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Appendix A. The derivation of the complete transport of intensity equa-
tion (TIE) for optical vortex beams

The convention form of TIE can be written as the following equation of continuity
[1]

−k∂I (r, z)

∂z
= ∇ · [I (r, z)∇ϕ (r, z)] . (S.1)

where k is the wave number, r = (x, y)T is the 2D position vector, ∇ = (∂x, ∂y)
T is

the 2D gradient. To simplify the formula, we will omit (r, z) in the following content.
The phase (including vortices) change of the circuit encompassing the nodal point
in R2 can be quantized as [2] ∮

L

∇ϕdl = 2mπ 6= 0, (S.2)

where the integer m is the topological charge of the singularity. For m 6= 0, ∇ϕ is
not a gradient field. So one can separate it into two parts by using the Helmholtz
decomposition. That is

∇ϕ = ∇φs +∇× β, (S.3)

where φs represents the gradient phase (scalar phase). Here the term ∇ × β =
(−βy, βx) is divergence-free. Then Eq. S.3 is put into Eq. S.1 and we can obtain

−k∂I
∂z

= ∇ · (I∇φs + I∇× β)

= ∇ · (I∇φs) +∇I · ∇ × β.
(S.4)

From the Green’s formula, for any closed contour L around the phase singular
point we have

2mπ =

∮
L

∇ϕdl =

∮
L

∇φsdl +

∮
L

∇× βdl

= 0 +

∮
L

−βydx+ βxdy = −
∫∫

D

∆βdxdy,

(S.5)

where D ⊆ R2 with ∂D = L. This means that −∆β = 2mπ ·δ0, where δ0 is the Dirac
measure of 0. Then it is well-known that β = −m ln r with r = |r| =

√
x2 + y2.

Through some direct calculation, the TIE becomes

−k∂I
∂z

= ∇ · (I∇φs)−m∇I · ∇ × ln r

= ∇ · (I∇φs)−m (Ix, Iy) ·
(
− y

r2
,
x

r2

)
= ∇ · (I∇φs)−

m

r2

∂I

∂θ
,

(S.6)
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where m is the topological charge of the singularity and θ is the polar angle measured
about the dislocation. r can also be considered as the distance between the singularity
and r in physics.

According to the reference [3], the multivalued phase associated with multiple
phase singularities (k in total) can be added directly:

−k∂I
∂z

= ∇ · (I∇φs)−
k∑

i=1

mi

ri2
∂I

∂θi
, (S.7)

where mi is the topological charge of the ith vortex (singularity) and θi is the polar
angle measured about the ith vortex (dislocation).

Appendix B. The validatory simulation for the derived TIE

In the previous studies, when the wave field is coherent or in a stationary state,
its spatial part may be written as U (r) =

√
I (r) exp [iϕ (r) /}], where I (r) is the

probability density, ϕ (r) is the phase, and } is the reduced Planck constant. The
probability current is time-invariant and assumes the form j (r) = I (r)∇ϕ (r) /m,
where m is the mass of the object [4]. Then the normalized probability current in
terms of the ensemble-average current describes a well-defined vector field, when it
is over regions of non-zero time-averaged probability density. Therefore, it can be di-
vided into a potential and a rotational component through Helmholtz decomposition
theorem [5]. The probability current can be rewritten as the following form [4]:

〈j (r)〉 =
1

m
I (r) [∇φs (r) +∇× β (r)] . (S.8)

This equation defines the scalar phase φs (r), which is single-valued, and the vec-
tor phase β (r). This decomposition is unique up to a vectorial constant that may
float between the two components and this vectorial constant is placed in the gra-
dient term. The phase so defined obeys the Poisson-type differential equations [6]:
∇2φs (r) = ∇ · 〈j (r)〉, ∇2β (r) = −∇× 〈j (r)〉.

Under the paraxial approximation, optical fields have been termed as [6, 7]

p

}
∂I (r)

∂z
= k

∂I (r)

∂z
= −∇ · [I (r)∇ϕ (r)]

= −∇ · [I (r)∇φs (r)]−∇I (r) · ∇ × β (r) .
(S.9)

Then considering the case of a field containing a discontinuous phase distribution,
it has been established that phase dislocations may, in general, be considered as a
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sum of screw and edge dislocations [8], and the multi-valued phase associated with
multiple screw dislocations may be added directly [3]. It follows that Eq. S.9 may
be written in the form [7, 9] (the TIE for optical vortex beams in the previous form):

−k∂I (r)

∂z
= ∇ · [I (r)∇φs (r)] +

∑
i

(
mi

ri

∂

∂θi

)
I (r) , (S.10)

where mi is the topological charge of the ith dislocation, ri is the distance between the
ith dislocation and r, and θi is the polar angle measured about the ith dislocation.
It follows, therefore, that the presence of screw dislocations has a characteristic
signature in the propagation of the probability distribution. It should be noted that
this expression derived by Nugent and Pangain [6, 7, 9] is similar with the new one,
and the previous form has been used in several instances in the literature by Allen et
al.[10, 11, 12]. It can be observed that there are two different parts of the equation
from the previous formula, which are the sign and the denominator. The different
sign may result from the definition of the rotation direction of the vortex beam.
The different denominator is caused by the missing of a distance index ri in the
previous formula, which result in failing to correctly predict the intensity transport
corresponding to the vortex component, and thus, the previous formula cannot be
used for the quantitative phase recovery of vortex beams.

To verify the validity of the newly derived TIE (Eq. S.6), first of all, we guar-
antee that this formula must take effect in the divergence-free cases. In the first
simulation, the uniform intensity distribution which is azimuthal symmetry around
the phase singularity is shown in Fig. S.1(a1), the counterpart of which is the non-
azimuthally symmetric distribution of the intensity as shown in Fig. S.1(b1). The
phase distribution is a shifted astigmatism function defined on a 256 × 256 grid:
ϕ (r) = φs = 10r2

x− 10r2
y − 0.7rx + 2ry + 0.82, which is single-valued and continuous,

as shown in Figs. S.1(a2,b2). It should be noted that since there is no phase singu-
larity in Figs. S.1(a2,b2), the description of “azimuthal symmetry around the phase
singularity” mentioned above refers to the central point of the simulation image.
This simulation indicates that the intensity distribution is azimuthal symmetry of
the center point of the image. From Figs. S.1(a4,b4,a5,b5), we can find that only
one kind of phase (a scalar potential function) will manifest itself, contributing to
the longitudinal intensity variations, which matches with the traditional TIE.

Then we verify that Eq. S.6 can also be applied to the situation that the inten-
sity distribution around singularity is azimuthally symmetric as shown in Figs. S.2
(a1,b1). The intensity angular derivative [∂I/ (r2 · ∂θ)] will approach zero theoreti-
cally. Figures S.2 (a4,b4) show the intensity angular derivative with the topological
charge m = ±1 of the vortices, and we can find that the mean value of the whole
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Figure S.1: The simulation with the scalar phase distribution. (a1-b1) Intensity distribution. (a2-
b2) Phase distribution. (a3-b3) Longitudinal intensity derivative distribution. (a4-b4) The effect
of the scalar phase. (a5-b5) Intensity angular derivative distribution.

distribution almost is zero, although the values of derivatives have minor volatility
around the singularity. This discrepancy can be ignored with the values in the order
of 10−4 due to the low sampling rate near the phase singularity. For similar reasons,
we can also find that the axial derivative value of intensity is also in the order of
10−3, resulting from the numerical calculation errors. Thus, in the range of allow-
able error, the longitudinal and angular derivative distribution of the intensity can
be ignored with the given phase distribution. As a comparison, we also give the
intensity angular derivative distribution of the vortex term in the previous TIE form
(Eq. S.9) as shown in Figs. S.2 (a5,b5), which are also can be ignored within the
allowable error range. This also indicates that the traditional TIE (i.e. the phase is
single-valued and continuous) usually ignores this additional term.

To verify the correctness of Eq. S.6, in this case, it is necessary to ensure that
there is no gradient phase which means that only the divergence-free term (screw
dislocations) is included. There is no perfect method to determine whether such a
phase as shown in Figs. S.2 (a2,b2,c2,d2) contains the gradient phase term, therefore
on the basis of the above simulation, only the intensity distribution is changed to
verify that the phase as shown in Figs. S.2 (a2,b2,c2,d2) only has the screw dislo-
cation term, and the longitudinal and angular intensity derivative distributions are
shown in Figs. S.2 (c3,c4,d3,d4). When the intensity distribution is not azimuthally
symmetric around the phase singularity, we can find that the longitudinal and angu-
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Figure S.2: The simulation with the vortex phase distribution. (a1-d1) Intensity distribution. (a2-
d2) Phase distribution. (a3-d3) Longitudinal intensity derivative distribution. (a4-d4) Intensity
angular derivative distribution. (a5-d5) The previous intensity angular derivative distribution.

lar intensity derivative distribution are essentially equal, which indicates that there
is no effect of the gradient phase on defocusing intensity. Comparing with the results
provided by the intensity angular derivative term (related to the vortex phase) in the
previous TIE (Eq. S.9), as shown in Figs. S.2 (c5,d5), we can find that the numerical
range of the angular intensity derivative term provided by Eq. S.9 is much lower than
the longitudinal intensity derivative distribution obtained by the simulation [Figs.
S.2 (c3,d3)]. From the above analysis that the gradient phase is not included in the
phase distribution [Figs. S.2 (c2,d2)], so theoretically, the distribution of the longi-
tudinal intensity derivative distribution should be determined by vortex phase. So
the previous form (Eq. S.9) may not be completely accurate. In addition to verifying
the correctness of the formula only with the existence of the vortex phase, from Figs.
S.2 (c1-d4), we can find that in order to obtain the information related to the vortex
phase field from the longitudinal intensity derivative distribution, the intensity on
the focal plane must not be azimuthally symmetric around the phase singularity.
Thus, it can be concluded that: In the case of phases hidden by symmetry, the scalar
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phase may be recovered but the vector phases remain completely undetermined. Thus,
to recover the hidden phases, symmetry needs to be broken. More discussion will take
place below.

Finally, in order to verify the validity of the equation under more complicated
situations, we add the scalar phase [the distribution is shown in Figs. S.1 (a2,b2)]
to the standard vortex phase (here the topological charge of the vortices is ±5).
According to Figs. S.3 (a1-a5,b1-b5), we can see that when the intensity distribution
is azimuthally symmetric around the phase singularity, the longitudinal intensity
derivative distribution is almost only affected by the scalar phase, that is, the effect
of the vortex phase on it is not reflected in the value (the angular intensity derivative
distribution approaches a constant 0 within the allowable error range). In this case,
the hidden phases are not recoverable, but, since the scalar phase is continuous, it
will be uniquely recovered. Similar to before, Figs. S.3 (a6,b6) show the angular
intensity derivative distribution provided by Eq. S.9, which can also be regarded
as zero and ignored. Thus, in the case of phases hidden by symmetry, the scalar
phase can be reconstructed, but the vortex phases remain completely undetermined.
Set against that, when the intensity distribution is not circularly symmetric, the
effect of the scalar phase and screw dislocation will be reflected in the axial intensity
derivative, as shown in Figs. S.3 (c1-c5,d1-d5). It can also be found that the value
of the intensity derivative distribution is exactly the sum of these two terms, which
verifies the correctness and quantification of Eq. S.6. For comparison, the angular
intensity derivative distributions provided by Eq. S.9 are shown in Figs. S.3 (c6,d6).
Nevertheless, we can find that the overall distribution of the additional term [Figs.
S.3 (c6,d6)] and the influence term of the gradient phase [Figs. S.3 (c4,d4)] will not
be equal to the longitudinal intensity derivative term [Figs. S.3 (c3,d3)]. Therefore,
Eq. S.9 is inaccurate in the quantitative expression of the influence of the vortex
phase on the axial intensity derivative distribution.

Generally, the physical picture implied by Eq. S.6 is that the effect of the scalar
phase is a lateral translation and the effect of the screw dislocations is a rotation as
we move along z. Furthermore, the presence of the screw dislocations (vortex phase)
has a characteristic signature in the propagation of the intensity distribution at the
focal plane. As a result of the simulations mentioned above, we can conclude that
the topological phase components may be hidden by symmetries in the intensity dis-
tribution at the focal plane. Furthermore, for the ergodic field, the measurement of
the intensities over two or more measurement planes will in principle allows transla-
tion and rotation effects to be identified and decoupled [13]. The introduction of an
aperture to break the azimuthal-symmetry intensity distribution can generate signals
related to the screw dislocation at the boundary, so the topological charge can be
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Appendix C. Boundary conditions

Based on Eq. S.4, if the vector phase ∇× β is such that ∇I and ∇× β are every-
where perpendicular, this component of the phase will be invisible. In other words,
the vector phase components may be hidden by symmetries in the probability density
distribution. In this case, the hidden phases will be not recoverable, but since the
scalar phase is continuous, it will be uniquely recovered. This is also very consistent
with the conclusion of Appendix B: In the case of phases hidden by sym-
metry, the scalar phase may be recovered but the vector phases remain
completely undetermined. Thus, to recover the hidden phases, symmetry
needs to be broken.

Let us consider a particular intensity distribution in the object plane (z = 0): the
intensity I is smooth (but can be non-uniform) in Ω but suddenly vanishes with a
step-like discontinuity at the boundary ∂Ω. Physically, it is equivalent to capturing
intensity images through a hard-edged aperture at the object plane:

I = AΩI0 =

{
I0 r ∈ Ω

0 others
, (S.11)

where I0 is the intensity when there is no aperture, and AΩ is the aperture function
(AΩ = 1 when r ∈ Ω, AΩ = 0 when r /∈ Ω). Since the intensity I is smooth inside
Ω, it is reasonable to assume that its gradient on the boundary ∂Ω is dominated
by the component in the boundary normal direction, which has the impulse value
that equals the negative of the intensity boundary value and points outward from
the domain:

∇I =


−Iδ∂Ωn r ∈ ∂Ω

∇I0 r ∈ Ω

0 others

, (S.12)

where δ∂Ω is the Dirac delta function around the aperture edge ∂Ω and n is an
outward pointing unit vector, normal to ∂Ω. Strictly speaking, the gradient ∇I does
not exist in calculus since I is discontinuous at ∂Ω. So we call ∇I here generalized
gradient. Here we adopted the notation δ∂Ω that was first used by Roddier [14] as
a plausible representation of the physical quantity concentrated on the boundary
curve. The δ∂Ω can be loosely thought of as the gradient magnitude of the aperture
function δ∂Ω = |∇AΩ| or interpreted as the limit of a sequence of smooth functions.
Mathematically, the function δ∂Ω is an extension of the Dirac delta function δr at a
single point r, which can be rigorously defined as a distribution such that for any
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test function f (r) that is smooth and compactly supported∫∫
R2

f (r) δ∂Ωdr =

∮
∂Ω

f (r)ds, (S.13)

Substituting Eqs. S.11 and S.12 into the TIE (Eq. S.6), we can obtain:

−k∂I
∂z

= AΩ

(
I0∇2φs +∇I0 · ∇φs −

m

r2

∂I0

∂θ

)
− I ∂φs

∂n
δ∂Ω +

I

r2
mδ∂Ω (−y, x)n

, (S.14)

The first term on the right-hand side (RHS) of Eq. S.14 is the intensity variation
inside the domain due to the phase slope, curvature and rotation as if the aperture
is not present. For the case of light fields with vortex phase, ∂I0/∂θ is usually zeros,
and this term will be simplified into the form as derived in reference [15]. When
there is no vortex phase [(I/r2) δ∂Ωn = 0], the second term is a delta-function-like
a sharply peaked signal at the aperture boundary, which is usually used for the
boundary-artifact-free scalar phase retrieval [15]. When the non-circular symmetric
hard apertures are introduced [(I/r2) δ∂Ωn 6= 0], for this degenerate case (there are
singularities resulting from the phase vortex within the region), the value of boundary
condition will change according to different topological charges.

Appendix D. Uniqueness of the multi-vortex combination

Due to the addictiveness of the phase vortex, the boundary signals corresponding to
different vortices are linearly independent, and can thus be directly superimposed.
Then when multiple vortices exist and (xi, yi),i = 1, ..., k are centers of the vortices,
the boundary conditions will be changed into

−k∂I
∂z

= AΩ

(
I0∇2φs +∇I0 · ∇φs −

k∑
i=1

mi

ri2
∂I0

∂θi

)

− I ∂φs

∂n
δ∂Ω + Iδ∂Ω

k∑
i=1

mi [− (y − yi) , (x− xi)] · n
ri2

,

(S.15)

where r2
i = (x− xi)2 + (y − yi)2, for i = 1, 2, ..., k. mi is the topological charge

of the ith vortex (singularity) and θi is the polar angle corresponding to the ith
vortex (dislocation). Usually the introduced aperture is assumed to be the square
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Ω = [−1/2, 1/2]× [−1/2, 1/2]. We will show that, for any smooth function g defined
on ∂Ω, the solution (m1,m2, · · ·,mk) of the equation is unique.

k∑
i=1

mi [− (y − yi) , (x− xi)] · n
ri2

= g on ∂Ω . (S.16)

This property is equivalent to the following conclusion. So we only need to prove the
following lemma.

Lemma If (m1,m2, · · ·,mk) is a solution to the system of equations

k∑
i=1

mi [− (y − yi) , (x− xi)] · n
ri2

= 0 on ∂Ω , (S.17)

then mi = 0, i = 1, · · ·, k.
Proof The assumption of this lemma is

0 =
k∑

i=1

mi [− (y − yi) , (x− xi)] · n
ri2

on ∂Ω . (S.18)

Then on the segment Ω = [−1/2, 1/2]× {x = 1/2}, we have

0 =
k∑

i=1

mi [− (y − yi) , (1/2− xi)]
ri2

∀y ∈ [−1/2, 1/2] . (S.19)

By integrating both sides of the above equation with respect to y on the segment
[−1/2, 1/2], we have

0 =
k∑

i=1

mi

∫ y

0

(y − yi)
(y − yi)2 + (1/2− xi)2dy

=
k∑

i=1

mi

2

∫ y

0

d
[
(y − yi)2 + (1/2− xi)2]

(y − yi)2 + (1/2− xi)2

=
k∑

i=1

mi

2

{
ln
[
(y − yi)2 + (1/2− xi)2]− ln

[
yi

2 + (1/2− xi)2]}.
(S.20)

Then,

k∑
i=1

mi ln
[
yi

2 + (1/2− xi)2] =
k∑

i=1

miln
[
(y − yi)2 + (1/2− xi)2]. (S.21)
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So
k

Π
i=1

[
y2
i + (1/2− xi)2]mi

=
k

Π
i=1

[
(y − yi)2 + (1/2− xi)2]mi

. (S.22)

Note that the left-hand side (LHS) is a constant (i.e., independent of y), and the
RHS is a rational function. The above equation cannot be always hold unless mi =
0, i = 1, · · ·, k. This completes the proof. Therefore, the product of the vortex
function on the corresponding boundary and the external normal vector is linearly
independent, and thus the solution to the Neumann boundary problem always exists
and is unique up to an arbitrary additive constant.

Appendix E. Singularity positions determination

Before the iterative reconstruction process, it is necessary to determine the position
of the vortex phase singularity and the topological charge. As illustrated in Fig. S.4,
we generate standard vortex phase at different locations with the topological charge
m=1. Then the captured in-focus image and the all these generated vortex phase will
be composited complex amplitude to propagate to defocus surface as shown in Step1.
Based the defocused images after propagation, the phase correlation (Step3) between
the predicted intensity derivative (Step2) and the actual ones can be calculated, and
combined into one position determination matrix. In Step4, Search the position
determination matrix and the correct position for each vortex is signaled out by a
peak check.
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Figure S.4: The flow chart of the singularities search stage.
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For the situation of the single vortex, as shown in Figs. S.5(a,e), to determine
the position of the singularity, the phase correlation which estimates the relative
translative offset between two similar images in the frequency domain is applied [16].
Specifically, ignoring edge effects, the discrete 2D Fourier transform is applied to
both images, and the cross-power spectrum can be written as:

R =
F (ga) · F∗ (gb)

|F (ga) · F∗ (gb)|
, (S.23)

where ga is the intensity derivative distribution obtained by the captured images,
and gb is the estimated intensity derivative distribution that is generated by the
captured in-focus image but with the vortex phase of the topological charge m = 1
and different-position singularity. In such circumstances, the phase correlation ma-
trix F−1 (R) is a Dirac delta function theoretically. The phase correlation matrixes
between the actual axial intensity derivative distribution and the predicted ones ob-
tained at four different positions are respectively shown in Figs. S.5(b1-b4). To
reduce the amount of calculation, we can only calculate all possible singularity lo-
cations in an optical field which are identified by the amplitude of the field ap-
proaching/being zero. However, considering that the peaks in each phase correlation
matrix are not obvious due to a concourse of circumstances, the peak of each phase
correlation matrix is then combined into a position discrimination matrix. The peak
position of the position discrimination matrix will prove that this location is the
singularity position, as shown in Figs. S.5(d,h). In order to distinguish the position
discrimination matrix peak intuitively, we have decentralized and normalized the
matrix.

In addition, considering that there may be multiple phase singularities, this phase
correlation method can also be used to determine the location of these singularities,
as shown in Fig. S.6. Figures S.6(a,e) give the theoretical phase distribution with
the two singularities. Figures S.6(b,f) show the corresponding position discrimina-
tion matrix, and the corresponding enlargements are shown in Figs. S.6(c,g). The
3D visualization of these matrixes shown in Figs. S.6(d,h) intuitively displays the
singularities position through the peak points. Here the distribution has been sub-
tracted from the mean value and normalized. After determining the location of the
singularities, according to Appendix D, the combination of the topological charges
is unique, which can be used to compare the axial intensity derivatives generated by
different combinations with the actual ones, so as to determine the final topological
charges.
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Appendix F. Topological charges determination

After determining the location of the singularity, the search process of the topolog-
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ical charge will be applied. The correct topological charge for each vortex is signaled
out by a consistency check between the predicted longitudinal intensity derivative
distribution (with different possible topological charge values/combinations) and the
experimentally measured intensity derivative (in our example m ∈ [−5, 5]). For the
single-singularity vortex, the normalized root mean square error (NRMSE) between
the predicted intensity derivation and real ones is shown in Fig. S.7, the minimum
point of the curve can be used to infer the topological charge value.
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Figure S.7: The search process of the topological charge value.

Appendix G. Supplementary simulations

According to the analyses of the above-mentioned simulations, the effect of the screw
dislocations (vortex phase field) can be reflected in the longitudinal intensity deriva-
tive distribution, and we will need to destroy the circular symmetry of the intensity
at the focal plane as much as possible. In many cases, the intensity distribution asso-
ciated with the vortex field is circularly symmetric around the phase singularity. In
addition, the accuracy and validity of state-of-the-art TIE solvers need to depend on
the restrictive pre-knowledge or assumptions, including appropriate boundary condi-
tions, a well-defined closed region, and quasi-uniform in-focus intensity distribution,
which, however, cannot be strictly satisfied simultaneously under practical experi-
mental conditions [17]. Thus, we introduce a hard aperture that can not only break
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the circular symmetry, but also provide the necessary boundary conditions for phase
retrieval based on TIE.
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In order to verify the applicability of the proposed method under a wider range of
conditions, the gradient phase is added to the pure vortex phase, as shown in Fig. S.8.
Figures S.8(a,f) show the intensity distributions on the object plane with the aper-
ture, which respectively corresponds to the simulated vortex phase distributions with
small and large scalar phase, as shown in Figs. S.8(b,g). Figures S.8(b1,b2,g1,g2)
show the standard vortex phase and additional scalar phase for simulation. Then
when the above-proposed topological charge search methods are used, the NRMSE
curves with the condition of the hard apertures are indicated by the blue lines in Figs.
S.8(c,h), and the minimum point of which will be regarded as the final topological
charge for the next step of the reconstruction process. In contrast, when there is no
hard aperture, it is difficult to determine the topological charge value or even give
a wrong estimation, indicated by the green lines in Figs. S.8(c,h). Here it should
be emphasized here that if φs is very large (even if it submerges the distribution of
vortex phase), it should be obtained by the existing iterative method called US-TIE
[17] beforehand and then used for the topological charges searching. The final re-
constructed results are shown in Fig. S.8(i) and the corresponding errors are shown
in Fig. S.8(j). In addition, according to the comparison between the results in Fig.
S.8(e) and Fig. S.8(j), when the scalar phase components at the position of the
vortex phase singularity are large, the reconstructed phase error near the singularity
will slightly increase, but it is still within the acceptable range. In addition, the
intensity near this position is usually close to zero, and thus the phase here is not
particularly significant and physically well-defined.

In addition to the single-singularity vortex phase recovery, this proposed method
can also be used for phase retrieval with multiple singularities, as shown in Fig. S.9.
Figures S.9(a,b) give the theoretical intensity and phase distribution, and the position
discrimination matrix shown in Figs. S.9(c,d) can provide the location information
of the singularities. After determining the position, the topological charge search
process will be applied to explore the exact topological charge combinations, which
calculates the NRMSE between the predicted axial intensity derivation and real
ones for all possible combinations, as shown in Fig. S.9(e). In order to better
show the specific topological charge value, the NRMSE value on the diagonal line
is extracted [Fig. S.9(f)], and finally the topological charge values can be detected.
The reconstructions and the corresponding errors are shown in Figs. S.9(g,h).

In addition to the above case of multiple vortices, the fractional-topological-charge
vortex reconstruction can also be realized by the method mentioned in this paper.
According to the above-mentioned analyses, the fractional-charge vortex can be di-
vided into the scalar and the singular phase contribution, and thus the effect of the
fractional-charge screw dislocations should also be reflected in the longitudinal in-
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Figure S.9: The multi-singularities phase retrieval. (a,b) The theoretical intensity and phase dis-
tribution. (c) The position discrimination matrix. (d) 3D visualization of (b). (e) The NRMSE
between simulated intensity derivation and real ones versus the topological charges. (f) The nor-
malized curve of the chosen combination. (g,h) The reconstructions and corresponding error.

tensity derivative distribution. Figures S.10(a,f) give the theoretical intensity distri-
bution, and Figs. S.10(b,g) are the phase distribution which can be divided into the
corresponding two parts as shown in Figs. S.10(b1,b2,g1,g2). Then the topological
charge search process is applied to explore the exact integer-topological charge, which
is the number closest to the real value. During the process, the NRMSE between the
predicted axial intensity derivation and real ones for all possible integer-topological
charges, as shown in Figs. S.10(c,h) is calculated, and finally the singular phase con-
tribution can be detected. Then after several rounds of iteration, the reconstructions
and the corresponding errors can be obtained, as shown in Figs. S.10(d,i,e,j). In
addition, according to the simulation results, it is found that the topological charge
m is closer to (2n + 1)/2 (n is an integer), the reconstruction error will be more
serious. This usually results from that 1/2 included in the coefficient will introduce
the phase jump of π during the scalar phase retrieval.

Appendix H. Structure diagram of the digital holographic measurement
system

Figure S.11 shows the system which can not only generate hologram, but also capture
the original image of TIE by moving camera. It should be noted that, the SLM is
designed to work with a linearly polarized incident beam, so we add a polarizer
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after the laser source. In our experiment, the rotation of the Poynting vector for
a linear polarized beam arises from the effect of OAM. When the CGH pattern is
loaded with a blazed grating, maximum optical power is concentrated in the ±1st

diffraction orders while the residual power in the other orders is minimized, and
the intensity of the ±1st diffraction orders is equal. We added an additional iris
(Standard Iris) in the experiment to roughly filter higher diffraction orders (±2nd,
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±3rd and higher) output from SLM. The second iris placed at the Fourier plan is
to accurately select the +1st or -1st diffraction order information. To match the
pixel size of the camera, the angle between reference beam and object beam is about
3◦. It may be emphasized here that since the core of the USV-TIE method is the
longitudinal intensity derivative distribution, it is very important for the accuracy of
intensity measurement. Thus, the cameras with large bit depth should be selected
as far as possible. In this experiment, it is generally necessary to select a camera
with 10bit (at least) depth.
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Figure S.11: The hologram and optical vortex beam generation system.
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