐱 2 

)
(198)

he direction factor 𝑔 
(
𝐱 1 − 𝐱 2 

)
is actually the spectral CCF of the optical

eld. The intensity of the illumination is perfectly homogeneous. In the
entral differential coordinate system, the CSD becomes 

 𝜔 

( 

𝐱 + 

𝐱 ′
2 
, 𝐱 − 

𝐱 ′
2 

) 

= 𝑆 0 𝑔 
(
𝐱 ′
)

(199)

ts corresponding WDF is 

 𝜔 ( 𝐱, 𝐮 ) = 𝑆 0 ̂𝑔 ( 𝐮 ) (200)

here �̂� ( 𝐮 ) is the Fourier transform of g ( x ′ ). It can be seen that the
DF of spatially stationary fields is a function only of the spatial fre-

uency variable 𝐮 . It has a form that is similar to the WDF of incoherent
ight [ Eq. (197) ] rotated by 90 degrees in phase space. According to the
ourier transform property of WDF [ Eq. (179) ], the spatially stationary
eld and the incoherent field essentially form a Fourier transform pair
far-field diffraction). The duality between incoherent light and spatially
tationary light is, in fact, the Van Cittert-Zernike theorem [ Eq. (151) ]:
he far-field diffraction of an incoherent light source creates a spatially
tationary field. 

3) Quasi-homogeneous field 

The CSD of quasi-monochromatic fields satisfying the quasi-
omogeneous model can be expressed as [ Eq. (162) ] 

 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 𝑆 𝜔 

( 𝐱 1 + 𝐱 2 
2 

) 

𝑔 
(
𝐱 1 − 𝐱 2 

)
(201)

n the central differential coordinate system, the CSD becomes 

 𝜔 

( 

𝐱 + 

𝐱 ′
2 
, 𝐱 − 

𝐱 ′
2 

) 

= 𝑆 𝜔 ( 𝐱 ) 𝑔 
(
𝐱 ′
)

(202)

uch quasi-homogeneous field can be locally considered as spatially
tationary, having, however, a slowly varying intensity, i.e., S 𝜔 is a
elatively slow-varying signal compared with g . The WDF of quasi-
omogeneous field takes the form 

 𝜔 ( 𝐱, 𝐮 ) = 𝑆 𝜔 ( 𝐱 ) ̂𝑔 ( 𝐮 ) (203)

oth incoherent fields and spatially stationary fields are special cases of
uasi-homogeneous fields: for spatial incoherent fields �̂� ( 𝐮 ) = 1 and for
patially stationary fields 𝐼 ( 𝐱 ) = 𝑆 0 . 

.2.5. Transport equation of Wigner distribution function 

In Subsections 2.2.1 and Subsection 6.1.3 , we learned that the
ropagation of coherent complex fields and MI/CSD both satisfy the
elmholtz equation [ Eqs. (2) and (141) ]. Under the paraxial approxi-
ation, Helmholtz equation can be further reduced to the paraxial wave

quation [ Eq. (4) ]. As a new representation of coherent fields and par-
ially coherent fields, WDF should also follow certain wave equation
escribing its propagation characteristics. Starting from the Helmholtz
quation and combining the properties of WDF under Liouville approxi-
ation (geometric optics approximation), we can deduce that the prop-

gation of WDF follows the following Liouville transport equation [322] √ 

𝑘 2 − 4 𝜋2 |𝐮 |2 
𝑘 

𝜕𝑊 ( 𝐱, 𝐮 ) 
𝜕𝑧 

= − 𝜆𝐮 ∇ 𝐱 ⋅𝑊 ( 𝐱, 𝐮 ) (204)

here ∇ 𝐱 = 𝜕 ∕ 𝜕 𝐱 = 

(
𝜕 𝑥 , 𝜕 𝑦 

)
. This equation can be solved analytically,

nd the solution takes the form 

 𝑧 ( 𝐱, 𝐮 ) = 𝑊 0 

⎛ ⎜ ⎜ ⎜ ⎝ 𝐱 − 

2 𝜋𝐮 √ 

𝑘 2 + 4 𝜋2 |𝐱 |2 𝑧, 𝐮 
⎞ ⎟ ⎟ ⎟ ⎠ (205) 

q. (205) describes the general propagation law of WDF in free space.

ased on WDF, we can construct a 3D vector field 𝑗 𝐫 = 

[
𝑗 𝐱 , 𝑗 𝑧 

]𝑇 
, which

s known as the geometrical vector flux [303,323] 

 𝐱 ( 𝐱 ) = 𝜆∫ 𝐮 𝑊 ( 𝐱, 𝐮 ) 𝑑𝐮 (206) 

 𝑧 ( 𝐱 ) = 

1 
𝑘 ∫

√ 

𝑘 2 − 4 𝜋2 |𝐮 |2 𝑊 ( 𝐱, 𝐮 ) 𝑑𝐮 (207) 

t can be seen that the transverse flux j x and the longitudinal flux j z cor-
espond to the integrals of the RHS and LHS of Liouville transport equa-
ion over the frequency variable 𝐮 , respectively. Geometrical vector flux
s a radiometric quantity, which describes the light energy propagation
n 3D space. In fact, the Liouville transport equation is an expression of
he energy conservation law, which implies the geometrical vector flux
as zero divergence. 

Under the paraxial approximation 
√ 

𝑘 2 − 4 𝜋2 |𝐮 |2 ≈ 𝑘, the Liouville
ransport equation can be simplified as 

𝜕𝑊 ( 𝐱, 𝐮 ) 
𝜕𝑧 

+ 𝜆𝐮 ∇ 𝐱 ⋅𝑊 ( 𝐱, 𝐮 ) = 0 (208)

This transport equation can again be solved explicitly, and the solu-
ion reads as 

 𝑧 ( 𝐱, 𝐮 ) = 𝑊 0 ( 𝐱 − 𝜆𝑧 𝐮 , 𝐮 ) (209) 

hich is just the Fresnel diffraction property of WDF [ Eq. (179) ]. 

.2.6. Coherence measurement 

For monochromatic coherent fields, the WDF is defined based on the
D complex amplitude [ Eq. (167) ], so the 4D phase-space representation
s highly redundant. When the 2D intensity and phase distributions are
nown, the WDF can be directly calculated by Eq. (167) . Therefore, for
onochromatic coherent fields, the reconstruction of WDF essentially

oils down to a phase recovery problem, which has been discussed in
etail in previous sections. 

It is more complicated when the field is not strictly coherent. Gen-
rally, the phase space WDF constitutes a rigorous and non-redundant
epresentation for partially coherent fields. The 2D amplitude and phase
re insufficient to determine a partially coherent field unambiguously.
he complete characterization of the 4D coherence function (so-called
oherence measurement or coherence retrieval ) has always been an ac-
ive research area. To fully characterize 4D partially coherent fields,
ne idea is to measure or reconstruct the two-point correlation func-
ion, such as MCF, CSD, or MI for quasi-monochromatic fields. After the
wo-point correlation function is obtained, the WDF can be calculated
y definition [ Eq. (164) ]. For example, MCF can be directly measured
hrough interferometry based on the contrast and displacement (phase)
f the fringe pattern in Yang’s double-slit interference experiment, as
llustrated in Fig. 44 (a). However, if we want to measure the 4D MCF
f a 2D optical field, we need to traverse through the entire 4D space
2D by 2D), which is extremely time-consuming and inconvenient for
ractical implementation. Fortunately, in practical measurements, the
rinciple of shearing interferometry can be used to create two overlap-
ing copies of the test beam with a transversal, axial, or rotational shear
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Fig. 44. Coherent measurements via interferometry. (a) Raster scan measurements based on Yang’s double slit interference experiment; (b) parallel measurements 

based on a Sagnic radial shearing interferometer (PBS: Polarizing Beam Splitter). 
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Fig. 45. Illustration of Radon transform. (a-b) One point in 2D space and the 

corresponding Radon transform; (c-d) the projection of a 2D object along a cer- 

tain direction and the Radon transform of the 2D object. 
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ased on Mach-Zehnder interferometer [324] , Sagnic radial shearing in-
erferometer [325,326] , or rotational shearing interferometer [327] to
chieve high-efficiency, parallel measurements of a large collection of
oint pairs, as illustrated in Fig. 44 (b). 

Another category of coherence measurement approaches is based on
hase-space measurements, i.e. , measuring or recovering the 4D WDF.
he most well-known method is called phase space tomography (PST)
314,315] . By introducing asymmetric optical elements ( e.g. , cylindri-
al lens) into the field to be measured, and then collecting a large num-
er of intensity distributions of the optical field at various propagation
istances, the rotational projections of WDF at different angles can be
btained. Finally, the complete 4D WDF can be reconstructed in a way
imilar to the conventional CT. 

Before introducing PST, let us first review the basic principle of the
onventional CT [328] . For simplicity, we first consider a 2D function
 ( x, y ), and its projection can be represented as the integration along a
traight line l ( s, 𝜃) 

 𝑓 ( 𝑠, 𝜃) = ∬ 𝑓 ( 𝑥, 𝑦 ) 𝛿( 𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑠 ) 𝑑 𝑥𝑑 𝑦 

= ∫ 𝑓 ( 𝑠 cos 𝜃 + 𝑡 sin 𝜃, 𝑠 sin 𝜃 − 𝑡 cos 𝜃) 𝑑𝑡 (210)

he line equation l ( s, 𝜃) can be expressed as 

 cos 𝜃 + 𝑦 sin 𝜃 = 𝑠 (211)

r equivalently, 
 

𝑥 = 𝑠 cos 𝜃 − 𝑡 sin 𝜃
𝑦 = 𝑠 sin 𝜃 + 𝑡 cos 𝜃 (212)

here s represents the distance from the origin to the line, and 𝜃 repre-
ents the positive angle from the line to y -axis (or the positive angle from
he projection plane to the x -axis). When 𝜃 and s are fixed, Eq. (211) rep-
esents a straight line with the angle 𝜃 between y -axis and the distance
 from the origin. The projection of f ( x, y ) onto the line can be obtained
y Eq. (210) . When 𝜃 is fixed and s is a variable, Eq. (211) represents
 set of parallel lines with the angle 𝜃. In this case, the 1D projection
f the 2D function f ( x, y ) along the line can be obtained by Eq. (210) .
f 𝜃 and s are both variables, the function f ( x, y ) will be mapped to
nother 2D space ( s, 𝜃) to obtain projections in different directions, as
llustrated in Fig. 45 (c). Note that R f ( s, 𝜃) is not defined in the polar
oordinate system but on the surface of a semi-cylinder. Spreading the
emi-cylinder surface onto a plane, we obtain an image as shown in
ig. 45 (d). This image is also called a “Sinogram ”, because a point in ( x,

 ) plane will be mapped into a sinusoid, as illustrated in Figs. 45 (a) and
5 (b). The mapping relation expressed in Eq. (210) forms a transform
rom the Cartesian coordinate ( x, y ) system into ( s, 𝜃) coordinate system,
hich is so-called Radon transform [329] . The inverse of Eq. (210) can
e written as 

 ( 𝑥, 𝑦 ) = ∬
𝜕 𝑅 𝑓 ( 𝑠, 𝜃) 

𝜕𝑠 

1 
2 𝜋2 ( 𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑠 ) 

𝑑 𝑠𝑑 𝜃 (213)

q. (213) shows that after acquiring the projection R f ( s, 𝜃) at each angle,
he tomogram of the object can be reconstructed. Such a tomography
ethod is called inverse Radon transform . 

The mathematical mechanism of CT can also be understood by rein-
erpreting the problem in the spatial frequency domain. As the central
heorem in classical CT, the Fourier slice theorem connects the projection
ata to the original function in Fourier space, which allows efficient CT
econstructions with FFT. Based on the definition of Fourier transform
nd variable substitution, it can be proven that the 1D Fourier trans-
orm �̂� 𝑓 ( 𝛾, 𝜃) ( 𝛾 corresponding to the spatial frequency s coordinate) of
he 1D projection at angle 𝜃 is distributed along a straight line at the
ame angle in the Fourier space of the 2D object f ( x, y ), as illustrated in
ig. 46 . 

̂
 𝑓 ( 𝛾, 𝜃) = 𝑓 ( 𝑢, 𝑣 ) |||𝑢 = 𝛾 cos 𝜃

𝑣 = 𝛾 sin 𝜃
= 𝑓 ( 𝛾 cos 𝜃, 𝛾 sin 𝜃) = 𝑓 ( 𝛾, 𝜃) (214)

here ( 𝛾, 𝜃) is the polar coordinates in the frequency domain 
 

𝛾 = 

√
𝑢 2 + 𝑣 2 

𝜃 = arctan 𝑢 
𝑣 

(215) 
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Fig. 46. Radon transform and the spatial and Fourier domain correspondence. 
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Fig. 47. Correspondence between Wigner distribution function and Ambiguity 

function. 

Fig. 48. Basic principle of phase space tomography. (a) Vertical projection (0- 

order fractional Fourier transform); (b) quarter rotation projection (1/4-order 

fractional Fourier transform); (c) 90-degree rotation projection (1-order frac- 

tional Fourier transform); (d) superposition of all projections from different an- 

gles. 
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his theorem allows to access the whole 2D Fourier space of the ob-
ect by collecting a set projection data R f ( s, 𝜃) at different angles. Once

 ̂( 𝛾, 𝜃) is completed, the object function can be reconstructed by a simple
D inverse Fourier transform. 

Next, we turn our attention to PST [314,315] . Based on the CT
rinciple discussed earlier, PST recovers the WDF by successive pro-
ection measurements of the WDF at different rotation angles. Accord-
ng to the properties of WDF introduced in Subsection 6.2.2 , for quasi-
onochromatic fields, intensity is just a projection of WDF along x . In

rder to rotate the WDF, the simplest way is to take the Fourier trans-
orm (by far-field diffraction or introducing a lens) so that the WDF
xchanges the space and spatial frequency variables, thus rotates 𝜋/2
n phase space. The intensity then corresponds to the projection of the

DF along 𝐮 , so the projection at the angle 𝜋/2 is obtained. As repre-
ented by Eq. (150) , the CSDs in the focal and back focal planes of a thin
ens form a 4D Fourier transform pair 

 

(
𝐱 1 , 𝐱 2 

)
= 

1 
�̄�2 𝑓 2 

∬ 𝑊 𝑖𝑛 

(
𝐱 ′1 , 𝐱 ′2 

)
xp 
{ 

2 𝜋
�̄�𝑓 

[
𝐱 ′2 ⋅

(
𝐱 2 − 𝐱 1 

)
− 𝐱 ′1 ⋅

(
𝐱 2 − 𝐱 1 

)]} 

𝑑 𝐱 ′1 𝑑 𝐱 ′2 
(216) 

hich can be denoted as 

 

(
𝐱 1 , 𝐱 2 

)
= �̂� 𝑖𝑛 

(
𝐮 1 , 𝐮 2 

)|||𝐮 1 , 2 =± 𝐱 1 , 2 𝜆𝑓 

(217)

et 𝑠 = 𝜆𝑓, according to the Fourier transform property, the WDFs in
he input and output planes have the following relationship 

 ( 𝐱, 𝐮 ) = 𝑊 𝑖𝑛 

(
− 𝑠 𝐮 , 𝑠 −1 𝐱 

)
(218)

herefore, in the normalized coordinates ( x n , u n ), where 𝐱 𝑛 = 𝑠 − 1∕2 𝐱,
 𝑛 = 𝑠 1∕2 𝐮 , the WDF rotates 𝜋/2. The intensities in the front and back
ocal planes of the lens are 

 ( 𝐱 ) = ∫ 𝑊 ( 𝐱, 𝐮 ) 𝑑𝐮 = ∫ 𝑊 𝑖𝑛 

(
− 𝑠 𝐮 , 𝑠 −1 𝐱 

)
𝑑𝐮 (219)

herefore, by introducing a lens, we can obtain the projection of the
DF at a different angle. In order to reconstruct the WDF, we need

o collect more projections at various angles. Based on the fractional
ourier transform property of WDF, for 1D optical signals or axisym-
etric optical fields, the corresponding fractional Fourier transform ex-
ressed in Eq. (180) directly corresponds to a 𝜃-rotation of the original
DF W in ( x, u ) in phase space 

 ℱ 𝜃 ( 𝑥, 𝑢 ) = 𝑊 𝑖𝑛 ( 𝑥 cos 𝜃 − 𝑢 sin 𝜃, 𝑢 cos 𝜃 + 𝑥 sin 𝜃) (220) 

he corresponding intensity signal is just the Radon transform of the
riginal WDF W U at angle 𝜃. Since WDF W in ( x, u ) and AF A in ( u ′ , x ′ )
orm a Fourier transform pair [ Eq. (169) ], the Fourier slice theorem in
hase space can be written as [330,331] 

̂
 𝑊 𝑖𝑛 

( 𝛾, 𝜃) = ℱ 

{
𝑊 𝑖𝑛 ( 𝑥, 𝑢 ) 

}(
𝑢 ′, 𝑥 ′

)|||𝑢 ′= 𝛾 cos 𝜃𝑥 ′= 𝛾 sin 𝜃

= 𝐴 𝑖𝑛 ( 𝛾 cos 𝜃, 𝛾 sin 𝜃) = 𝐴 𝑖𝑛 ( 𝛾, 𝜃) (221) 

Fig. 47 illustrates the correspondence between WDF and AF. There-
ore, for 1D signals or 2D axisymmetric fields, the reconstruction of WDF
y PST is completely consistent with the basic principle of traditional
T, as illustrated in Fig. 48 . 

In fact, not just limited to the fractional Fourier transform, we can
lso use Fresnel diffraction to shear the WDF [332,333] 

 Δ𝑧 ( 𝑥, 𝑢 ) = 𝑊 𝑖𝑛 ( 𝑥 − 𝜆Δ𝑧𝑢, 𝑢 ) (222) 

he corresponding intensity is 𝐼 ( 𝑥 ) = ∫ 𝑊 𝑖𝑛 ( 𝑥 − 𝜆Δ𝑧𝑢, 𝑢 ) 𝑑𝑢 . Compared
ith Eq. (220) , it can be found that the projection of WDF at angle 𝜃 is
btained “equivalently ”, and the relation between 𝜃 and the propagation
istance Δz is 

an 𝜃 = − 𝜆Δ𝑧𝑢 (223)

s shown in Fig. 49 , although the transformations of fractional Fourier
ransform and Fresnel diffraction in phase space are different, they are
quivalent for obtaining WDF projections. When Eq. (223) is satisfied,
he projections obtained by fractional Fourier transform and Fresnel
iffraction are both along the same line ( P 1 and P 2 in Fig. 49 ). And the
ourier transform of the WDF projection obtained by Fresnel diffraction
lso corresponds to a 1D slice of the 2D object spectrum 𝐴 𝑖𝑛 

(
𝑢 ′, − 𝜆𝑧𝑢 ′

)
.

The case we discussed above is limited to 1D signal or 2D axisym-
etric fields. However, it should be noted that for a general 2D optical
eld, its WDF is a 4D function. If we need to reconstruct the 4D WDF
ased on the CT principle, we need to “rotate ” the 4D WDF over two
ndependent phase space planes ( 𝑥 − 𝑦 and 𝑢 𝑥 − 𝑢 𝑦 ). However, the frac-
ional Fourier transform expressed by Eq. (180) takes the same order on
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Fig. 49. Two different transformations of WDF for the implementation of phase 

space tomography. (a) WDF of the original signal; (b) WDF after Fresnel diffrac- 

tion; (c) WDF after fractional Fourier transform; (d) the correspondence between 

Fresnel diffraction and fractional Fourier transform. 

Fig. 50. Experimental arrangement of PST for recovering the 4D WDF of the 

2D field at the plane of incidence O. A pair of cylindrical lenses oriented per- 

pendicularly are used to introduce astigmatism to the measurement. 
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Fig. 51. Direct phase-space measurement methods. (a) Phase-space measure- 

ment based on pinhole scanning; (b) phase-space measurement based on a mi- 

crolens array. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r  

(  

t  

W  

s  

t

𝑊  

w  

r  

o  

a  

o  

W  

u  

W  

t  

a  

s  

i  

W

6

 

i  
oth axes 𝐱 = ( 𝑥, 𝑦 ) , i.e. , the rotation angles 𝜃 for both axes are identical.
n fact, the fractional Fourier transform represented by the Eq. (180) is
ot the general form for 2D functions [310] . The transform kernel of
ractional Fourier transform is a separable function in the Cartesian co-
rdinate system, so its orders (rotation angles) for two axes x, y can as-
ume different values. In optics, to realize asymmetric fractional Fourier
ransform for 2D optical fields, astigmatic optics should be introduced
o break this symmetry in x and y dimensions, as illustrated in Fig. 50 .
y changing the focal lengths or the distances between the lenses, we
an adjust 𝜃x , 𝜃y independently, so as to obtain the 2D rotational projec-
ions of the WDF. The 4D WDF of the input plane can be reconstructed
y inverse Radon transform after the projection data of various angles
re collected. 

In addition to these “indirect ” measurement methods based on in-
erferometry and PST, we can also employ the property of the WDF as
 “local spectrum (spectrogram) ” or generalized radiance to probe the
DF directly. Two typical approaches are often used. 

1) Pinhole scanning : the measured field is spatially localized by an
aperture (usually a pinhole) scanning across x . The corresponding
2D local spectrum can be recorded by far-field diffraction or based
on the Fourier transform property of a thin lens. At a given location
x 0 , the captured local spectrum corresponds approximately to a spa-
tial sampling of the WDF at x 0 [334–336] . When the pinhole moves
accross the whole 2D space, the 4D WDF of the input field can be
obtained, as illustrated in Fig. 51 (a). 

2) Array measurements : the experimental setup is quite similar to the
Shack-Hartmann wavefront sensor [40–42] and light-field camera
[337] , as illustrated in Fig. 51 (b). This method can be regarded as a
“parallelized ” version of the former pinhole scanning method, which
allows single-shot acquisition (the intensity distribution behind each
microlens corresponds to the local spectrum at different positions)
[338,339] . However, the spatial resolution of the measurement is
compromised, which only depends on the pitch of the microlens ar-
ray. The basic principle of these two methods are quite similar: they
both employ the approximate equivalence between WDF and the en-
ergy density function (radiance or light field in computer graphics)
to realize the direct measurement of WDF. 

Finally, it should be noted that the equivalence between WDF and
adiance or light field can only be established under certain conditions
slowly varying coherent field or geometric optics approximation), so
he local spectrum directly measured does not strictly correspond to the

DF. Strictly speaking, based on the convolution property of WDF, the
pectrogram measured through a pinhole or a lens aperture corresponds
o a smoothed version of the WDF [334,335] . 

 𝑠 ( 𝐱, 𝐮 ) = 𝑊 𝑖𝑛 ( 𝐱, 𝐮 ) ⊗𝐱, 𝐮 
𝑊 𝑇 ( 𝐱, 𝐮 ) (224)

here ⊗
𝐱, 𝐮 

represents the 4D convolution over both x and u , W in ( x, u ) rep-

esents the WDF of input optical field and W T ( x, u ) represents the WDF
f aperture function. Although WDF may be negative, the spectrogram
fter convolution is always nonnegative and directly measurable. Obvi-
usly, if we want to make the measured spectrogram approach the true
DF, W T ( x, u ) should tend to 𝛿( x, u ). However, limited by Heisenberg’s

ncertainty principle, it is physically impossible to shrink the support of
DF in both spatial and spatial-frequency domain. In order to alleviate

his problem, a compromise between the blurring effects in the spatial
nd the spatial frequency domains should be made by appropriately de-
igning the aperture function [335,336,340] . An alternative approach
s to compensate for the aperture-induced blurring effect based on the

DF deconvolution method [341] . 

.3. Image formation model under partially coherent illumination 

In Section 4 , we discussed the imaging formation for coherent imag-
ng systems, where the source at the condenser aperture plane is as-
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Fig. 52. Schematic diagram of a microscopic imaging system with partially incoherent illuminations. The condenser diaphragm can be regarded as an incoherent 

extended source with a finite size. 
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umed to be an ideal on-axis point radiator with strict monochromatic-
ty. For a practical optical microscopic imaging system, this condition is
ifficult to meet because the light source always has a certain band-
idth, and the condenser aperture always has a finite size. In other
ords, the illumination produced by the light source is neither perfect

n temporal coherence nor spatial coherence. So in this section, we ex-
mine the effects of partial coherence on microscopic imaging. First, we
gnore the limited aperture effect and discuss the influences of temporal
oherence and spatial coherence on image formation. Then we take into
ccount the aperture effect and derive the image formation model for
 practical microscopic imaging system under partially coherent illumi-
ations. 

.3.1. Ideal imaging model under partially incoherent illumination 

In this section, we extend the coherent imaging condition discussed
n Subsection 4.2 , considering that the condenser aperture becomes in-
oherent extended source with a finite size [ Eq. (145) ]. Fig. 52 illus-
rates the corresponding optical configuration, where the light source
condenser aperture diaphragm) is placed at the front focal plane of the
ondenser lens, producing a highly homogeneous illumination field in
he sample plane. Based on the Van Cittert-Zernike theorem, the CSD of
he illumination just before the sample is given by the Fourier transform
f the source intensity distribution S ( u ) [ Eq. (151) ] 

 𝑆 

(
𝐱 1 , 𝐱 2 

)
= 𝑊 𝑆 

(
𝐱 1 − 𝐱 2 

)
= ∬ 𝑆 ( 𝐮 ) 𝑒 𝑗2 𝜋𝐮 ⋅( 𝐱 1 − 𝐱 2 ) 𝑑𝐮 (225)

t only depends on the coordinate difference between the two points in
he plane. In the following of this subsection, the formal description of
he imaging process is limited to quasi-monochromatic light and unit
1.0 × ) magnification. An extension to polychromatic illuminations and
rbitrary magnification is straightforward. 

When the illumination light transmits a thin object of complex am-
litude 𝑇 ( 𝐱 ) = 𝑎 ( 𝐱 ) exp [ 𝑗𝜙( 𝐱 ) ] , the CSD just behind the object is given by

 𝑂 

(
𝐱 1 , 𝐱 2 

)
= 𝑊 𝑆 

(
𝐱 1 , 𝐱 2 

)
𝑇 
(
𝐱 1 
)
𝑇 * 
(
𝐱 2 
)

(226)

he CSD now depends on the complex amplitudes of the sample and the
SD of the illumination. The modulation of the optical field by the imag-

ng system can be described in the spatial frequency domain based on
he transfer function theory, as discussed in Subsection 5.1.3 . After the
ransmitted optical field passing through the objective lens, the CSD in
he objective pupil is multiplied twice by the coherent transfer function
 ( u ) [ Eq. (63) ], and then followed by an inverse transform to finally
btain the mutual intensity in the image plane 

 𝐼 

(
𝐱 1 , 𝐱 2 

)
= ∬ �̂� 𝑂 

(
𝐮 1 , 𝐮 2 

)
𝐻 

(
𝐮 1 
)
𝐻 

* 
(
𝐮 2 
)
𝑒 𝑗2 𝜋( 𝐮 1 𝐱 1 + 𝐮 2 𝐱 2 ) 𝑑 𝐮 1 𝑑 𝐮 2 (227) 

here H ( u 1 ) H 

∗ ( u 2 ) is the mutual coherent transfer function (discussed
n Subsection 6.1.3 ). Eq. (227) suggests that for partially coherent imag-
ng, the CSD is transferred linearly with the mutual coherent trans-
er function. It can also be written as a two-fold convolution of the
ample CSD with the mutual PSF, defined as h ( x 1 ) h 

∗ ( x 2 ) (discussed in
ubsection 6.1.3 ) 

 𝐼 

(
𝐱 1 , 𝐱 2 

)
= ∬ 𝑊 𝑂 

(
𝐱 ′1 , 𝐱 ′2 

)
ℎ 
(
𝐱 1 − 𝐱 ′1 

)
ℎ ∗ 
(
𝐱 2 − 𝐱 ′2 

)
𝑑 𝐱 ′1 𝑑 𝐱 ′2 (228) 

his suggests that the CSD in the object space is blurred by the mutual
SF in both coordinates ( 𝐱 𝟏 and 𝐱 𝟐 ). The image intensity I ( x ) is given by
he values “on the diagonal ” of the CSD 

 ( 𝐱 ) = 𝑊 𝐼 ( 𝐱, 𝐱 ) = ∬ 𝑊 𝑆 

(
𝐱 1 , 𝐱 2 

)
𝑇 
(
𝐱 1 
)
𝑇 * 
(
𝐱 2 
)
ℎ 
(
𝐱 − 𝐱 1 

)
ℎ ∗ 
(
𝐱 − 𝐱 2 

)
𝑑 𝐱 1 𝑑 𝐱 2 (229) 

ubstituting Eq. (225) into Eq. (229) , the expression for the intensity
an be simplified consequently 

 ( 𝐱 ) = ∫ 𝑆 ( 𝐮 ) 
||||∫ 𝑇 

(
𝐱 ′
)
ℎ 
(
𝐱 − 𝐱 ′

)
𝑒 𝑗2 𝜋𝐮𝐱 

′
𝑑 𝐱 ′

||||2 𝑑𝐮 ≡ ∫ 𝑆 ( 𝐮 ) 𝐼 𝐮 ( 𝐱 ) 𝑑𝐮 

(230) 

q. (230) suggests that the intensity captured at the image plane can
e interpreted as an incoherent superposition of the coherent partial
mages I u ( x ) arising from all points of the incoherent source. 

.3.2. Effect of spatial coherence on image formation 

In Subsection 4.2 , we considered the case of plane wave coherent
llumination, i.e. , the light source at the condenser aperture plane is an
n-axis point radiator 𝑆 ( 𝐮 ) = 𝛿( 𝐮 ) . For such a coherent imaging case, the
ntensity in the image plane can be represented as [ Eq. (60) ] 

 𝟎 ( 𝐱 ) = 

||||∫ 𝑇 
(
𝐱 ′
)
ℎ 
(
𝐱 − 𝐱 ′

)
𝑑 𝐱 ′

||||2 = |𝑇 ( 𝐱 ) ⊗ ℎ ( 𝐱 ) |2 (231) 

Let us consider another extreme case: the source is infinitely ex-
ended such that the CSD of the illumination field degenerates to a 𝛿
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Fig. 53. Blurring effect due to spatial coherence of the light source [342] . (a) 

An off-axis point source produces tilted plane wave that travels with transverse 

vector direction − 𝐬 ∕ 𝑓 ; (b) intensity blurring resulting from the finite source size 

under defocus. Rays passing through a single point on the sample will produce 

a circular spot in the defocused planes located at ± Δz of diameter 2 Δzs / f . 
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 𝑆 

(
𝐱 1 , 𝐱 2 

)
= ∬ 𝐶 𝑒 𝑗2 𝜋𝐮 ⋅( 𝐱 1 − 𝐱 2 ) 𝑑𝐮 = 𝐶𝛿

(
𝐱 1 − 𝐱 2 

)
(232)

ubstituting Eq. (232) into Eq. (229) and neglecting the unimportant
onstant factor, we obtain 

 ( 𝐱 ) = ∬ 𝛿
(
𝐱 1 − 𝐱 2 

)
𝑇 
(
𝐱 1 
)
𝑇 * 
(
𝐱 2 
)
ℎ 
(
𝐱 − 𝐱 1 

)
ℎ ∗ 
(
𝐱 − 𝐱 2 

)
𝑑 𝐱 1 𝑑 𝐱 2 

= |𝑇 ( 𝐱 ) |2 ⊗ |ℎ ( 𝐱 ) |2 (233)

Eqs. (232) and (233) represent two extreme cases for partially coher-
nt imaging: completely coherent and incoherent. For partially coherent
maging, it should be somewhere in between: the extended source has
 finite size. In order to reveal the influence of spatial coherence on the
ormed intensity image more clearly, the limited-aperture effect of the
bjective lens is neglected [the NA of the objective lens is infinite, i.e.,
 ( u ) ≡1 in Eq. (63) ]. When the object is imaged at a defocus distance
z , the coherent transfer function degenerates into the angular spec-

rum transfer function for free-space propagation [ Eq. (30) ]. Under the
araxial approximation, the impulse response function can be further
implified as [ Eq. (17) ] 

 Δ𝑧 ( 𝐱) = 

1 
𝑗𝜆Δ𝑧 

exp ( 𝑗 𝑘 Δ𝑧 ) exp 
{ 

𝑗 𝜋

𝜆Δ𝑧 
|𝐱 |2 } 

(234)

Substituting Eq. (234) into Eqs. (230) and (231) , and ignoring the
onstant and phase factors that are independent of the transverse inten-
ity 

 ( 𝐱 ) = ∫ 𝑆 ( 𝐮 ) 
|||||∫ 𝑇 

(
𝐱 ′
)
exp 

{ 

𝑗𝜋

𝜆Δ𝑧 

[|𝐱 |2 + ||𝐱 ′||2 − 2 ( 𝐱 − 𝜆Δ𝑧 𝐮 ) ⋅ 𝐱 ′]} 

𝑑 𝐱 ′
|||||
2 

𝑑𝐮 (235)

 0 ( 𝐱 ) = 

|||||∫ 𝑇 
(
𝐱 ′
)
exp 

{ 

𝑗𝜋

𝜆Δ𝑧 

[|𝐱 |2 + 

||𝐱 ′||2 − 2 𝐱 ⋅ 𝐱 ′
]} 

𝑑 𝐱 ′
|||||
2 

(236)

Adding an insignificant constant factor to the intensity in
q. (235) and comparing it with Eq. (236) gives: 

 ( 𝐱 ) = ∫ 𝑆 ( 𝐮 ) 
|||||∫ 𝑇 

(
𝐱 ′
)
exp 

{ 

𝑗𝜋

𝜆Δ𝑧 

[|𝐱 − 𝜆Δ𝑧 𝐮 |2 + 

||𝐱 ′||2 − 2 ( 𝐱 − 𝜆Δ𝑧 𝐮 ) ⋅ 𝐱 ′]} 

𝑑 𝐱 ′
|||||
2 

𝑑𝐮 

= ∫ 𝑆 ( 𝐮 ) 
|||||∫ 𝑇 

(
𝐱 ′
)
exp 

{ 

𝑗𝜋

𝜆Δ𝑧 

[||𝐱 − 𝜆Δ𝑧 𝐮 − 𝐱 ′||2 ]} 

𝑑 𝐱 ′
|||||
2 

𝑑𝐮 

= ∫ 𝑆 ( 𝐮 ) 𝐼 𝟎 ( 𝐱 − 𝜆Δ𝑧 𝐮 ) 𝑑𝐮 
𝐮 = 𝐱 

𝜆𝑓 = 𝑆 

( 
Δ𝑧 𝐱 
𝑓 

) 
⊗ 𝐼 𝟎 ( 𝐱 ) (237)

here S ( Δz x / f ) is the effective intensity distribution of the light source,
nd the size is proportional to the defocus distance Δz . The physical
eaning of Eq. (237) can be explained by examining Fig. 53 : when the

bject is illuminated by an oblique plane wave emitted from an off-
xis point source, the image will be laterally shifted with a distance
z s / f that is proportional to the defocus distance Δz . Therefore, for an
xtended incoherent source ( e.g. , a homogeneous disk with a radius s ,
ith the increase in Δz , the diffuse spot (defocused PSF) expands pro-
ortionally, creating a homogeneous circular disc with a radius of Δzs / f .
he diffuse spots produced by different object points are superimposed,
esulting in a blurred diffraction pattern (defocused intensity image). 

In order to alleviate the blurring effect induced by the ex-
ended source, we can reduce the defocus distance Δz . When Δz →0,
 ( Δz x / f ) → 𝛿( u ), and there will be no source blur. We can obtain an
ntensity distribution I 0 ( x ) that is completely consistent with the co-
erent case. However, as discussed in Subsection 4.2 , the premise of
IE phase retrieval is to create phase contrast by defocusing, thus con-
ert phase information into intensity information. The phase compo-
ent of the object cannot be visualized without defocusing. Therefore,
t is not difficult to understand that using extended sources (open up
he condenser diaphragm) will attenuate the phase contrast in a micro-
copic image system. Note that the precondition for the establishment of
q. (237) is that the aperture of the imaging system is infinite [ 𝑃 ( 𝐮 ) ≡ 1 ].
q. (237) may break down when considering the finite NA of the objec-
ive (see Subsection 6.3.4 for detailed discussions). 
.3.3. Effect of temporal coherence on image formation 

The temporal coherence of the light source is another important
actor affecting the image formation. In current microscopes, the light
ource is usually a halogen lamp or a continuous spectrum LED. Neither
f them can provide monochromatic illuminations like a laser so that
he monochromatic assumption is no longer valid. As we know from
ubsection 6.1 , the temporal coherence of a light source depends on its
SD (spectral distribution). Assuming that the PSD of the light source is
 𝜔 ( u ), since different wavelengths are uncorrelated, the total intensity
istribution of the source is the integral of the PSD over all wavelengths

 𝑆 ( 𝐮 ) = ∫ 𝑆 𝜔 ( 𝐮 ) 𝑑𝜔 (238)

n the previous subsection, the light source is assumed to be a quasi-
onochromatic extended source with an intensity distribution of S ( u ).

n this section, we assume that the light source has a certain spectral
andwidth with a PSD of S 𝜔 ( u ). In this case, Eqs. (229) and (230) can
e rewritten as 

 ( 𝐱 ) = ∫ 𝑊 𝜔 ( 𝐱 , 𝐱 ) 𝑑𝜔 

= ∫∬ 𝑊 𝑆 𝜔 

(
𝐱 1 , 𝐱 2 

)
𝑇 𝜔 
(
𝐱 1 
)
𝑇 ∗ 𝜔 
(
𝐱 2 
)
ℎ 𝜔 
(
𝐱 − 𝐱 1 

)
ℎ ∗ 𝜔 
(
𝐱 − 𝐱 2 

)
𝑑 𝐱 1 𝑑 𝐱 2 𝑑𝜔 

(239) 

nd 

 ( 𝐱 ) = ∬ 𝑆 𝜔 ( 𝐮 ) 
||||∫ 𝑇 𝜔 

(
𝐱 ′
)
ℎ 𝜔 
(
𝐱 − 𝐱 ′

)
𝑒 𝑗2 𝜋𝐮𝐱 

′
𝑑 𝐱 ′

||||2 𝑑𝐮 𝑑𝜔 

≡ ∬ 𝑆 𝜔 ( 𝐮 ) 𝐼 𝐮 ,𝜔 ( 𝐱 ) 𝑑 𝐮 𝑑 𝜔 (240) 

Eqs. (239) and (240) indicate that the intensity distribution of the
mage is the superposition of the power density produced by different
avelength components. This conclusion seems straightforward because

t only needs to integrate over all different wavelengths. However, it
hould be stressed that both the complex transmittance of the object and
he PSF of the imaging system in Eqs. (239) and (240) are wavelength-
ependent functions in a strict sense. More specifically, the wavelength-
ependent RI induced sample dispersion and chromatic aberration of-
en complicate accurate phase determination. Therefore, in practical
hase imaging systems, the sample is often illuminated with quasi-
onochromatic illumination by introducing a narrow bandpass filter
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Fig. 54. Geometric interpretation of the transmission cross coefficient (TCC). 
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nto the illumination path or using monochromatic LEDs as illumina-
ion sources. When it is necessary to use polychromatic illuminations,
e have to impose certain assumptions on the sample: e.g. , it should
e non-dispersive and the absorption is wavelength-independent within
he spectral range of the illumination (which are generally valid for un-
tained cells). 

To better explain the influence of temporal coherence on image for-
ation, let us turn our attention back to the complex impulse response

unction under Fresnel approximation 

 Δ𝑧 ( 𝐱) = 

1 
𝑗𝜆Δ𝑧 

exp ( 𝑗 𝑘 Δ𝑧 ) exp 
{ 

𝑗 𝜋

𝜆Δ𝑧 
|𝐱 |2 } 

(241)

t is obvious that the impulse response function is related to the illu-
ination wavelength. The first two terms on the RHS of Eq. (241) are

onstant and phase factors that are independent of the lateral coordi-

ates. The third term exp 
{ 

𝑗𝜋

𝜆Δ𝑧 |𝐱 |2 } 

is a quadratic phase factor which

etermines the intensity distribution. Close inspections reveal that the
avelength 𝜆 and Δz appear in pair, which suggests that a change in
avelength ( 𝜆 → 𝜆 + 𝛿𝜆) is equivalent to a change in propagation dis-

ance ( Δ𝑧 → Δ𝑧 + 𝛿𝑧 ), where 

𝑧 = − 

𝛿𝜆Δ𝑧 
𝜆 + 𝛿𝜆

(242)

Therefore, if polychromatic illuminations are used, the intensity fi-
ally captured at the defocused plane can be regarded as the superpo-
ition of many diffraction patterns of different wavelengths (or equiv-
lently, at different defocus distances). Obviously, the superposition of
utually uncorrelated diffuse spots (defocused PSFs) at different propa-

ation distances results in a blurred diffraction pattern. Therefore, sim-
lar to the lateral blurring effect due to the spatial coherence, the tem-
oral coherence induced blurring results from the superposition of dif-
erent diffuse spots at different axial propagation distances. Finally, it
s worth noting that although the use of polychromatic illuminations
ttenuates the phase contrast in the defocused plane, the wavelength-
ependent nature of the Fresnel diffraction can be wisely utilized to get
id of mechanical defocusing in TIE phase retrieval [191,212] . 

.3.4. Transmission cross-coefficient (TCC) and weak object transfer 

unction (WOTF) 

In general, the image formation in microscopic imaging systems can
e described by Fourier transform and linear filtering: a coherent imag-
ng system is linear in complex amplitude [ Eq. (231) ], while an inco-
erent imaging system is linear in intensity [ Eq. (232) ]. However, for
artially coherent imaging, the image formation is more complicated
ue to the nonlinear dependency of the image intensity on the object
ransmittance, light source, and imaging system. In Subsection 6.3.1 , we
ave the representations of the intensity distribution under partially co-
erent illuminations. Eq. (230) has a clear physical meaning: a partially
oherent image can be regarded as the superposition of sub-images gen-
rated by different point sources. The image formation model described
y Eq. (230) is the so-called Abbe’s superposition method, which has a
lear physical meaning: a partially coherent image can be regarded as
he superposition of sub-images generated by different source points in
he condenser aperture plane. It should be noted that the partially co-
erent imaging theory of a microscope was first established by Hopkins
247] from a different perspective in 1950s. Starting from Eq. (229) and
ombining Eq. (225) , we can derive the following Fourier integral 

( 𝐱) = ∭ 𝑆( 𝐮 ) ̂𝑇 ( 𝐮 1 ) ̂𝑇 ∗ ( 𝐮 2 ) 𝐻( 𝐮 + 𝐮 1 ) 𝐻 

∗ ( 𝐮 + 𝐮 2 ) 𝑒 𝑗2 𝜋𝐱( 𝐮 1 − 𝐮 2 ) 𝑑 𝐮 1 𝑑 𝐮 2 𝑑𝐮 (243) 

eparating the contributions of the specimen and imaging system leads
o the notion of the transmission cross-coefficient (TCC) 

 𝐶 𝐶 

(
𝐮 1 , 𝐮 2 

)
= ∬ 𝑆( 𝐮 ) 𝐻( 𝐮 + 𝐮 1 ) 𝐻 

∗ ( 𝐮 + 𝐮 2 ) 𝑑𝐮 (244)

ith the TCC, we can simplify Eq. (243) as follows 

( 𝐱) = ∬ �̂� ( 𝐮 1 ) ̂𝑇 ∗ ( 𝐮 2 ) 𝑇 𝐶 𝐶 

(
𝐮 1 , 𝐮 2 

)
𝑒 𝑗2 𝜋𝐱( 𝐮 1 − 𝐮 2 ) 𝑑 𝐮 1 𝑑 𝐮 2 (245)
he image intensity is therefore computed by the linear superposition
f the interference patterns of plane waves with spatial frequencies u 1 

nd 𝐮 2 [ 𝑒 𝑗2 𝜋𝐱( 𝐮 1 − 𝐮 2 ) ], and amplitude given by the TCC and the object
pectrum at u 1 and u 2 [ T ( u 1 ) T 

∗ ( u 2 )]. In essence, TCC is a 2D convolution
ntegral, which can be calculated by integrating the three functions over
he overlapping area of the light source and the two shifted complex
upils, as illustrated in Fig. 54 . The result of the integral at a given
osition ( u x 1 , u y 1 ) and ( u x 2 , u y 2 ) corresponds to one element in the 4D
CC matrix. When the two pupil functions shift across the ( u x , u y ) plane,
he 4D TCC matrix can be constructed. 

The image formation in partially coherent systems is not linear in
ither amplitude or intensity but is bilinear, which makes image restora-
ion and phase recovery more complicated. To simplify the mathemat-
cal formulation, the weak object approximation is often assumed to
inearize the phase retrieval problem, which was discussed under the
ondition of coherent imaging (see Subsection 4.3.1 ). In the following,
e discuss the weak object approximation for partially coherent imag-

ng. The complex transmittance of a weak object can be represented as
 Eq. (77) ] 

 ( 𝐱 ) = 𝑎 ( 𝐱 ) exp [ 𝑗𝜙( 𝐱 ) ] 
𝜙( 𝐱 ) ≪ 1 
≈ [ 𝑎 0 + Δ𝑎 ( 𝐱 ) ] [ 1 + 𝑗𝜙( 𝐱 ) ] 

Δ𝑎 ( 𝐱 ) ≪ 𝑎 0 ≈ 𝑎 0 + Δ𝑎 ( 𝐱 ) + 𝑗 𝑎 0 𝜙( 𝐱 ) (246) 

he corresponding Fourier transform can be expressed as 

̂
 ( 𝐮 ) = 𝑎 0 

[
𝛿( 𝐮 ) + ̂𝜂( 𝐮 ) + 𝑗 ̂𝜙( 𝐮 ) 

]
(247) 

hen the mutual spectrum of the object can be written as 

̂
 ( 𝐮 1 ) ̂𝑇 ∗ ( 𝐮 2 ) = 𝑎 2 0 𝛿

(
𝐮 1 
)
𝛿
(
𝐮 2 
)
+ 𝑎 0 𝛿

(
𝐮 2 
)[
�̂�
(
𝐮 1 
)
+ 𝑗 ̂𝜙

(
𝐮 1 
)]

+ 𝑎 0 𝛿
(
𝐮 1 
)[
�̂�
(
𝐮 2 
)
+ 𝑗 ̂𝜙

(
𝐮 2 
)]

(248) 

oted that the high order interference terms are neglected because the
cattered light is weak, which just corresponds to the first order Born
pproximation commonly used in diffraction tomography (discussed in
ection 8 ). Substituting Eq. (248) into Eq. (245) yields the intensity of
he partially coherent image 

 ( 𝐱 ) = 𝑎 2 0 𝑇 𝐶 𝐶 ( 𝟎 , 𝟎 ) + 2 𝑎 0 Re 
{ 

∫ 𝑇 𝐶 𝐶 ( 𝐮 , 𝟎 ) 
[
�̂�( 𝐮 ) + 𝑗 �̂�( 𝐮 ) 

]
𝑒 𝑗2 𝜋𝐱𝐮 𝑑𝐮 

} 

(249) 

here the simple relation 𝑇 𝐶 𝐶 

∗ ( 𝟎 , 𝐮 ) = 𝑇 𝐶 𝐶 ( 𝐮 , 𝟎 ) is used (TCC is Hermi-
ian symmetric). It now becomes obvious that the image contrast due to
he absorption and phase are decoupled and linearized. In the follow-
ng, we denote the TCC ( u , 0), the linear part of the TCC, as weak object

ransfer function (WOTF) 

 𝑂𝑇 𝐹 ( 𝐮 ) ≡ 𝑇 𝐶 𝐶 ( 𝐮 , 0 ) = ∬ 𝑆 

(
𝐮 ′
)
𝐻 

(
𝐮 ′+ 𝐮 

)
𝐻 

* 
(
𝐮 ′
)
𝑑 𝐮 ′ (250)
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Fig. 55. Geometric interpretation of WOTF for three different illuminations. (a) 

Incoherent imaging (light source larger than or equal to the objective pupil); (b) 

for partially coherent imaging (light source smaller than the objective pupil); (c) 

partially coherent oblique illumination. 
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ince the absorption and phase of the object are both real functions,
ccording to the properties of Fourier transform, the real part of �̂�( 𝐮 ) is
n even function, and the imaginary part of �̂�( 𝐮 ) is an odd function. Due
o the imaginary unit before the phase spectrum, the real part of 𝑗 ̂𝜙( 𝐮 )
s an odd function, and the imaginary part of 𝑗 ̂𝜙( 𝐮 ) is an even function.

For an aberration-free microscopic system with axisymmetric illumi-
ation and objective pupil, the coherent transfer function is the objec-
ive pupil function 𝐻 ( 𝐮 ) = 𝑃 ( 𝐮 ) . For bright-field imaging, the circular
ondenser aperture diaphragm is enclosed by the objective pupil 

 𝑂𝑇 𝐹 ( 𝐮 ) ≡ 𝑇 𝐶 𝐶 ( 𝐮 , 0 ) = ∬ 𝑃 
(
𝐮 ′
)
𝑃 
(
𝐮 ′+ 𝐮 

)
𝑑 𝐮 ′ (251)

ow the WOTF ( u ) is always real and even, as illustrated in Fig. 55 . When
he real WOTF ( u ) is multiplied with 𝑗 ̂𝜙( 𝐮 ) , the real part of the product
ecomes an odd function, and the imaginary part of the product becomes
n even function. According to the symmetries of Fourier transform, the
ourier transform of the odd, real function is an odd, imaginary func-
ion, and the Fourier transform of an even, imaginary function is still an
ven, imaginary function. Therefore, the phase component is a purely
maginary function after Fourier transform, so it cannot be reflected in
he intensity image. Therefore, if the microscope is in-focus, the phase
oes not manifest itself in the intensity image. In the same way, it can
e found that the absorption component is a purely real function after
ourier transform, so only the absorption component can be observed in
he in-focus image. For a general partially coherent imaging system, the
dd-symmetric and even-symmetric components of the WOTF ( u ) corre-
pond to the contributions of amplitude and phase components in the
ntensity signal, respectively. We define them as the ATF and PTF for
artially coherent imaging 

 ( 𝐱 ) = 𝑎 2 0 𝑇 𝐶 𝐶 ( 𝟎 , 𝟎 ) + 2 𝑎 0 𝑅𝑒 
{
ℱ 

−1 [𝐻 𝐴 ( 𝐮 ) ̂𝜂( 𝐮 ) + 𝐻 𝑃 ( 𝐮 ) ̂𝜙( 𝐮 ) 
]}

(252)

here 

 𝐴 ( 𝐮 ) = 𝑊 𝑂𝑇 𝐹 ( 𝐮 ) + 𝑊 𝑂𝑇 𝐹 * (− 𝐮 ) (253)

 𝑃 ( 𝐮 ) = 𝑊 𝑂𝑇 𝐹 * ( 𝐮 ) − 𝑊 𝑂𝑇 𝐹 (− 𝐮 ) (254)

orresponding to the partially coherent ATF and partially coherent PTF.
herefore, in order to generate phase contrast signal, the symmetry of
ither source or pupil function has to be broken. If the illumination or
he pupil function is asymmetric, the PTF H P ( u ) will be non-zero so
hat the phase component can manifest in the image. Such asymmetric
llumination or detection schemes are widely adopted in phase-contrast
maging, wavefront sensing, and QPI, e.g. , differential phase-contrast
DPC) microscopy [343–345] , pyramid wavefront sensor [44,346] , and
artitioned/programmable aperture microscopy (PAM) [347,348] . 

The situation discussed above is limited to an aberration-free optical
ystem. In fact, another approach to break the realness of WOTF is to
ntroduce aberration. Optical aberration produces an additional imagi-
ary component in the WOTF, resulting in phase contrast. Defocusing is
he most convenient way to introduce aberration into the optical system.

hen the imaging system is defocused with a distance Δz , the coherent
ransfer function becomes the product of the objective pupil function
 ( u ) and the angular spectrum transfer function [ Eq. (30) ] 

 ( 𝐮 ) = 𝑃 ( 𝐮 ) 𝐻 Δ𝑧 ( 𝐮 ) = 𝑃 ( 𝐮 ) 𝑒 𝑗𝑘 Δ𝑧 
√

1− 𝜆2 |𝐮 |2 (255)

ubstituting the complex pupil function into Eq. (250) results in a com-
lex and even WOTF 

 𝑂𝑇 𝐹 ( 𝐮 ) ≡ 𝑇 𝐶 𝐶 ( 𝐮 , 0 ) 

= ∬ 𝑆 
(
𝐮 ′
)
𝑃 
(
𝐮 ′
)
𝑃 
(
𝐮 ′ + 𝐮 

)
𝑒 
𝑗𝑘 Δ𝑧 

( 
− 
√

1− 𝜆2 |𝐮 ′|2 + 

√
1− 𝜆2 |𝐮 + 𝐮 ′|2 ) 

𝑑 𝐮 ′

(256) 

imilarly, according to the symmetries of Fourier transform, the transfer
unctions for the absorption and phase components of a weak object are
hen given by the real and imaginary components of the WOTF 

 𝐴 ( 𝐮 ) = Re [ 𝑊 𝑂𝑇 𝐹 ( 𝐮 ) ] (257)

 𝑃 ( 𝐮 ) = − Im [ 𝑊 𝑂𝑇 𝐹 ( 𝐮 ) ] (258)

.3.5. Phase transfer functions for coherent, incoherent, and partially 

oherent imaging 

In Section 4 , we know that the spatial coherence of the illumination
n a microscope can be quantified by coherence parameter. The coher-
nce parameter is defined as the ratio of the illumination NA to the
bjective NA [177,178,246,249] , which is equivalent to the radius ratio
f the condenser aperture to the objective aperture 

 = 

𝑁 𝐴 𝑖𝑙𝑙 

𝑁 𝐴 𝑜𝑏𝑗 

(259)

nder coherent illuminations, the source degenerates into the ideal on-
xis point radiator 𝑆 ( 𝐮 ) = 𝛿( 𝐮 ) , i.e., s →0. Then, the partially coherent
OTF degenerates into the complex pupil function 

 𝑂𝑇 𝐹 𝑐𝑜ℎ ( 𝐮 ) = 𝑃 ( 𝐮 ) 𝑒 
𝑗𝑘 Δ𝑧 

( √
1− 𝜆2 |𝐮 |2 −1 ) 

(260)

nd the real and the imaginary parts of the WOTF correspond to the ATF
nd PTF, respectively 

 𝐴 ( 𝐮 ) = 𝑃 ( 𝐮 ) cos 
[ 
𝑘 Δ𝑧 

( √ 

1 − 𝜆2 |𝐮 |2 − 1 
) ] 

(261)

 𝑃 ( 𝐮 ) = − 𝑃 ( 𝐮 ) sin 
[ 
𝑘 Δ𝑧 

( √ 

1 − 𝜆2 |𝐮 |2 − 1 
) ] 

(262)

nder the paraxial approximation, 𝑗𝑘 Δ𝑧 
( √ 

1 − 𝜆2 |𝐮 |2 − 1 
) 

≈

 𝑗𝜋𝜆Δ𝑧 |𝐮 |2 , and the transfer functions can be simplified as 

 𝐴 ( 𝐮 ) = 𝑃 ( 𝐮 ) cos 
(
𝜋𝜆Δ𝑧 |𝐮 |2 ) (263)

 𝑃 ( 𝐮 ) = 𝑃 ( 𝐮 ) sin 
(
𝜋𝜆Δ𝑧 |𝐮 |2 ) (264)

hese expressions are identical to Eqs. (92) and (93) discussed in
ection 4 . For weak defocusing Δz →0, the sine term can be further
pproximated by a parabolic function sin ( 𝜋𝜆Δz | u | 2 ) ≈ 𝜋𝜆Δz | u | 2 , which
s a Laplacian in the Fourier space, corresponding to the PTF implied in
IE. 
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Fig. 56. Transfer functions of a rotation-symmetric system. (a) CTF in the co- 

herent case; (b) OTF in the incoherent case. 
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Next we discuss the other extreme case, incoherent illumination.
trictly speaking, spatially incoherent illumination requires an infinitely
xtended source, i.e. , the coherence parameter s →∞ and the CSD re-
uces to a 𝛿 function [ Eq. (232) ]. However, when considering a weak
bject, as the illumination NA increases to the objective NA or even
arger, 𝑠 = 𝑁 𝐴 𝑖𝑙𝑙 ∕ 𝑁 𝐴 𝑜𝑏𝑗 ≥ 1 , the circular condenser aperture is limited
y the objective pupil. The form of WOTF will no longer change and
ecome the autocorrelation of the coherent transfer function 

 𝑂𝑇 𝐹 𝑖𝑛𝑐𝑜ℎ ( 𝐮 ) = ∬ 𝐻 

(
𝐮 ′+ 𝐮 

)
𝐻 

* 
(
𝐮 ′
)
𝑑 𝐮 ′ (265) 

t this time the system behaves the same as an incoherent microscope
142,178,249] [but note that it is not really incoherent (which requires
 →∞) because a weak object is assumed in this case]. For an axisym-
etric optical imaging system, the coherent transfer function H ( u ) is an

ven function of u , then WOTF incoh ( u ) is always real (even under de-
ocusing), and its PTF is always 0. Hence the phase component of the
pecimen cannot be imaged. Consequently, it is impossible to perform
hase retrieval under incoherent illumination. 

For an ideal in-focus axisymmetric system with circular apertures
no pupil aberrations), the WOTF becomes a convolution of two circles
f equal size (as shown in Fig. 56 ), which can be represented as 

 𝑂𝑇 𝐹 𝑖𝑛𝑐𝑜ℎ ( ̄𝜌) = 

2 
𝜋

⎡ ⎢ ⎢ ⎣ arccos 
( 

�̄�

2 

) 

− 

�̄�

2 

√ 

1 − 

( 

�̄�

2 

) 2 ⎤ ⎥ ⎥ ⎦ �̄� < 2 (266)

here �̄� is the normalized radical spatial coordinate with respect to the
oherent resolution limit NA obj / 𝜆

̄ = 

𝜆

𝑁 𝐴 𝑜𝑏𝑗 

𝜌 (267) 

fter normalization, the coherent diffraction limit NA obj / 𝜆 corresponds
o �̄� = 1 . Fig. 57 (a) shows the in-focus 𝑊 𝑂𝑇 𝐹 𝑖𝑛𝑐𝑜ℎ ( ̄𝜌) , which is purely
eal-valued and can only image the absorption part. It can be seen that
he absorption contrast gradually reduces as the increase in spatial fre-
uency, with a 61% relative contrast loss at the coherent resolution limit
 NA obj / 𝜆), and finally diminishes to zero at the incoherent diffraction
imit (2 NA obj / 𝜆). The contrast loss is even more severe when the system
s defocused, as demonstrated by the 𝑊 𝑂𝑇 𝐹 𝑖𝑛𝑐𝑜ℎ shown in Fig. 57 (b). 

From the above analysis, we know that under coherent illumination,
hase contrast can be produced by defocusing, but imaging resolution is
estricted to the coherent diffraction limit. Incoherent illumination pro-
ides higher imaging resolution (twice the coherent diffraction limit),
ut the phase component of the sample cannot be imaged. A compromise
etween the phase contrast and imaging resolution can be achieved by
sing partially incoherent illuminations with a reduced source dimen-
ion (0 < s < 1). Figs. 58 and 59 show the partially coherent ATF and PTF
or various coherent parameters and defocus distances. These results are
umerically calculated from Eq. (250) directly, as a weighted area of
verlap over H 

∗ ( u ′ ) and 𝐻 

(
𝐮 ′+ 𝐮 

)
. For an ideal in-focus axisymmetric

ystem with circular apertures, the WOTF can be represented analyti-
ally, which is just the overlapping area of two circles with different
adii 

 𝑂𝑇 𝐹 𝑠 ( ̄𝜌) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝜋𝑠 2 0 ≤ �̄� ≤ 1 − 𝑠 
𝑠 2 arccos 

(
�̄�2 + 𝑠 2 −1 

2 ̄𝜌𝑠 

)
− 
(
�̄�2 + 𝑠 2 −1 

2 ̄𝜌

)√ 

𝑠 2 − 
(
�̄�2 + 𝑠 2 −1 

2 ̄𝜌

)2 

+ 𝑠 2 arccos 
(
�̄�2 − 𝑠 2 +1 

2 ̄𝜌𝑠 

)
− 
(
�̄�2 − 𝑠 2 +1 

2 ̄𝜌

)√ 

1 − 
(
�̄�2 − 𝑠 2 +1 

2 ̄𝜌

)2 
1 − 𝑠 ≤ �̄� ≤ 1 + 𝑠

(268) 

Fig. 57 gives the corresponding in-focus WOTFs for different co-
erent parameters. As can be seen, the cut-off frequency is extended
o 1 + 𝑠, which is resolution limit for partially coherent imaging. Al-
hough incoherent illumination has a higher resolution limit, details at
 higher frequency are imaged with low contrast. On the other hand, for
artially coherent imaging, a higher image contrast is achieved due to
he better transfer at the low frequencies. For normal bright-field imag-
ng (for absorptive sample), it has transpired to be a good compromise
hen the light source image fills approximately half area of the pupil
 𝑠 = 0 . 7 − 0 . 8 ) for achieving both high imaging resolution and high im-
ge contrast (especially for low spatial frequencies). 

Next, we focus on the partially coherent PTFs under defocusing. It
an be seen from Fig. 58 that increasing coherence parameter dimin-
shes the phase contrast considerably. This is in consistent with the well-
nown phenomenon that the condenser of a microscope must be stopped
own to produce an appreciable contrast for phase information. But in
his case, the associated reduction in resolution limit becomes a major
ssue, leading to a compromised imaging resolution. This suggests that
he coherence parameter plays a very important role in phase imaging.
losing down the condenser diaphragm can improve the phase contrast
t the expense of a reduced resolution limit. While opening up the con-
enser diaphragm improves the resolution limit, however, the response
f the PTF is significantly attenuated. Therefore, in order to improve
he quality of phase retrieval, it is necessary to select an appropriate
oherence parameter and defocus distance to optimize the response of
he PTF. 

At the end of this section, let us consider the question raised at the
eginning of this section. Teague [141] originally derived TIE under
he assumption of complete coherence, i.e. , a monochromatic coherent
eld. However, in practical implementations, TIE seems to work well
ven when the illumination is not strictly coherent. In order to give a
easonable explanation for this phenomenon, let us recall the defocused
oherent transfer function in the normalized coordinate [ Eq. (76) ] 

 ( ̄𝜌) = 𝑃 ( ̄𝜌) 𝑒 − 
1 
2 𝑗 ̄𝑧 ̄𝜌

2 
(269)

here 

̄ = 

𝜌

𝑁𝐴 𝑜𝑏𝑗 ∕ 𝜆
(270) 

nd 

̄ = 2 𝑘 
( 

1 − 

√ 

1 − 𝑁𝐴 

2 
𝑜𝑏𝑗 

) 

𝑧 
𝑝𝑎𝑟𝑎𝑥𝑖𝑎𝑙 

≈ 𝑘𝑁𝐴 

2 
𝑜𝑏𝑗 

𝑧 (271)

hen analyzing the transfer function of a microscopic imaging system,
he normalized coordinate is often adopted to simplify the evaluation of
ntegrals. The scaling coefficients in Eqs. (73) and (74) are associated
ith the transverse and axial extension of the 3D OTF, which will be

ntroduced in Section 8 . 
Substituting Eq. (269) into Eq. (250) , we get the defocused WOTF

nder the paraxial approximation 
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Fig. 57. Transfer functions under different spatial coherence. (a) In-focus WOTF incoh , coherent parameters s ≥ 1; (b) defocused WOTF incoh , coherent parameters s ≥ 1; 

(c) in-focus WOTF s , 𝑠 = 0 . 1 , 0 . 4 , 0 . 75 and 1.0 under different coherence parameters. 

Fig. 58. The real part of WOTF s (ATF) for various coherent parameters and defocus distances ( 𝑁𝐴 𝑜𝑏𝑗 = 0 . 8 , 𝜆 = 550 𝑛𝑚, the spatial frequency coordinate is normalized 

against the coherent resolution limit NA obj / 𝜆). (a) 𝑠 = 0 . 1 ; (b) 𝑠 = 0 . 4 ; (c) 𝑠 = 0 . 75 ; (d) 𝑠 = 0 . 99 . 
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c  
 𝑂𝑇 𝐹 𝑠 ( ̄𝜌, ̄𝑧 ) = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

∫ 𝑠 − ̄𝜌∕2 
− ( 𝑠 + ̄𝜌∕2 ) 2 

√ 

𝑠 2 − 

(
�̄�

2 
+ 𝑥 

)2 
exp ( 𝑗 ̄𝑧 ̄𝜌𝑥 ) 𝑑𝑥 0 ≤ �̄� < 1 − 𝑠 

∫ 𝑠 − ̄𝜌∕2 
− ( 1− 𝑠 2 ) ∕2 ̄𝜌 2 

√ 

𝑠 2 − 

(
�̄�

2 
+ 𝑥 

)2 
exp ( 𝑗 ̄𝑧 ̄𝜌𝑥 ) 𝑑𝑥 

+ ∫ − ( 1− 𝑆 2 ) ∕2 ̄𝜌
�̄�∕ 2−1 2 

√ 

1 − 

(
�̄�

2 
+ 𝑥 

)2 
exp ( 𝑗 ̄𝑧 ̄𝜌𝑥 ) 𝑑𝑥 1 − 𝑠 ≤ �̄� ≤ 1 + 𝑠

(272)

Noted that this integral still cannot be evaluated analytically. But
hen the weak defocusing approximation is further introduced, i.e. 

𝑧 ≪ 1∕ 𝜋𝜆𝜌2 (273)

he defocused coherent transfer function can be reduced to 

 ( ̄𝜌) ≈1 − 

1 
𝑗 ̄𝑧 ̄𝜌2 (274)
2 
he defocused WOTF (under paraxial and weak defocusing approxima-
ions) is obtained by substituting Eq. (274) into Eq. (250) 

 𝑂𝑇 𝐹 𝑠 ( ̄𝜌, ̄𝑧 ) = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

∫ 𝑠 − ̄𝜌∕2 
− ( 𝑠 + ̄𝜌∕2 ) 2 

√ 

𝑠 2 − 
(
�̄�

2 
+ 𝑥 

)2 (
1 − 1 

2 
𝑗 ̄𝑧 ̄𝜌2 

)
𝑑𝑥 0 ≤ �̄� < 1 − 𝑠 

∫ 𝑠 − ̄𝜌∕2 
− ( 1− 𝑠 2 ) ∕2 ̄𝜌 2 

√ 

𝑠 2 − 
(
�̄�

2 
+ 𝑥 

)2 (
1 − 1 

2 
𝑗 ̄𝑧 ̄𝜌2 

)
𝑑𝑥 

+ ∫ − ( 1− 𝑠 2 ) ∕2 ̄𝜌
�̄�∕ 2−1 2 

√ 

1 − 
(
�̄�

2 
+ 𝑥 

)2 (
1 − 1 

2 
𝑗 ̄𝑧 ̄𝜌2 

)
𝑑𝑥 1 − 𝑠 ≤ �̄� ≤ 1 + 𝑠 

(275) 

Now the integral can be solved explicitly. The real part is completely
onsistent with the in-focus ATF [ Eq. (268) ], and the imaginary part ( i.e. ,
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Fig. 59. The imaginary part of WOTF s (PTF) for various coherent parameters and defocus distances ( 𝑁 𝐴 𝑜𝑏𝑗 = 0 . 8 , 𝜆 = 550 𝑛𝑚, the spatial frequency coordinate is 

normalized against the coherent resolution limit NA obj / 𝜆). (a) 𝑠 = 0 . 1 ; (b) 𝑠 = 0 . 4 ; (c) 𝑠 = 0 . 75 ; (d) 𝑠 = 0 . 99 . 
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Fig. 60. The ratio between imaginary part of the WOTF for a weakly defocused, 

partially coherent bright-field microscope with coherent parameter s and the 

inverse Laplacian filter of TIE. 
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TF) is given by 

 Im 𝑊 𝑂𝑇 𝐹 𝑠 ( ̄𝜌, ̄𝑧 ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 
2 
𝜋�̄� ̄𝜌2 𝑠 2 0 ≤ �̄� ≤ 1 − 𝑠 

�̄� ̄𝜌2 

2 

[
𝑠 2 arccos 

(
�̄�2 + 𝑠 2 −1 

2 ̄𝜌𝑠 

)
− arccos 

(
�̄�2 − 𝑠 2 +1 

2 ̄𝜌

)]
+ �̄� 

6 ̄𝜌

{ √ 

𝑠 2 − 
(

�̄�2 + 𝑠 2 −1 
2 ̄𝜌

)2 [
𝑠 2 arccos 

(
�̄�2 + 𝑠 2 −1 

2 ̄𝜌𝑠 

)
− arccos 

(
�̄�2 − 𝑠 2 +1 

2 ̄𝜌

)]
[(
1 − 𝑠 2 

)2 − �̄�2 
2 

(
1 + ̄𝜌2 + 7 𝑠 2 

)]
+ 
√ 

1 − 
(

�̄�2 − 𝑠 2 +1 
2 ̄𝜌

)2 [(
1 − 𝑠 2 

)2 − �̄�2 
2 

(
1 + ̄𝜌2 + 7 𝑠 2 

)]
1 − 𝑠 ≤ �̄� ≤ 1 + 𝑠 

(276) 

It can be found that when 0 ≤ �̄� < 1 − 𝑠, the PTF 1 2 𝜋�̄� ̄𝜌
2 𝑠 2 is just a

aplacian in the Fourier domian. If we convert the normalized coordi-
ate back to the original coordinate, and neglect the constant scaling
actor ( i.e. , pupil area 𝜋s 2 ), 1 2 �̄� ̄𝜌

2 → 𝜋𝜆z 𝜌2 , it coincides with the TIE’s
TF [ Eq. (97) ]. This suggests that under the paraxial approximation
nd weak defocusing, TIE (without considering the partial coherence)
an still recover the phase information correctly within the low spa-
ial frequency range of 0 ≤ �̄� ≤ 1 − 𝑠 . For spatial frequencies outside this
ange, 1 − 𝑠 ≤ �̄� ≤ 1 + 𝑠, the form of PTF become much more compli-
ated. The amplitude of the PTF monotonically decays with the increase
f 𝜌, which can be observed in Fig. 59 (see the red curves corresponding
o Δ𝑧 = 0 . 5 𝜇𝑚 ). 

In order to illustrate the relationship between WOTF and TIE more
learly, we show the ratio between the partially coherent weak defo-
used PTF and TIE’s PTF in Fig. 60 . It can be seen that the two PTFs
re in complete agreement within the range of 0 ≤ �̄� ≤ 1 − 𝑠, but be-
in to deviate when �̄� becomes large. The divergence results from the
verestimate of phase contrast in TIE due to the ignorance of limited
perture and partial coherence. Note that the trends of these curves are
ery similar to that of in-focus partially coherent ATFs [ Fig. 57 (c)], but
heir meanings are completely different. One major difference is that
hen approaching incoherent illumination ( s →1), the PTF gradually
anishes while the in-focus ATF still maintains a strong response. 

. Generalized TIE under partially coherent illuminations 

No matter completely coherent fields, partially coherent fields, or
ompletely incoherent fields, the intensity of the optical field is well-
efined and directly accessible. Nevertheless, the “phase ” is only well-
efined for coherent fields. In a strict sense, any physically realiz-
ble light sources are not strictly coherent. Especially in adaptive op-
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ics [144–148] , X-ray diffraction imaging [161,162] , neutron radiogra-
hy [164,165] , and TEM [166,169,171–174] , it is generally difficult to
btain highly coherent light sources so that TIE becomes a simple and
ffective alternative to interferometry. Even in the field of optical mi-
roscopy, partially coherent illumination is beneficial to enhance the
maging resolution, improve the image quality, and suppress the coher-
nt noise. However, Teague’s TIE, as well as his derivation, assumes a
onochromatic, coherent beam [141] . The 2D complex amplitude func-

ion is no longer sufficient to fully describe partially coherent fields, and
D MCF (or equivalently, CSD and WDF) should be used. Thus, Teague’s
IE might encounter trouble when dealing with fields exhibiting non-
egligible partial coherence. In this section, we analyze these issues and
resent the extensions of TIE for partially coherent fields. The challenges
nd opportunities brought by partially coherent illuminations for phase
etrieval and QPI is discussed. 

.1. Extensions of TIE for partially coherent fields 

The major obstacle in extending TIE for partially coherent fields
rises from the fact that the partially coherent field does not have a
ell-defined phase since the field experiences statistical fluctuations
ver time. For partially coherent fields, the 2D complex amplitude is
nsufficient to fully describe the properties of the field. They require the
D MCF or CSD of any two points in space, or equivalently being rep-
esented by WDF or AF in 4D phase space. In this case, the definition
f phase should be clearly different from the one in a perfectly coher-
nt field. As early as 1984, Streibl [142] used the 4D MI function to
eformulate TIE in order to make it explicitly account for the partial co-
erence and demonstrated the possibility of using TIE for phase imaging
nder partially coherent illumination. Although he did not give the QPI
esults based on TIE (the numerical solution to TIE has not been pro-
osed at that time), this work is still extremely important because he
rst pointed out that the phase retrieved by Teague’s TIE can still be
elated to the phase of the object (not the field), provided that the in-
ensity distribution of the primary is axis-symmetric about the optical
xis. This pioneering work laid a preliminary theoretical foundation for
he subsequent extensive applications of TIE in optical microscopy. In
998, Paganin and Nugent [159] reinterpreted the “phase ” of a partially
oherent field as a scalar phase whose gradients become the normalized
ransverse time-averaged Poynting vector of the field. The significance
f this work lies in the fact that it endows “phase ” with a completely new
nd meaningful definition, providing a simple and reasonable physical
asis for subsequent TIE phase retrieval under partially coherent illu-
inations. Unfortunately, this definition is only suitable for qualitative

nterpretation rather than quantitative analysis (because they did not
ive an explicit expression for the time-averaged Poynting vector of a
artially coherent field). In 2004, Gureyev et al. [256] described an al-
ernative interpretation with the generalized eikonal, based on the spec-
rum decomposition of a polychromatic field. He experimentally demon-
trated that even under temporally partially coherent (polychromatic)
lluminations, accurate phase retrieval can be obtained by TIE as long
s the spectral distribution of the source is known. In 2016, Gureyev
t al. [349] quantitatively analyzed the effect of partially coherent illu-
ination on TIE phase retrieval based on the CSD analysis. They derived

hat the effects of both the spectral width and physical size of the source
Schell model) can be interpreted as a convolution on the reconstructed
hase distribution, leading to phase blurring. For sources with a rela-
ively high degree of coherence, the convolution effect is not obvious,
o the phase distribution can still be accurately recovered. When the co-
erence of the light source is low, they also proposed to introduce one
dditional sample-free measurement and use deconvolution algorithm
o compensate for the coherence-induced phase blur. In 2010, Zysk et al.

350] explicitly considered the spatially partial coherence with use of
oherent mode decomposition, revealing that the phase recovered by
IE is a weighted average of the phases of all coherent modes. In 2014,
etrucelli et al. [351] used the CSD representation to analyze TIE phase
maging under partially coherent illuminations. They also proposed a
ouble exposure method to compensate for the phase errorn induced
y the spatially partial coherence. Their conclusions are consistent with
he results of Streibl [142] and Gureyev et al. [352] . In 2015, Zuo et al.

208] derived the generalized TIE as an extension of the traditional TIE
or partially coherent fields in phase space. In this subsection, we intro-
uce two most representative extensions of TIE under partially coherent
lluminations, i.e. , partially coherent TIE based on MI/CSD and general-
zed TIE based on WDF. 

.1.1. Partially coherent TIE based on MI/CSD 

From Subsection 6.1.4 , we know that the propagation of CSD satisfies
he following pair of Helmholtz equations [ Eqs. (141) and (142) ] 

 

2 
1 𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
+ 𝑘 2 𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 0 (277)

 

2 
2 𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
+ 𝑘 2 𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
= 0 (278)

he propagation of MI also satisfies similar Helmholtz equations. In the
ollowing, we adopt the CSD representation (note that the partially co-
erent TIE was originally derived by Streibl [142] based on MI in 1984.
hen in 2013, Petruccelli et al. [351] deduced the partially coherent
IE in differential coordinate system based on CSD). Under the paraxial
pproximation, the Helmholtz equations reduce to paraxial wave equa-
ions 

 

2 
1 𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
+ 2 𝑗𝑘 

𝜕 𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
𝜕𝑧 

= 0 (279)

 

2 
2 𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
− 2 𝑗𝑘 

𝜕 𝑊 𝜔 

(
𝐱 1 , 𝐱 2 

)
𝜕𝑧 

= 0 (280)

n order to simplify Eqs. (279) and (280) , the following differential co-
rdinate system is defined 

 = 

𝐱 1 + 𝐱 2 
2 

; 𝐱 ′ = 𝐱 1 − 𝐱 2 (281)

r equivalently, 

 1 = 𝐱 + 

𝐱 ′
2 
; 𝐱 2 = 𝐱 − 

𝐱 ′
2 

(282)

n this case, it is not difficult to prove that ∇ 

2 
1 = ∇ 

2 
𝐱 + ∇ 𝐱 ⋅ ∇ 𝐱 ′ +

1 
4 ∇ 

2 
𝐱 ′ , ∇ 

2 
2 = ∇ 

2 
𝐱 − ∇ 𝐱 ⋅ ∇ 𝐱 ′ + 

1 
4 ∇ 

2 
𝐱 ′ , and we can get ∇ 

2 
1 − ∇ 

2 
2 = 2∇ 𝐱 ⋅ ∇ 𝐱 ′ .

hen taking the difference between Eqs. (279) and (280) and simplify
he result [142,351] 

𝜕 

𝜕𝑧 
𝑊 𝜔 

( 

𝐱 + 

𝐱 ′
2 
, 𝐱 − 

𝐱 ′
2 

) 

= − 

𝑗 

𝑘 
∇ 𝐱 ⋅ ∇ 𝐱 ′𝑊 𝜔 

( 

𝐱 + 

𝐱 ′
2 
, 𝐱 − 

𝐱 ′
2 

) 

(283)

hen x ′ →0, the LSH of Eq. (283) is just the PSD, thus the following
ransport equation can be obtained 

𝜕 𝑆 𝜔 ( 𝐱 ) 
𝜕𝑧 

= − 

𝑗 

𝑘 
∇ 𝐱 ⋅ ∇ 𝐱 ′𝑊 𝜔 

( 

𝐱 + 

𝐱 ′
2 
, 𝐱 − 

𝐱 ′
2 

) |||||𝐱 ′=0 (284)

q. (284) can be considered as the transport of spectrum equation for
olychromatic fields. For a quasi-monochromatic field, the spectral den-
ity S 𝜔 ( x ) just refers to the intensity I ( x ), and the partially coherent TIE
s obtained. 

.1.2. Generalized TIE in phase space 

From Subsection 6.2.5 , we know that the paraxial propagation of
DF obeys the Liouville transport equation [141] 

𝜕 𝑊 𝜔 ( 𝐱, 𝐮 ) 
𝜕𝑧 

+ 𝜆𝐮 ⋅ ∇ 𝐱 𝑊 𝜔 ( 𝐱, 𝐮 ) = 0 (285)

nd the solution takes the form 

 𝜔 ( 𝐱, 𝐮 , 𝑧 ) = 𝑊 𝜔 ( 𝐱 − 𝜆𝑧 𝐮 , 𝐮 , 0 ) (286)

here z is the propagation distance. In 2015, Zuo et al. [208] integrated
n both sides of Eq. (285) over all spatial frequencies u , and combining
he definition of PSD given by Eq. (171) , derived that 

𝜕𝑆 𝜔 ( 𝐱 ) 
𝜕𝑧 

= − ∇ 𝐱 ⋅∫ 𝜆𝐮 𝑊 𝜔 ( 𝐱, 𝐮 ) 𝑑𝐮 (287)
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Fig. 61. Schematic of a simplistic view of coherent field and partially (spatially) 

coherent field. (a) For coherent field, the surface of the constant phase is inter- 

preted as wavefronts with geometric light rays traveling normal to them. It is 

fully described by 2D complex amplitude; (b) partially coherent field needs 4D 

coherence function, like the Wigner distribution, to accurately characterize its 

properties, like its propagation and diffraction. In addition, a partially coherent 

field does not have a well-defined phase, but rather a statistical ensemble of 

phases (spatial frequencies, propagation directions) at every position in space. 
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q. (287) can be regarded as the transport of spectrum equation for
olychromatic fields. It relates the longitudinal evolution rate of the
SD to the transverse divergence of the first frequency moment of the
DF. The time-averaged intensity of a partially coherent beam coincides
ith the integral of the PSD over all frequencies [256,350] . Hence, we

ntegrate Eq. (287) over 𝜔 to obtain the generalized TIE (GTIE) [208] 

𝜕𝐼 ( 𝐱 ) 
𝜕𝑧 

= − ∇ 𝐱 ⋅∬ 𝜆𝐮 𝑊 𝜔 ( 𝐱, 𝐮 ) 𝑑 𝐮 𝑑 𝜔 (288)

nly the paraxial approximation is employed in deriving Eq. (288) , thus
t is general enough to cover various optical fields with arbitrary spatial
nd temporal coherence. 

Now let us consider a few important special cases of the GTIE: first,
hen the field is quasi-monochromatic, i.e. , the field consists of almost
 single frequency, the spectral density S 𝜔 ( x ) is simply the intensity I ( x ).
n this case, the field can be regarded as almost completely temporally
oherent. Thus, the transport of spectrum equation reduces to the GTIE
or spatial partially coherent fields: 

𝜕𝐼 ( 𝐱 ) 
𝜕𝑧 

= − 𝜆∇ 𝐱 ⋅ ∫ 𝐮 𝑊 ( 𝐱, 𝐮 ) 𝑑𝐮 . (289)

ote that although the temporal coherence of the illumination can be
imply incorporated by the integral over all optical frequencies as in
q. (288) , it should be stressed that for dispersive samples, the inherent
avelength-dependent RI often complicates the accurate phase deter-
ination. For the remainder of this section, we will drop the spectral
ependence 𝜔 (assuming quasi-monochromaticity) for simplicity, but it
hould be noted that for polychromatic fields, the WDF characterizes
nly a single spectral component of the whole field. 

Similar to the traditional TIE, GTIE can also be derived from the en-
rgy conservation law of the electromagnetic field. In Subsection 6.2.5 ,

e construct the 3D vector field 𝑗 𝐫 = 

[
𝑗 𝐱 , 𝑗 𝑧 

]𝑇 
[303,323] , which is also

nown as the geometrical vector flux [ Eqs. (206) and (207) ] 

 𝐱 ( 𝐮 ) = 𝜆∫ 𝐮 𝑊 ( 𝐱, 𝐮 ) 𝑑𝐮 (290) 

 𝑧 ( 𝐱 ) = 

1 
𝑘 ∫

√ 

𝑘 2 − 4 𝜋2 |𝐮 |2 𝑊 ( 𝐱, 𝐮 ) 𝑑𝐮 (291) 

he energy conservation in free space implies the geometrical vector
ux has zero divergence 

 ⋅ 𝑗 𝐫 = 0 (292)

hen the following continuity equation can be obtained 

𝜕 𝑗 𝑧 ( 𝐱 ) 
𝜕𝑧 

= −∇ ⋅ 𝑗 𝐱 ( 𝐱 ) (293)

nder the paraxial approximation, 
√ 

𝑘 2 − 4 𝜋2 |𝐮 |2 ≈ 𝑘 . In this case, the
xial energy flux reduces to the intensity, given by the space marginal
f the WDF 

 𝑧 ( 𝐱 ) ≈ ∫ 𝑊 ( 𝐱, 𝐮 ) 𝑑𝐮 = 𝐼 ( 𝐱 ) (294) 

ubstituting Eq. (294) into Eq. (293) , the GTIE for partially coherent
elds is obtained [208] 

𝜕𝐼 ( 𝐱 ) 
𝜕𝑧 

= −∇ ⋅ 𝑗 𝐱 ( 𝐱 ) = − 𝜆∇ 𝐱 ⋅ ∫ 𝐮 𝑊 ( 𝐱, 𝐮 ) 𝑑𝐮 (295)

.1.3. Generalized definition of “phase ” for partially coherent fields 

In the previous subsection, we drop the spectral dependence 𝜔 by as-
uming quasi-monochromaticity. However, quasi-monochromatic fields
re still not necessarily deterministic due to the statistical fluctuations
ver the spatial dimension. This randomness can be removed by fur-
her limiting the field to be completely spatially coherent as well. Then
he field becomes deterministic and can be fully described by the 2D
omplex amplitude 𝑈 ( 𝐱 ) = 

√
𝐼( 𝐱) exp [ 𝑗𝜙( 𝐱) ] , where 𝜙( x ) is the phase

f the completely (both temporally and spatially) coherent field. From
he space-frequency analysis perspective, the completely coherent field
an be regarded as a mono-component signal, and the first conditional
requency moment of WDF (instantaneous frequency) is related to the
ransverse phase gradient of the complex field [303,308] 

∫ 𝐮 𝑊 ( 𝐱, 𝐮 ) 𝑑𝐮 
∫ 𝑊 ( 𝐱, 𝐮 ) 𝑑𝐮 

= 

1 
2 𝜋

∇ 𝐱 𝜙( 𝐱 ) (296) 

ubstituting Eq. (296) into Eq. (295) leads to Teague’s TIE [141] 

𝜕𝐼 ( 𝐱 ) 
𝜕𝑧 

= − 

1 
𝑘 
∇ 𝐱 ⋅

[
𝐼 ( 𝐱 ) ∇ 𝐱 𝜙( 𝐱 ) 

]
(297) 

s discussed earlier, the validity of Teague’s TIE is restricted to fully
oherent fields, while GTIE, which is a generalized version of TIE in
hase space, explicitly considers the coherence modes so that it can be
pplied to a much wider range of optical- and electron-beams. 

One difficulty in extending GTIE to phase retrieval arises from
he fact that the partially coherent field does not have a well-defined
phase ” since the field experiences statistical fluctuations over time
 Fig. 61 ). It can be seen from Eq. (296) that GTIE relates the axial
ntensity derivative with the transverse divergence of the conditional
requency moment of WDF, while the phase gradient (defined as “gen-
ralized phase ”) of partially coherent fields is automatically connected
ith the conditional frequency moment of WDF (also known as the in-

tantaneous frequency in the field of signal processing) [238] . It is not
ifficult to find that the phase-space representation on the left side of
q. (296) is still valid for partially coherent fields, leading to a new
eaningful and more general definition of “phase ”. Here we refer the
ew “phase ” defined by Eq. (296) as the generalized phase of partially
oherent fields to distinguish it from its coherent counterpart. It can
e seen from Eq. (296) that the generalized phase is a scalar potential
hose gradient yields the conditional frequency moment of the WDF. It

s clear from a distribution point of view that the quantity is the average
patial frequency at a particular location. Besides, the time-frequency
oint description characteristic of WDF is very similar to the concept of
ight in geometric optics. It supposes that light is a description of the
mplitude and propagation direction of light energy (Poynting vector).
hus, W ( x, u ) can be intuitively interpreted as the energy density of the
ay travelling through the point x and having a frequency (direction)
 . Eq. (286) exactly represents the geometric-optical behavior of a ray
raveling through free space and Eq. (294) implies that the intensity at
 point is simply the sum of the energy spreading over all possible direc-
ions. Similarly, the frequency moment of WDF [ Eq. (296) ], represents
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he transversal ensemble/time-averaged flux vector (transversal time-
veraged Poynting vector) [159] . However, it should be noted that the
DF is not a rigorous energy density function (radiance function) due

o its possibility of negativeness. But it is still very enlightening to use
his connection between physical optics and geometric optics. For the
ases when the diffraction effect is not obvious or even can be ignored, it
rovides an accurate and meaningful physical explanation for the light
ransport of partially coherent fields. 

.2. Phase retrieval under partially coherent illuminations 

.2.1. Phase retrieval based on GTIE 

In this subsection, we explore the application of GTIE for phase re-
rieval under partially coherent illuminations. It should be emphasized
hat the major concern in such scenario is the well-defined phase shift in-
roduced by the specimen, rather than the generalized phase of the par-
ially coherent field itself. This leads to the natural choice of treating the
ontributions of the incident illumination and specimen separately by
onsidering the transmitted field as a product of the illumination func-
ion U in ( x ) and the sample transmission function 𝑇 ( 𝐱 ) = 𝑎 ( 𝐱 ) exp [ 𝑗𝜙( 𝐱 ) ] ,
here a ( x ) and 𝜙( x ) are the amplitude and the phase of the specimen.
he CSD of the resultant field just leaving the object can be written
s 𝑊 𝑜𝑢𝑡 

(
𝐱 1 , 𝐱 2 

)
= 𝑇 

(
𝐱 1 
)
𝑇 ∗ 
(
𝐱 2 
)
𝑊 𝑖𝑛 

(
𝐱 1 , 𝐱 2 

)
. Substituting it into the defi-

ition of the WDF and using the convolution theorem of the Fourier
ransform, we can represent the overall WDF as a convolution of the
bject transmittance WDF, W T ( x, u ), and the illumination WDF, W in ( x,

 ), over the spatial frequency variable 𝐮 

 𝑜𝑢𝑡 ( 𝐱, 𝐮 ) = 𝑊 𝑇 ( 𝐱, 𝐮 ) ⊗𝐮 
𝑊 𝑖𝑛 ( 𝐱, 𝐮 ) 

= ∫ 𝑊 𝑇 

(
𝐱, 𝐮 ′

)
𝑊 𝑖𝑛 

(
𝐱, 𝐮 − 𝐮 ′

)
𝑑 𝐮 ′ (298)

ubstituting Eq. (298) into the LHS of Eq. (296) and changing the order
f integration, it can then be derived that the generalized phase of the
ransmitted field, �̂�𝑜𝑢𝑡 ( 𝐱 ) , should satisfy the following expression [208] 

∫ 𝐮 𝑊 𝑜𝑢𝑡 ( 𝐱, 𝐮 ) 𝑑𝐮 
∫ 𝑊 𝑜𝑢𝑡 ( 𝐱, 𝐮 ) 𝑑𝐮 

= 

∫ 𝐮 𝑊 𝑇 ( 𝐱, 𝐮 ) 𝑑𝐮 
∫ 𝑊 𝑇 ( 𝐱, 𝐮 ) 𝑑𝐮 

+ 

∫ 𝐮 𝑊 𝑖𝑛 ( 𝐱, 𝐮 ) 𝑑𝐮 
∫ 𝑊 𝑖𝑛 ( 𝐱, 𝐮 ) 𝑑𝐮 

(299)

r equivalently, 

 𝐱 �̂�𝑜𝑢𝑡 ( 𝐱 ) = ∇ 𝐱 
[
�̂�𝑖𝑛 ( 𝐱 ) + 𝜙( 𝐱 ) 

]
(300)

his representation shows the generalized phase accrues upon propaga-
ion through the object, behaving precisely as a conventionally defined
hase. The total generalized phase is the sum of the phase of the object
nd the generalized phase of the incident illumination. In general, the
etermination of the object phase requires two independent measure-
ents, performed with and without the presence of the specimen. The

ample-free measurement is used to characterize �̂�𝑖𝑛 ( 𝐱 ) of the incident
eam and is subsequently subtracted from the total generalized phase
̂
𝑜𝑢𝑡 ( 𝐱 ) to get the net phase introduced by the object only. However, if

he illumination is chosen judiciously to directly nullify �̂�𝑖𝑛 ( 𝐱 ) , then 

𝐮 𝑊 𝑖𝑛 ( 𝐱, 𝐮 ) 𝑑𝐮 = 0 (301)

q. (301) is called “zero-moment condition ”. When this condition is satis-
ed, the total generalized phase �̂�𝑜𝑢𝑡 ( 𝐱 ) directly gives 𝜙( x ) and one sin-
le measurement is sufficient to retrieval the object phase even though
he illumination is not fully coherent. Next, we will discuss two special
ases that satisfy Eq. (301) . Firstly, for completely coherent illumina-
ion, Eq. (301) simply means the wavefront is on-axis plane wave, and
he waist of a Gaussian beam. For partially coherent spatially station-
ry illuminations [303] (discussed in Subsection 6.1.7 ), which will be
enerally true for the experimental arrangements in optical microscopy
ince they typically use Köhler illumination geometry, the spatially in-
oherent primary source (usually in the condenser aperture plane for an
ptical microscope) featured by the intensity distribution S ( x ) and the
ositional CSD 𝑊 

(
𝐱 + 𝐱 ′∕2 , 𝐱 − 𝐱 ′∕2 

)
= 𝑆 ( 𝐱 ) 𝛿

(
𝐱 ′
)

is collimated by the
ondenser (or simply propagated to the far field), producing the illumi-
ation WDF W in ( x, u ) just before the object plane [ Eq. (200) ] 

 𝑖𝑛 ( 𝐱, 𝐮 ) = 𝑆 ( 𝐮 ) (302)

ote that the above expression ignores the constant coordinate scal-
ng factor associated with the Fourier transform pair, which is trivial
hen all computations are carried out in normalized units. Substitut-

ng Eq. (302) into Eq. (301) reveals that the primary source distribution
ust be symmetric about the optical axis, which corresponds to the case
iscussed by Streibl [142] and Petruccelli et al. [351] . 

Before proceeding further, we must emphasize that though GTIE is
erived in the joint space-spatial frequency domain using WDF, here we
o not intend directly to apply GTIE [ Eq. (289) ] or generalized phase
 Eq. (296) ] for phase retrieval because WDF is difficult to measure di-
ectly, as discussed in Subsection 6.2.6 . The main point to be conveyed
ere is that phase retrieval can be realized by directly applying the orig-
nal Teague’s TIE for partially coherent fields, by adopting the new GTIE
nd the generalized definition of “phase ” that is valid for partially co-
erent fields. In other words, for completely coherent fields, if we take
he axial intensity derivative and then solve Teague’s TIE, we obtain
he phase of the field; for partially coherent fields, by following the
ame procedure, we obtain the generalized phase of the partially co-
erent field instead. Since the conditional frequency moments of WDF
re additive [ Eq. (299) ], the gradient of the generalized phase also is
dditive [ Eq. (300) ]. Hence, the generalized phase of the transmitted
eld can be decomposed into the generalized phase of the incident illu-
ination plus the phase shift introduced by the specimen. This decom-
osition is unique up to an additive constant that may float between
he two components (constant phase is unimportant in phase retrieval
nd can be neglected). GTIE knows nothing about the object phase and
he generalized phase of the illumination, and it only retrieves the gen-
ralized phase of the total beam passing through the object. However,
ur objective is to determine the well-defined phase shift introduced by
he specimen rather than the “phase ” of the illumination or the total
ransmitted partially coherent field. To solve this problem, one needs
o either separate the two terms with two independent measurements
xplicitly, as suggested in [351,352] . Alternatively, we can directly nul-
ify the “phase ” of the illumination. As discussed above, for the coherent
maging, illumination with flat wavefront is required; and for spatially
tationary illuminations, the primary source distribution must be sym-
etric about the optical axis. In fact, for the completely coherent case,

uch kind of treatment has been habitually adopted in TIE literature. For
patially stationary illuminations, it is also quite easy to realize in prac-
ice, e.g. , the built-in Köhler illumination in a normal bright-field mi-
roscope (of course, the condenser aperture must be properly centered
n the optical axis, which is usually clearly explained in the microscope
perating manual). 

.2.2. Phase retrieval based on the definition of “generalized phase ”

As mentioned above, the monochromatic coherent optical field can
e represented by a 2D complex amplitude function, so its 4D phase-
pace representation is highly redundant. For a slowly varying coherent
ptical field, the redundancy of phase space becomes more obvious. As
hown in Eq. (190) , the signal only fills a 2D section in phase space,
nd the WDF is always strictly greater than 0, i.e. , the non-negativity is
uaranteed. Therefore, for a slowly-varying coherent field, the diffrac-
ion effect can be approximately ignored, and the WDF is equivalent
o the energy density function (radiation brightness) of the optical field.

hen spatial coordinates and spatial frequency coordinates are defined,
 ( x, u ) represented by Eq. (190) indicates that the light (energy flow)

assing through the point only propagates along one direction, which is
etermined by the phase gradient (normal line). This property enables
hase measurement can be achieved by measuring the light direction,
hich is just the basic idea of the Shake-Hartmann wavefront sensor
entioned in Section 1 [40–42] . Fig. 62 shows a 1D diagram of WDF

nd field distribution of a smooth coherent wavefront (spherical wave).
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Fig. 62. The WDF and light field of a smooth coherent wavefront. Phase is represented as the localized spatial frequency (instantaneous frequency) in the WDF 

representation. Rays travel perpendicularly to the wavefront (phase normal). (a) Wavefront in real space; (b) WDF in phase space; (c) light field in position-angle 

space. 

Fig. 63. Principle of the Shack-Hartmann sensor and light-field camera. (a) For coherent field, the Shack-Hartmann sensor forms a focus spot array sensor signal; (b) 

for a partially coherent field, the Shack-Hartmann sensor forms an extended source array sensor signa; (c) for incoherent imaging, the light-field camera produces a 

2D sub-aperture image array. 
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t can be found that the direction of light propagation is perpendicular
o the wavefront (phase gradient direction). Under the paraxial approx-
mation, the relation between the spatial frequency in the WDF and the
ight propagation angle in the light field can be simply summarized as
≈ 𝜆u , where 𝜽 represents the inclined angle of the light along the opti-
al axis. Obviously, since the signal only fills a 2D section in phase space,
ach microlens array behind the Hartmann wavefront sensor can only
pproximately collect a highly localized 𝛿 function with different offset
 Fig. 62 (a)], which reflects the high redundancy of the slowly varying
oherent optical field in the spatial frequency domain. 

It is more complicated when the field is not strictly coherent. Gen-
rally, the phase-space WDF constitutes a rigorous and non-redundant
epresentation for partially coherent fields. From the perspective of ge-
metric optics, for each point on the beam, light rays (energy flow) no
onger propagate in only one direction. Instead, they fan out to create a
D distribution, i.e. , a 2D sub-aperture image is created behind each mi-
rolens in the Hartmann wavefront sensor [ Fig. 63 (b)], which accounts
or the higher dimensionality of a partially coherent field. If the field
xhibits significant spatial incoherence, the phase-space negativity and
scillations smooth out, and the WDF again approaches the radiance
r the light field. In the computer graphics community, the light-field
amera, as a counterpart of the Shack-Hartmann wavefront sensor, also
llows joint measurement of the spatial and directional distribution of
he incoherent light field [337] [ Fig. 63 (c)]. The “light field ” usually
efers to as a collection of light, represented by L ( x, 𝜽), where x is the
patial location, and 𝜽 is the angular distribution of all light rays passing
hrough a given point in space. Under the geometric-optics approxima-
ion, the WDF is equivalent to radiance [300,301] or light field L ( x, 𝜽)
 L ( x, 𝜽) ≈W ( x , 𝜆u )] [335] . Since the intensity and angular distribution
f all rays are recorded by light-field imaging, ray-tracing technique
an be used to reconstruct synthetic photographs, estimate depth, and
hange focus or viewing perspectives [353] . This is similar to the case
hen the 4D coherence function of a partially coherent optical field is

etrieved, it allows to control the light propagation and manipulate the
ptical field numerically in a computer. However, it significantly sacri-
ces spatial resolution as compared to conventional imaging systems. 

As described in Subsection 6.2.6 , it is difficult to measure the WDF
irectly because of its high dimensionality, so it is not recommended
o directly use the definition of the generalized phase [ Eq. (296) ] for
hase retrieval. But it must be admitted that it is a very intuitive and
nteresting approach for phase measurement. As is shown by Eq. (296) ,
he phase of the field (regardless of its state of coherence), which is
 scalar potential whose gradient yields the conditional frequency mo-
ent of the WDF, can be retrieved from TIE with a minimum of two

losely spaced intensity measurements. From Section 6 , the 4D WDF
an be approximately acquired directly by using a microlens array (the
ey component of a Shack-Hartmann sensor and light-field camera). Ap-
lying the geometric-optics approximation L ( x, 𝜽) ≈W ( x , 𝜆u ), we can
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Fig. 64. Images captured with a light-field microscope with different illumination NAs . (a) NA ill = 0.05; (b) NA ill = 0.15; (c) NA ill = 0.2; (d) NA ill = 0.25; scale bar 

length is 50 𝜇m . 
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Fig. 65. Phases reconstructed from the light fields with different illumination 

NAs . (a) 𝑁 𝐴 𝑐𝑜𝑛𝑑 = 0 . 05 ; (b) 𝑁 𝐴 𝑐𝑜𝑛𝑑 = 0 . 15 ; (c) 𝑁 𝐴 𝑐𝑜𝑛𝑑 = 0 . 2 ; (d) 𝑁 𝐴 𝑐𝑜𝑛𝑑 = 0 . 25 ; 
scale bar length is 50 𝜇m . 
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escribe the phase in terms of the light field [ Eq. (296) ] can be changed
o 

∫ 𝛉𝐿 ( 𝐱, 𝛉) 𝑑𝛉
∫ 𝐿 ( 𝐱, 𝛉) 𝑑𝛉

= 𝑘 −1 ∇ 𝜙( 𝐱 ) (303)

he quantity on the left side is just the centroid of the light field, i.e. , the
verage direction of light at one given position. Eq. (303) clearly reveals
hat a standard TIE measurement can provide important (though not
omplete) information of the light field, at least its angular marginal
nd first angular moment. Conversely, it also tells us that the phase
radient can be easily recovered from the 4D light field by a simple
entroid detection scheme. This is similar to the standard procedure in
he Shack-Hartmann method [40–42] . 

A simple experiment is presented here to verify the correctness of
q. (303) . The experiment is based on a light field microscope built
pon a conventional microscope (Olympus BX41) with a microlens ar-
ay (pitch 150 𝜇m , ROC 10.518 mm ) inserted in the intermediate image
lane just before the camera sensor]. The sample is a plano-convex mi-
rolens array (pitch 100 𝜇m ), which is imaged with a 20 × objective with
𝐴 = 0 . 4 . Four light field images with the condenser NA from 0.05 to

.25 are recorded, as shown in Fig. 64 . From the enlarged images, we
an clearly see the intensity changing corresponding to each lenslet,
rom a focus spot array to a 2D sub-aperture image array. The centroid
or each sub-image is calculated, followed by an integration to recon-
truct the phase, as shown in Fig. 65 . The results confirm that the phase
an be extracted from the light field, even though the illumination is not
ompletely coherent. Note that when the condenser aperture is open up
o 𝑁𝐴 𝑖𝑙𝑙 = 0 . 25 , the sub-aperture images are too large to make them
verlap, preventing reliable centroid detection. This results in artifacts
n the final retrieved phase image, as shown in Fig. 65 (d). Neverthe-
ess, due to limited number of microlens arrays and the size of CCD, the
patial resolution of the final reconstructed phase is quite low. These ex-
erimental results prove the correctness of Eq. (303) , showing that the
uantitative phase information can be directly extracted from the light
eld (or WDF) based on the definition of “generalized phase ”. However,
uch an approach for phase retrieval is not recommended due to the low
patial resolution and the experimental complexity as compared to the
ull-resolution, defocus-based TIE techniques. 

.2.3. Influence of the limited aperture of imaging system 

Another critical assumption made by TIE is ideal imaging, which is
ot fulfilled for a practical imaging system. In fact, what we measure
s the phase of the field in the image plane, not the phase of the object
tself, especially when the pupil of the imaging system is insufficient
o transmit all spatial frequencies of interest of the object. In this case,
nderstanding and quantifying the effect of the imaging system appears
articularly important. Consider a practical imaging system with a finite
perture, the CSD in the image plane can be written as 

 𝑖𝑚𝑎𝑔𝑒 

(
𝐱 1 , 𝐱 2 

)
= 𝑊 𝑜𝑢𝑡 

(
𝐱 1 , 𝐱 2 

)
⊗

𝐱 1 , 𝐱 2 
ℎ 
(
𝐱 1 , 𝐱 2 

)
(304)

he mutual PSF h ( x 1 , x 2 ) is defined as 

 

(
𝐱 1 , 𝐱 2 

)
= ℎ 

(
𝐱 1 
)
ℎ ∗ 
(
𝐱 2 
)

(305)

here h ( x ) is the coherent PSF of the imaging system. Based on the
onvolution property of WDF, the WDF in the image plane can be written
s 

 𝑖𝑚𝑎𝑔𝑒 ( 𝐱, 𝐮 ) = ∫ Γ𝑖𝑚𝑎𝑔𝑒 
( 

𝐱 + 

𝐱 ′
2 
, 𝐱 − 

𝐱 ′
2 

) 

exp 
(
− 𝑗2 𝜋𝐮𝐱 ′

)
𝑑 𝐱 ′

= 𝑊 𝑜𝑢𝑡 ( 𝐱, 𝐮 ) ⊗𝐱 
𝑊 𝑝𝑠𝑓 ( 𝐱, 𝐮 ) 

= 𝑊 𝑇 ( 𝐱, 𝐮 ) ⊗𝐮 
𝑊 𝑖𝑛 ( 𝐱, 𝐮 ) ⊗𝐱 

𝑊 𝑝𝑠𝑓 ( 𝐱, 𝐮 ) (306) 

t is seen that the effect of the imaging system is equivalent to convolv-
ng the WDF of imaging PSF over the spatial variable x . More impor-
antly, W psf ( x, u ) is zero when 𝐮 falls outside of the pupil (in most cases
he pupil function is equal to a circ-function, i.e. , 𝑃 ( 𝐮 ) = 1 , | u | ≤ u NA

nd 𝑃 ( 𝐮 ) = 0 , | u | > u NA ), which means all WDF components outside the
upil will be dumped by the imaging system. From the definition of the
eneralized function Eq. (296) , TIE retrieves the conditional frequency
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Fig. 66. Numerical simulation on a pure phase sinusoidal grating. (a) Phase distribution of the simulated object; (b) 1D profile of the phase function; (c) Condenser 

pupil function. (d) Objective pupil function; (e) The coherent PSF of the imaging system. All axes are expressed in the normalized units. 
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oment of the WDF as the phase gradient, so the reconstructed phase
n the image plane is not coincident with the true phase of the object
n general [expect for the case of perfect imaging, i.e. , 𝑃 ( 𝐮 ) = 1 , and the
 psf ( x, u ) reduces to 𝛿( x )]. Due to the bilinear nature of image forma-

ion in partially coherent imaging systems, such kind of phase discrep-
ncy is difficult to analyze or compensate directly. However, we con-
ider a slowly varying specimen under spatially stationary illumination,
q. (306) can be further simplified as [208] 

 𝑖𝑚𝑎𝑔𝑒 ( 𝐱, 𝐮 ) ≈ 𝐼 ( 𝐱 ) 𝑆 
[
𝐮 − 

1 
2 𝜋

∇ 𝐱 𝜙( 𝐱 ) 
]|𝑃 ( 𝐮 ) |2 (307)

Thus, the reconstructed gradient of the generalized phase in the im-
ge plane is the frequency centroid of the overlapping area of the shifted
rimary source and the pupil function. Without considering the effect of
he imaging system, the phase gradient is just the centroid of the shifted
rimary source. As long as the source distribution is symmetric concern-
ng the optical axis, the phase can be accurately retrieved, regardless of
he source size (spatial coherence of the illumination). However, in a
ractical imaging system, it is necessary to give higher importance to
he illumination coherence, because the size of the light source has a
ignificant influence on the imaging. Though decreasing the source size
oes helps improve the phase retrieval accuracy (better linear transfer
or lower phase gradient), it will compromise the resolution limit. Fur-
hermore, a certain degree of illumination coherence is necessary. For
ncoherent imaging (the source size is larger than the pupil), the real fre-
uency centroid corresponding to the object phase gradient can never
e correctly identified by TIE due to the pupil cut-off. For partially co-
erent imaging (the source size smaller than the pupil), the imaging
ystem induced phase distortion still exists but can be further compen-
ated, which is discussed in Subsection 7.2.4 . 

We present a series of numerical simulations to better illustrate the
bove-mentioned theories. As shown in Fig. 66 (a), the simulated object
s a pure phase sinusoidal grating with three different periods, 3 𝜇m ,
.5 𝜇m and 0.75 𝜇m respectively. To visualize the phase-space quan-
ities more conveniently, the sinusoidal grating is represented by a 1D
ignal, as shown in Fig. 66 (b). The object is illuminated by Köhler illumi-
ation with a circular condenser aperture NA ill = 0.3, and the illumina-
ion intensity uniformly distributed over the aperture plane. The central
avelength of the quasi-monochromatic illumination is 𝜆 = 550 𝑛𝑚 . The
bject is imaged with an objective with NA obj = 0.7, thus the coher-
nt diffraction limit of the system is 0.7863 𝜇m . All computations are
erformed in normalized units of 𝜆/ NA obj for the space coordinate and
A obj / 𝜆 for the spatial frequency coordinate. As shown in Fig. 66 (c) and

d), in normalized coordinates, the radii of the S ( u ) and P ( u ) are s and
, respectively, where s is the coherence parameter. The inverse Fourier
ransform of the objective pupil gives the coherent PSF of the imaging
ystem, which is shown in Fig. 66 (e). 

Fig. 67 (a) shows the WDF 𝑊 𝑇 ( 𝐱, 𝐮 ) of the specimen computed from
he object transmittance. According to Eq. (296) , the phase derivative
btained through TIE is equal to the first conditional frequency moment
f the WDF. To verify the accuracy of the phase retrieved by TIE, we
ompared its derivative with the ideal phase derivative calculated from
he original phase function, shown in the normalized range from [-1,1]
 Fig. 67 (b)]. The perfect match between the two curves indicates that
he phase can reliably be retrieved by TIE for the completely coherent
ase. Next, we examine the case when the specimen is illuminated by
he partially coherent Köhler illumination, but assuming perfect imag-
ng conditions. According to Eq. (298) , the WDF at the object plane
 𝑜𝑢𝑡 ( 𝐱, 𝐮 ) can be calculated by convoluting the WDF of the object trans-
ittance WDF 𝑊 𝑇 ( 𝐱, 𝐮 ) with the illumination WDF 𝑆 ( 𝐮 ) , as illustrated

n Fig. 67 (c). Compared with Fig. 67 (a), the blurring of WDF along the
requency dimension is clearly seen in Fig. 67 (d). However, due to the
ymmetry of the condenser aperture 𝑆 ( 𝐮 ) , this blurring does not change
he frequency centroid of the object WDF. Thus, the phase derivative
an still be accurately retrieved, as verified by Fig. 67 (e). 

Next, the effect of the imaging system is considered. The WDF of
he imaging PSF, 𝑊 𝑝𝑠𝑓 ( 𝐱, 𝐮 ) , is shown in Fig. 67 (f), and according to
q. (306) the image plane 𝑊 𝑖𝑚𝑎𝑔𝑒 ( 𝐱, 𝐮 ) can be calculated by convoluting
 𝑜𝑢𝑡 ( 𝐱, 𝐮 ) with 𝑊 𝑝𝑠𝑓 ( 𝐱, 𝐮 ) along the 𝐱-direction, as shown in Fig. 67 (g).

he imaging system removes all the WDF component falling outside of
he pupil, which in turn causes blurring in the retrieved phase deriva-
ive, as shown in Fig. 67 (h). The imaging PSF greatly reduces the phase
ontrast of the 0.75 𝜇m grating, but the phase structure for lower spatial
requencies is less affected. It is instructive to further examine the effect
f the illumination coherence ( i.e. , the effect of gradually changing the
ondenser aperture) when the imaging PSF is considered. This is also
onsistent with our theoretical analysis. 

Based on GTIE, Zuo et al. [208] quantitatively analyzed the image
ormation and phase retrieval under partially coherent illuminations.
hrough theoretical analysis and simulations, the following two conclu-
ions were obtained. First, when the primary light source is symmetric
bout the optical axis, the phase of the object under partially coherent
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Fig. 67. Phase-space description of the effects of illumination and imaging system on TIE phase retrieval. See the text for details. (a) WDF of the specimen; (b) 

retrieved phase derivative from (a); (c) WDF of the illumination; (d) WDF of the field in object plane; (e) retrieved phase derivative from (d); (f) WDF of the PSF of 

the imaging system; (g) WDF of the field in image plane; (h) retrieved phase derivative from (g). 
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lluminations can be recovered by TIE through one-time measurement.
hile when the primary source is not axisymmetric, the generalized

hase of the illumination can be measured by TIE (without the sample),
nd then its influence can be compensated by subtracting the general-
zed phase of the illumination from the measured total phase (with the
ample). Secondly, although TIE does not impose any requirements on
llumination coherence, for a practical imaging system, a certain level
f spatial coherence is indispensable (an extreme case is when s ≥ 1, the
hase effect completely vanishes), and narrowing down the condenser
perture a bit ( 𝑠 = 0 . 3 ∼ 0 . 5 ) is indeed conducive to accurate phase re-
rieval. 

.2.4. Phase gradient transfer function and coherent error compensation 

In GTIE, the reconstructed generalized phase gradient just corre-
ponds to the centroid of the shifted primary source. Without consider-
ng the effect of lens aperture, reliable phase retrieval can be achieved as
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Fig. 68. Geometric interpretation of phase gradient recovered by TIE. 
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Fig. 69. The phase gradient transfer function under different coherent param- 
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dinate unit is the normalized spatial frequency. 

b  

s  

a  

t  

r  

f  

m  

c  

a  

t  

𝑠  

t  

r
 

p  

n  

t  

d  

d  

g  

t  

e  

c

7

7

 

h  

s  

d  

t  

[  

s  

n  

I  

i  

c  

p  

d  

t  

j  

o  
ong as the primary source is symmetrical about the optical axis. How-
ver, for practical imaging systems, the frequency moment of WDF in
he image plane is deviated due to the cut-off effect of the objective
upil, as shown in Fig. 68 . The relation between the phase gradient re-
overed by TIE ∇ 𝐱 ̃𝜙( 𝐱 ) and the true phase gradient of the object ∇ x 𝜙( x )
an be represented as 

∇ 𝐱 ̃𝜙( 𝐱 ) 
2 𝜋

= 

∫ 𝐮 𝑊 𝑖𝑚𝑎𝑔𝑒 ( 𝐱, 𝐮 ) 𝑑𝐮 
∫ 𝑊 𝑖𝑚𝑎𝑔𝑒 ( 𝐱, 𝐮 ) 𝑑𝐮 

= 

∫ 𝐮 𝑆 
[
𝐮 − ∇ 𝐱 𝜙( 𝐱 ) ∕ 2 𝜋

]|𝑃 ( 𝐮 ) |2 𝑑𝐮 
∫ 𝑆 

[
𝐮 − ∇ 𝐱 𝜙( 𝐱 ) ∕ 2 𝜋

]|𝑃 ( 𝐮 ) |2 𝑑𝐮 (308) 

To quantitatively characterize the attenuation effect of the imag-
ng system on different phase gradient (corresponding to different spa-
ial frequency) components, we can define a transfer function about
he phase gradient, so-called phase gradient transfer function (PGTF)
343,354] , which is the ratio between the measured phase gradient in
he image plane and the ideal phase gradient of the object 

 𝐺𝑇 𝐹 = 

∇ 𝐱 ̃𝜙( 𝐱 ) 
∇ 𝐱 𝜙( 𝐱 ) 

= 

1 
∇ 𝐱 𝜙( 𝐱 ) 

∫ 𝐮 𝑆 
[
𝐮 − ∇ 𝐱 𝜙( 𝐱 ) ∕ 2 𝜋

]|𝑃 ( 𝐮 ) |2 𝑑𝐮 
∫ 𝑆 

[
𝐮 − ∇ 𝐱 𝜙( 𝐱 ) ∕ 2 𝜋

]|𝑃 ( 𝐮 ) |2 𝑑𝐮 (309) 

ithout considering the lens aperture effect ( |𝑃 ( 𝐮 ) | = 1 ), the PGTF is
lways 1 and the phase gradient can be recovered correctly. How-
ver, when the objective aperture is taken into account, the estimated
radient will be smaller than the true value because of the source is
runcated by the pupil. The analytical expressions of PGTF for an ax-
symmetric imaging system was derived by Sheppard et al. [354] un-
er different illumination conditions. Fig. 69 shows the PGTFs corre-
ponding to different coherence parameters. When 𝑠 = 1 , it can be de-
uced from the geometric relationship between the light source and
he pupil function that the estimated gradient is always half of the true
hase gradient (PGTF is always 0.5). When s < 1, the low-gradient (low-
requency) components corresponding to 0 ∼ s are consistent with the
eal value, while the high-gradient (high-frequency) components are
nderestimated. Meanwhile, it can be observed that there is a trade-
ff between the resolution and accuracy of the phase reconstruction.
arge coherent parameters provides higher cut-off frequencies at the
xpense of lower PGTF responses. In contrast, a small coherence param-
ter can provide unbiased estimates for low-gradient phase components,
ut the imaging resolution is compromised. Note that the PGTF shares
ome similarities with the ratio between the partially coherent WOTF
nd TIE under weak defocusing [ Eq. (60 )]. However, they are essen-
ially quite different: PGTF is defined in the spatial domain and rep-
esents the transfer characteristics of the spatial gradient of the phase
unction. In contrast, WOTF and PTF are defined in the frequency do-
ain and represent the transfer characteristics of different frequency

omponents of the phase function. Their establishment conditions are
lso different: PGTF is based on the slowly varying object approxima-
ion, while WOTF is based on the weak object approximation. When
 = 1 , the WOTF becomes the incoherent OTF, and the phase informa-
ion completely vanishes, while the PGTF still maintains half of the
esponse. 

As suggested by Zuo et al. [208,356] , the PGTF can be used to com-
ensate the phase error induced by the spatial coherence of the illumi-
ation. A lookup table (LUT) can be built based on PGTF to calibrate
he phase gradient value recovered by TIE. The basic idea is similar to
econvolution, but note that the compensation is performed on gradient
omain rather than Fourier domain. The entries of the LUT is the phase
radient value recovered by solving TIE, and the output of the LUT is
he corresponding true phase gradient. The compensated phase gradi-
nt is then numerically integrated to obtain the phase that is free from
oherence-induced error [356] . 

.3. Phase retrieval based on geometric-flow speckle tracking 

.3.1. Phase retrieval under coherent speckle illuminations 

“Speckle ” is a pattern generated when coherent light or partially co-
erent light illuminates an object consisting of randomly distributed
catterers [357] . Although speckle should be usually avoided in laser
isplay [358] and coherent optical imaging [359] , it has very impor-
ant applications in many fields, such as speckle imaging in astronomy
360] , ESPI in rough surface stress measurement [361] , and dynamic
peckle imaging in biomedical research [362] . Recently, speckle illumi-
ation has been introduced into the field of phase retrieval and QPI.
n 2018, Paganin et al. [355] proposed a geometric-flow speckle track-

ng (GFST) method for X-ray phase-contrast imaging based on the con-
ept of geometric energy flow. As shown in Fig. 70 , a paraxial forward
ropagating beam illuminates a thin object and then traverses a short
istance z to the planar image sensor. I R ( x ) indicates the intensity of
he reference speckle, i.e. , the image taken in the absence of the ob-
ect, where x is transverse coordinates in the plane perpendicular to the
ptical axis z . The image in the presence of the sample is represented
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Fig. 70. Experimental setup of the geometric-flow speckle tracking method [355] . 
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s I S ( x ). It is a resultant graph of distorted I R ( x ) due to the presence
f the measured sample, whose non-planar phase geometrically distorts
he reference speckles I R ( x ). 

Assuming that the illumination is an ideal coherent plane wave, the
hase of the sample with different surface slopes will induce translation
f the speckle pattern, and the speckle displacement vector field ∇ x d ( x )
s proportional to the phase gradient ∇ x 𝜙( x ) [355] 

 𝐱 𝑑( 𝐱 ) = 

𝑧 

𝑘 
∇ 𝐱 𝜙( 𝐱 ) (310)

here z is the distance between the sample and the detector. Therefore,
ased on the relation between 𝑑( 𝐱) and 𝜙( 𝐱) , the phase information of
he sample can be obtained by simply calculating the displacement vec-
or field ∇ 𝐱 𝑑( 𝐱) of the speckle pattern. In the GFST method, the flow is
efined as a conserved current associated with the deformation of the
eference speckles induced by the phase of the sample. By represent-
ng the transverse flow associated with deforming 𝐼 S ( 𝐱) into 𝐼 𝑅 ( 𝐱) as
he gradient of an auxiliary scalar potential function ∇ 𝐱 Λ = 𝐼 𝑅 𝐷 𝐱 , the
isplacement field D x can be obtained as 

 𝐱 ( 𝐱 ) = 

𝑗 

𝐼 𝑅 ( 𝐱 ) 
ℱ 

−1 
( 

( 𝑢, 𝑣 ) 
{ 

ℱ [ 𝐼 𝑅 ( 𝐱 ) − 𝐼 𝑆 ( 𝐱)] 
𝑢 2 + 𝑣 2 

} ) 

(311)

ssuming the field of the flow to be irrotational, the displacement field
an be described as the gradient of the scalar potential 𝑑 𝐱 ( 𝐱) 

 𝐱 ( 𝐱) ≡ (
𝐷 𝑥 ( 𝐱) , 𝐷 𝑦 ( 𝐱) 

)
≈ ∇ 𝐱 𝑑( 𝐱) (312)

hus, the final formula for reconstructing the phase shift 𝜙( 𝐱) based on
FST is 

( 𝐱) = ∇ 

−1 
𝐱 

( 

𝐷 𝐱 ( 𝐱) ⋅ 𝑘 
𝑧 

) 

= 

𝑘 

𝑧 
ℱ 

−1 
{ 

ℱ [( 𝐱 0 + 𝑗 𝐲 0 ) ⋅𝐷 𝐱 ( 𝐱)] 
𝑗𝑢 − 𝑣 

} 

(313)

here x 0 and y 0 are unit vectors in x and y directions, respectively.
ompare with the FFT-based solver of TIE [ Eq. (50) ], it can be found
hat GFST and TIE are essentially based on the same principle [356] .
oth of them retrieve the phase information by solving the resultant
oisson equations with the aid of scalar potentials, or so-called Teague’s
uxiliary function. 

.3.2. Phase retrieval based on partially coherent speckle illuminations 

The idea of GFST is not just limited to X-ray diffraction imaging,
ut also suitable for quantitative phase microscopy under partially co-
erent illuminations. Recently, Lu et al. [356] designed a QPI camera
ith a weak diffuser (QPICWD) that is compatible with conventional
icroscope platforms, as shown in Fig. 71 . By combining the definition

f the generalized phase based on the energy flow (or current density),
he GFST was extended to QPI under partially coherent illuminations.
s described in Subsection 7.2.2 , for each point on the partial coherent
elds, light rays (energy flow) no longer propagate in only one direction.
nstead, they fan out to create a 2D distribution. For partially coherent
elds, the distortion of the speckle field is a result of the statistical av-
rage of many rays passing through each spatial position and deflected
y the phase of the object. This is consistent with the generalized phase,
nd the speckle displacement vector field ∇ 𝐱 𝑑( 𝐱) is proportional to the
eneralized phase gradient ∇ 𝐱 𝜙( 𝐱) , i.e. , the first-order conditional mo-
ent of the WDF [356] . The high-resolution speckle distortion field can

e obtained by solving TIE, and then the high-resolution phase distribu-
ion can be reconstructed by phase integration. However, similar to the
ase discussed in Subsection 7.2.4 , the phase we measured is the gener-
lized phase of the “image ” instead of the true phase of the object. Lu
t al. [356] analyzed the effect of illumination coherence on the resolu-
ion and accuracy of phase retrieval, revealing that the sample’s phase
an be reliably reconstructed when the coherence parameter is between
.3 ∼0.5. This is consistent with the case of the uniform partially co-
erent Köhler illumination discussed in Subsection 7.2.3 . Similarly, we
an also establish a LUT based on PGTF to compensate for the phase
lurring induced by the illumination spatial coherence [363] . 

.4. Computational light-field imaging based on GTIE 

For the TIE phase retrieval, it requires one in-focus image and one ad-
itional defocused image to recover the phase information, which seems
lausible for the amount of information. Because the complex ampli-
ude is a 2D function, using the 2D defocused intensity information in
xchange for the 2D phase information appears “conservative ” in the
mount of information. Thus, it is obviously highly redundant to rep-
esent a 2D coherent field in the 4D phase space. For a slowly varying
bject, in Subsection 6.2.4 , we mentioned that the redundancy of phase
pace will become more obvious because the signal only occupies a 2D
ection in phase space [ Eq. (190) ] [208] 

 ( 𝐱, 𝐮 ) = 𝐼( 𝐱) 𝛿
[
𝐮 − 

1 
2 𝜋

∇ 𝜙( 𝐱) 
]

(314)

he WDF now becomes nonnegative and takes on all the properties of
adiance. It clearly describes that the geometrical light ray at a single
osition travels only along a single direction described by the phase
ormal (coincides with the direction of the Poynting vector). It also tells
hat the total amount of light carried by each ray is described by the
ntensity of the field. This is an advantageous feature to allow phase
easurement simply by measuring the directions of rays, e.g. , the Shack-
artmann sensor [41] . 

The situation becomes more complex when the optical field is not
trictly coherent. Generally, the phase-space WDF constitutes a rigorous
nd non-redundant description for partially coherent fields. The knowl-
dge of amplitude and (generalized) phase are insufficient to determine
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Fig. 71. The schematic diagram of the quantitative phase microscope based on the weak diffuser camera [356] . 
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Fig. 72. Light field representation of a slowly varying object under spatially sta- 

tionary illumination [208] . The sample exhibits angle-shift invariance: at each 

location, the direction of each incident ray shifts by the amount of object phase 

gradient. 
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he full field unambiguously. The measurement and retrieval of the com-
lete 4D coherence function (or equivalent, WDF and AF) are much
ore complicated (see Subsection 6.2.6 for details). From the geometric-

ptics perspective, for each point on the beam there exists many rays
ith different directions; they fan out to make a 2D distribution, which
ccounts for the higher dimensionality of the partially coherent field.
he light-field camera, as a counterpart of the Shack-Hartmann sensor

n the computer graphics community, allows joint measurement of the
patial and directional distribution of light [337] . In the optics commu-
ity, light field is often known as “radiance ” in radiometry [300,301] .
s early as in 1968, Walther et al. [300] introduced the generalized
adiance, an equivalent of WDF, to lay a solid wave-optics foundation
or radiometry. In 2009, Zhang et al. [335] further clarified the equiva-
ence of light field and WDF under geometric-optics approximation, i.e.,
 ( x, 𝜽) ≈W ( x , 𝜆u ) [as shown in Figs. 62 (b) and (c)]. As discussed in
ubsection 6.2.6 , the light-field camera directly captures the intensity
nd angular distributions of all light rays, which can also be considered
s a coherence measurement technique. However, it requires elaborate
ptical setups ( Fig. 49 ) and significantly sacrifices spatial resolution
traded for angular resolution) as compared to conventional imaging
echniques. 

Although TIE cannot recover the complete 4D light field, it does pro-
ide important information about the light field. In interferometry, the
hase information is completely encoded into the fringe patterns, so the
oherent sources are required to produce observable fringes. However,
IE recovers the phase based on intensity propagation, and the intensity

s always directly measurable, regardless of the degree of coherence of
he optical field. This property makes TIE much easier to implement. For
artially coherent optical fields, the phase obtained by TIE is the gen-
ralized phase [ Eq. (296) ] whose gradient is the first-order conditional
requency moment of WDF. Under geometric-optics approximation, the

DF is equivalent to the light field L ( x, 𝜽) ≈W ( x , 𝜆u ), and the definition
f generalized phase then becomes [208] 

∫ 𝛉𝐿 ( 𝐱, 𝛉) 𝑑𝛉
∫ 𝐿 ( 𝐱, 𝛉) 𝑑𝛉

= 𝑘 −1 ∇ 𝜙( 𝐱) (315)

he LHS of Eq. (315) is the centroid of the light field, i.e. , the weighted
verage of the directions of light rays passing through a certain point in
pace. Based on Eq. (315) , two conclusions can be drawn [208] . First,
he 4D light field includes the 2D phase information, so that the phase
radient can be easily recovered by localizing the centroid of each sub-
perture image. This is similar to the standard procedure in the Shack-
artmann method [40–42] . Second, TIE cannot recover the entire 4D

ight field, but the conditional frequency moment (centroid) of the light
eld can be obtained. In addition, under certain simplified conditions
slowly varying objects under spatially stationary illuminations), the 4D
ight field is highly redundant (as shown in Fig. 72 , the specimen can be
egarded as a “spreadless ” or “angular shift-invariant system ”: it does
ot change the angular spread of the incident rays, which is fully deter-
ined by the source intensity distribution. On the premise that the light

ource distribution is known, the 4D light field can be fully characterized
y TIE [208] . 

Under the geometric-optics approximation, L ( x, 𝜽) ≈W ( x , 𝜆u ), the
hysical picture behind Eq. (307) becomes quite clear. The angular dis-
ribution of the light field just leaving the object is determined by the
ource intensity distribution shifted by the amount of the phase gradi-
nt of the object. The imaging system only allows rays with the angles
ithin the pupil to pass and blocks the rest with larger angles. The in-

ensity finally captured in the image plane is the sum of all rays passing
hrough the imaging system, determined by the overlapping area of the
hifted primary source and the pupil function 

 𝑖𝑚𝑎𝑔𝑒 ( 𝐱 ) = 𝐼 ( 𝐱 ) ∫ 𝐮 𝑆 
[
𝐮 − 

1 
2 𝜋

∇ 𝐱 𝜙( 𝐱 ) 
]|𝑃 ( 𝐮 ) |2 𝑑𝐮 (316)

q. (316) can be used to recreate 2D images of the sample from arbitrary
erspectives: with the retrieved phase gradient ∇ x 𝜙( x ), one can simply
ynthesize different views through Eq. (316) by shifting the position of
he primary source artificially. Compared with the method presented
n paper [364] (so-called pinhole renderings as in traditional light-field
maging), which constructs the 4D light field first and then extracts its
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D slices as perspective-shifted 2D images, Eq. (316) employs no empir-
cal assumptions and gives a more physically meaningful way for high-
esolution view synthesis with the effect of the imaging system taken
nto account. 

In fact, the first attempt to realize computational light-field imaging
ased on TIE is the “light field moment imaging ” (LMI) proposed by Orth
nd Crozier [364] in 2013. They found that, with use of only a pair
f images exhibiting slight defocusing, the first angular moment of the
ight field can be retrieved by solving a partially differential equation
they did not notice that the equation is precisely TIE). With the mo-
ent retrieved, the perspective-shifted views of the original scene can

e synthesized. The “moment ” in LMI just means that the method can
nly recover the first angular moment, rather than the complete infor-
ation of the light field. To realize light-field imaging, Orth and Crozier

364] assumed that the angular distribution of the light field is Gaussian
o that the missing light field data can be predicted. The empirical Gaus-
ian angular distribution assumption seems not physically founded, but
t does provides satisfactory parallax effect in real experiments. In 2014,
uo et al. [207] commented that the LMI is actually associated with TIE
t the geometric optics limit. Thus, all numerical solutions and axial in-
ensity derivative estimation algorithms in TIE can be directly applied
o the LMI, e.g. , Liu et al. [365] used the multi-plane high-order finite-
ifference method to improve the accuracy of axial intensity derivative
stimation, providing higher SNR and better visual effect for LMI. 

.5. Phase retrieval based on WOTF deconvolution 

As demonstrated in previous subsections, although the definition of
hase for partially coherent fields is different from its coherent coun-
erpart, TIE can still be used to recover the phase of the object un-
er partially coherent illuminations. However, it should be noted that
TIE is also based on weak defocusing approximation. However, in a
ractical microscopic imaging system, a larger defocusing distance is
ften preferred for better phase contrast, so the effect of defocusing dis-
ance on phase reconstruction cannot be simply ignored. In Section 6 ,
e quantitatively analyzed TIE’s PTFs under coherent and partially co-
erent illuminations ( Fig. 59 ). Compare TIE’s PTF and the WOTF under
artially coherent illuminations, it is found that they only overlap at
ow frequencies. As the degree of coherence decreases, the mismatch-
ng becomes more obvious. Therefore, when the phase is directly re-
onstructed by TIE under partially coherent illuminations, the high-
requency information will be excessively attenuated, resulting in the
oss of high-frequency details. To solve this problem, we can use weak
bject approximation to achieve the linearization between intensity and
hase. This method is very similar to the coherent case, the only differ-
nce is that the coherent PTF in Subsection 4.3 should be replaced by
he partial coherent WOTF obtained in Subsection 6.3.5 , and then fol-
owed by a deconvolution corresponding to the WOTF to achieve more
ccurate phase reconstruction. Another major advantage of this method
s that the range of linearization can be extended from weak defocusing
near Fresnel zone) to an arbitrary defocus distance. 

As discussed in Section 6.3.5 , the real and imaginary parts of WOTF
orresponds to the ATF H A ( u ) and PTF H P ( u ), respectively. For an de-
ocused axisymmetric imaging system, it can be found that H A ( u ) is an
ven function of the defocus distance Δz, H P ( u ) is an odd function of
z . If we take two defocused images at opposite and equal defocuse
istances ± Δz along the optical axis, and calculate their normalized
ifference in the Fourier domain 

𝐼 Δ𝑧 ( 𝐮 ) − 𝐼 − Δ𝑧 ( 𝐮 ) 
4 ̂𝐼 0 ( 𝐮 ) 

= −Im [ 𝑊 𝑂𝑇 𝐹 ( 𝐮 )] ̂𝜙( 𝐮 ) (317)

here 𝐼 0 ( 𝐮 ) = 𝑎 2 0 𝑇 𝐶 𝐶 (0 , 0) is the Fourier transform of the intensity distri-
ution at the in-focus plane. − Im [ 𝑊 𝑂𝑇 𝐹 ( 𝐮 )] is the PTF of the partially
oherent imaging system, �̂�( 𝐮 ) is the spectrum of the phase to be re-
rieved. It should be noted that the amplitude information is canceled
n the intensity difference, producing only phase contrast, and the phase
etrieval can be realized based on the WOTF deconvolution. 

It should be noted that the response curve of the partially coherent
TF H P ( u ) tends to be gradually oscillatory as the increase in defocus dis-
ance, leading to several zero-crossings (see Fig. 59 ). This phenomenon
lso occurs under coherent conditions. The zero-crossings make the de-
onvolution ill-conditioned, causing severe reconstruction artifacts. In
rder to avoid the zero-crossings, we can reduce the defocused distance
o make Δz →0 [256,257] , thereby mitigating the oscillation of the PTF
t high frequencies. However, it can be seen from Fig. 59 , when the
efocus distance is reduced, the phase contrast is also attenuated, espe-
ially for low spatial frequencies, making it difficult to obtain high-SNR
hase reconstructions [254,258] . Another solution is to capture more
ntensity images at multiple defocus distances to synthesize the PTF,
ust like the coherent case [200,256,259,260] . In this way, more spatial
requencies can be more uniformly covered and zero-crossings can be
voided in the synthesized PTF, so as to reduce the influence of noise
nd improve the accuracy of phase reconstruction. For example, in 2014,
enkins et al. [366] proposed a multi-plane partially coherent phase re-
rieval approach termed multifilter phase imaging (MFPI), which is an
xtension of the OSF method proposed by Zuo et al. [205] in the case of
oherent illumination. MFPI replaces the CTFs in OSF with the partially
oherent PTFs and recalculates the cut-off frequencies of the SGDFs with
ifferent orders ( Fig. 73 ). In 2015, Jenkins et al. [367] proposed another
ulti-plane partially coherent phase retrieval method based on WOTF
econvolution. The weighting functions for the intensities at different
efocus distances are optimized based on the linear least-square method.
t is worth mentioning that the SGDF and the least-square WOTF decon-
olution methods share similar ideas. SGDF is essentially a least-square
pproach in axial derivative estimation (SGDF is the convolution form of
he least-square fitting) [205] . The phase reconstructed from each SGDF
s calculated based on all the intensity measurements. In the least-square

OTF deconvolution method, one phase reconstruction is based on the
ntensity difference between a pair of symmetrically defocused images,
o it does not make full use of all intensity measurements. Recently, Bao
t al. [368] compares and contrasts these two approaches in detail, re-
ealing that the SGDF approach is more accurate than the least-square
OTF deconvolution method but is also slower in computation. 

.6. Resolution enhancement based on coherence engineering 

In Subsection 6.3.5 , we learned that for a coherent imaging system,
he defocus PTF has a strong response, i.e. , the captured intensity image
an provide a relatively high phase contrast. Nevertheless, the imaging
esolution is limited to the coherent diffraction limit. Partial coherent
maging extends the maximum achievable imaging resolution beyond
he coherent diffraction limit. The resolution limit of partially coherent
maging is determined by the sum of the NA of the objective lens and NA
f the illumination. As the coherence parameter increases, the theoreti-
al imaging resolution also improves. However, it also causes a signifi-
ant reduction of the response of the PTF, exacerbating the ill-posedness
f WOTF deconvolution. Therefore, for a conventional bright-field mi-
roscope with a circular condenser diaphragm, in order to achieve a
ompromise between the imaging resolution and phase contrast, the co-
erence parameter should be generally set between 0.3 and 0.5 [208] .
lthough multi-plane approaches utilizing intensity measurements at
oth small and large defoci allow the response of PTF to be optimized
ver a wider range of spatial frequency, the noise-to-resolution tradeoff
s still not fundamentally solved. As is predicted by the WOTF analysis
 Fig. 59 ), the phase contrast progressively vanishes as the illumination
A approaches the objective NA, suggesting the phase information can
ardly be transferred into intensity via defocusing when illumination
A is large. This poses a fundamental obstacle to improving the res-
lution of TIE phase imaging up to twice of coherent diffraction limit
diffraction limit of incoherent imaging). It should also be mentioned
hat although synthetic aperture techniques via oblique [369] or struc-
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Fig. 73. The block diagram of quantitative phase recovery method based on OFS with multi-plane TIE under partially coherent illuminations. 
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ured illumination [370,371] have been demonstrated to be possible
olutions to enhance the phase imaging resolution of TIE, most of them
equire relatively complicated optical systems which are not typically
vailable to most bio/pathologists, prohibiting their widespread use in
iological and medical science. 

In the TIE phase retrieval, the distribution of the PTF is determined
y the defocus distance and the coherence parameter. Nevertheless,
here is another very important adjustable parameter that is not consid-
red in our previous discussions: the shape of the illumination aperture.
he condenser aperture of conventional microscopes is roughly circular

n shape, and the spatial coherence of the illumination (coherence pa-
ameter s ) can be tuned by changing the radius of condenser diaphragm.
owever, the shape of the condenser aperture is not just limited to cir-
ular. Zernike’s phase-contrast microscope is a very good example: a
pecially designed annular diaphragm, which is matched in diameter
nd optically conjugate to an internal phase plate residing in the ob-
ective rear focal plane, is placed in the condenser front focal plane to
odulate the illumination aperture. Recently, it has been found that co-
erence engineering by changing the illumination aperture is generally
ore effective than changing the defocus distance for optimizing the
OTF [209,210,342,372] . In 2017, Zuo et al. [209] suggests to replace

he conventional circular illumination aperture with an annular one 

 ( ̄𝜌) = 

{ 

1 𝑠 1 ≤ |�̄�| ≤ 𝑠 2 
0 |�̄�| < 𝑠 1 , |�̄�| > 𝑠 2 

(318)

here s 1 and s 2 are the normalized inner and outer diameters of the
nnular aperture, respectively. The corresponding PTFs (the imaginary
art of the WOTF) with different combinations of s 1 and s 2 can be
alculated based on Eq. (250) , which are shown in Figs. 74 and 75 .
ig. 74 shows the PTFs of annular illuminations with fixed annulus
idth but different inner and outer diameters. It can be found that
hen the annular illumination has a smaller inner diameter, the re-

ponse amplitude of the PTF is large, but the cut-off frequency of the
TF is still limited to near the coherent diffraction limit. However, as
he inner and outer diameters of the annular illumination increase, the
ut-off frequency of PTF is extended to the incoherent diffraction limit,
nd the overall curve is gradually moved from the first quadrant to the
orth quadrant. This result indicates that an annular illumination source
ith a maximum outer diameter and inner diameter not only provides
on-coherent diffraction-limited imaging resolution but also provides a
trong amplitude response in the cut-off frequency passband. In Fig. 75 ,
e further demonstrate the effect of varying the thickness of the an-
ulus by fixing the NA of the outer circles to be 1 ( s 2 = 1) and only
hanging the thickness of the annulus ( 𝑠 = Δ𝑠 from 0 to 1). As might be
1 
xpected, the phase contrast is reduced as the annulus width increases.
hen Δs →1, the phase contrast finally goes to zero, which is just the

ncoherent case of the circular illumination. It is also shown that the cut-
ff frequency of the WOTF is reduced from 2 to 2 − Δ𝑠 with the increase
f the annulus width. From the results shown in Figs. 74 and 75 , it can
e concluded that we should choose the diameter of the annulus to be
qual to that of the objective pupil, and make its thickness as small as
ossible to optimize both phase contrast and imaging resolution. 

In Fig. 76 , we compare the magnitudes of the PTFs of the annu-
ar illuminations ( Δs = 0.01 and Δs = 0.1) and circular illuminations
 𝑠 = 0 . 1 , 0 . 75 , 0 . 99 ) under weak defocusing ( Δ𝑧 = 0 . 5 𝜇𝑚 ). It can be ob-
erved that the annular illumination provides strong responses inside
he passband as well as a spatial frequency cut-off near the incoher-
nt diffraction limit (1.99 NA obj for Δs = 0.01, 1.9 NA obj for Δs = 0.1).
ompared with a conventional microscope with a wide-open circular
perture ( 𝑠 = 0 . 75 ), the total phase contrast (the area enclosed by the
TF curve and the frequency-axis) provided by the annular illumination
s more than doubled (2.35 times for Δs = 0.01, 2.11 times for Δs =
.1). Not only the frequency coverage is extended, but the response in
oth low and high spatial frequencies is significantly enhanced. The to-
al phase contrast provided by the annular illumination is comparable
o that of a conventional microscope with nearly coherent ( s = 0.1) il-
umination (91% for Δs = 0.01, 82% for Δs = 0.1), but the response
s much smoother and more extensive. The spatial frequency cut-off
s almost doubled, and the phase contrast of low spatial frequencies
s significantly increased. These results demonstrate that replacing the
onventional circular aperture with an annular one provides a conve-
ient way to optimize the WOTF for achieving a broadband frequency
overage and enhanced response in both low- and high-frequencies.
oreover, the resulting PTF contains no deep dips and zero-crossings

n its pass-band, which removes the ill-posedness of the WOTF inver-
ion. It is expected to achieve high-quality phase reconstruction and
vercome the noise-resolution tradeoff in TIE under partially coherent
lluminations. 

In Fig. 77 , we compare the phase retrieval results of annular illu-
ination TIE and circular illumination TIE based on simulations. The

iemens star image is used as an example phase object [shown in
ig. 77 (a)] which is defined on a grid with 256 × 256 pixels with a pixel
ize of 0.13 𝜇m × 0.13 𝜇m . The wavelength of the illumination is 550nm,
nd the NA obj is 0.80. For such an imaging configuration, the best phase
maging resolution can be achieved is 344nm ( 𝜆/2 NA obj ), which is also
hown in Fig. 77 (a). To simulate the noise effect, each defocused im-
ge is corrupted by Gaussian noise with a standard deviation of 0.01.
ig. 77 (b) compares the defocused images, and the phase retrieval re-
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Fig. 74. Phase transfer function of annular illumination apertures with fixed annulus width but different inner and outer diameters at different defocus distances 

( 𝑁𝐴 𝑜𝑏𝑗 = 0 . 8 , 𝜆 = 550 𝑛𝑚, the spatial frequency coordinate is normalized against the coherent resolution limit NA obj / 𝜆). (a) 𝑠 = 0 . 1 ; (b) 𝑠 = 0 . 4 ; (c) 𝑠 = 0 . 75 ; (d) 𝑠 = 1 . 0 . 
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ults of different illumination settings for a small defocus distance ( Δz
 0.5 𝜇m). The metric used to measure the accuracy of phase retrieval

s given by the root mean square error (RMSE), which quantifies the
verall difference between the true phase and the retrieved phase. For
he case of circular illumination, the overall phase contrast reduces with
he increase in coherent parameter s , which is in coincidence with the

OTF analysis ( Fig. 59 ). The poor response at low-spatial frequencies
eads to cloud-like artifacts superimposed on the reconstructed phases.
esides, the phase imaging resolution is improved by opening up the
ondenser diaphragm (increasing the coherence parameter s ). However,
or the case of nearly matched illumination ( s = 0.99), the washout in
hase contrast prevents any recognizable phase information to be re-
onstructed, leading to significant artifacts and a very large RMSE. The
hase contrast, especially for low-frequency components can be signif-
cantly enhanced by using the annular illumination. The Siemens star
ppears dark in the defocused image, demonstrating the negative phase
ontrast as predicted by the theory. The strong phase contrast is finally
onverted to the quantitative phase images by WOTF inversion, result-
ng in high-quality reconstructions with a uniform background and im-
roved resolution. The RMSE values for the AI-TIE are comparable with
he conventional two-distance TIE approaches and significantly lower
han the case when only a single defocus distance is used. Besides, the
heoretical resolution for AI-TIE is improved to 1.9 NA obj for Δs = 0 . 1
nd 1.99 NA obj for Δs = 0 . 01 , which approaches to the incoherent limit
RHS of Fig. 77 (a)]. The above simulation results suggest that use of an-
ular illumination matching the objective NA allows for high-quality,
ow-noise phase reconstruction with a lateral resolution close to the in-
oherent diffraction limit, providing significant resolution improvement
ver its circular alternatives. 
The above theoretical analysis and experimental results suggest that
eshaping of illumination source provides new possibilities to enhance
he imaging resolution and improve low-frequency performance of TIE
maging. However, the choice of annular aperture was empirically de-
igned based on intuitive criteria related to the shape of WOTF. It is
till unclear whether the annular illumination is the best choice for TIE
hase imaging. Due to the complicated form of WOTF and high degree
f freedom of the aperture function, solving for an optimum source pat-
ern analytically seems quite challenging. In 2018, Li et al. [211] de-
eloped a numerical scheme to optimize the illumination pattern based
n a combined quantitative criterion for evaluating the “goodness ” of
n aperture. In order to make the size of the solution searching space
ractable, only binary-coded axis-symmetric illumination patterns are
onsidered. Note that the axis-symmetric illumination satisfies the “zero-

oment condition ” [ Eq. (301) ], which is a precondition for unbiased TIE
hase retrieval under partially coherent illuminations [208] . As shown
n Fig. 78 , the light source is divided radially, and the pupil of the circu-
ar incoherent lighting source is separated into many concentric annuli
ith equal spacing. The concentric annuli are represented by a 12-bit
inary number, and all the illumination source patterns can be indexed
y a decimal value of the corresponding binary number. 

The PTFs corresponding to different source patterns are calculated.
ig. 79 shows five typical illumination patterns and their corresponding
TFs. The properties of PTF directly determines phase imaging perfor-
ance, i.e. , the cut-off frequency determines the imaging resolution, the
umber of zero-crossings indicates the ill-posedness of WOTF deconvo-
ution, and the area enclosed by the PTF and the coordinate axis rep-
esents the total phase contrast (the information-bearing portion of the
mage). Therefore, the PTFs are evaluated based on a combined quanti-
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Fig. 75. Phase transfer function of different defocus distances under annular illumination with maximum annular outer diameter but different inner ( 𝑁𝐴 𝑜𝑏𝑗 = 0 . 8 , 
𝜆 = 550 𝑛𝑚, the spatial frequency coordinate is normalized against the coherent resolution limit NA obj / 𝜆). (a) Δ𝑠 = 0 . 1 ; (b) Δ𝑠 = 0 . 4 ; (c) Δ𝑠 = 0 . 75 ; (d) Δ𝑠 = 0 . 99 . 

Fig. 76. Magnitude comparison of the phase transfer functions of the annular illuminations ( 𝑠 = 0 . 1 and 𝑠 = 0 . 01 ) and circular illuminations ( 𝑠 = 0 . 1 , 0 . 75 , 0 . 99 ) when 

the defocus distance is 0.5 𝜇m . (a) Phase transfer function curves of different illuminations; (b) enlarged curve of low frequency component (blue boxed region); (c) 

enlarged curve of high frequency component (red boxed region). 
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ative criterion. First, the cut-off frequency of the PTF must reach twice
he NA of the objective, which means the final imaging resolution is
xtended to the incoherent diffraction limit. Then, the PTF does not in-
ersect with the coordinate axis within the cut-off frequency, i.e. , there is
o zero-crossing in the PTF. Finally, the area enclosed by the PTF should
e maximized to guarantee the best SNR. By comparing the PTFs based
n the combined criterion, the optimal illumination pattern was identi-
ed, which is just a thin annulus matching the NA of the objective, as
e mentioned above. 

The optimality of the annular illumination is experimentally verified
hrough experiments, as shown in Fig. 80 . In order to control the illumi-
ation patterns flexibly, the light source of a conventional bright-field
icroscope is replaced by a programmable LED array. Fig. 80 shows
he illumination patterns, corresponding PTFs, axial intensity deriva-
ives and Fourier spectra, and final reconstructed phases under differ-
nt illumination patterns. It can be seen that the PTF corresponding to
he matched annular illumination provides the highest imaging resolu-
ion and strongest phase contrast, especially for low-frequency compo-
ents. Thus, the corresponding reconstructed phase has the best con-
rast, resolution, and SNR. Finally, it is worth mentioning that the an-
ular illumination scheme and the multi-plane TIE approaches are not
ontradictory in principle, and they can be combined to gain comple-
entary advantages. For example, the OSF method and least-square de-

onvolution method can be extended to annular illumination by sim-
ly replacing the coherent CTFs to WOTFs under annular illuminations
373] . 
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Fig. 77. Comparison between annular illumination TIE and circular illumination TIE. (a) The raw Siemens star image and the corresponding best diffraction limited 

image can be achieved based on the simulation parameter; (b) Comparison of over-defocus images and reconstruction results of different illumination settings for a 

small defocus distance ( Δz = 0.5 𝜇m). 

Fig. 78. Illumination source encoding scheme. The circular incoherent source is divided into 12 concentric annuli, which can be indexed by a 12-bit binary number. 

All possible illumination source patterns can be uniquely indexed by a decimal value of the corresponding binary number. 
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. 3D phase imaging under partially coherent illuminations 

When we talk about QPI techniques, it is usually assumed that the
easured samples are 2D (thin) objects, which can be represented as
 2D complex transmittance function composed of absorption compo-
ent and phase component. The complex amplitude distribution of the
ransmitted optical field is the product of the complex amplitude of the
ncident optical field and that of the object. However, the phase delay in-
uced by the object is actually the axial projection (accumulation) of its
D RI distribution onto a 2D plane (commonly known as 2.5D imaging),
hich is an integral along the light propagation direction instead of real
D information [374–377] . This problem can be effectively overcome by
ptical diffraction tomography (ODT) techniques [375,376,378,379] ,
hich enables high-resolution real 3D (lateral + axial) imaging of the
D sample by recovering its 3D RI distribution. Conventionally, this
ethod needs to combine the phase measurement technique ( e.g. , digi-
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Fig. 79. The phase transfer functions and corresponding 1D cross-sections for 

5 different illumination patterns. 
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al holography or phase retrieval) with the CT technique: first obtains a
et of quantitative phase projections by rotating the object or changing
he illumination directions, and then reconstructs the 3D RI distribution
ased on the CT principle. In recent years, “transport of intensity diffrac-

ion tomography ” (TIDT) has gradually emerged as a new diffraction
omography technique based on the principle of non-interferometric,
ntensity only measurement inspired by TIE [214,380,381] . Compared
ith traditional ODT techniques, this method does not require coher-

nt illumination and interferometric measurement. It only needs to cap-
ure the through-focus intensity images across the object, and then uses
he image deconvolution algorithm to directly retrieve the 3D RI dis-
ribution of the object. Thus, it can effectively bypass the difficulties
ssociated with the traditional interferometric diffraction tomography
echniques, such as interferometric measurements, object rotation, and
eam scanning. This section is devoted to the study of diffraction to-
ography and TIDT. 

.1. 3D Fourier spectrum and Ewald sphere for coherent fields 

In Subsection 2.2 , we have learned that any 2D deterministic coher-
nt fields can be decomposed into a superposition of plane waves with
ifferent propagation directions, which is known as the angular spec-
rum representation. Generalizing this rule into 3D space, the complex
mplitude distribution of the stationary coherent optical field is assumed
o be U ( x, y, z ), and its Fourier spectrum in 3D space can be connected
y the following 3D Fourier transform 

( 𝑥, 𝑦, 𝑧 ) = ∭ �̂� 3 𝐷 ( 𝑢 𝑥 , 𝑢 𝑦 , 𝑢 𝑧 ) 𝑒 𝑗2 𝜋( 𝑢 𝑥 𝑥 + 𝑢 𝑦 𝑦 + 𝑢 𝑧 𝑧 ) 𝑑 𝑢 𝑥 𝑑 𝑢 𝑦 𝑑 𝑢 𝑧 (319)

here the exponential primitive 𝑒 𝑗2 𝜋( 𝑢 𝑥 𝑥 + 𝑢 𝑦 𝑦 + 𝑢 𝑧 𝑧 ) represents a plane wave
xp ( j k · r ) propagating in 3D space. Considering an instantaneous shot
f a plane wave propagating in 3D space, wave peaks and troughs can be
bserved, as shown in Fig. 81 . The distance from the peak to the trough
orresponds to the wavelength of the light wave (when the light propa-
ates in non vacuum, it is the ratio of light wave to RI of medium). The
requency vector is perpendicular to the wavefronts of constant phase,
nd is thus parallel to the optical direction cosine vector (cos 𝛼, cos 𝛽,
os 𝛾), so 

 𝑥 = 

𝑛 cos 𝛼
𝜆

, 𝑢 𝑦 = 

𝑛 cos 𝛽
𝜆

, 𝑢 z = 

𝑛 cos 𝛾
𝜆

(320)

here n is the RI of the medium. Due to the fact that the frequency vec-
or is of length n / k , for any frequency vectors, the three frequency com-
onents ( u x , u y , u z ) are not completely independent in the 3D Fourier
pace and are related by the following formula 
 

𝑢 2 𝑥 + 𝑢 2 𝑦 + 𝑢 2 𝑧 = 

𝑛 

𝜆
(321) 

q. (321) suggests that the frequency vectors of plane waves in different
irections (spatial frequency) are the same, and they are all located on
 sphere in 3D Fourier space with the radius of 𝑛 
𝜆
, the so-called “Ewald

phere ”. In particular, if the lateral spatial frequency component ( u x ,
 y ) of the optical field is determined, the z component of the spatial
requency vector can be represented by 

 𝑧 = ± 

√ (
𝑛 

𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 (322) 

ccording to the angular spectrum theory introduced in
ubsection 2.2.2 , once the complex amplitude of the coherent field
 ( x, y , 0) in a certain plane is known (without loss of generality, we
onsider 𝑧 = 0 ), the complex field U ( x, y, z ) at a arbitrary distance of z
an be determined 

̂
 2 𝐷 ( 𝑢 𝑥 , 𝑢 𝑦 , 𝑧 ) = �̂� 2 𝐷 ( 𝑢 𝑥 , 𝑢 𝑦 , 0) 𝑒 

𝑗𝑘𝑧 
√

1− ( 𝜆𝑢 𝑥 ) 2 − ( 𝜆𝑢 𝑦 ) 2 

= �̂� 2 𝐷 ( 𝑢 𝑥 , 𝑢 𝑦 , 0) 𝑒 
𝑗2 𝜋𝑧 

√ (
1 
𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 

(323) 

aking Fourier transform on z of both sides of Eq. (323) yields 

 ̂𝑈 3 𝐷 ( 𝑢 𝑥 , 𝑢 𝑦 , 𝑢 𝑧 ) = ∫ �̂� 2 𝐷 ( 𝑢 𝑥 , 𝑢 𝑦 , 0) 𝑒 
𝑗2 𝜋𝑧 

√ (
1 
𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 

𝑒 − 𝑗2 𝜋𝑧 𝑢 𝑧 𝑑𝑧 

= ∫ �̂� 2 𝐷 ( 𝑢 𝑥 , 𝑢 𝑦 , 0) 𝑒 
− 𝑗2 𝜋𝑧 

( 
𝑢 𝑧 − 

√ (
1 
𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 

) 
𝑑𝑧 

= �̂� 2 𝐷 ( 𝑢 𝑥 , 𝑢 𝑦 , 0) 𝛿
⎛ ⎜ ⎜ ⎝ 𝑢 𝑧 − 

√ ( 1 
𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 

⎞ ⎟ ⎟ ⎠ (324) 

q. (324) shows that the coherent optical field is highly redundant
n 3D Fourier space, and non-zero values can only be taken on the

wald sphere. 𝛿

( 

𝑢 𝑧 − 

√ (
1 
𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 

) 

denotes the projection of a 2D

ourier spectrum onto the Ewald hemisphere surface. The direction of
he hemisphere depends on the light propagation direction with respect
o z -axis. Therefore, the 2D Fourier spectrum in 𝑧 = 0 plane actually con-
ains all the information about the 3D Fourier spectrum of 3D optical
eld 

̂
 2 𝐷 ( 𝑢 𝑥 , 𝑢 𝑦 , 0) = �̂� 3 𝐷 ( 𝑢 𝑥 , 𝑢 𝑦 , 𝑢 𝑧 ) 

|||||||𝑢 𝑧 = 

√ ( 1 
𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 (325) 

imilarly, the 2D Fourier spectrum in the defocused plane Δz can also
e associated with the 3D Fourier spectrum 

̂
 2 𝐷 ( 𝑢 𝑥 , 𝑢 𝑦 , Δ𝑧 ) = �̂� 3 𝐷 

⎛ ⎜ ⎜ ⎝ 𝑢 𝑥 , 𝑢 𝑦 , 
√ ( 1 

𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 

⎞ ⎟ ⎟ ⎠ 𝑒 
𝑗2 𝜋Δ𝑧 

√ (
1 
𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 

= �̂� 3 𝐷 ( 𝑢 𝑥 , 𝑢 𝑦 , 𝑢 𝑧 ) 𝑒 𝑗2 𝜋𝑢 𝑧 Δ𝑧 (326) 

.2. 3D coherent transfer function and generalized aperture 

In Section 4 , we have learned that the coherent imaging system is lin-
ar about the complex amplitude, which is completely determined by its
oherent transfer function (the defocused pupil function) [ Eq. (63) ]. For
xisymmetric optical system, the defocused pupil function is presented
y Eq. (70) 

 ( 𝜌) = 𝑃 ( 𝜌) 𝑒 𝑗𝑘 Δ𝑧 
√
1− 𝜆2 𝜌2 

𝑃 ( 𝜌) = 𝑐 𝑖𝑟𝑐 
(

𝜌

𝑁𝐴 ∕ 𝜆

)
= 

{ 

1 𝜌 ≤ 

𝑁𝐴 

𝜆

0 else 
(327) 

here 𝜌 = 

√ 

𝑢 2 𝑥 + 𝑢 2 𝑦 is the radial spatial frequency, P ( 𝜌) is the objective

upil function with the cut-off frequency of 𝑁𝐴 

𝜆
. According to Hankel

ransform, the defocused PSF of coherent imaging system can be denoted
s 

 ( 𝑟, 𝑧 ) = ∫𝜌 𝑃 ( 𝜌) 𝑒 𝑗𝑘𝑧 
√
1− 𝜆2 𝜌2 𝐽 0 ( 2 𝜋𝑟𝜌) 2 𝜋𝜌𝑑𝜌 (328) 
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Fig. 80. The illumination patterns, phase transfer functions, axial intensity derivatives and Fourier spectra, and final reconstructed phases under different illumination 

patterns. 
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ote here we explicitly write the defocused PSF as a function of r and z
n polar coordinates. This is because Eq. (328) actually represents the 3D
SF of the imaging system, which describes the 3D complex amplitude
istribution in the image space formed by an ideal point source. Taking
ourier transform about z on both sides of Eq. (328) , the 3D coherent
ransfer function of the coherent optical field can be obtained 

 ( 𝜌, 𝜂) = ∫ 𝑃 ( 𝜌) 𝑒 𝑗𝑘𝑧 
√
1− 𝜆2 𝜌2 𝑒 − 𝑗2 𝜋𝑧𝑙 𝑑𝑧 = 𝑃 ( 𝜌) 𝛿

⎛ ⎜ ⎜ ⎝ 𝑙 − 

√ ( 1 
𝜆

)2 
− 𝜌2 

⎞ ⎟ ⎟ ⎠ (329)
Eq. (328) is quite similar to Eq. (324) , which indicates that the 3D
oherent transfer function of the coherent optical field can only take
on-zero value on the Ewald sphere in the 3D Fourier space (which is
nderstandable, because the 3D coherent transfer function itself is the
ourier transform of the 3D PSF, and the 3D PSF is actually a coherent

eld defined in 3D space). 𝛿

( 

𝜂 − 

√ (
1 
𝜆

)2 
− 𝜌2 

) 

represents the projec-

ion of the 2D pupil function P ( 𝜌) (coherent transfer function) onto the
D Ewald sphere surface. The projection direction depends on the light
ropagation direction with reference to z -axis. 
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Fig. 81. Description of a monochromatic plane wave in the 3D spatial and fre- 

quency space. 

Fig. 82. Generalized aperture P( u ) as a 3D frequency spectrum limited by the 

aperture angle on the Ewald sphere. 
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Note that in the above derivation, we assume that the light wave
ropagates in vacuum. For the case that the light wave propagates in the
edium ( e.g. , when an oil immersion objective lens is used), the wave-

ength in Eq. (328) should be replaced by the equivalent wavelength of
he light wave in the medium 𝜆/ n , where n is the RI of the medium.
n addition, wave vector ( 𝑘 𝑥 , 𝑘 𝑦 , 𝑘 𝑧 ) = 2 𝜋( 𝑢 𝑥 , 𝑢 𝑦 , 𝑢 𝑧 ) and the spatial fre-
uency vector ( u x , u y , u z ) differ only by a factor of 2 𝜋 and are therefore
sed synonymously. The radius of Ewald sphere in the 3D wave vector
pace is thus |𝐤 | = 𝑛 

2 𝜋
𝜆

(see Subsection 8.3 for details). 
The aperture of the imaging system determines the maximum trans-

erse frequency of the spectrum, and thus, the lateral resolution limit.
or coherent imaging, the diffraction limit of the lateral resolution is
𝑁𝐴 

𝜆
. However, when imaging thick objects, the limited aperture also

ffects the diffraction limit of axial resolution ( i.e. , depth of field). As
hown in Fig. 82 , the 2D complex pupil function is projected onto the
D spherical surface, resulting in a segment of the Ewald sphere sur-
ace. According to McCutchen [250] , this segment of the Ewald sphere
s called the generalized aperture ( i.e. , 3D coherent transfer function), and
ts inverse Fourier transform corresponds to the 3D PSF of the imaging
ystem. The generalized aperture is equivalent to a band-pass filter in 3D
ourier space, whose lateral cut-off frequency corresponds to the coher-

nt diffraction limit 𝑁𝐴 

𝜆
, and the axial cut-off frequency is 

𝑛 − 
√

𝑛 2 − 𝑁𝐴 2 

𝜆
.

he aperture angle 𝛼 denotes the largest cone of wave vectors that can
ass through the imaging lens. It should be noted that under the paraxial
pproximation, the axial cut-off frequency of the generalized aperture
ust corresponds to the normalized coefficient of the axial coordinate
sed in Subsection 6.3.5 . 

.3. Scattering potential representation and approximate conditions for 3D 

bjects 

In the 2D theory of optical imaging, as described in Sections 4 , a
hin object is usually represented as a 2D complex transmittance func-
ion composed of absorption component and phase component 𝑇 ( 𝑥, 𝑦 ) =
 ( 𝑥, 𝑦 ) exp [ 𝑗𝜙( 𝑥, 𝑦 ) ] . The complex amplitude distribution of the transmit-
ed field is given by the product of the complex amplitude of the incident
llumination and the complex transmittance of the object. But when we
mage a 3D object, how to model the object and describe its interaction
ith the incident illumination? A straightforward idea is to extend the
D definition, defining the thick object as a 3D complex transmittance
unction T ( x, y, z ) so that the complex amplitude distribution of the
ransmitted optical field can also be represented as the product of the
ncident field and the object. This is the main content to be discussed in
his subsection. 

Generally, the 3D phase imaging of thick object is also known as
DT, which is first proposed by Wolf in 1969 [375] . Considering a 3D

ample with RI distribution n ( r ) illuminated by a monochromatic plane
ave travelling in 3D space ( x, y, z ), and the RI distribution of the sur-

ounding medium of the sample is n m 

. Note that n ( r ) is a complex distri-
ution, whose real and imaginary parts represent the RI and absorption
omponents of the sample, respectively. Since the RI of the object is dif-
erent from that of the surrounding medium, the light propagation and
cattering obey the following inhomogeneous wave equation 

∇ 

2 + 𝑘 2 ( 𝐫 ) 
]
𝑈 ( 𝐫) = 0 (330)

ote that the difference between Eq. (330) and Helmholtz equation
 Eq. (2) ] in free space (in homogeneous medium) is that the wave num-
er 𝑘 ( 𝐫 ) = 𝑘 0 

[
𝑛 𝑚 + Δ𝑛 ( 𝐫 ) 

]
is a variable related to the spatial distribution

f the RI. Here Δ𝑛 ( 𝐫 ) = 𝑛 ( 𝐫 ) − 𝑛 𝑚 , k 0 is the wave vector of light wave
n free space. U ( r ) represents the complex amplitude distribution of the
otal 3D optical field in 3D space. Expanding the LHS of Eq. (330) , we
btain 

∇ 

2 + 𝑘 2 𝑚 
)
𝑈 ( 𝐫) = − 𝑓 ( 𝐫 ) 𝑈 ( 𝐫 ) (331)

here 𝑘 𝑚 = 𝑘 0 𝑛 𝑚 is the wave number in the medium. f ( r ) is defined as
he scattering potential function of the sample 

 ( 𝐫 ) = 𝑘 2 0 
[
𝑛 ( 𝐫 ) 2 − 𝑛 𝑚 

2 ] (332) 

bviously, the scattering potential outside the sample is 0. In fact, the
cattering potential of the sample is equivalent to the complex RI dis-
ribution, so f ( r ) is often called the object function. The total field U ( r )
an be written as the superposition of the incident (un-scattered) field
 in ( r ), and the scattered field U s ( r ) 

( 𝐫) = 𝑈 𝑖𝑛 ( 𝐫) + 𝑈 𝑠 ( 𝐫) (333)

hile the incident field satisfies the Helmholtz equation in homogeneous
edium 

∇ 

2 + 𝑘 2 𝑚 
)
𝑈 𝑖𝑛 ( 𝐫) = 0 (334)

ubstituting Eq. (333) into Eq. (331) and using Eq. (334) , the scattered
eld satisfies the following equation 

∇ 

2 + 𝑘 2 𝑚 
)
𝑈 𝑠 ( 𝐫) = − 𝑓 ( 𝐫 ) 𝑈 ( 𝐫 ) (335)

he partial differential equation expressed in Eq. (335) cannot be di-
ectly solved, but based on Green’s method, its solution can be expressed
s the following integral form 

 𝑠 ( 𝐫 ) = ∫ 𝐺 

(
𝐫 − 𝐫 ′

)
𝑓 
(
𝐫 ′
)
𝑈 

(
𝐫 ′
)
𝑑 𝐫 ′ = 

[
𝑓 
(
𝐫 ′
)
𝑈 

(
𝐫 ′
)]
⊗ G ( 𝐫 ) (336)

here G( r ) is the 3D Green’s function corresponding to Helmholtz equa-
ion in homogeneous medium, which is a outgoing spherical wave orig-
nates from the point of observation r 
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2 + 𝑘 2 𝑚 
)
G ( 𝐫 ) = − 𝛿( 𝐫 ) (337)

 ( 𝐫 ) = 

exp 
(
𝑗 𝑘 𝑚 |𝐫 |)

4 𝜋|𝐫 | (338)

he convolution integral [ Eq. (336) ] suggests to decompose the source
erm f ( r ) U ( r ), i.e. , the product of the total field and the object function,
nto the shifted and weighted sum of a delta function 𝛿( r ). And the total
cattered field is the superposition of the scattered fields generated by
hese point sources 𝛿( r ). We can further separate the source function
nto two terms, which respectively represent the contributions of the
ncident field and the coupled correlation of the scattered field itself 

 𝑠 ( 𝐫) = ∫ 𝐺 

(
𝐫 − 𝐫 ′

)
𝑓 
(
𝐫 ′
)
𝑈 𝑖𝑛 

(
𝐫 ′
)
𝑑𝐫 ′ + ∫ 𝐺 

(
𝐫 − 𝐫 ′

)
𝑓 
(
𝐫 ′
)
𝑈 𝑠 

(
𝐫 ′
)
𝑑𝐫 ′ (339)

hough Eq. (339) provides a linearized relation between the scattered
eld and the scattering potential of the object, it is still quite challenging
o invert it directly since U s ( r ) appears in the both sides of Eq. (339) .
owever, if we assume that the light is scattered only once by the ob-

ect, i.e. , the light is deflected only by a single interaction, a linearized
elation between the resultant the first-order scattered field, U s 1 , and
he scattering potential of the object can be obtained 

 𝑠 1 ( 𝐫 ) = ∫ 𝐺 

(
𝐫 − 𝐫 ′

)
𝑓 
(
𝐫 ′
)
𝑈 𝑖𝑛 

(
𝐫 ′
)
𝑑 𝐫 ′ (340)

 s 1 ( r ) represents the scattered field produced by the single scattering
etween the incident field and the object, which is only a portion of the
otal scattered field 

 𝐵 ( 𝐫) = 𝑈 𝑠 ( 𝐫) − ∫ 𝐺 

(
𝐫 − 𝐫 ′

)
𝑓 
(
𝐫 ′
)
𝑈 𝑠 

(
𝐫 ′
)
𝑑𝐫 ′ (341)

q. (340) suggests that the first-order scattered field of the entire object
s the superposition of elemental scattered fields of all points that consti-
ute the object, i.e , convolution of the Green’s function by the product of
he object function and the incident field. As is clear here, the solution
equires the first-order scattered field U s 1 ( r ) either to be a measurable
uantity or can be obtained by other means. Two approximations are
ften used to determine U s 1 ( r ): 

1) First-order Born approximation [374,375] 

When the RI values of the sample and the medium are quite close,
he light scattering should be very weak. In this case, it can be assumed
hat the scattered field is negligible compared with the incident field
 in ≫U s so that the second term in Eq. (341) can be ignored 

 𝑠 ( 𝐫) ≈ 𝑈 𝑠 1 ( 𝐫) = ∫ 𝐺 

(
𝐫 − 𝐫 ′

)
𝑓 
(
𝐫 ′
)
𝑈 𝑖𝑛 

(
𝐫 ′
)
𝑑𝐫 ′ (342)

q. (342) suggests that under the first-order Born approximation, the
otal scattered field is approximated by the first-order Born scattered
eld, and the high-order scattered field [the second term in Eq. (339) ]

s ignored. In this case, there is a linear relationship between the object
unction and the total scattered field. It should be noted that the first-
rder Born approximation assumes that the objects are weak scattering.
umerical simulation verified that only if the absorption and total phase
elay introduced by the object is small (typically less than 𝜋, ) the first-
rder Born approximation can produce accurate result. When the sample
s large or its RI is much higher than that of the surrounding medium,
he first-order Born approximation will be no longer valid. In this case,
he first-order Rytov approximation is preferred. 

2) First-order Rytov approximation [374,382,383] 

The first-order Rytov approximation assumes that the total field has a
omplex phase function related to the scatted field, i.e. , 𝑈 ( 𝐫 ) = exp [ 𝜙( 𝐫 ) ]
nd 𝑈 𝑖𝑛 ( 𝐫 ) = exp 

[
𝜙𝑖𝑛 ( 𝐫 ) 

]
. The complex phase of the total field is the sum

f the complex phase of the incident field and the complex phase of the
cattered field 

𝜙( 𝐫 ) = 𝜙𝑖𝑛 ( 𝐫 ) + 𝜙𝑠 ( 𝐫 ) (343)
ote that the complex phase of the scattered field 𝜙s ( x ) here is different
rom the “phase ” in the conventional sense. Instead, it represents the
hange of the complex phase of the incident field induced by the object.
ince 𝑈 𝑠 ( 𝐫 ) = 𝑈 ( 𝐫 ) − 𝑈 𝑖𝑛 ( 𝐫 ) , substituting it into Eq. (343) , the scattered
ptical field can be expressed 

 𝑠 ( 𝐫 ) = exp 
[
𝜙𝑖𝑛 ( 𝐫 ) + 𝜙𝑠 ( 𝐫 ) 

]
− exp 

[
𝜙𝑖𝑛 ( 𝐫 ) 

]
= exp 

[
𝜙𝑖𝑛 ( 𝐫 ) 

]{
exp 

[
𝜙𝑠 ( 𝐫 ) 

]
− 1 

}
= 𝑈 𝑖𝑛 ( 𝐫 ) 

{
exp 

[
𝜙𝑠 ( 𝐫 ) 

]
− 1 

}
(344) 

hen, the complex phase of the scattered field can be represented as
ollows 

𝑠 ( 𝐫 ) = ln 
( 

𝑈 𝑠 ( 𝐫 ) 
𝑈 𝑖𝑛 ( 𝐫 ) 

+ 1 
) 

= ln 
( 

𝑈 ( 𝐫 ) 
𝑈 𝑖𝑛 ( 𝐫 ) 

) 

(345)

ased on above expressions, it can be proven that the solution to the
nverse scattering problem [ Eq. (335) ] can be written as the following
ntegral form 

𝑈 𝑖𝑛 ( 𝐫 ) 𝜙𝑠 ( 𝐫 ) = ∫ 𝐺 

(
𝐫 − 𝐫 ′

)
𝑓 
(
𝐫 ′
)[ 
𝑈 𝑖𝑛 

(
𝐫 ′
)
+ 

|||∇ 𝜙𝑠 

(
𝐫 ′
)|||2 
] 
𝑑 𝐫 ′ (346) 

imilarly, the first-order Rytov approximation is introduced to make this
roblem linearized and solvable. When the phase gradient introduced
y the object is small so that the following slowly varying condition is
atisfied 

 𝛿 ≫
||∇ 𝜙𝑠 

||2 ( 𝜆

2 𝜋

)2 
(347) 

here n 𝛿 is the RI variation of the object within the range of one wave-
ength. Then, the contribution of the complex phase gradient term in
q. (346) can be safely ignored for small n 𝛿 , and Eq. (346) can be sim-
lified as 

 𝑖𝑛 ( 𝐫 ) 𝜙𝑠 ( 𝐫 ) ≈ 𝑈 𝐵 ( 𝐫) = ∫ 𝐺 

(
𝐫 − 𝐫 ′

)
𝑓 
(
𝐫 ′
)
𝑈 𝑖𝑛 

(
𝐫 ′
)
𝑑𝐫 ′ (348)

t can be found that the complex phase of the scattered field can be inter-
reted as the modulation to the incident field introduced by the object

s 1 ( x ) ≈U in ( r )/ U B ( r ). The difference between Eq. (348) and Eq. (342) is
nly that the approximation imposed on the first-order scattered field
 s 1 ( r ). It is not difficult to prove that Rytov approximation can be re-
uced to Born approximation when the scattered field is weak or the
otal phase delay induced by the object is small [374] . Since the valid-
ty of the Rytov approximation is not dependent on the absolute phase
hange introduced by the sample, but on the gradient of the RI within
he sample [374,384] , this makes the Rytov approximation more suit-
ble to thick biological samples than the Born approximation [374,384–
86] . 

.4. Fourier diffraction theorem 

In the previous subsection, we learned that the 3D object is mod-
led as the scattering potential satisfying the differential equation of
q. (335) . Under Born or Rytov approximation, this equation can be
olved linearly, and the solution is represented as the integral form ex-
ressed by Eq. (340) . In this subsection, we will discuss the physical
eaning behind Eq. (340) and how to use it to realize ODT for 3D ob-

ects. First, rewriting the RHS of Eq. (340) into the convolution form

 𝑠 1 ( 𝐫 ) = 𝐺 ( 𝐫 ) ⊗
[
𝑓 ( 𝐫 ) 𝑈 𝑖𝑛 ( 𝐫 ) 

]
(349)

aking Fourier transform on the both sides of Eq. (349) yields 

̂
 𝑠 1 ( 𝐤 ) = �̂� ( 𝐤 ) 

{
𝑓 ( 𝐤 ) ⊗ �̂� 𝑖𝑛 ( 𝐤 ) 

}
(350)

ere we use the wave vector 𝐤 = ( 𝑘 𝑥 , 𝑘 𝑦 , 𝑘 𝑧 ) to represent the frequency
oordinates in 3D Fourier space, and its modulus is the wave number in
he medium |𝐤 | = 𝑘 𝑚 . In general, the incident field is a plane wave and
an be expressed as 𝑈 𝑖𝑛 ( 𝐫 ) = exp 

(
𝑗 𝐤 𝑖 ⋅ 𝐫 

)
, where k i is the incident wave

ector of plane wave. Since the image senor is a 2D detector array, we
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an only measure the field distribution on a plane. As we discussed at
he beginning of this section, the Fourier spectrum of the 3D coherent
ptical field is highly redundant, and the complex amplitude distribu-
ion on a single plane is sufficient to fully characterize the whole 3D
eld. It should be remembered that Green’s function in Eq. (350) serves
s a probing function which originates from the point r under consider-
tion, inside the volume. We first implement the 3D angular spectrum
ecomposition (Fourier transform) of Green’s function [374] , and then
ake the 1D inverse Fourier transform with respect to z . Finally, assum-
ng that the detection plane is located at 𝑧 = 𝑧 𝐷 , and only the forward
ropagation component of the scattered field can be detected (neglect-
ng the back-scattering), we can get the following expression 

�̂� 𝑠 1 ( 𝐤 ⊥, 𝑧 𝐷 ) = − 𝑗 
𝑒 𝑗𝑘 

′
𝑧 𝑧 𝐷 

𝑘 
′
𝑧 

𝑓 
(
𝐤 ⊥ − 𝐤 𝑖⊥, 𝑘 

′
𝑧 − 𝑘 𝑖𝑧 

)||||||𝑧 𝐷 ≥ 0 (351) 

ere the transverse frequency coordinate is defined as 𝐤 ⊥ = ( 𝑘 𝑥 , 𝑘 𝑦 ) , and

e define a new quantity 𝑘 
′
𝑧 = 

√ 

𝑘 2 𝑚 − 𝑘 2 𝑥 − 𝑘 2 𝑦 , which is a propagation

onstant and only related to the transverse frequency k x , k y , to dis-

inguish from the axial frequency coordinate k z . �̂� 𝑠 1 ( 𝐤 ⊥, 𝑧 𝐷 ) is the 2D

ourier spectrum �̂� 𝑠 1 

(
𝑘 𝑥 , 𝑘 𝑦 , 𝑧 𝐷 

)
of the first-order scattered field at the

etection plane 𝑧 = 𝑧 𝐷 . The exponential term 𝑒 𝑗𝑘 
′
𝑧 𝐷 just corresponds to

he angular spectrum propagation kernel for a coherent complex field
according to Eq. (326) ], which accounts for the coordinate shift in the
 direction. Note that this exponential term will automatically vanish
f the measurement is performed at the nominal “in-focus ” plane (z =
). Because the Fourier spectrum of the 3D coherent field can only as-
ume non-zero values on the Ewald sphere and the object function on
he RHS is also defined in the 3D Fourier space, in order to show the
hysical meaning behind Eq. (351) more clearly, we can also explicitly
rite the LHS of Eq. (351) as a 3D function, which corresponds to the
rojection of the 2D spectrum onto the 3D Ewald sphere 

̂
 𝑠 1 ( 𝐤 𝑠 1 , 𝑧 𝐷 ) = 𝑗 

exp 
(
𝑗 𝑘 𝑧 𝑧 𝐷 

)
𝑘 𝑧 

𝑓 
(
𝐤 𝑠 1 − 𝐤 𝑖 

)
(352)

q. (352) is known as the Fourier diffraction theorem [374,375] ,
hich relates the first-order scattered field at the detection plane
 𝑧 = 𝑧 𝐷 ) to the scattering potential in the Fourier space. Here

 𝑠 1 = 

(
𝑘 𝑥 , 𝑘 𝑦 , 𝑘 z = 

√ 

𝑘 2 𝑚 − 𝑘 2 𝑥 − 𝑘 2 𝑦 

)
represents the 3D spatial frequency

oordinate of the first-order scattered field. It should be noted that the
he first-order scattered field is defined on the Ewald sphere, and k z is

ctually dependent on 
(
𝑘 𝑥 , 𝑘 𝑦 

)
. 𝑓 
(
𝐤 𝑠 1 − 𝐤 𝑖 

)
on the RHS represents that

he spectrum of the scattered field k s 1 is given by the object frequency
pectrum shifted by the frequency of the incident field k i 

 = 𝐤 𝑠 1 − 𝐤 𝑖 (353)

 consequence of Eq. (353) is the well-known Laue equation [220] with
 s 1 being the scattered and k i being the incident wave vector. The Laue
quation results from the the assumption of single scattering. According
o the Laue equation the scattered wave vector k s 1 can be determined
rom the sum of an incident wave vector k i and a wave vector g from the
cattering object. In the far-field approximation, i.e. , if evanescent waves
an be neglected, the transfer function of free space has also to be consid-
red. This means that only the frequencies k s 1 on the Ewald sphere can
ropagate over distances large in comparison to the wavelength. Fig. 83
llustrates this in a graphical way. k s 1 represents the Ewald sphere of
he first-order scattered field, k i is the incident vector. The propagating
ontributions to the scattered field are limited to vectors on the Ewald
phere. The wave vector g is the accessible frequency component of the
bject, which is a shifted Ewald sphere passing through the origin with
enter − 𝐤 𝑖 . Of course, here we ideally assume that we can capture the
ransmitted and reflected first-order scattered field from both sides of
he object. Due to the technical layout, as for conventional microscopic
maging in transmissive geometry, the reflected parts are mostly lost,
nd only forward scattering can be received [see red circle in Fig. 83 (a)].
n addition, we can change the direction of the wave vector k i by vary-
ng the illumination angle. If the object is illuminated from all possible
irections in 3D space (360 ∘ surround), it can be imagined that the max-
mum frequency coverage of the object becomes a sphere with a radius
f 2 k m 

. We call this large sphere Ewald limiting sphere in the object space
which has a doubled radius compared with the Ewald sphere of the
oherent field), as illustrated in Fig. 83 (c) [387] . 

.5. 3D diffraction tomographic imaging under coherent illumination 

The Fourier diffraction theorem [ Eq. (352) ] provides a powerful tool
or solving the inverse scattering problem and recovering the quantita-
ive 3D RI distribution. When the sample is illuminated by a plane wave
rom a certain direction, the complex amplitude of the forward trans-
ission component of the first-order scattered field is acquired. Taking

ourier transform, we obtain a portion of object spectrum on the Ewald
phere. The complex amplitude of the incident plane wave illumination
 in ( r ) can be calibrated or predefined, and the complex amplitude of the

otal optical field in a certain plane U ( r ) is measured via interferometry
r phase retrieval approaches. Thus, the first-order scattered field can
e determined based on two approximations described in the previous
ubsection 

 𝐵 ( 𝐫 ) ≈
{ 

𝑈 𝑠 ( 𝐫 ) = 𝑈 ( 𝐫 ) − 𝑈 𝑖𝑛 ( 𝐫 ) 𝐵𝑜𝑟𝑛 

𝑈 𝑖𝑛 ( 𝐫 ) 𝜙𝑠 ( 𝐫 ) = 𝑈 𝑖𝑛 ( 𝐫 ) ln 
(

𝑈 ( 𝐫 ) 
𝑈 𝑖𝑛 ( 𝐫 ) 

)
𝑅𝑦𝑡𝑜𝑣 

(354) 

fter obtaining U s 1 ( r ), its planar 2D Fourier spectrum �̂� 𝑠 1 ( 𝐤 ) is projected
nto a semi-spherical surface according to the Laue equation as depicted
n Fig. 83 . By changing the incident angle of the illumination k i , the
esultant first-order scattered field can access different regions of the 3D
ourier spectrum of the object, as illustrated in Fig. 85 . With a series of
ngle-dependent complex amplitude measurements, a certain portion of
he 3D Fourier spectrum of the object can be completed, and an estimate
f 𝑓 ( 𝐤 ) can be obtained. Finally, an inverse 3D Fourier transform of the
esultant Fourier spectrum produces the 3D complex RI tomogram of
 sample. When the incident illumination covers all possible directions
 ± 90 ∘), the frequency coverage of the scattering potential is shown in
ig. 85 (a). It can be found that only a limited region of the spectrum
an be accessed, which results from the shifted Eward sphere through
he origin with center − 𝐤 𝑖 rotating ± 360 ∘ along the z axis. Although the
xtension in the lateral direction reaches the border of Ewald limiting
phere, a missing cone appears in the axial direction. 

Additional limitations of the frequency coverage emerge from lim-
ted aperture angles or numerical apertures of the illumination optics
nd the objective, respectively. For on-axis plane wave illumination, the
ccessible object frequency just corresponds to the support of the gener-
lized aperture, with a lateral frequency extent Δ𝑢 𝑥 = 

𝑁𝐴 

𝜆
and an axial

xtent Δ𝑢 𝑧 = 

𝑛 − 
√

𝑛 2 − 𝑁𝐴 2 

𝜆
, as shown in Fig. 82 . The aperture angle corre-

ponding to the largest cone of wave vectors that can be illuminated and

etected is 𝑎𝑟𝑐 sin 
(
𝑁𝐴 

𝑛 

)
. For matched illumination, i.e. , the maximum

llumination angle allowed is limited to the maximum collection NA,
 torus-shaped structure in 3D frequency space is formed [ Figs. 85 (b)
nd (d)]. Only those object frequencies can be transferred as a result
f the limited illumination and objective apertures. The resulting acces-
ible volume in frequency space represents the 3D transfer function of
omographic imaging. It describes the possible object frequencies con-
ributing to the image formation, and can be used to assess both lateral
nd axial resolution limit quantitatively. Incomplete illumination angle
eads to larger missing cone region, as shown in Fig. 85 (c). The miss-
ng cone will reduce of the resolution of the reconstructed RI, especially
he axial resolution [376,378] . For partially coherent optical imaging,
he object is illuminated by a limited angular spectrum. Only the infor-
ation for a finite angular range is gathered. So, besides the low-pass
ltering by the imaging system, the finite illumination aperture has also
o be taken into account, which will be discussed later in Subsection 8.8 .
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Fig. 83. Fourier-diffraction projection theorem. (a)-(b) Laue construction for determining a scattering wave vector under transmission and reflection; (c) the corre- 

sponding Ewald limiting sphere under illuminations at all possible angles. 

Fig. 84. Illustration of the Fourier diffraction theorem under transmission and 

reflection configurations. (a) Transmission configuration; (b) reflection config- 

uration. 
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Fig. 85. The Fourier coverage of scattering potential with different transmissive 

configurations. (a) Ideal free space with all possible incident angles; (b) finite 

aperture imaging system with matched illuminations ( 𝑠 = 1 ); (c) finite aperture 

imaging system with limited-angle illuminations ( 𝑠 = 0 . 7 ); (d) the corresponding 

transverse/axial resolution limit in the case of finite aperture imaging system 

with matched illuminations ( 𝑠 = 1 ). 
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Besides changing the illumination angle, we can also rotate the sam-
le to achieve larger spectrum coverage, which is similar to the case
f conventional CT imaging. In this case, the illumination is fixed with
ormal incidence with respect to the detector 𝐤 = 

(
0 , 0 , 𝑘 𝑚 

)
. Without

onsidering the aperture effect, the spectrum information once acquired
orresponds to a shifted hemisphere with vertex at the origin, as illus-
rated in Fig. 86 (a). The sample rotation is equivalent to spectrum ro-
ation. If the object is rotated about y -axis, the hemisphere can sweep
round the object spectrum along the sample-rotating axis (y), filling a
orn torus-like shape in Fourier space, as shown in Fig. 86 (b). Under
his setting, the maximum extension of the swept spectrum in k x and

 z plane is 
√
2 𝑘 𝑚 , as shown in Fig. 86 (c). But notice that rotating the

ample only about one axis still results in missing-cone problem [376] ,
s illustrated in Fig. 86 (b). This results in directional blurring along the
xis of rotation (y). In order to alleviate the missing cone problem, itera-
ive non-negativity constraint can be applied to computationally fill the
issing information [384] . In addition, in the limit of small wavelengths
→0 ( e.g. , X-ray), the radius of the Ewald sphere k m 

→∞, the Fourier
iffraction theorem converges to the Fourier slice theorem discussed in
ubsection 6.2.6 [374] . 

.6. Different forms of 3D coherent transfer functions 

In the 2D Fourier theory of optical imaging, as described in Section 4 ,
he diffracted spectrum is given by the convolution of the incident spec-
rum with the object spectrum. As it turns out in the 3D treatment of
ptical imaging, the reason for this is the linearity of diffraction in fre-
uency space, e.g. , approximated by the first-order Born or Rytov ap-
roximation. When the effect of apecture is considered, and the inci-
ent illumination is assumed to be perpendicular to the detection plane,
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Fig. 86. The Fourier coverage of scattering potential with sample rotation. (a)Information on the hemisphere surface can be obtained with a single illumination 

direction; The surface of the sphere is oriented along z axis in the case of normal incidence; (b) rotating the object As a result of sample rotation, the hemisphere 

sweep around the object spectrum along the sample-rotating axis (y), filling a horn torus-like shape inside the 3D spectrum of the object; (c) the 𝐤 𝐱 − 𝐤 𝐳 cross-section 

of the region swept by the hemisphere. 
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Fig. 87. The projection of 3D coherent transfer function onto the 2D plane. 

Fig. 88. The comparison of Green’s functions used in angular spectrum propa- 

gation and diffraction tomography. (a) Green’s functions corresponding to an- 

gular spectrum propagation and diffraction tomography; (b) the Green’s func- 

tion of diffraction tomography has singular points in frequency domain (infinite 

gain). 
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q. (352) can be rewritten as 

̂
 𝑠 1 ( 𝑢 𝑥 , 𝑢 𝑦 , 𝑢 𝑧 ) = 𝑗 

𝐻( 𝑢 𝑥 , 𝑢 𝑦 ) 

2 𝜋
√ (

𝑛 𝑚 
𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 

𝑓 ( 𝑢 𝑥 , 𝑢 𝑦 , 𝑢 𝑧 ) ⊗ �̂� 𝑖𝑛 ( 𝑢 𝑥 , 𝑢 𝑦 , 𝑢 𝑧 ) 

= 𝑗 
𝐻( 𝑢 𝑥 , 𝑢 𝑦 ) 

2 𝜋
√ (

𝑛 𝑚 
𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 

𝑓 ( 𝑢 𝑥 , 𝑢 𝑦 , 𝑢 𝑧 ) 𝛿

( 

𝑢 𝑧 − 

√ ( 𝑛 𝑚 
𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 

) 

(355) 

 ( u x , u y ) is the 2D coherent transfer function with the limited aper-
ure function and propagation factor included [ Eq. (63) ]. It is plain to
ee that the scattered spectrum is given by the convolution of the inci-
ent spectrum with the 3D frequency spectrum of the object, and there
s a linear relationship between the object function and the first-order
cattered field �̂� 𝑠 1 ( 𝑢 𝑥 , 𝑢 𝑦 , 𝑢 𝑧 ) = 𝐻 3 𝐷 ( 𝑢 𝑥 , 𝑢 𝑦 , 𝑢 𝑧 ) ⋅ 𝑓 ( 𝑢 𝑥 , 𝑢 𝑦 , 𝑢 𝑧 ) , and they are
elated by the following 3D transfer function 

 3 𝐷 ( 𝑢 𝑥 , 𝑢 𝑦 , 𝑢 𝑧 ) = 

𝐻( 𝑢 𝑥 , 𝑢 𝑦 ) √ (
𝑛 𝑚 
𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 

⋅ 𝛿

( 

𝑢 𝑧 − 

√ ( 𝑛 𝑚 
𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 

) 

(356) 

ote that we ignore the unimportant constant factor and imaginary unit
 in Eq. (356) [the extra j appears because the (real) amplitude and
imaginary) phase information become to the (imaginary) absorption
nd (real) RI in the scattering potential representation)]. Comparing
q. (356) with Eq. (329) , it can be seen that the 3D coherent trans-
er function derived from the Fourier diffraction theorem is not co-
ncident with that derived directly from the angular spectrum theory

n Subsection 8.2 due to the additional factor 𝑢 𝑧 = 

√ (
𝑛 𝑚 
𝜆

)2 
− 𝑢 2 𝑥 − 𝑢 2 𝑦 .

herefore, according to the Fourier diffraction theorem, the 3D coher-
nt transfer function is not the direct and uniform projection of the 2D
oherent transfer function onto the 3D Ewald sphere, but is given by the
eighted projection related to u z . Fig. 87 illustrates the transformation

rom 3D to 2D coherent transfer function representation. A homoge-
eous amplitude on the Ewald sphere, corresponding to, e.g. , a spheri-
al wave, leads to an amplitude distribution 1/cos 𝛼, increasing with the
perture angle 𝛼. 

The main reason for this discrepancy stems from the selection of
reen’s function: When deriving the Fourier diffraction theorem, the
reen’s function used is a ideal diverging spherical wave with uniform
mplitude. When only forward scattering is considered, the Green’s
unction is equivalent to the impulse response function [ Eq. (13) ]
ith the RS-II type obliquity factor [ 𝐾 ( 𝜃) = 1 ]. The Green’s function is

sotropic because it is just a half-space spherical wave. However, for the
ngular spectrum diffraction formula [ Eq. (30) ], the Green’s function
orresponds to the impulse response function [ Eq. (13) ] with the RS-I
ype obliquity factor [ 𝐾 ( 𝜃) = cos 𝜃] [2,5] . Note that the propagation an-
le 𝜃 is a function of transverse coordinates in both original plane and
iffraction plane. There is no field radiated along the transverse plane,
s shown in Fig. 88 (a). The 2D Fourier transform of the Green’s function
f the angular spectrum diffraction is 

 

𝑥,𝑦 

{ 

exp 
(
𝑗 𝑘 

𝑚 
|𝐫 |)

𝑗 𝜆|𝐫 | cos 𝜃

} 

= ℱ 

𝑥,𝑦 

{ 

𝜕 

𝜕𝑧 

exp 
(
𝑗 𝑘 

𝑚 
|𝐫 |)

𝑗 𝜆|𝐫 |
} 

= exp 
(
𝑗 𝑘 𝑧 𝑧 

)
(357) 

he exponential is simply the phase shift of the corresponding plane
ave for propagation over a distance z . It can be found that the ad-
itional k z in the denominator is canceled due to the cosine obliquity
actor, which converges to the angle spectrum diffraction theory. In con-
rast, for the diffraction tomography representation, there is an extra k z 
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Table 7 

Apodization functions of different design conditions 

( 𝜌 = cos 𝜃∕ 𝜆) 

Design conditions Apodization function 

Sine condition 𝑃 ( 𝜃) = 𝑃 ( 𝜌) 
√
cos 𝜃

Herschel condition 𝑃 ( 𝜃) = 𝑃 ( 𝜌) 
Lagrangian condition 𝑃 ( 𝜃) = 𝑃 ( 𝜌) 

√
𝜃∕ sin 𝜃

Helmholtz Condition 𝑃 ( 𝜃) = 𝑃 ( 𝜌) 
(
1∕ 
√
cos 𝜃

)3 
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n the denominator. The magnitude of the Fourier transform shows a
ingularity at 𝑘 𝑧 = 0 , i.e. , at a spatial frequency of 𝑘 ⊥ = 𝑘 𝑚 [ Fig. 88 (b)].
t stems from the plane wave component propagating perpendicular to
-axis ( cf. the angular spectrum of a spherical wave). 

Though both widely used among the literatures, the 3D coherent
ransfer functions obtained from two different derivations are inconsis-
ent with each other. Under the paraxial approximation cos 𝜃 ≈1, the
eighting factor in Eq. (358) vanishes, and then the two forms are uni-
ed. But in the cases of high-resolution 3D imaging with high-NA illu-
ination and objective, the effect of u z cannot be ignored. How to dis-

inguish the correct one for a given situation is still a controversial issue
388,389] . In the literature on the theory of image formation in the con-
ocal fluorescence microscope, the 3D coherent transfer function with a
arge NA is often evaluated based on Debye integral [250,252,390,391] .
n the diffraction computation according to the Debye approximation,
ach point on the aperture plane is taken as the source of a plane wave
ith amplitude, phase and polarization prescribed by this point. The
nal image field is the superposition of plane wavelets within the geo-
etric cone (solid angle) limited by the aperture. For the low-NA case,

he pupil function of objective is just the generalized aperture function
 Eq. (329) ]. For larger NAs (NA > 0.75), the effect of the apodiza-
ion function become pronounced and must be included in the imaging
odel. The apodization function P ( 𝜃) is not equal to the pupil function
 ( 𝜌) for a high NA objective: pupil function P ( 𝜌) represents the ray den-
ity in the transverse plane while the apodization function P ( 𝜃) gives
he ray density over the converging wavefront [76,359] . Apodization
unctions depend on the transmission coefficients at various interfaces
f an imaging system and on spatial filters inserted in the path of an
maging system. The relationship of an apodization function to the cor-
esponding pupil function can be represented as a weighted projection
 ( 𝜃): 

 ( 𝜌, 𝜂) = 𝑃 ( 𝜌) 𝑔 ( 𝜃) 𝛿
⎛ ⎜ ⎜ ⎝ 𝜂 − 

√ ( 1 
𝜆

)2 
− 𝜌2 

⎞ ⎟ ⎟ ⎠ (358)

he commonly used apodization functions are provided in Table 7 . For a
ommercial objective, the sine condition is usually obeyed in design pro-
esses so that a perfect image of a thin object can be obtained within the
eld of view of an objective. Such an imaging system exhibits 2D trans-
erse space invariance, which is called the aplanatic imaging system.
 ( 𝜃) = 𝑃 ( 𝜌) cos 𝜃 indicates that the ray density over the angle of con-
ergence is decreased with the aperture angle. The Herschel condition
 ( 𝜃) = 1 is also called the uniform angular condition. The apodization
unction is completely consistent with the generalized aperture function
 Eq. (329) ]. In other words, the ray density is constant over the range of
he angle of convergence. Under the Helmholtz condition, the apodiza-
ion function increases with the aperture angle, which is similar to the
rend of the 3D coherent transfer function of Fourier diffraction theorem
 Eq. (356) ]. However, the Helmholtz condition is generally only avail-
ble for reflective lenses, and the design of most microscopic objective
ollows the sine condition. In the rest part of this tutorial, the 3D coher-
nt transfer function in Eq. (329) (Herschel condition) is used for sim-
licity in the derivation of the 3D partially coherent transfer functions.
ut it should be noted that in high-NA microscopy applications, the sine
ondition should be considered to produce more physically meaningful
esults. 
.7. 3D partially coherent transfer functions, 6D TCC and 3D WOTF 

In the previous subsections, we have discussed the following linear
elationship between the object function and the first-order scattered
eld in 3D coherent imaging 

 𝑠 1 ( 𝐫 ) = ∫ ℎ 
(
𝐫 − 𝐫 ′

)
𝑓 
(
𝐫 ′
)
𝑈 𝑖𝑛 

(
𝐫 ′
)
𝑑 𝐫 ′ (359)

here h ( r ) is the 3D coherent PSF, whose Fourier transform is the gen-
ralized aperture 𝐻 ( 𝛒, 𝑙 ) = ℱ { ℎ ( 𝐫 ) } . In order to simplify the derivation,
e introduce the first-order Born approximation U s 1 ( r ) ≈U s ( r ), the total
eld can be expressed as 

( 𝐫) = 𝑈 𝑖𝑛 ( 𝐫 ) + 𝑈 𝑠 ( 𝐫) 

= 𝑈 𝑖𝑛 ( 𝐫 ) + ∫ ℎ 
(
𝐫 − 𝐫 ′

)
𝑓 
(
𝐫 ′
)
𝑈 𝑖𝑛 

(
𝐫 ′
)
𝑑 𝐫 ′

= ∫ ℎ 
(
𝐫 − 𝐫 ′

)
𝑇 
(
𝐫 ′
)
𝑈 𝑖𝑛 

(
𝐫 ′
)
𝑑 𝐫 ′ (360) 

here 𝑇 ( 𝐫 ) = 1 + 𝑓 ( 𝐫 ) = 1 + 𝑘 2 0 
[
𝑛 ( 𝐫 ) 2 − 𝑛 𝑚 

2 ] is defined as the 3D complex
ransmittance function of the object. Based on this complex transmit-
ance expression, the 3D coherent imaging and 2D coherent imaging
an be formally unified. In the following, we follow the path mirroring
hat in Subsection 6.3 to derive the 3D transfer functions under partially
oherent illuminations. When an 3D object is illuminated by a partially
oherent field with the CSD defined as W S ( r 1 , r 2 ), the CSD of the trans-
itted field can be expressed as 

 𝑂 

(
𝐫 1 , 𝐫 2 

)
= 𝑊 𝑆 

(
𝐫 1 , 𝐫 2 

)
𝑇 
(
𝐫 1 
)
𝑇 * 
(
𝐫 2 
)

(361)

ccording to Van Cittert-Zernike theorem, the CSD of the illumination
efore reaching the object can be written as 

 𝑆 

(
𝐫 1 , 𝐫 2 

)
= 𝑊 𝑆 

(
𝐫 1 − 𝐫 2 

)
= ∬ 𝑆 ( 𝐮 ) 𝑒 𝑗2 𝜋𝐮 ⋅( 𝐫 1 − 𝐫 2 ) 𝑑𝐮 (362)

ote that here u represents the 3D frequency vector ( 𝝆, 𝜂). Similar to
he generalized aperture, S ( u ) refers to the incoherent generalized source

efined on the Eward sphere (in 6 f imaging system the source is located
t the conjugated plane of the objective pupil) 

 ( 𝛒, 𝜂) = 𝑆 ( 𝛒) 𝛿
⎛ ⎜ ⎜ ⎝ 𝜂 − 

√ ( 1 
𝜆

)2 
− 𝛒2 

⎞ ⎟ ⎟ ⎠ (363)

fter 6D Fourier transform, the transmitted light field needs to multiply
he 3D coherent transfer function H ( u ) [ Eq. (358) ] twice at the pupil
lane, and then the CSD in the image space can be obtained after inverse
ourier transform 

 𝐼 

(
𝐫 1 , 𝐫 2 

)
= ∫ ∫ �̂� 𝑂 

(
𝐮 1 , 𝐮 2 

)
𝐻 

(
𝐮 1 
)
𝐻 

* 
(
𝐮 2 
)
𝑒 𝑗2 𝜋( 𝐮 1 𝐫 1 + 𝐮 2 𝐫 2 ) 𝑑 𝐮 1 𝑑 𝐮 2 (364) 

n which H ( u 1 ) H 

∗ ( u 2 ) is the 3D mutual coherent transfer function.
quivalently, it can also be written in the convolution form in the spatial
omain 

 𝐼 

(
𝐫 1 , 𝐫 2 

)
= ∬ 𝑊 𝑂 

(
𝐫 ′1 , 𝐫 ′2 

)
ℎ 
(
𝐫 1 − 𝐫 ′1 

)
ℎ ∗ 
(
𝐫 2 − 𝐫 ′2 

)
𝑑 𝐫 ′1 𝑑 𝐫 ′2 (365)

here h ( r 1 ) h 
∗ ( r 2 ) is the 3D mutual PSF. The image intensity that we can

aptured is given by the values “on the diagonal ” of the CSD function 

 ( 𝐫 ) = 𝑊 𝐼 ( 𝐫, 𝐫 ) = ∬ 𝑊 𝑆 

(
𝐫 1 , 𝐫 2 

)
𝑇 
(
𝐫 1 
)
𝑇 𝑠 ∗ 

(
𝐫 2 
)

ℎ 
(
𝐫 − 𝐫 1 

)
ℎ ∗ 
(
𝐫 − 𝐫 2 

)
𝑑 𝐫 1 𝑑 𝐫 2 

(366) 

his formula can be further simplified by substituting Eq. (362) into
q. (366) 
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 ( 𝐫 ) = ∫ 𝑆 ( 𝐮 ) 
||||∫ 𝑇 

(
𝐫 ′
)
ℎ 
(
𝐫 − 𝐫 ′

)
𝑒 𝑗 2 𝜋𝐮𝐫 

′
𝑑 𝐫 ′

||||2 𝑑𝐮 
≡ ∫ 𝑆 ( 𝐮 ) 𝐼 𝐮 ( 𝐫 ) 𝑑𝐮 (367) 

q. (367) suggests that the final intensity that can be captured at the im-
ge plane can be regarded as the intensity (incoherence) superposition
f coherent partial images I u ( r ) arising from all points over the incoher-
nt generalized source function. This is similar to the 2D case discussed
n Subsection 6.3.1 . Substituting Eq. (362) into Eq. (367) and rewriting
t in the form of Fourier integral gives 

 ( 𝐫 ) = ∭ 𝑆( 𝐮 ) ̂𝑇 ( 𝐮 1 ) ̂𝑇 ∗ ( 𝐮 2 ) 𝐻( 𝐮 + 𝐮 1 ) 𝐻 

∗ ( 𝐮 + 𝐮 2 ) 𝑒 𝑗 2 𝜋𝐫 ( 𝐮 1 − 𝐮 2 ) 𝑑 𝐮 1 𝑑 𝐮 2 𝑑𝐮 

(368) 

eparating the contribution of the specimen and imaging system leads
o the notion of the 3D TCC 

 𝐶 𝐶 

(
𝐮 1 , 𝐮 2 

)
= ∬ 𝑆( 𝐮 ) 𝐻( 𝐮 + 𝐮 1 ) 𝐻 

∗ ( 𝐮 + 𝐮 2 ) 𝑑𝐮 (369)

oted that the 3D TCC is actually a 6D function. Based on the 3D TCC,
q. (368) can be written as 

 ( 𝐫 ) = ∬ �̂� ( 𝐮 1 ) ̂𝑇 ∗ ( 𝐮 2 ) 𝑇 𝐶 𝐶 

(
𝐮 1 , 𝐮 2 

)
𝑒 𝑗 2 𝜋𝐫 ( 𝐮 1 − 𝐮 2 ) 𝑑 𝐮 1 𝑑 𝐮 2 (370)

he above expressions are similar to those derived from 2D partial co-
erence imaging, except that the dimension of the TCC increases from
our to six. It can be calculated from the overlapping region of the gener-
lized source and two shifted generalized aperture (three hemispherical
hells). However, the calculation requires prohibitively large computa-
ion time for the 6D integral of the TCC. Considering the real part and
he imaginary part of the 3D complex transmission function separately,
.e. , the phase component P ( r ) and the absorption component A ( r ) (note
hat the real part of the 3D object function corresponds to the phase
omponent, instead of absorption as in the 2D case) 

 ( 𝐫 ) = 1 + 𝑓 ( 𝐫 ) = 1 + 𝑘 2 0 
[
𝑛 ( 𝐫 ) 2 − 𝑛 2 𝑚 

]
= 1 + 𝑃 ( 𝐫 ) + 𝑗 𝐴 ( 𝐫 ) (371) 

nder the first-order Born approximation, the self-interference of the
cattered light can be neglected, and the mutual spectrum of the object
an be approximated as 

̂
 ( 𝐮 1 ) ̂𝑇 ∗ ( 𝐮 2 ) = 𝛿

(
𝐮 1 
)
𝛿
(
𝐮 2 
)
+ 𝛿

(
𝐮 2 
)[
𝑃 
(
𝐮 1 
)
+ 𝑗 �̂� 

(
𝐮 1 
)]

+ 

𝛿
(
𝐮 1 
)[
𝑃 
(
𝐮 2 
)
− 𝑗 �̂� 

(
𝐮 2 
)]

(372) 

ubstituting Eq. (372) into Eq. (371) and using the Hermitian symmetry
roperty of TCC yields the intensity of the partially coherent image for
 weak object 

 ( 𝐫 ) = 𝑇 𝐶 𝐶 ( 𝟎 , 𝟎 ) + 2 Re 
{ 

∫ 𝑇 𝐶 𝐶 ( 𝐮 , 𝟎 ) 
[
𝑃 ( 𝐮 ) + 𝑗 �̂� ( 𝐮 ) 

]
𝑒 𝑗 2 𝜋𝐫 𝐮 𝑑𝐮 

} 

(373)

here TCC ( u , 0) is the linear part of the TCC, which is the 3D WOTF 

 𝑂𝑇 𝐹 ( 𝐮 ) ≡ 𝑇 𝐶 𝐶 ( 𝐮 , 𝟎 ) = ∬ 𝑆 
(
𝐮 ′
)
𝐻 

(
𝐮 ′ + 𝐮 

)
𝐻 

* 
(
𝐮 ′
)
𝑑 𝐮 ′ (374) 

aking Fourier transform on Eq. (373) , and separating the contributions
f phase component P ( r ) and absorption component A ( r ) gives 

 ̂( 𝐮 ) = 𝐼 0 𝛿( 𝐮 ) + 𝐻 𝐴 ( 𝐮 ) �̂� ( 𝐮 ) + 𝐻 𝑃 ( 𝐮 ) ̂𝑃 ( 𝐮 ) (375)

here I 0 is the background intensity. It now becomes obvious that the
mage contrast due to the absorption and phase are decoupled and lin-
arized. Because the intensity is always real, the real and even compo-
ent of WOTF ( u ) corresponds to the partially coherent 3D ATF H A ( u ),
nd the imaginary and odd component of WOTF ( u ) corresponds to the
D PTF H ( u ) of the object, respectively. 
P 
 𝐴 ( 𝐮 ) = 𝑊 𝑂𝑇 𝐹 ( 𝐮 ) + 𝑊 𝑂𝑇 𝐹 ∗ ( − 𝐮 ) (376)

 𝑃 ( 𝐮 ) = 𝑊 𝑂𝑇 𝐹 ∗ ( 𝐮 ) − 𝑊 𝑂𝑇 𝐹 ( − 𝐮 ) (377)

ote that here 3D ATF and 3D PTF is then given by the real and imagi-
ary components of 3D WOTF respectively, which is now in coincidence
ith the 2D case. The reason for this lies in the additional imaginary
nit in the projection of the 2D aperture onto the 3D Eward sphere, as
escribed in Eq. (355) . 

.8. 3D PTFs for coherent, incoherent, and partially coherent imaging 

Next, we analyze the 3D transfer functions of an axisymmetric opti-
al system under different illumination conditions. First, under coherent
llumination (coherence parameter s →0), the light source degenerates
nto an ideal on-axis point radiator 

 ( 𝛒, 𝜂) = 𝛿( 𝛒) 𝛿
(
𝜂 − 

1 
𝜆

)
(378) 

here 𝜌 = 

√ 

𝑢 2 𝑥 + 𝑢 2 𝑦 represents the radial spatial frequency coordi-

ate and 𝜂 represents the axial spatial frequency coordinate. Taking
q. (378) into the 3D WOTF 

 𝑂𝑇 𝐹 ( 𝜌, 𝜂) = 𝐻 

(
𝜌, 𝜂 + 

1 
𝜆

)
(379)

t is shown that under coherent illumination, the 3D WOTF just corre-
ponds to the shifted generalized aperture, i.e. , the shifted 3D coherent
ransfer function H ( u ) [ Eq. (358) ] passing through the origin. This is
ot difficult to understand because the linearization of 3D imaging is
erived based on the first-order Born approximation ( e.g. , the Fourier
iffraction theorem), indicating that the 3D coherent transfer function
mplies the “weak object ” approximation. Ideally, the generalized aper-
ure is a real function, the even part and the odd part of the 3D WOTF
orrespond to the ATF and PTF, respectively. 

 𝐴 ( 𝜌, 𝜂) = 𝐻 

(
𝜌, 𝜂 + 

1 
𝜆

)
+ 𝐻 

(
𝜌, − 𝜂 − 

1 
𝜆

)
(380)

 𝑃 ( 𝜌, 𝜂) = 𝐻 

(
𝜌, 𝜂 + 

1 
𝜆

)
− 𝐻 

(
𝜌, − 𝜂 − 

1 
𝜆

)
(381)

hey are two back-to-back Eward hemispherical shells intersecting at
he origin. The 3D ATF is even symmetric about the 𝜂-axis with the
aximum value at the origin; while the 3D phase transfer function is

dd symmetric about the 𝜂-axis with zero at the origin, indicating that
 homogeneous object produces no phase contrast. 

In the case of incoherent illumination, the generalized source is equal
o or even larger than the generalized aperture 𝑠 = 𝑁 𝐴 𝑖𝑙𝑙 ∕ 𝑁 𝐴 𝑜𝑏𝑗 ≥ 1 ,
nd the 3D WOTF becomes the autocorrelation of 3D coherent transfer
unction 

 𝑂𝑇 𝐹 incoh ( 𝐮 ) = ∬ 𝐻 

(
𝐮 ′ + 𝐮 

)
𝐻 

* 
(
𝐮 ′
)
𝑑 𝐮 ′ (382)

ote that it is always a real function (even under defocusing), which
eans the PTF is always 0. When the apodization function in the gen-

ralized aperture/3D coherent transfer function H ( u ) [ Eq. (358) ] is ig-
ored (satisfying Herschel condition), the transfer function can be ex-
ressed as [391] 

𝑊 𝑂𝑇 𝐹 incoh ( ̄𝜌, ̄𝜂) = 

4 
𝜋𝐾 

arccos 
[ 
1 
𝑀 

( 

2 cos 𝛼|�̄�| + 1 
) ] 

(383)

here 𝐾 = 

√
�̄�2 + �̄�2 , 𝑀 = 

2 |�̄�|
𝐾 |�̄�|

√ 

1 − 

𝐾 2 

4 , and 𝛼 is the aperture angle of

he imaging system. Note here the lateral and axial frequencies �̄�, ̄𝜂
re both normalized by 1/ 𝜆. Fig. 89 shows the formation of the 3D
ncoherent OTF. Because of the nature of the autocorrelation func-
ion, the support of the 3D incoherent OTF is a torus-shaped region
f Fourier space. The maximum accessible object frequencies in free

pace correspond to Δ𝑢 𝑥 = 

𝑁𝐴 

𝜆
and Δ𝑢 𝑧 = 

1− 
√

1− 𝑁𝐴 2 

𝜆
, which gives a re-

inder of the normalized coordinate system used in Subsection 4.2 and
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Fig. 89. Transverse and axial cross-sections of the 3D incoherent WOTF, repre- 

sented in normalized coordinates. 
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Fig. 90. Comparison of two different diffraction tomography strategies under 

coherent illumination (the conventional ODT) and partially coherent illumina- 

tion (TIDT). (a) Coherent illumination; (b) partially coherent illumination. 
ubsection 6.3.4 . It can be found the normalization coefficients are as-
ociated with the maximum extent of the 3D incoherent OTF. And the
ateral and axial extents become 0.5 and 2 in the normalized coordinate
ystem ( ̄𝜌, ̄𝜂), as clearly illustrated in Fig. 89 . 

Under partially coherent illuminations, the transfer functions of an
xial-symmetric aberration-free imaging system are given by 

 𝐴 ( ̄𝜌, ̄𝜂) = 𝑊 𝑂𝑇 𝐹 ( ̄𝜌, ̄𝜂) + 𝑊 𝑂𝑇 𝐹 ( ̄𝜌, − ̄𝜂) (384)

 𝑃 ( ̄𝜌, ̄𝜂) = 𝑊 𝑂𝑇 𝐹 ( ̄𝜌, ̄𝜂) − 𝑊 𝑂𝑇 𝐹 ( ̄𝜌, − ̄𝜂) (385)

here 𝑊 𝑂𝑇 𝐹 ( ̄𝜌, ̄𝜂) is represented as 

 𝑂𝑇 𝐹 ( ̄𝜌, ̄𝜂) = 𝜆
2 𝜋

�̄�2 𝜎

𝐾 2 �̄�

√ 

1 − 𝐾 
2 

4 
− 𝐾 

2 𝜎2 

�̄�2 
+ 

( √ 

1 − 𝐾 
2 

4 
− �̄�

2 

2 𝐾 

) 

arccos 
⎛ ⎜ ⎜ ⎜ ⎝ 

𝐾𝜎

�̄�

√ 

1 − 𝐾 2 
/
4 

⎞ ⎟ ⎟ ⎟ ⎠ 
(386)

hen 0 < �̄� < �̄�𝑃 − �̄�𝑆 : 

= �̄�
�̄�

( 
�̄�

2 
− 
√ 

1 − ̄𝜌2 
𝑆 

) 
, 𝑖𝑓 

√ 

1 − ̄𝜌2 
𝑆 
− 
√ 

1 − 
(
�̄�𝑃 − ̄𝜌𝑆 

)2 ⩽ �̄� ⩽
√ 

1 − ̄𝜌2 
𝑆 
− 
√ 

1 − 
(
�̄�𝑃 + ̄𝜌𝑆 

)2 
(387

hen 0 < �̄� < �̄�𝑃 − �̄�𝑆 : 

= �̄�
�̄�

( 
�̄�

2 
− 
√ 

1 − ̄𝜌2 
𝑆 

) 
, 𝑖𝑓 

√ 

1 − ̄𝜌2 
𝑆 
− 
√ 

1 − 
(
�̄�𝑆 − ̄𝜌

)2 ⩽ �̄� ⩽
√ 

1 − ̄𝜌2 
𝑆 
− 
√ 

1 − ̄𝜌2 
𝑃 

= �̄�
�̄�

( 
− �̄�
2 
− 
√ 

1 − ̄𝜌2 
𝑃 

) 
, 𝑖𝑓 

√ 

1 − ̄𝜌2 
𝑆 
− 
√ 

1 − ̄𝜌2 
𝑃 
⩽ �̄� ⩽

√ 

1 − 
(
�̄�𝑃 − ̄𝜌

)2 − √ 

1 − ̄𝜌2 
𝑆 

(388)

here �̄�
𝑆 

and �̄�
𝑃 

are both normalized by 1/ 𝜆 so that �̄�
𝑆 
= 𝑁 𝐴 𝑖𝑙𝑙 , ̄𝜌𝑃 =

 𝐴 𝑜𝑏𝑗 . In fact, the partially coherent 3D WOTF was first derived by
treibl [178] under the paraxial approximation as early as 1985, and
hen it was further summarized and applied to 3D microscopic imaging
y Sheppard [179] based on the TCC representation. The expression of
he transfer function under the paraxial approximation is much simpler.
ntil recently, the analytical expression of the 3D WOTF under the non-
araxial condition was derived, and has been successfully applied to the
igh-resolution TIDT [214,381,388] . 

Finally, it should be noted that we can directly obtain the 2D de-
ocused transfer functions from the 3D transfer functions. The Fourier
ransform of 3D intensity and the 2D intensity at different depths can
e related by taking the Fourier transform about z [177] 

 𝑧 ( 𝐫 ) = ∫ 𝐼 ( 𝐮 ) 𝑒 − 𝑗2 𝜋𝑧𝜂𝑑𝜂 (389)
xpanding the exponential term in Eq. (389) based on Euler formula,
e can get the following relationship between 3D transfer functions and
efocused 2D transfer functions [217] 

 𝐴 ( 𝜌, 𝑧 ) = ∫ 𝐻 𝐴 ( 𝜌, 𝜂) cos ( 2 𝜋𝑧𝜂) 𝑑𝜂 (390)

 𝑃 ( 𝜌, 𝑧 ) = ∫ 𝐻 𝑃 ( 𝜌, 𝜂) sin ( 2 𝜋𝑧𝜂) 𝑑𝜂 (391)

t can be verified that, without considering the apodization function in
he generalized aperture/3D coherent transfer function (satisfying the
erschel condition), the 3D ATF and PTF derived in this subsection
an be directly converted to the 2D defocused ATF and PTF derived
n Subsection 4.3 [ Eqs. (92) and (93) ]. 

.9. Diffraction tomographic (3D phase) imaging under partially coherent 

lluminations 

As introduced at the beginning of this section, the widely applied
DT techniques [375,376,378,379] usually require specially designed
olographic microscopes working with a coherent light source that se-
uentially illuminates the object from different sides by using a scanning
odule [384,392–394] or rotating the object mechanically [395,396] .
owever, such coherent ODT techniques recover the 3D RI by assem-
ling numerous sections of the object spectrum obtained for each il-
umination directions. Moreover, coherent ODT techniques suffer from
peckle noise and parasitic interference due to the coherent illumina-
ion. In this subsection, we will discuss another way to achieve 3D
iffraction tomography by extending the idea of TIE, namely TIDT. Sim-
lar to QPI techniques based on TIE, TIDT does not require coherent
llumination and interferometry, it only captures the through-focus in-
ensity images and directly recover the 3D RI distribution of the object
y 3D deconvolution based on the 3D PTF. The basic idea of TIDT is sim-
lar to the widefield 3D fluorescence deconvolution microscopy, except
hat the 3D transfer function used here is the 3D partially coherent PTF,
nstead of incoherent 3D OTF [178] . It can be viewed as an extension of
IE phase retrieval technique, which generalizes the idea of 2D “trans-
ort of intensity at a 2D plane ” into “transport of intensity through a
D volume ” to realize diffraction tomography. Compared with the ob-
ect rotation or beam scanning, the data acquisition based on the axial
canning not only greatly simplifies the system configuration, but also
s completely compatible with conventional wide-field transmission mi-
roscope platforms. 

Fig. 90 illustrate the difference between the traditional coherent ODT
nd the partially coherent TIDT techniques. Traditional coherent ODT
echniques recover the 3D RI by assembling numerous of sections of the
bject spectrum obtained for each incident angle. With a series of angle-
ependent complex amplitude measurements, a certain portion of the
bject spectrum can be filled, which produces an estimate of 3D com-
lex RI of the sample [ Fig. 90 (a)]. In contrast to the coherent ODT, TIDT
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an be regarded as its “parallelized ” version due to the use of partially
oherent illumination. The sample is simultaneously illuminated by a
uasi-monochromatic and spatially incoherent extended source from all
ossible directions allowed by the condenser aperture of the wide-field
icroscope [ Fig. 90 (b)]. The raw data is the through-focus intensity

tack obtained by optical refocusing (axial scanning). Thus, TIDT is in-
erently faster and more efficient in terms of spectrum coverage and, in
ractice, simplifies the measurement and the reconstruction process. An
dditional advantage is that the low spatial coherent illumination avoids
peckle noise, which plagues coherent ODT and other coherent imaging
ethods. It should be noted that though the fundamentals of TIDT were

stablished by Streibl [178] more than thirty years ago, only recently its
xperimental implementation has been demonstrated [214,380,381] . 

In Subsection 8.7 and Subsection 8.8 , we have learned that for
eakly scattering object under partially coherent illumination, the 3D
ourier transform of the stack of intensity distributions at the image
pace is given by 

 ̂( 𝐮 ) = 𝐼 0 𝛿( 𝐮 ) + 𝐻 𝐴 ( 𝐮 ) �̂� ( 𝐮 ) + 𝐻 𝑃 ( 𝐮 ) ̂𝑃 ( 𝐮 ) (392)

t should be noted that in Eq. (392) , the phase (RI) information and the
ntensity (absorption) information of the object are coupled together,
.e. , both phase contrast and amplitude contrast contribute to the mea-
ured intensity. In order the recover the quantitative RI information for
bjects with nonnegligible absorption, we need to decouple it from the
ontribution arising from the intensity information. There are four fea-
ible solutions: 

1) Recording an additional set of intensity stacks with opposing il-

lumination or via object rotation over 180 ∘: the symmetries of 3D
ATF and PTF allow the phase component to be separated by subtrac-
tion of the two intensity stacks recorded with opposing illumination
or via object rotation over 180 ∘ because the absorption contrast is
an even function about each scatterer. This is similar to TIE phase
retrieval based on central finite difference with the defocus distances
of the two images equal and opposite relative to the central in-focus
image. 

2) Collecting two or more datasets of the same object with differ-

ent pupil functions : since the corresponding 3D transfer functions
are different, it should be possible to separate the phase contrast
and amplitude contrast by solving the corresponding linear equa-
tions [178] . 

3) Assuming the phase-attenuation duality analogous to 2D phase

imaging : the absorption is assumed to be proportional to RI 𝑃 ( 𝐮 ) ≈
𝜀 ̂𝐴 ( 𝐮 ) , then Eq. (392) can be simplified as [380,381] 

 ̂( 𝐮 ) = 𝐵 𝛿( 𝐮 ) + 𝑃 ( 𝐮 ) 
[
𝐻 𝑃 ( 𝐮 ) + 𝜀 𝐻 𝐴 ( 𝐮 ) 

]
(393)

where 𝜀 is a constant parameter, which is usually empirically ad-
usted to optimize the reconstruction quality [381] . When the sample is
 pure phase object, 𝜀 = 0 , and the 3D RI reconstruction boils down to
he following one-step 3D deconvolution 

̂
 ( 𝐮 ) = 

𝐼 ( 𝐮 ) 𝐻 

∗ 
𝑃 
( 𝐮 ) ||𝐻 𝑃 ( 𝐮 ) ||2 + 𝛽

(394) 

here 𝛽 is the Tihkonv regularization parameter determined by the SNR
f the raw data. The support and response of the 3D PTF are directly
ssociated with the resolution and SNR of the 3D RI reconstruction.
ccording to Eq. (385) , we can analyze the 3D PTF distribution of a
erfectly aligned microscope with rotationally symmetric illumination.
igs. 91 (a)-(d) display the �̄� − �̄� sections of the 3D PTF corresponding to
n objective with 𝑁𝐴 = 1 . 4 and circular illumination aperture with dif-
erent coherence parameters 𝑠 = 0 . 3 , 0.6 and 0.9. As can be seen, smaller
oherence parameters provide better low-frequency response at an ex-
ense of smaller spectral coverage, leading to compromised lateral and
xial resolution. As the coherence parameter increases, the spectral cov-
rage is extended, and the response at both low and high frequencies
lso gradually increases. If the coherence parameter further increases to
1, the spectral coverage reaches the maximum (incoherent diffraction

imit). However, phase contrast progressively vanishes, suggesting that
he phase information can hardly be transferred into intensity when the
llumination NA is large. In other words, the intensity image gives no
hase contrast under incoherent illumination. Thus, there is an inherent
radeoff between phase contrast and imaging resolution in TIDT with
onventional circular illumination apertures. Note that these observa-
ions are analogous to the case of the 2D QPI based on the TIE phase
etrieval. Smaller coherence coefficients correspond to stronger phase
ontrast especially for low spatial frequencies, but the resolution is lim-
ted. Larger coherence coefficients provide higher theoretical resolution
imit, while the poor phase contrast compromises the SNR for phase re-
onstruction. Therefore, considering both of these two aspects, s should
e set between 0.4 and 0.7 to guarantee better 3D phase imaging per-
ormance. It should be also noticed that, regardless of the illumination
perture, there always exists a missing cone frequency region around the
̄ axis, which is a well-known common problem of the ODT techniques
or wide-field transmission configuration. 

There are two possible strategies to overcome the above issue and
mprove the performance of TIDT. One is to optimize the source distribu-
ion and improve the homogeneity of the PTF [397] . A similar approach
as been used to optimize the illumination pattern for the TIE phase
etrieval [211] , as discussed in Subsection 7.6 . It has been found that
aussian illumination is better than traditional uniform circular illumi-
ation for its higher homogeneity and less low-value regions in the 3D
TF [397] . The other strategy is to exploit the illumination diversity and
FS. For a single illumination aperture, the strong frequency response
nd large spectral coverage of the PTF are difficult to be achieved simul-
aneously. Therefore, similar to the case of 2D QPI, we can incorporate
ultiple intensity stacks with different illumination apertures to achieve
 synthesized 3D PTF, resulting in high-quality 3D RI reconstruction
ith improved resolution and SNR. Note that unlike the multi-plane
IE, the axial scanning is already included in the data acquisition, so
multi-plane ” is impossible and is meaningless for TIDT, leaving only
he illumination aperture is adjustable. So in order to obtain a more
omplete frequency coverage and balanced transfer function, Li et al.

214] proposed a multi-frequency combination scheme that incorpo-
ates three intensity stacks captured under three illumination apertures
ncluding an annular aperture and two circular apertures with different
oherence parameters. The optimal frequency components of 3D PTFs
orresponding to multiple illumination apertures are combined together
y utilizing linear least-squares method, and a more accurate 3D recon-
truction result with imaging resolution up to the incoherent diffraction
imit can be obtained. Inspired by the resolution enhancement for 2D
PI in Subsection 7.6 , the annular illumination aperture is introduced

o not only achieve the maximum allowable lateral and axial resolu-
ion limit, but also maintain strong amplitude response of the 3D PTF,
reventing phase contrast vanishing under large circular illumination
perture [ Fig. 91 (e)]. Fig. 92 gives the flowchart of the multi-aperture
IDT based on multi-frequency combination. The Fourier spectra of the
orresponding three intensity stacks are taken as 𝐼 1 ( 𝐮 ) , 𝐼 2 ( 𝐮 ) and 𝐼 3 ( 𝐮 )
nder these three illumination apertures, and the corresponding PTFs
re H P 1 ( u ), H P 2 ( u ) and H P 3 ( u ). The synthesized PTF can be expressed
s 

 ( 𝐫 ) = ℱ 

−1 

( 

𝐼 1 ( 𝐮 ) 
𝐻 𝑃 1 ( 𝐮 ) 

𝜀 1 + 

𝐼 2 ( 𝐮 ) 
𝐻 𝑃 2 ( 𝐮 ) 

𝜀 2 + 

𝐼 3 ( 𝐮 ) 
𝐻 𝑃 3 ( 𝐮 ) 

𝜀 3 

) 

(395) 

he weighting coefficients of the frequency component corresponding
o each pupil can be obtained by the following least squares method 

 𝑖 = 

𝐻 

∗ 
𝑃 𝑖 
( 𝐮 ) 𝐻 

𝑃 𝑖 
( 𝐮 ) |𝐻 𝑃 1 ( 𝐮 ) |2 + 

|𝐻 𝑃 2 ( 𝐮 ) |2 + 

|𝐻 𝑃 3 ( 𝐮 ) |2 (396) 
| | | | | |
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Fig. 91. 2D cross-sections of 3D PTFs for different (circular and annular) illumination apertures with different coherence parameters [214] . 

Fig. 92. Flowchart of the multi-aperture TIDT method based on multi-frequency combination [214] . 
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ubstituting Eq. (396) into the Eq. (395) , the phase component can be
nally reconstructed as follows 

 ( 𝐫 ) = ℱ 

−1 

{ 

𝐼 1 ( 𝐮 ) 𝐻 

∗ 
𝑃 1 
( 𝐮 ) + 𝐼 2 ( 𝐮 ) 𝐻 

∗ 
𝑃 2 
( 𝐮 ) + 𝐼 3 ( 𝐮 ) 𝐻 

∗ 
𝑃 3 
( 𝐮 ) ||𝐻 𝑃 1 ( 𝐮 ) ||2 + 

||𝐻 𝑃 2 ( 𝐮 ) ||2 + 

||𝐻 𝑃 3 ( 𝐮 ) ||2 + 𝛼

} 

(397)

Before closing this section, we need to further clarify the term “3D
hase imaging ”. It is generally known that the “phase ” refers to the op-
ical path difference introduced by the non-uniform spatial distribution
f the RI or thickness of the object. It implies the meanings of “projec-
ion ” and “accumulation ”, which is defined on a 2D plane instead of in a
D volume. So the definition of “phase ” is only valid for 2D thin object,
therwise it can only be used to represent the optical path integral of
 3D thick object along the light propagation direction. Consequently,
he term “3D phase imaging ” is not rigorous. In this tutorial, the term
3D phase imaging ” is only adopted as a colloquial alternative to “3D
I diffraction tomography ”. 
. Applications of TIE in optical imaging and microscopy 

In this section, we present optical configurations and representative
pplications of TIE with an emphasis on optical imaging, metrology, and
icroscopy. In Subsection 9.1 , we present the conventional experimen-

al setups for the TIE phase retrieval. In these setups, in order to ac-
uire multiple intensity images at different defocus distances, either the
ample or the camera needs to be translated along the optical axis, ne-
essitating manual adjustment or mechanic devices. In Subsection 9.2 ,
e present several improved setups of TIE, which eliminate the me-

hanical motion for through-focus intensity acquisition, extending TIE
o dynamic phase imaging applications. In Subsection 9.3 , we present
he optical configurations for TIE based diffraction tomography. Finally,
n Subsection 9.4 , we review the typical applications of TIE in the field
f optical imaging and microscopy, and present some representative ex-
erimental results. 
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Fig. 93. Conventional optical configurations for the TIE phase imaging. (a) 4 f system-based configuration; (b) lensless configuration. 
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.1. Basic optical configurations for TIE phase imaging 

The TIE phase retrieval method needs to collect intensity images at
ultiple defocus planes. In order to capture these intensity images, it

s often necessary to use a 4 f system, as illustrated in Fig. 93 (a). Since
he object and image planes in the 4 f system are strictly conjugated,
he intensity information at defocused planes can be obtained by either
oving the object or the camera. These two methods are essentially

quivalent, but when considering lateral and axial magnifications, the
bject-space defocus distance is scaled by a factor of 𝑓 2 2 ∕ 𝑓 

2 
1 when the de-

ocusing is achieved by moving the camera in the image space. For an
ptical microscope with an infinity-corrected optical system, the optical
ath is equivalent to Fig. 93 (a). The collimator of Fig. 93 (a) is equivalent
o the condenser lens in the Köhler illumination, while the lenses L 1 and
 2 correspond to objective and tube lens in the infinity-corrected micro-
cope, and f 2 / f 1 is the magnification of the microscope. Therefore, an
nfinity-corrected microscope can be directly used for TIE retrieval with-
ut any modifications. Besides, TIE can also adopt the lensless imaging
etup shown in Fig. 93 (b), in which the intensity images are all taken at
he out-of-focus plane. So the phase reconstructed by TIE is also located
t the defocused plane, and additional numerical back-propagation or
igital refocusing algorithms are required to reconstruct the complex
mplitude distribution of the sample at the object plane. 

.2. Advanced optical configurations for dynamic TIE phase imaging 

In traditional optical setups of TIE, one needs to move the object or
amera manually or mechanically when capturing the intensity images,
hich inevitably reduces the speed of data acquisition, precluding dy-
amic, high-speed, and real-time measurement applications. To address
his problem, numerous advanced optical configurations for dynamic
IE phase imaging have been proposed in recent years. Their common
eature is to avoid mechanical motion during the image acquisition pro-
ess. For example, Blanchard et al. [398] placed a quadratically distorted
rating in front of the imaging lens, creating three laterally shifted im-
ges corresponding to different defocus distances in a single image plane
 Fig. 94 (a)]. Waller et al. [191] utilized the chromatic aberration inher-
nt in the microscope to obtain three intensity images at different axial
istances from a single color image. Waller et al. [190] also proposed
ingle-shot TIE optical configurations based on a multiplexed volume
ologram to laterally separate images from different focal planes, en-
bling acquisition of intensity images at different depths from a single
xposure [ Fig. 94 (b)]. Almoro et al. [193] realized non-mechanical im-
ge defocusing by introducing a SLM in the Fourier plane of the 4 f imag-
ng system [ Fig. 94 (c)]. Gorthi and Schonbrun [194] applied TIE to flow
ytometry and realized the automatic collection of through-focus inten-
ity images by tilting the microfluidic channel vertically [ Fig. 94 (d)].
artino et al. [399] developed a single-shot TIE setup based on a beam

plitter and several mirrors, permitting recording two intensity images
t different depth simultaneously [ Fig. 94 (e)]. 
Not just limited to independent imaging systems, TIE is also fully
ompatible with an off-the-shelf infinity-corrected microscope. Dynamic
PI can also be achieved by introducing additional optics to the camera
ort of the microscope. Zuo et al. [216,217] proposed two microscope-
ased dynamic TIE phase imaging systems. The tunable lens based
IE (TL-TIE) system introduces an electrically tunable lens (ETL) and
 4 f system into a conventional bright-field microscope. The TL-TIE
ermits high-speed axial scanning to realize the non-mechanical focus
ontrol with constant magnification for high-speed TIE phase imaging
217] [ Fig. 95 (a)]. The single-shot quantitative phase microscopy (SQPM)
ystem realizes the programmable digital defocusing based on an SLM.
ased on a Michelson-like optical architecture attached to an unmod-

fied inverted bright-field microscope, two laterally separated images
rom different depths can be obtained simultaneously by a single cam-
ra exposure, enabling TIE phase imaging at the camera limited speed
216] [ Fig. 95 (b)]. 

.3. Optical configurations for TIE phase tomography 

Although TIE has been successfully used for phase retrieval and QPI,
he fact that phase is a product of thickness and average RI can po-
entially result in inaccurate interpretations of QPI data when imaging
omplex 3D structures. In order to gain more accurate morphological
nformation, diffraction tomography is often desired. Compared with
IE phase imaging, the optical configurations for diffraction tomogra-
hy based on TIE are relatively complicated, and there are two typical
olutions. The first category of techniques is based on traditional CT or
DT models, which obtains multiple quantitative phase distributions by

ample rotating or beam scanning. Different from traditional diffraction
omography based on interferometry or digital holography, the com-
lex amplitude of the field under each illumination angle is retrieved
y TIE in a noninterferometic manner. In 2000, Barty et al. [175] com-
ined TIE phase retrieval with sample rotation based on a traditional
icroscope platform. Two different optical fibers were fixed with the

ip of a syringe under the control of a rotating motor [ Fig. 96 (a)]. The
I profiles of the fibers were reconstructed by the inverse Radon trans-

orm. In 2011, based on similar ideas and experimental setups, Lee et al.

400] achieved 3D tomography of a glass diamond fixed on a rotat-
ng stage based on the back filtered projection method. Subsequently,
guyen et al. [401,402] measured the 3D RI distributions of fibers and
emstone microspheres fixed on a rotating turret based on the TL-TIE
217] and SQPM systems [216] . In those early works, the 3D recon-
truction physical model is similar to what was used in x-ray CT, which
ssumed phase measurement to be an integration of RI along the projec-
ion angle and ignored the significance of the optical diffraction effect,
hus limiting the earlier TPM systems for objects with simple structures.
n biology imaging, this inaccurate tomography model can significantly
ffect the 3D reconstruction resolution, especially for cells that are much
hicker than the depth of field of the imaging systems. In 2015, Zuo et al.

212] proposed a lensless diffraction tomographic platform using only
n image sensor and a programmable color LED array. By illuminating
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Fig. 94. Several improved optical configurations for dynamic TIE phase imaging. (a) optical configuration based on quadratically distorted grating [398] ; (b) optical 

configuration based on volume holography [190] ; (c) optical configuration based on spatial light modulator [193] ; (d) optical configuration based on flow cytometry 

[194] ; (e) optical configuration based on beam splitter and multiple reflections [399] . 

Fig. 95. Two optical configurations for dynamic TIE phase imaging, which can be implemented as a simple add-on module to a conventional off-the-shelf microscope. 

(a) electrically tunable lens based TIE microscopic system (TL-TIE) [217] ; (b) single-shot TIE system based on a SLM (SQPM) [216] . 



C. Zuo, J. Li and J. Sun et al. Optics and Lasers in Engineering 135 (2020) 106187 

Fig. 96. Optical configurations for 3D diffraction tomography based on TIE. (a) Tomographic system in which the sample is fixed by a needle tip and rotated by a 

motorized stage [175] ; (b) TIE diffraction tomographic system based on multi-angle illuminations with an LED array [213] ; (c) TIE diffraction tomographic system 

based on intensity axial scanning with an off-the-shelf microscope [214] . 

t  

i  

F  

a  

f  

q  

o  

3  

i  

a  

b  

p  

r  

m  

i  

e  

r  

r  

t  

n  

b  

i
 

m  

i  

t  

a  

o  

t  

a  

T  

m  

T  

t  

l  

p  

e  

u  

h  

d  

r  

a  

r  

l

9

 

o  

[  

t  

n  

t  
he sample at multiple wavelengths, the quantitative phase of the spec-
men can be retrieved by TIE. Based on the wavelength dependence of
resnel propagation, this approach treats the diffraction patterns gener-
ted by RGB three-color illuminations as intensity images at three dif-
erent defocus distances. Furthermore, by illuminating the sample se-
uentially with different LEDs across the full array, the complex fields
f the object at different illumination angles can be combined into the
D RI distribution based on the ODT model under the first Rytov approx-
mation. In 2015, Jenkins et al. [380] combined the object rotation and
xial scanning to realize 3D tomographic reconstruction of the RI distri-
utions of different types of optical fibers. In 2017, Li et al. [213] pro-
osed a TIE tomography system based on an off-the-shelf microscope by
eplacing the Köhler illumination system of the traditional bright-field
icroscope with a programmable LED array [ Fig. 96 (b)]. The intensity

mages of the sample are captured in two different defocused planes at
ach illumination angle, and the corresponding phase distributions are
ecovered by TIE. Finally, the 3D RI information of the object can be
econstructed based on the Fourier diffraction theorem. Different from
he interferometric tomographic system where the incident laser illumi-
ation is scanned with the help of galvanometer mirrors, the LED-array-
ased configurations are inherently much simpler and achieve improved
maging stability and speed. 

Since 2017, TIDT has gradually emerged as a new diffraction to-
ography technique and attracted much attention of researchers. TIDT

s a partially coherent ODT approach, which only needs to capture the
hrough-focus intensity images across the object, and then uses the im-
ge deconvolution algorithm to directly retrieve the 3D RI distribution
f the object. Thus, it effectively bypasses the difficulties associated with
he traditional interferometric diffraction tomography techniques, such
s interferometric measurements, object rotation, and beam scanning.
he hardware setup is fully compatible with conventional bright-field
icroscope systems. Soto et al. [381] realized the TIDT based on the TL-
IE system [217] . An electrically tunable lens is employed to axially scan
he sample in high speed. The resultant through-focus stack is deconvo-
uted based on 3D WOTF to recover the 3D RI distribution of the sam-
le. In 2018, Li et al. [214] combined TIDT with illumination coherence
ngineering. Three sets of through-focus intensity images are captured
nder an annular aperture and two circular apertures with different co-
erence parameters [ Fig. 96 (c)]. By changing the condenser aperture
iaphragms of a traditional bright-field microscope, the 3D WOTFs cor-
esponding to different illumination apertures are combined to obtain
 synthesized frequency response, achieving high-quality, low-noise 3D
econstructions with imaging resolution up to the incoherent diffraction
imit. 

.4. Applications of TIE in optical imaging and microscopy 

Similar to many other phase retrieval algorithms, TIE was mainly
riented to adaptive optics [144–148] , X-ray diffraction imaging
161,162] , STEM [166,169,171,172] , neutron radiography [164,165] ,
ransmission electron microscopy etc. . In recent years, as the TIE tech-
ique advances and matures, it has been increasingly applied to the op-
ical imaging and microscopy of the visible light band. Due to the space
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Fig. 97. TIE phase-contrast imaging of testicle of a rat [142] . (a) bright-field 

intensity image; (b) axial intensity derivative distribution. 

Fig. 98. Quantitative phase imaging of an unstained cheek cell [175] . The insets 

show the DIC image of the cell and the recovered quantitative phase image by 

TIE. 
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Fig. 99. Quantitative phase imaging of an unstained cheek cell [192] . The insets 

show the phase-gradient image from quantitative phase reconstructed by TIE 

and phase-shifting DIC, respectively. 

Fig. 100. Quantitative phase imaging and RBC screening [403] . (a) Scatterplot 

of RBCs subjected to isotonic and hypotonic solutions; (b)-(i) phase images in 

the gated regions marked in (a); Normal RBCs (b)-(e) in flow took parachute like 

or slipper like shapes; Spherized RBCs (f)-(i) remained spherical even in flow. 
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imitation, this section reviews several representative applications of
IE, focus particularly on optical imaging, metrology, and microscopy. 

.4.1. QPI for bio-applications 

The applications of TIE to optical microscopy can be traced back
o 1984 (only about one year after Teague deduced TIE). Streibl
142] briefly proved that TIE is applicable to phase-contrast imaging
f transparent phase objects under partially coherent Köhler illumina-
ion of a off-the-shelf microscope. He demonstrated the phase gradient
nhancement effect of unstained mouse testis cells ( Fig. 97 ). Since the
umerical solution to TIE has not been proposed at that time, he only
resented the axial intensity derivative image rather than the quanti-
ative phase reconstruction result. Streibl believed that the axial inten-
ity derivative image could effectively highlight phase details that are
ifficult to be observed in the bright-field image. In 1998, Barty et al.

175] briefly reported the QPI results of cheek cells and optical fibers
ased on TIE ( Fig. 98 ). Strictly speaking, it was the debut of TIE in
he field of quantitative phase microscopy. They also emphasized that
he phase recovered by TIE is continuous, and no phase unwrapping
s needed. The beautiful experimental results presented by Barty et al.

as opened the door for the subsequent applications of TIE in biologi-
al and biomedical imaging. In 2004, Curl et al. [180,181] used TIE to
uantitatively detect the morphology and growth rate of cells, indicating
hat quantitative phase information is very conducive to data process-
ng and quantitative analysis, such as cell segmentation and counting.
n 2005, Ross et al. [182] utilized TIE to enhance the imaging contrast of
nstained cells under microbeam irradiations. In 2007, Dragomir et al.

183] successfully applied TIE to the quantitative measurement of the
irefringence effect of unstained isolated cardiomyocytes. 

In 2010, Kou et al. [188] demonstrated that TIE can be directly imple-
ented based on an off-the-shelf DIC microscope to realize QPI, and suc-

essfully obtained the quantitative phase images of human cheek cells.
he phase reconstruction results were in good agreement with those
btained by the polarization phase-shifting technique ( Fig. 99 ). Waller
t al. proposed single-shot TIE optical configurations based on volume
olography [190] and chromatic aberration [191] , enabling acquisition
f intensity images at different defocus distances from a single exposure.
ased on these setups, they presented the QPI results of deformable mi-
romirror arrays and HeLa cells. In 2011, Kou et al. [192] put forward
he WOTF deconvolution method for QPI under partially coherent il-
uminations and quantitatively compared it with the conventional TIE.
he QPI results of human Ascaris are very similar to those obtained by
IE, which is understandable because the low-frequency component of
he WOTF under weak defocusing is a Laplacian in the frequency do-
ain (TIE’s PTF). In 2012, Gorthi and Schonbrun [194] first applied
IE to flow cytometry and realized the automatic collection of through-
ocus intensity images by tilting the microfluidic channel vertically. The
igh-throughput sorting of red blood cells was demonstrated based on
orphological information extracted from their quantitative phase im-

ges. In the same year, Phillips et al. [404] measured the RI, dry mass,
olume, and density of red blood cells based on TIE with use of a tradi-
ional bright-field microscope (though they claimed that they obtained
D RI distribution of the cell, their multi-plane TIE tomography method
s not rigorous in principle). Subsequently, Phillips et al. [403] further
pplied their method for circulating tumor cell (CTC) screening in an ovar-
an cancer patient: the TIE phase retrieval was employed to measure
ellular dry mass, and the reconstructed DIC images were used to mea-
ure cellular volume. They found that high-definition CTCs were more
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Fig. 101. Quantitative phase imaging of an in- 

dividual MCF-7 cell based on TL-TIE [217] . (a- 

c) Intensity images with defocus distance -2.5, 

0, 2.5 𝜇m; (d) phase map recovered by TIE; (e) 

digitally simulated DIC image from (d); (f) 3D 

pseudo-color rendering of the cell thickness. 

Fig. 102. Dynamic TIE phase imaging of macrophage phagocytosis [216] . (a) 

Color-coded phase profiles at different stages of phagocytosis; (b) phase maps 

of the nuclear region of the macrophage-the black square in (a)-during the in- 

ternalization stage of phagocytosis; (c) phase/thickness variation with time of 

three points, indicated by the dots in (b): (A) red, (B) green, and (C) blue, and 

the average of the whole square region (bottom, black curve). Scale bar: 10 𝜇m . 
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Fig. 103. Delineation of HeLa cells [275] . (a) In-focus bright-field image; (b) 

phase image obtained by using TIE reconstruction; and (c) segmentation result 

with watershed algorithm. 

Fig. 104. Multi-modal imaging of live HeLa cells [406] . (a) Quantitative phase 

map of the whole FOV. (b-c) experimental results for bright-field intensity, 

phase contrast, DIC, and quantitative phase images of mitotic cell and interphase 

cells. 
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assive than leukocytes, which provides key insights into the fluid dy-
amics of cancer, and may provide the rationale for strategies to isolate,
onitor or target CTCs based on their physical properties. 

In 2013, Zuo et al. [217] demonstrated the dynamic QPI results of
 live MCF-7 breast cancer cell based on the TL-TIE system. The high-
esolution quantitative phase images revealed the subcellular dynam-
cs, i.e. , the nucleus inside the cell, ruffles on the membrane, and the
amellipodia in the cell periphery ( Fig. 101 ). In the same year, Zuo
t al. [216] investigated of chemical-induced apoptosis and the dy-
amic phagocytosis process of RAW264.7 macrophages ( Fig. 102 ) based
n SQPM. The high-resolution dynamic 3D QPI videos of macrophage
hagocytosis were presented, suggesting TIE is a simple and promising
pproach for label-free imaging and quantitative study of cell dynamics
t subcellular resolution. In 2016, Bostan et al. [275] used TIE to re-
over the quantitative phase images of HeLa cells. The measured phases
ere consistent with those obtained by digital holographic microscopy.
hey also pointed out that quantitative phase images are extremely con-
enient for subsequent cell segmentation and counting ( Fig. 103 ). In
016, Li et al. [215] realized multi-modal microscopic imaging based
n TIE based on an off-the-shelf bright-field microscope, realizing digi-
al ZPC, DIC, QPI, and light-field imaging of HeLa cells under division
 Fig. 104 ). It should be mentioned that a similar multi-modal TIE imag-
ng approach was previously presented by Paganin et al. [405] in lensless
-ray diffraction imaging. 

In 2017, Zuo et al. [209] employed the annular illumination based
IE for long-term time-lapse imaging of HeLa cell dividing in culture.
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Fig. 105. Time-lapse TIE phase imaging of HeLa cell division over a long pe- 

riod (60 h) [209] . (a) Representative quantitative phase images at different time 

points; (b) the change of cell number and confluence ratio over the culture pas- 

sage period; (c) and (d) show the magnified views corresponding to two regions 

of interest (Area 2 and Area 3); (e) 10 selected time-lapse phase images and the 

corresponding 3D renderings showing the morphological features of a dividing 

cell (Area 1) at different stages of mitosis. 

Fig. 106. Dual-mode confocal fluorescence and TIE phase imaging in a confocal 

laser scanning microscope [407] . (a) Schematic depiction of the optical setup; 

(b) exemplary fluorescence; and (c) optical path difference images measured 

with this setup. Scale bar, 20 𝜇m ; color bar labels, nm . 
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a  
he high-resolution quantitative phase images allow for assessing the
rogression of confluence ratio over 60 hours ( Fig. 105 ). Zheng et al.

408,409] introduced TIE into Coherent Anti-Stokes Raman Scattering
CARS) microscopy. The Several CARS images at different defocused
lanes perpendicular to the propagation direction were recorded to re-
onstruct a quantitative phase map based on TIE, which allows for non-
esonant background suppression in CARS microscopy. In 2018, Li et al.

406] realized dynamic TIE phase imaging of live human osteoblasts
ased on a modified SQPM system. Liao et al. [410] combined the TIE
hase retrieval technique with a self-developed dual-LED-based auto-
ocusing microscope, achieving the whole slide QPI of an unstained
ouse kidney section. Zheng et al. [407] proposed the dual-mode phase

nd fluorescence imaging in a confocal laser scanning microscope by
ombining the confocal microscopy with TIE phase imaging ( Fig. 106 ).
he limited depth of field was extended about sixfold by axial scan-
ing with a tunable acoustic gradient index of refraction lens, making
IE compatible with confocal microscopy. The dual-mode images with
ixel-to-pixel correspondence enable the standalone determination of
he RI of live cells. 

In 2019, Li et al. [411] quantitatively characterized the cell morphol-
gy and cytoskeletal dynamics of living osteoblastic cells based on TIE.
he changes in mass transport are visualized based on phase correlation

maging [412] . Bian et al. [413] proposed a miniaturized portable micro-
cope to assess the inhomogeneous optical properties of tissues based on
he quantitative phase maps obtained by TIE. Rajput et al. [414] demon-
trated that the quantitative phase recovered by TIE could be used for
onscanning 3D fluorescence imaging. Though the propagation of inco-
erent fields does not obey the Fresnel diffraction law, and the phase
f an incoherent field is not well-defined, their experimental results on
eurite and cells did show certain feasibility. In 2020, Mandula et al.

415] combined TIE with multi-color fluorescence for long-term dual-
ode imaging of dividing HeLa cells based on a standard bright-field
icroscope platform. The changes of the focus are achieved with specif-

cally introduced chromatic aberration in the imaging system, allow-
ng motion-free image acquisition. Wittkopp et al. [416] compared the
PI results of resolution target and check cells obtained by DHM and
IE based on a custom-built microscope system, revealing quantitative
greement between the two methods in both static and live samples. 

.4.2. Phase tomography for bio-applications 

The key difference between phase tomography and QPI is the ability
o obtain the “true 3D ” RI profile of a biological sample. In 2015, Zuo
t al. [212] demonstrated the lensless quantitative phase microscopy and
iffraction tomographic imaging of fertilized eggs of Parascaris equo-

um based a lensless compact on-chip platform with a programmable
olor LED array ( Fig. 108 ). By illuminating the sample with a multi-
avelength LED, the quantitative phase of the specimen can be retrieved
y TIE. With the quantitative phase retrieved, the diffracted object field
an be digitally refocused through back propagation without using any
enses. Furthermore, by illuminating the sample sequentially with dif-
erent LEDs across the full array, the complex fields of the same object
rom different illumination angles can be obtained. Finally, the 3D RI
istribution of the sample is reconstructed based on the ODT model.
he miniaturized system offers high quality, depth-resolved images with
igh resolution (lateral resolution 3.72 𝜇m , axial resolution 5 𝜇m ) and
cross a wide FOV (24 mm 

2 ). In 2017, Soto et al. [381] reconstructed
he 3D RI distribution of human RBCs based on TIDT [ Fig. 107 (a)-(c)].
his technique was subsequently applied to 3D quantitative RI recon-
truction of dynamic biological samples by Rodrigo et al. [417] . They
emonstrated 3D RI visualization of living bacteria both freely swim-
ing and optically manipulated by using freestyle laser traps allowing

or their trapping and transport along 3D trajectories. In 2017, Li et al.

214] demonstrated quantitative RI imaging based on TIDT under mul-
iple illumination apertures. Experimental results verified that the use of
ultiple illumination apertures provides a broader frequency coverage

nd higher frequency responses. Fig. 107 (d)-(e) show 3D RI rendering
esults of a unstained Pandorina morum algae and a HeLa cell recon-
tructed by Li et al. [214] . In 2019, Ma et al. [418] presented a simpli-
ed TIDT approach based on spatially-incoherent annular illumination

or weakly absorbing samples, e.g. , tissues and diatoms. A 3D gradi-
nt operation was adopted to remove the background, leaving only the
D skeleton structure of the weakly absorbing sample visible in the im-
ges. Li et al. [419] proposed a high-speed in vitro intensity diffraction
omographic technique utilizing annular illumination to rapidly char-
cterize large-volume 3D RI distributions with native bacteria, and live
aenorhabditis elegans specimens. Soto et al. [420] reported the use of
IDT for quantitative analysis of unstained DH82 cell line infected with
eishmania infantum . The experimental results demonstrated that the in-
ected DH82 cells exhibit a higher RI than healthy samples. 

.4.3. Optical metrology 

As a quantitative phase measurement technique in nature, TIE was
lso widely used in the field of optical metrology. As early as in 1998,



C. Zuo, J. Li and J. Sun et al. Optics and Lasers in Engineering 135 (2020) 106187 

Fig. 107. 3D Tomographic reconstruction of several biological samples. (a)-(c) bright-field image, RI slices, and 3D rendering of RI distribution of human blood cell 

sample [381] ; (d)-(e) 3D rendering of RI tomograms of a Pandorina morum algae and a HeLa cell [214] . 

Fig. 108. 3D tomographic imaging of a slice of the uterus of Parascaris equorum 

[212] . (a) RI; (b) absorption sections at different depth. The second row shows 

the corresponding 𝑥 − 𝑧 views of 3D stacks (scale ratio of z to x axis is 1:2). The 

arrows point out the dust particle located at a higher layer (at z = 168.4 𝜇m ); (c) 

3D rendering of the RI; (d) 3D rendering of the absorption distribution. Scale 

bar: 400 𝜇m . 
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Fig. 109. Quantitative phase tomography of a single-mode fiber [176] . (a) 2D 

slice through the 3D reconstruction perpendicular to the rotation axis; (b) line 

profile through the middle of the reconstructed 3D distribution (dashed line) 

compared to the known RI distribution (solid line). 
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arty et al. [175] successfully applied TIE to characterize the phase pro-
les of optical fibers immersed in RI-matching medium in a conventional
ptical microscope platform. In 2000, Barty et al. [176] extended this
ethod to phase tomography. They measured the phase distribution of
he sample at various angles by rotating the object, and 3D RI distri-
ution of various optical fibers (single-mode, multi-mode) can be syn-
hesized according to the inverse Radon transform ( Fig. 109 ). In 2002,
ased on the axisymmetric assumption of fiber, Roberts et al. [184] ob-
ained the radial RI distribution of the fiber only by preforming inverse
bel transform on the phase distribution measured by TIE. The exper-

mental results are consistent with the exponential profile obtained by
he commercial profiler, and the relative error is lower than 0.0005. Due
o the simplicity and effectiveness, this method has also attracted exten-
ive attention and been further improved [185,187,421] . In 2007, Dor-
er and Zuegel [186] used TIE to quantitatively characterize the topo-
ogical variations induced by the magnetorheological finishing process
n laser rods. They successfully applied the technique to the Omega EP
aser device (OMEGA EP Laser Facility). In 2010, Almoro et al. [69] used
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Fig. 110. Characterization of a plano-convex quartz microlens array (pitch 

250 𝜇m ) [202] . (a) In-focus intensity; (b) defocused intensity distribution ( Δ𝑧 = 
−550 𝜇𝑚 ); (c) axial intensity derivative, the inset shows the enlarged boxed re- 

gion; (d) retrieved phase; (e) Rendered surface plot; (f) confocal microscopic 

result; (g) 3D topography by confocal microscopy; (f) Comparison of the line 

profiles of single lens. 
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Fig. 111. Lensless TIE phase imaging system with multi-wavelength LED illu- 

minations [212] . (a) Schematics explaining the principle of lensless imaging; (b) 

photograph of the system. 
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peckle field illumination to enhance the phase contrast of the defocused
ntensity images for smooth objects. They demonstrated that this tech-
ique could effectively improve the phase measurement accuracy for
ens characterization. In the same year, Shomali et al. [422] proposed the
dea of applying TIE to aspheric optics testing. The traditional method is
ased on “null test ”, e.g. , by using a wavefront-matching diffractive op-
ical element (DOE) or tilted wavefront interferometry, resulting in ex-
remely complex and expensive optical configurations. TIE only needs
o capture several intensity images of the sample at different defocus
istances to recover the absolute phase of the complex surface directly.
t effectively bypasses the phase aliasing problem arising from the over-
ense fringes around large wavefront curvature in traditional interfer-
metry. 

In 2014, Zuo et al. [202] also extended TIE to the characterization
f micro-optical components. With use of the DCT-based TIE solver, dif-
erent types of micro-optical components, e.g. , microlens arrays, cylin-
rical microlenses, Fresnel lenses were accurately characterized with-
ut any boundary artifacts which is common for FFT-based solver (the
eriodic boundary condition is not satisfied). Fig. 110 shows the mea-
urement results for a plano-convex quartz microlens array with a pitch
f 250 𝜇m . It can be seen that the curvature radius recovered by the TIE
ethod is 346.7 𝜇m , and the result obtained by confocal microscopy is
50.4 𝜇m , both these two results are consistent with the standard ref-
rence value (350 𝜇m ) provided by the manufacturer. In 2015, Jenkins
t al. [380] combined the object rotation and axial scanning to real-
ze 3D tomographic reconstruction of the RI distributions of different
ypes of optical fibers, including single-mode, polarization-maintaining,
nd photonic-crystal fibers as well as an azimuthally varying CO2-laser-
nduced long-period fiber grating period as test phase objects. In 2017,
an et al. [423] reconstructed the complex amplitude distribution of the
aser beam based on TIE, and then used the angular spectrum propa-
ation method to obtain the beam intensity distribution of the optical
eld in the arbitrary cross-section along the propagation direction, and
nally calculated the M 

2 quality factor of the beam. Experimental re-
ults of He-Ne and high-power fiber laser sources indicated that this
ethod could obtain a more accurate M 

2 quality factor, and the mea-
ured values coincide with the results obtained by the beam propagation
nalyzer. In 2019, Bunsen and Tateyama [424] used TIE to detect the
hase distribution of the signal beam of holographic data storage (HDS),
ontributing to miniaturization of the optical system and improvement
f the vibration tolerance of HDS. 

.4.4. Lensless imaging 

On-chip lensless holographic microscopy is a new computational
maging technology in which the sample is placed directly on the the
urface of the image sensor, and the resultant diffraction pattern un-
er quasi-coherent illumination is recorded. The image is reconstructed
y numerical back propagation once the phase of the diffraction field
an be retrieved. Lensfree holographic microscopy was originally pro-
osed in 2009 by the Ozcan group of UCLA [425] . Compared with con-
entional lens-based microscopic systems, the lensless imaging configu-
ation enjoys two distinct advantages: first, the imaging magnification
s close to 1 due to the small distance between the object and the de-
ector (generally less than 1 mm ), i.e. , the imaging FOV is completely
etermined by the size of the photosensitive area of the image sensor;
econd, the effective NA of the imaging system is close to 1 due to the
mall sample-to-sensor distance, i.e. , almost forward scattering light can
e acquired by the image sensor. Initially, the lensless on-chip micro-
copic technique is mostly based on iterative phase retrieval algorithms,
hich recover the phase distribution based on the assumption of sparse

amples [70,425] or multi-distance intensity measurements [426,427] ,
nd then the intensity and phase distribution at the object plane can
e reconstructed by the angular spectrum back propagation algorithm.
n 2015, Zuo et al. [212] developed a miniaturized lensless TIE tomo-
raphic microscope based on a programable LED array ( Fig. 111 ). With
he interchangeability of illumination wavelength and propagation dis-
ance in the Fresnel domain, the quantitative phase of the specimen
an be retrieved through TIE with multi-wavelegth LED illuminations.
y illuminating the sample sequentially with different LEDs across the
ull array, the complex fields of same object from different illumination
ngles can be mapped in 3D Fourier space, and the tomogram of the
ample can be reconstructed. This was the first demonstration of TIE for
ensless phase microscopy and diffraction tomography. 

After TIE techniques gained considerable attention in microscopic
maging, it was also gradually introduced into the field of lensless mi-
roscopy. Since only 2-3 intensity images are sufficient to recover the
hase distribution, TIE can be used to create an initial estimate of the
hase distribution quickly and conveniently [212,429,433] . The initial
stimate is then optimized by iterative phase retrieval to improve its spa-
ial resolution and compensate for the phase discrepancy due to parax-
al approximation and Teague’s assumption. On the other hand, lens-
ess holographic microscopy shifts the problem of the limited SBP of
onventional microscopic systems to the limited sampling spacing of
mage sensors. In principle, the key factor limiting the imaging reso-
ution of lensless microscopy is the high-frequency signal aliasing in-
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Fig. 112. Schematic diagrams of the pixel super-resolution based lensfree on-chip imaging setup. (a) Sub-pixel shifting of illumination source [428] ; (b) 2D horizontal 

sub-pixel sensor motion [429] ; (c) fiber-optic array based source scanning [430] ; (d) illumination wavelength scanning [431] ; (e) axial scanning with multiple sample- 

to-sensor distances [426] ; (f) active source micro-scanning using parallel plates [432] . 
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uced by undersampling, rather than the loss in high-frequency de-
ails induced by the limited aperture [434] . Therefore, a lot of research
orks in this field focused on “pixel super-resolution ”, which reduces

he effective pixel size through computational approaches so as to re-
lize “sub-pixel imaging ”. Representative methods include: sub-pixel
hifting of illumination sources [428] [ Fig. 112 (a)], sub-pixel lateral
otion of image sensor [429] [ Fig. 112 (b)], fiber-optic array-based

ource scanning [430] [ Fig. 112 (c)], illumination wavelength scanning
431] [ Fig. 112 (d)], axial scanning with multiple sample-to-sensor dis-
ances [426] [ Fig. 112 (e)], etc. . In 2018, Zhang et al. [432] proposed
n active sub-pixel micro-scanning scheme based on two parallel plates
 Fig. 112 (f)], which realized high-precision controllable sub-pixel scan-
ing with low-cost mechanical components. By combining TIE and GS
hase retrieval methods, the Nyquist-Shannon sampling resolution limit
mposed by the pixel size of the imaging sensor was effectively sur-
assed, and the high-resolution wide-FOV dynamic QPI can be achieved
effective imaging NA ≈ 0.5). 

.4.5. Light-field imaging 

In Section 7 , we discussed that conditional frequency moment (cen-
roid) of the light field could be recovered by TIE. The moment repre-
ents the average direction of the light rays passing through each spatial
oint. In 2013, Orth and Crozier [364] reported a computational light-
eld imaging method termed LMI to extract the first angular moment of

ight field. They derived a continuity equation to reconstruct the light
eld with only a pair of intensity images exhibiting a slight defocusing.
he “moment ” of “light field moment imaging ” means that this method
an only recover the first angular moment of the light field rather than
he complete 4D light field information. In order to “fill in ” the miss-
ng data, Orth and Crozier [364] assumed that the angular distribution
f the light field is Gaussian. Although this assumption lacks physical
vidence, their experimental results indeed exhibit good visual effects.
n 2014, Zuo et al. [207] commented that LMI could be associated with
IE under the geometric-optics limit, so all numerical solutions and ax-

al intensity derivative estimation algorithms in TIE can be directly ap-
lied to LMI. For example, Liu et al. [365] employed the multi-plane
igh-order finite-difference method to improve the accuracy of axial in-
ensity derivative estimation, thus reduced the noise and artifacts in the
econstructed light field. In 2015, Zuo et al. [208] derived the GTIE for
artially coherent fields in phase space based on the transport equation
f WDF. Under the geometric-optics limit, WDF is equivalent to light
eld [335] , and TIE can be associated with the light-field imaging. Zuo
t al. [208] deduced that under certain conditions ( e.g. , slow-varying
bjects under spatially stationary illuminations), the 4D light field is
ighly redundant, and the complete 4D light field can be fully recovered
y TIE with the pre-knowledge of the source intensity distribution. In
018, Wang et al. [435] presented an efficient data acquisition approach
or LMI with precise focal plane sweeping controlled by a SLM rather
han mechanical movement. Chen et al. [436] presented an overview
f 3D imaging from depth measurements, and provided a summary of
he connections between the ray-based and wavefront-based 3D imaging
echniques. 
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Table 8 

Comparison of digital holography and transport of intensity equation 

Terms Digital holography Transport of intensity equation 

Data formulation Interferometric Non-interferometric 

Beam coherence requirement High Low, can be partially coherent 

Raw data type Hologram (interferogram) Through-focus intensity images (diffraction patterns) 

Numerical processing method Phase demodulation and numerical propagation Solving partially differential equation 

Main noise type Spatial coherent noise (speckle) Low-frequency noise (cloud-like artifacts) 

Resolution limit CCD size and pixel resolution (lensless geometry), 

coherent diffraction limit (lens-based geometry) 

Diffraction limit of partially coherent imaging 

(illumination aperture, numerical aperture) 

Dynamic measurement Off-axis geometry Need specific configurations 

Phase recovered range Wrapped to [ − 𝜋, 𝜋) (need phase unwrapping) Continuous (no unwrapping required) 
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.4.6. Other applications 

In addition to the above-mentioned imaging and measurement ap-
lications, TIE was recently extended to become a spatial phase unwrap-
ing algorithm. Since TIE can directly obtain a continuous phase with-
ut phase wrapping, it seems that it can effectively bypass the phase
nwrapping step, as is common for interferometric phase measurement
ethods. Based on this characteristic, in 2013, Zuo et al. [277] intro-
uced TIE into digital holography. Three intensity images with slightly
efocusing were numerically calculated based on Fresnel diffraction
rom the complex amplitude reconstructed by digital holography. By
olving TIE with artifactually created intensity images, the continuous
hase can be recovered. Zuo et al. [277] also pointed out that this
ethod can also be used as a spatial phase unwrapping algorithm by

ssuming a uniform intensity distribution. It should be noted that no
hase unwrapping is a major advantage of the TIE phase retrieval, but
t assumes that the phase is a single-valued continuous function, which
oes not fundamentally address the 2 𝜋 ambiguity problem in traditional
hase measurement techniques. In 2016, Pandey et al. [437] proposed
 similar phase unwrapping method based on TIE and demonstrated
hat this method is superior to the traditional path-dependent Goldstein
ethod. Subsequently, Zuo et al. [438] pointed out that TIE under uni-

orm intensity is a Poisson equation, and TIE phase unwrapping is es-
entially equivalent to the standard least-squares phase unwrapping al-
orithm. In 2017, Martinez-Carranza et al. [439] further improved TIE
hase unwrapping algorithm. The idea of the least-squares phase un-
rapping algorithm was used to calculate the Laplacian of the wrapped
hase efficiently, the time-consuming computation associated with the
ave propagation can be avoided, and the phase reconstruction accu-

acy can be effectively improved. In 2018, Zhou et al. [440] experi-
entally demonstrated that the continuous phase demodulated from a
igital hologram by TIE is less noisy than the one obtained by conven-
ional holographic reconstruction. In 2019, Cheng et al. [441] proposed
 dual-wavelength phase unwrapping algorithm based on TIE. Zhao et al.

442] used the iterative DCT TIE solver to correct the phase unwrapping
rror iteratively, which improves the robustness of the TIE phase un-
rapping under noisy conditions. In addition to phase unwrapping, TIE
as also been applied to optical encryption [443–446] , and microscopic
maging in miniaturized mobile phone platforms [447,448] . 

0. Conclusions and future directions 

The development and fulfillment of TIE marks an important step for
hase retrieval and QPI technologies: the transition from interferomet-
ic to non-interferometric, from iterative to deterministic, from phase
ecovery to light-field imaging, and from completely coherent to par-
ially coherent or even incoherent. This tutorial has reviewed the cur-
ent status and latest developments of TIE, including its basic principles,
umerical solutions, axial intensity derivative estimation, partially co-
erent imaging, 3D diffraction tomography, and its representative ap-
lications in optical imaging, metrology, and microscopy. TIE provides
n advanced and invaluable label-free tool for biological imaging and
iomedical research. It does not require strictly spatially and temporally
oherent illuminations, making it fully compatible with any off-the-shelf
right-field microscopes. Thanks to the built-in Köhler illumination op-
ics and aberration-corrected objective lens, high-quality quantitative
hase images with diffraction-limited resolution can be easily obtained
ith no worries about the parasitic interference and speckle noise. It

an be easily combined with fluorescence techniques to gain molecular
pecificity and thus provides a wider window to investigate biological
rocesses. In addition, its single-beam (common-path) configuration is
ighly stable, and therefore this technique is inherently insensitive to
nvironmental vibrations and other disturbances, eliminating the need
or bulky vibration isolation platforms. Furthermore, continuous phase
istributions are directly recovered so that associated difficulties in the
D phase unwrapping can be efficiently bypassed. The above-mentioned
dvantages of TIE along with the rapid developments in related areas
rovide us substantial grounds for believing that TIE now has become a
ompetitive alternative to its conventional interferometric counterparts
nd occupied an important place in the fields of optical imaging and
etrology (a brief comparison between the digital holography and TIE

s given in Table 8 [449] ). 
Though TIE has shown its great potential in the field of optical imag-

ng and microscopy, there are still several important theoretical and
echnical issues deserve to be further studied in the future: 

1) The applicability of TIE in the presence of zero intensity and or phase
vortex. This has long been a controversial issue since the inception
of TIE. In 2001, Allen et al. [167] proposed to address this prob-
lem by iterative phase retrieval, which requires to record an addi-
tional intensity image at a large defocus distance. In 2013, Lubk et al.

[450] pointed out the mistake in Allen et al. ’s derivation and sug-
gested a new “exhaustive testing ” method to rule out the intensity
ambiguities induced by phase vortex. However, in practical experi-
ments, it is very difficult to accurately localize all the singular points
(zero intensities) inside the domain due to the noise and other dis-
turbances. 

2) The “deterministicity ” of the phase (RI) retrieval depends on certain
approximations. Deterministic phase retrieval relies on the lineariza-
tion of the relationship between the intensity and phase information.
However, the establishment of linearization generally depends on
certain approximations. For example, the traditional TIE is based
on paraxial approximation and the weak defocusing approximation.
The CTF or mixed transfer function methods require the sample to
satisfy the weak object approximation or slowly varying object ap-
proximation. 3D diffraction tomography based on TIE is only valid
for weak scattering samples under first-order Born approximation,
etc. . However, in practical applications, these approximations are
generally not easy to be satisfied strictly. 

3) The quantitativeness of phase (RI) recovery remains debatable. Al-
though TIE has proven to be a quantitative phase recovery method,
according to the reported results among the present literature, the
phase measurement accuracy is still not very high, especially when
compared with the interferometric methods. In fact, although TIE
greatly relaxes the stringent requirements on the light source and
image system of interferometry, it imposes stricter requirements for
precise calibrations of axial defocus distance, accurate acquisition of
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boundary conditions, and correct implementation of numerical so-
lutions. These factors become a bottleneck of TIE for high-precision
phase measurement in practical engineering applications. 

In addition to the above three challenging issues, the following re-
earch directions, we would like to highlight the following future re-
earch directions. 

1) Super-resolved QPI based on TIE. At present, the spatial resolu-
tion of the phase reconstructed by TIE is still limited to the diffrac-
tion limit of the imaging system (coherent diffraction limit under
coherent illuminations, and incoherent diffraction limit under the
matched annular illumination [209] ). To the best of our knowledge,
super-resolved (beyond the incoherent diffraction limit) QPI based
on TIE has not been reported so far, which is an important but chal-
lenging direction for future research. 

2) 4D light-field retrieval based on “transport of intensity ”. For
general partially coherent fields, it is difficult to retrieve its com-
plete reconstruction by TIE due to its inherent high dimensional-
ity (4D). But if we can further incorporate some additional infor-
mation, such as combining the low-resolution field camera (Shack-
Hartmann) measurement with the high-resolution through-focus in-
tensity stack, the amount of information should be sufficient for com-
plete 4D light-field retrieval, or equivalently, WDF/AF retrieval at
full image resolution. 

3) Generalized phase retrieval beyond “transport of intensity ”. In
TIE, the phase contrast is produced by defocusing (free-space propa-
gation), thereby converting the invisible phase information into vis-
ible intensity signal. Nevertheless, the way to create the phase con-
trast is not just limited to defocusing. Many aberration functions,
such as astigmatism, spherical aberration, and Zernike phase annu-
lus, can create phase contrast even at the in-focus plane, which may
provide more possibilities for designing completely new determinis-
tic phase retrieval methods beyond the “Transport of intensity ”. 

4) “Deep learning ” enabled TIE phase retrieval . The paraxial ap-
proximation, weak defocusing approximation, boundary artifacts,
phase discrepancy, low-frequency noise, and high-frequency phase
blurring are typical limiting factors of TIE, which would probably
be addressed by the recent deep learning technologies [451–455] .
Different from the traditional TIE, which first “establishes the for-
ward mathematical model ” and then “solves the corresponding in-
verse problem ”, depth learning can directly establish the complex
nonlinear relationship between the input (defocused intensity im-
ages) and the ideal output (quantitative phase distribution) with the
help of a large amount of training data, thus opening new avenues
for circumventing the limitations of the conventional TIE. 

The four research directions mentioned above are mainly at the the-
retical level. Of course, developing TIE microscopic imaging systems
owards more integrated, more miniaturized, more easy-to-use, higher
erformance, and higher reliability is also an important direction for
uture research. 
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. Text correction

The authors regret that the following typos in the original text and
hould be corrected in this corrigendum: 

1. In the last paragraph of Page 4 left column of original article, “A ma-
jor branch of interferometric phase measurement techniques is... ”
should be “A major branch of non-interferometric phase measure-
ment techniques is... ”.

2. In the upper line of Eq. (75) of in the original article “the parax-
ial coherent transfer function of Eq. (67) can be rewritten as ”, the
equation number here should be Eq. (71) instead of Eq. (67). 

3. In the upper paragraph of Eq. (160) of in the original article, the
sentence “When 𝜎𝑠 ≫ 𝜎𝑔 , the source is spatially coherent, and when
𝜎𝑠 ≪ 𝜎𝑔 , the source is almost spatially incoherent ” should be “When
𝜎𝑠 ≫ 𝜎𝑔 , the source is spatially incoherent, and when 𝜎𝑠 ≪ 𝜎𝑔 , the
source is almost spatially coherent ”.

4. The title of subsection 6.3.1 should be “Ideal imaging model under
partially coherent illumination ”.

5. In the last paragraph of Page 70 right column of original article, “Eq.
(328) is quite similar to... ” should be “Eq. (329) is quite similar to... ”.

6. In the next paragraph of Eq. (181) “(see Subsection 6.2.5 for de-
tails) ”, the subsection number should be Subsection 6.2.6 instead of
Subsection 6.2.5.

7. In the upper line of Eq. (393) “the absorption is assumed to be pro-
portional to RI 𝑃 ( 𝐮 ) ≈ 𝜀 �̂� ( 𝐮 ) ” should be �̂� ( 𝐮 ) ≈ 𝜀 ̂𝑃 ( 𝐮 ) .

. Equation correction

The authors regret the typos in the following equations, and the cor-
ect formulations are listed in this corrigendum: 

 ( 𝐱 ) = 𝑈 ( 𝐱 ) ⊗ ℎ ( 𝐱 ) (59)
𝑖 0 

☆ The authors regret to request the corrigendum to the full manuscript to provide m

uthors would like to apologise for any inconvenience caused.
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Fig. 26. Mathematical models, establishment conditions, and the intrinsic relationship of different phase retrieval algorithms

Fig. 63. Principle of the Shack-Hartmann sensor and light-field camera. (a) For coherent field, the Shack-Hartmann sensor forms a focus spot array sensor signal; (b)

for a partially coherent field, the Shack-Hartmann sensor forms an extended source array sensor signal; (c) for incoherent imaging, the light-field camera produces

a 2D sub-aperture image array.
2
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Fig. 102. Dynamic TIE phase imaging of macrophage phagocytosis. (a) Color-coded phase profiles at different stages of phagocytosis; (b) phase maps of the nuclear 

region of the macrophagethe black square in (a)during the internalization stage of phagocytosis; (c) phase/thickness variation with time of three points, indicated 

by the dots in (b): (A) red, (B) green, and (C) blue, and the average of the whole square region (bottom, black curve). Scale bar: 10 𝜇𝑚 . 
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. Figure correction 

The authors regret that the following figures were processed incor-
ectly and the revised figures are presented in this corrigendum: 
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