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Dual-frequency angular-multiplexed fringe
projection profilometry with deep learning:
breaking hardware limits for ultra-high-speed
3D imaging
Wenwu Chen1,3,4†, Yifan Liu1,3,4†, Shijie Feng1,3,4,5*, Wei Yin1,3,4,5,
Jiaming Qian1,3,4,5, Yixuan Li1,3,4,5, Hang Zhang2*, Maciej Trusiak6,
Malgorzata Kujawinska6, Qian Chen4,5* and Chao Zuo1,3,4,5*

Recent  advancements in  artificial  intelligence have transformed three-dimensional  (3D) optical  imaging and metrology,
enabling high-resolution and high-precision 3D surface geometry  measurements from one single  fringe pattern projec-
tion. However, the imaging speed of conventional fringe projection profilometry (FPP) remains limited by the native sen-
sor refresh rates due to the inherent "one-to-one" synchronization mechanism between pattern projection and image ac-
quisition in  standard structured light  techniques.  Here,  we present  dual-frequency angular-multiplexed fringe projection
profilometry (DFAMFPP), a deep learning-enabled 3D imaging technique that achieves high-speed, high-precision, and
large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate. By
encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,
high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep
neural networks. We validate the effectiveness of DFAMFPP through dynamic scene measurements, achieving 10,000
Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera. By overcoming the sensor hardware
bottleneck, DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging, opening new avenues for ex-
ploring dynamic processes across diverse scientific disciplines.
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Introduction
The  concept  of  capturing  and  documenting  fast  events
can  date  back  to  the  earliest  days  of  film  photography1.
With  the  advent  of  solid-state  imaging  technologies
based on charge-coupled device (CCD) and complemen-
tary  metal-oxide-semiconductor  (CMOS)  sensors,  high-
speed imaging has attracted increasing attention and in-
terest2.  Imaging  techniques  with  high  temporal  resolu-
tion can "freeze" rapid motions and capture the transient
changes  of  objects,  offering  unprecedented  insights  into
scientific  research.  Over  the  past  few  decades,  the  need
for  high-speed,  high-precision  three-dimensional  (3D)
imaging  has  spanned  diverse  fields,  including  biomedi-
cal  research3,  manufacturing4,  and  aerospace  engineer-
ing5.  Concurrent  advances  in  optoelectronics  have  driv-
en  rapid  progress  in  3D  sensing  technologies6.  Among
them,  fringe  projection  profilometry  (FPP)  has  been  a
cornerstone in non-contact 3D surface measurement due
to its high spatial resolution and robustness7,8.

The imaging speed of FPP is primarily constrained by
two  key  factors:  hardware  limitations  (the  speed  of  the
projector  and  camera)  and  algorithmic  efficiency  (the
number  of  patterns  required  for  each  3D
reconstruction). On the hardware side, the development
of  binary  defocusing  techniques  has  significantly  im-
proved projection speed, achieving tens of kHz by defo-
cusing  the  projector  lens  to  produce  quasi-sinusoidal
fringes with 1-bit patterns9,10. On the algorithmic side, re-
searchers  have  introduced  various  pattern  schemes  and
decoding  methods,  such  as  dual-frequency  phase  shift-
ing11,  2+2 phase shifting12,  and bi-frequency phase shift-
ing13. These approaches effectively reduce the number of
patterns required for unambiguous 3D reconstruction by
minimizing  encoding  redundancy.  Recently,  the  rapid
advancements  in  artificial  intelligence  (AI),  particularly
deep learning14,15, have driven a paradigm shift in optical
metrology16.  Deep  learning-based  methods  enable  pre-
cise  phase  retrieval  from  a  single  fringe  image17,18.  Fur-
ther  integrating  color  fringes19,  geometric  constraints20,
and  frequency-domain  multiplexing21,  high-precision
absolute 3D imaging can be achieved from a single shot.
However, the "one-to-one" synchronization between pat-
tern projection and image acquisition has long hindered
the temporal resolution of conventional FPP techniques.
The  imaging  speed  remains  constrained  by  the  native
rate  of  sensors,  limiting  its  application  in  dynamic  sce-
narios. Current efforts to enhance speed rely on high-re-

fresh-rate  hardware,  which  significantly  increases  sys-
tem complexity and cost22,23.

To  address  these  limitations,  researchers  have  com-
bined compressive sensing24−26 with computational imag-
ing27,28,  developing a  series  of  temporal  super-resolution
imaging  techniques,  such  as  compressed  ultrafast  pho-
tography (CUP)29,  coded aperture compressive temporal
imaging  (CACTI)30,  and  programmable  pixel  compres-
sive camera (P2C2)31. However, these techniques typical-
ly  rely  on  complex  optical  modulation  hardware,  which
complicates  optical  system  design  and  causes  unavoid-
able  photon  loss,  resulting  in  low  signal-to-noise  ratios
(SNRs)  of  the  reconstructed  images.  Moreover,  these
methods  are  primarily  designed  for  two-dimensional
(2D)  imaging.  Extending  them  to  3D  sensing  imposes
additional  burdens on the optical  setup and reconstruc-
tion  algorithms.  Recent  advances  in  deep  learning  pave
new  paths  for  solving  complex  imaging  challenges  by
leveraging  data-driven  models  to  overcome  hardware
constraints32−35.  Among  these  efforts,  deep-learning-en-
abled multiplexed FPP (DLMFPP)34 allows to achieve 9×
temporal  super-resolution  3D  imaging  using  two  low-
speed cameras, eliminating the need for optical modula-
tors and enabling implementation on almost any off-the-
shelf FPP system. Nevertheless, whether 3D imaging can
be  pushed  to  even  higher  temporal  resolutions  remains
an  open  question  and  a  persistent  focus  of  researchers.
Furthermore, DLMFPP relies on the conventional stereo
phase  unwrapping  (SPU)  algorithm36,37 to  obtain  abso-
lute phase maps. However, SPU typically struggles to re-
liably  unwrap  dense  fringes,  which  severely  constrains
the use of higher-frequency fringes—crucial for mitigat-
ing  aliasing  of  fundamental  frequencies  in  multiplexed
spectra  and  for  enhancing  measurement  accuracy.
Therefore, DLMFPP enforces strict depth constraints38,39

and requires at least two cameras for geometric relation-
ships to improve the robustness of phase unwrapping to
some  extent.  These  limitations,  including  reduced  mea-
surement  range  and  precision,  along  with  the  elevated
costs  of  multi-camera  setups,  currently  hinder  the
widespread  application  of  DLMFPP  in  high-speed  and
ultra-high-speed 3D imaging scenarios.

Building on this,  in  this  work,  we introduce dual-fre-
quency angular-multiplexed fringe projection profilome-
try  (DFAMFPP),  a  novel  deep  learning-enabled  tech-
nique  that  decouples  the  speed  limitation  imposed  by
traditional  FPP  systems,  using  a  single  camera  to  pro-
vide  high-speed,  high-precision,  and  large-depth-range
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absolute  3D  shape  measurement.  This  method  encodes
multi-timeframe  3D  information  into  a  single  multi-
plexed  image  using  carefully  designed  dual-frequency
fringe patterns, achieving 16× temporal super-resolution
without  compromising  spatial  resolution.  We  demon-
strate  the  effectiveness  of  DFAMFPP by conducting dy-
namic  scene  measurements,  achieving  10,000  Hz  3D
imaging  of  a  running  turbofan  engine  prototype  using
only a 625 Hz camera. DFAMFPP is expected to invigo-
rate the development of high-speed and ultra-high-speed
3D  imaging  capabilities,  breaking  through  the  sensor
hardware  bottleneck,  and  driving  progress  in  multiple
research fields. 

Methods
 

Fringe pattern design and projection
The DFAMFPP system utilizes multiple pairs of dual-fre-
quency fringe patterns, with each pair consisting of high-
and low-frequency components projected at specific an-
gular  orientations.  The  high-frequency  fringes  encode
fine  spatial  details,  while  the  low-frequency fringes  pro-
vide global unwrapping information. By modulating the
projection sequence at speeds exceeding the native cam-
era  frame  rate,  temporal  multiplexing  is  achieved.  The
schematic  illustration  of  the  DFAMFPP  method  is
shown in Fig. 1, in which a rotating "David" plaster stat-

M

Ipm

ue  is  employed  as  the  dynamic  scene  to  illustrate  the
principle.  In  DFAMFPP,  the  projector  casts  pairs  of
dual-frequency fringe patterns onto the rotating "David"
sequentially. The specially designed fringe pattern  can
be expressed as: 

Ipm (xp, yp) = a+ bcos
[
φm (x

p, yp)
]
, (1)

a = b = 0.5
(xp, yp)

m
m = 1, 2, 3, ..., 2M

n
n = 1, 2, 3, ...,M φm

where  are the mean and amplitude, respec-
tively,  represents the pixel coordinate on the pro-
jector, and the subscript  denotes the projected pattern
index where . In addition, an auxiliary
variable  is  introduced,  which  represents  the  pattern
pair index ( ), and the phase  is set to: 

φm(x
p, yp) ={

2π(xpcosθn/λlx + ypsinθn/λly) m = 2n− 1
2π(xpcosθn/λhx + ypsinθn/λhy) m = 2n

,
(2)

 

θn = (−1)n+1
(
n
2
− (−1)n + 1

4

)
θ, (3)

λlx λly
x y

λhx λhy

H W LCM(λlx, λ
h
x) ≥ W

LCM(λly, λ
h
y) ≥ H

where  and  represent  the  wavelengths  of  the  low-
frequency fringes  in the  and  directions respectively,
and  and  are the wavelengths of the high-frequency
ones.  It  is  worth  noting  that  for  a  projection  pattern  of

× , the wavelengths need to satisfy 
and  (where  LCM()  denotes  the  least
common  multiple)  to  ensure  that  the  entire  projection
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scene (a rotating "David" plaster statue) sequentially. Then the camera captures a multiplexed image ILE of multiple fringes overlapped through a

long exposure time, encoding the 3D information of the scene at 2M consecutive moments. After Fourier transform, the scene information at dif-

ferent times presents a special pattern of a pair of concentric circles in the spatial spectrum. DNNs in DFAMFPP can further be employed to de-

compose a frame of multiplexed image ILE into 2M frames of absolute phase maps Φm. Finally, 3D results can be obtained by proper calibration

and the A3DR phase-to-depth algorithm.
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θ

Ipm

Ipm

area lies within the effective disambiguation range of the
number-theoretical  phase  unwrapping40.  is  a  scalar
characterizing  the  specific  angular  orientation  of  the
fringe.  When the fringe pattern  is  projected onto the
object  and  modulated  by  the  measured  surface,  the  im-
age intensity corresponding to  can be represented as: 

Im(x, y) = A(x, y) + B(x, y)cos[ϕm(x, y)], (4)

(x, y)
A B

ϕm

where  represents the pixel  coordinate of  the cam-
era (omitted below for brevity),  and  are the average
intensity  and  modulation,  respectively,  and  denotes
the modulated phase.

Im

ILE
Im

Specifically,  the modulated fringe images  carry the
3D information of the measured dynamic scene at differ-
ent times, that is the 3D shape of the rotating "David" at
different  perspectives  in Fig. 1.  Note that  in  DFAMFPP,
the camera captures a multiplexed image  of multiple
overlapped  images  through  a  long  exposure  time,
which can be expressed as: 

ILE = I1 + I2 + ...+ I2M =

2M∑
m=1

Im, (5)

2M
ILE

2M
Φm

2M

which contains the 3D scene information at  consec-
utive  moments.  After  Fourier  transforming ,  the  3D
information  at  different  times  is  distributed  in  distinct
regions  of  the  spatial  spectrum;  the  dual-frequency
fringes  present  a  special  pattern  of  a  pair  of  concentric
circles.  Notably,  a  single  pair  of  dual-frequency  fringes
provides  sufficient  information  required  for  phase  un-
wrapping  using  the  number-theoretical  method.  More-
over,  the  number-theoretical  approach  is  not  subject  to
the  strict  constraints  on  fringe  frequency  and  depth
range  typically  imposed  by  SPU.  Therefore,  we  can  use
the  specially  trained  two-stage  deep  neural  networks
(DNNs)  to  reconstruct  frames  of  high-accuracy  ab-
solute  phase maps  from a single  multiplexed image.
Combined  with  proper  calibration  and  the  developed
augmented  3D  reconstruction  (A3DR)  algorithm  for
phase-to-depth  mapping,  temporal  super-resolution,
high-precision,  and  large-depth-range  3D  imaging  at
speeds ×  higher  than  the  camera's  native  frame  rate
can be achieved. Details of the system calibration and the
A3DR method are  provided in Supplementary informa-
tion, Sections 1 and 2. 

Deep neural network architecture
The reconstruction flowchart of DFAMFPP is detailed in
Fig. 2.  Overall,  we  developed  a  preprocessing  and  two-

stage  deep  learning  framework  to  decode  multiplexed
images  into  high-accuracy  phase  maps,  consisting  of
three  steps:  Step  0.  Zero-order  removal  (ZOR)  prepro-
cessing  removes  the  zero-order  part  of  the  multiplexed
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Fig. 2 | Reconstruction  flowchart  of  the  DFAMFPP method,  consist-

ing  of  three  steps:  ZOR  preprocessing,  Phase  decomposition  net-

work and number-theoretical phase unwrapping network. Step 0 em-

ploys  ZORNet,  a  learning-enhanced  high-pass  filter,  to  remove  the

zero-order  part  of  the  multiplexed  image ILE,  and  obtains  the  ZOR

multiplexed  image ,  containing  only  high-frequency  components

encoding 3D scene information at different times. Step 1 extracts the

features of the ZOR multiplexed image  in both the spatial and fre-

quency domains through a spatial-frequency hybrid DNN composed

of three branches: spatial, frequency, and ensemble parts, to output

a  high-quality  image  sequence,  the  ZOR  separated  images

Bmcosϕm. Step 2 employs PI-AFPA, a physics-informed fringe analy-

sis  module,  and  NT-TPU,  a  learning-enhanced  number-theoretical

unwrapping module, to perform phase analysis and unwrapping. PI-

AFPA processes a pair  of  dual-frequency ZOR images in  the same

orientation to predict the corresponding high-precision numerator Mm

and denominator Dm terms of the wrapped phase ϕm. NT-TPU takes

in the same pair of images and outputs coarse absolute phase maps

, which can obtain the accurate fringe order map km with the help

of ϕm through Eq.  (7).  By  further  incorporating  the  RGC  algorithm,

high-precision absolute phase maps ϕm for 3D reconstruction can fi-

nally be provided.
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image, retaining the high-frequency components that en-
code the 3D scene information at different times. Step 1.
Phase decomposition network separates the multiplexed
image into individual fringe components using a spatial-
frequency hybrid architecture.  Step 2.  Number-theoreti-
cal  phase  unwrapping  network  reconstructs  high-preci-
sion absolute phase maps by leveraging number-theoret-
ical  constraints and physics-informed priors.  Details  are
as follows:

FLE

IdLE =
∑2M

m=1Bmcosϕm

ILE
ILE

Step  0:  We  noticed  that  in  the  multiplexed  spectrum
(  in Fig. 1),  there  is  aliasing  between  the  zero-order
and multiple  high-frequency components,  which can be
more serious on complex surfaces and discontinuous ar-
eas.  Importantly,  the  high-frequency  components  en-
code the 3D information of the dynamic scene at differ-
ent  times,  while  the  zero-order  component  makes  no
contribution to the final 3D recovery. Therefore, we con-
structed a ZORNet, a learning-enhanced high-pass filter
constructed by Multi-path convolutional neural network
(CNN)41,  which  can  obtain  the  ZOR  multiplexed  image

 from  the  input  multiplexed  image
.  The  ZORNet  can  effectively  remove  the  zero-order

part in , making the subsequent decomposition of the
multiplexed  image  more  efficient  and  maintaining  high
accuracy. More details about the Multi-path CNN archi-
tecture  can  be  found  in  Supplementary  information
Section 3.

IdLE

F d
LE IdLE

Bmcosϕm

Step  1:  In  the  phase  decomposition,  we  construct  a
spatial-frequency  hybrid  DNN  consisting  of  three
branches:  spatial,  frequency,  and  ensemble  parts34,42,  all
based  on  the  MultiResUnet  architecture43 (see  Supple-
mentary information, Section C for the detailed MultiRe-
sUnet  structure).  The  spatial  branch  receives  the  ZOR
multiplexed  image  and  extracts  spatial  domain  fea-
tures;  the  frequency  branch  receives  the  multiplexed
spectrum  (Fourier transform of ) and extracts fre-
quency domain features; the ensemble branch adaptively
integrates  the  features  of  both  domains  and  outputs  a
high-quality image sequence,  the ZOR separated images

.
Step  2:  In  the  number-theoretical  phase  unwrapping,

we  constructed  two  DNNs:  physics-informed  augment-
ed  fringe  pattern  analysis  (PI-AFPA)  constructed  by  U-
Net44 and  number-theoretical  temporal  phase  unwrap-
ping (NT-TPU) constructed by Multi-path CNN, to per-
form fringe analysis and phase unwrapping respectively.
Further  details  regarding  the  network  architectures  are

Mm

Dm ϕm

provided  in  Supplementary  information  Section  C.  In-
spired  by  the  physical  model  empowering  deep
learning18,45,46, we constructed PI-AFPA to perform high-
precision phase recovery on ZOR images. PI-AFPA com-
bines the physical prior knowledge of traditional Fourier
transform  profilometry  (FTP)  and  phase  shifting
method,  and  can  receive  a  pair  of  dual-frequency  ZOR
images  in  the  same  orientation  to  predict  the  corre-
sponding high-precision numerator  and denomina-
tor  terms17. Then the accurate wrapped phase  (in
Eq. (4)) can be obtained by 

ϕm = arctan
Mm

Dm
, (6)

Φc
m

km

with  physics-informed  priors,  PI-AFPA  can  achieve  ac-
curate  and efficient  phase  retrieval,  providing  a  guaran-
tee  for  reliable  3D  reconstruction.  Subsequently,  for
phase  unwrapping,  NT-TPU  receives  the  same  pair  of
images  and  outputs  the  corresponding  coarse  absolute
phase  maps .  Although  influenced  by  ambient  light,
large  surface  reflectivity  and  discontinuity,  it  is  difficult
for  NT-TPU  to  directly  obtain  high-quality  absolute
phase  information.  The  accurate  fringe  order  map 
can be obtained by Eq. (7): 

km = Round
(
Φc

m − ϕm

2π

)
, (7)

km Φm

Φm = ϕm + 2kmπ

Φm

with ,  the  high-precision  absolute  phase  can  be
solved by 19. Note that the input pair of
ZOR images corresponds to different times, leading to a
small  range of unwrapping errors at  the object edge.  To
address this, the DFAMFPP method employs the reliabil-
ity-guided  compensation  (RGC)  algorithm22,  effectively
mitigating these errors and yielding a high-precision, ro-
bust  absolute  phase  map .  By  further  incorporating
calibration parameters and the A3DR algorithm, the ab-
solute 3D shape can be accurately reconstructed. 

Experimental setup
We established the experimental system shown in the in-
set  of Fig. 2,  comprising  a  scientific  CMOS camera  (Vi-
sion  Research  Phantom  V611)  and  a  digital  micro-mir-
ror device (DMD) projection system. The projection sys-
tem is  composed of  a  digital  light  processing  (DLP)  de-
velopment kit  (Texas Instruments DLP Discovery 4100)
with an XGA resolution (1024×768) DMD, coupled with
a  custom-designed  optical  module.  The  DMD  operates
in binary mode at 1,600 Hz (with an available resolution
of 1024×512), while the camera captures images at 100 Hz
with  an  exposure  time  synchronized  to  the  projection
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λlx = 43 λhx = 24
λly = 31 λhy = 17 LCM(λlx, λ

h
x) = 1032

LCM(λly, λ
h
y) = 527

sequence (i.e., the projection system output a trigger sig-
nal to the camera every 16 frames, with  set to 8). The
camera operated at an image resolution (640×440) with a
pixel  depth  of  16  bits.  Specifically,  in  the  fringe  design,
the  wavelengths  in Eq.  (2) is  set  to , ,

,  and ,  where ,
.  More  discussions  on  the  wave-

length  selection  for  dual-frequency  fringes  are  provided
in the Supplementary information Section 5. Calibration
involves mapping each camera pixel to the projector co-
ordinate system using a 9×11 calibration board. For fur-
ther  information  on  the  system  calibration,  please  see
Supplementary  information  Section  1.  In  addition,  the
networks are trained on a synthetic dataset generated us-
ing  simulated  and  real  fringe  patterns,  along  with  their
corresponding  ground-truth  phase  maps  to  ensure  gen-
eralization across varying scene conditions. More details
on network training and dataset preparation are provid-
ed in Supplementary information Section 4. 

Results

∼

ILE

IdLE F d
LE

IdLE
Bmcosϕm m = 1, 2, 3, ..., 16

Φm

ILE

To  demonstrate  the  temporal  super-resolution  imaging
capability  of  the  DFAMFPP  method,  we  performed  3D
videography  of  a  fast-changing  dynamic  scene:  a  four-
blade  fan  rotating  at 4,800  revolutions  per  minute
(RPM). The complete process of the method is shown in
Fig. 3(a).  The  captured  raw  multiplexed  image  was
filtered in Step 0 to obtain the corresponding ZOR multi-
plexed image  and its  spatial  spectrum ,  in  which
the zero-order component is effectively removed. Subse-
quently,  was decomposed after Step 1, and output the
ZOR separated images , where 
(the background is partially transparent for better visual-
ization).  Step  2  finally  analyzed  and  unwrapped  the
phase to produce the corresponding high-precision abso-
lute  phase  maps .  Although the raw multiplexed im-
age  suffers  from severe  motion  blur,  the  3D geome-
try of the entire fan was well-resolved by DFAMFPP, as
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Fig. 3 | Dynamic measurement of a rotating four-blade fan. (a) The complete process of the DFAMFPP method. The camera captured the raw

multiplexed image ILE through a long exposure shot. Step 0 removed the zero-order component to obtain the ZOR multiplexed image  and its

spatial spectrum  (partial zoom display). Step 1 decomposed  to output ZOR separated images Bmcosϕm, where m=1,2,3,...,16 (the back-

ground is partially transparent for better visualization). Step 2 finally analyzed and unwrapped the phase to provide high-quality absolute phase

maps Φm. (b) The color-coded 3D rendering of the fan surface at different times (T = 0, 0.63, 1.25, 1.88, 2.50,..., 9.38 ms). (c) Side-view of the

fan at T = 0 ms and 1.88 ms, rendered by grayscale. (d)  Height curves plotted along the radial  profile at different times (corresponding to the

dashed line in b).
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ILE

shown  in Fig. 3(b),  which  presents  the  color-coded  3D
rendering of the fan surface at different times (where T =
0,  0.63,  1.25,  1.88,  2.50  ,...,  9.38  ms).  It  is  worth  noting
that  the  DFAMFPP  method  fundamentally  addresses
motion blur through its  unique mechanism of first  cap-
turing  long-exposure  multiplexed  images  and  subse-
quently decomposing them. Specifically, the effective ex-
posure time of  each individual  fringe image is  governed
by the projection duration of the corresponding pattern,
rather  than  the  camera's  exposure  time.  As  a  result,  the
motion blur observed in the reconstructed 3D frames is
governed  solely  by  the  projection  time  of  the  projector
system. Consequently,  even though the raw multiplexed
image  exhibits significant motion blur, DFAMFPP is
capable of resolving the temporal positional variations of
the  rotating  fan  blades  accurately. Figure 3(c) demon-
strates the side-view (x-z) of the fan 3D reconstruction at
T =  0  ms  and  1.88  ms,  rendered  by  the  corresponding
grayscale.  Moreover,  in Fig. 3(d),  we  plot  radial  profiles
through the central hub of the fan (corresponding to the
dashed line in b). In one multiplexed frame (within 9.38

mm
ms),  the  fan  rotates  nearly  1/2  of  a  turn,  exhibiting  a
maximum  depth  variation  exceeds  3.5  in  the
z-direction.

∼

ILE

To further verify the scalability of DFAMFPP in terms
of  imaging  speed,  we  adjusted  the  projection  speed  to
10,000 Hz and the camera frame rate to 625 Hz. The pre-
viously  trained  DNNs  were  directly  utilized  to  perform
3D measurements. We used the system to capture a run-
ning turbofan engine prototype rotating at 9,500 RPM.
Despite  severe  motion  blur  in  raw  images,  DFAMFPP
successfully  reconstructed  the  3D  surface  at  10,000  Hz
temporal  resolution. Figure 4 illustrates  the  sequential
reconstructions,  highlighting  the  technique's  ability  to
resolve  high-speed  dynamics.  The  raw  multiplexed  im-
age  captured  by  the  camera, ,  is  shown  in Fig. 4(a),
along  with  the  corresponding  ZOR  multiplexed  image
and its spectrum. Despite the complete distortion of the
high-speed rotating turbofan blades due to the superpo-
sition  of  fringe  images,  the  DFAMFPP  successfully  re-
solved the 3D shape of the blades, as shown in Fig. 4(b).
To  assess  the  reliability  of  our  method  for  temporal
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Fig. 4 | Dynamic measurement of a running turbofan engine prototype. (a) The raw multiplexed image ILE captured by the camera, along with the

corresponding ZOR multiplexed image and its spectrum. (b) The color-coded 3D rendering of the turbofan blades at T = 0 ms. (c) Displacement

along the z-direction at 3 selected point locations (A, B, and C in b) over a period of 9.6 ms. (d) ZOR separated images Bmcosϕm (m = 1, 2, 3, ...,

16, at T = 0, 0.10, 0.20,..., 1.50 ms) decoded from a single multiplexed frame (ILE in a), along with their corresponding color-rendered 3D models.
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Bmcosϕm m = 1, 2, 15, 16

ILE

super-resolution  imaging,  we  selected  three  arbitrary
points on the blades, labeled A, B, and C in Fig. 4(b), to
illustrate the periodic rotation. Figure 4(c) plots  the dis-
placement  along  the z-direction  at  these  three  locations
over a period of 9.6 ms, demonstrating a rotation period
of approximately 6.26 ms,  corresponding to a rotational
speed of  9,591  RPM. Figure 4(d) presents  the  four  ZOR
separated images,  ( , at times T =
0, 0.10, 1.40, and 1.50 ms), decoded from a single multi-
plexed  frame  (  in Fig. 4(a)),  along  with  their  corre-
sponding color-rendered 3D models. The complete pro-
cess of  DFAMFPP and 3D results  of  the entire dynamic
turbine  engine  process  is  provided  in  Visualization  S1.
Experimental  results  and  analysis  confirm  that  the
DFAMFPP  technique  can  retrieve  16  3D  images  from
each multiplexed frame,  achieving high-speed 3D imag-
ing at up to 10,000 Hz using a 625 Hz camera.

To  quantitatively  evaluate  the  measurement  accuracy

mm
mm
mm

μm μm
μm

of the proposed DFAMFPP method, we further conduct-
ed  an  experiment  to  measure  a  pair  of  calibrated  stan-
dard ceramic spheres (Radius A: 25.3967 ; Radius B:
25.3989 )  with  a  center-to-center  distance  of
100.1166  (certified  by  a  coordinate  measuring  ma-
chine),  as  shown  in Fig. 5(a). Figure 5(b) presents  the
captured multiplexed image, ZOR-processed image, and
corresponding  spatial  frequency  spectrum  (with  local
magnification  for  enhanced  visualization).  The  3D  re-
construction  results  and  their  error  distributions  at  two
different  positions  are  shown  in Figs. 5(c, d).  Measure-
ment accuracy was quantified by calculating the discrep-
ancy  between  the  reconstructed  3D  data  and  ground
truth obtained through least-squares sphere fitting of the
point  clouds.  At  Position  1  (Fig. 5(c)),  the  root  mean
square  errors  (RMSE)  for  sphere  radius  measurements
were 90.1746  and 98.0895 , with a mean absolute
error (MAE) of 64.3268  for center-to-center distance.
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Position  2  (Fig. 5(d))  exhibited  similar  precision,  with
average  radius  measurement  RMSE  of  97.2812  and
center-to-center distance MAE of 98.8653 . These re-
sults  confirm  DFAMFPP's  capability  for  absolute  3D
measurements with better than 100  accuracy.  Addi-
tionally,  we  acknowledge  that  this  performance  bench-
mark  was  achieved  under  ideal  conditions  with  simple
geometric shapes. The standard spheres inherently mini-
mize  spectral  aliasing  and  crosstalk  between  high-fre-
quency components in the multiplexed spectrum, there-
by facilitating higher measurement precision than might
be expected with complex geometries. This establishes an
upper  bound  for  the  system's  measurement  capability
under optimal conditions. In addition, to further demon-
strate  the  advancement  of  the  DFAMFPP  method,  in
Supplementary  information  Section  6,  we  present  addi-
tional  comparative  studies  with  the  traditional  FTP
method  and  the  previous  DLMFPP  method.  These  re-
sults  confirm  DFAMFPP's  capability  for  high-speed,
high-precision, and large-depth-range 3D imaging while
significantly  exceeding  the  camera's  native  frame  rate
limitations. 

Discussion and conclusion
This  study  presents  DFAMFPP,  a  novel  deep  learning-
enabled technique for high-speed 3D imaging. By achiev-
ing 16× temporal super-resolution and overcoming sen-
sor  hardware  limitations,  DFAMFPP  significantly  ad-
vances  the  state  of  the  art  in  FPP.  Its  capability  to  cap-
ture ultra-high-speed dynamics holds promise for trans-
formative applications in scientific research and industri-
al inspection.

Despite the impressive progress of DFAMFPP in high-
speed  3D  imaging,  several  inherent  limitations  remain.
The  maximum  imaging  speed  is  fundamentally  limited
by  the  refresh  rate  of  the  projector,  as  the  modulation
speed  of  3D  information  is  inherently  bounded  by  the
projector's  switching capability.  In  addition,  there  exists
a trade-off  between the information content of  each de-
composed frame and the number of multiplexed projec-
tions:  increasing  the  temporal  super-resolution ratio  of-
ten  compromises  the  final  measurement  accuracy,
whereas  emphasizing  reconstruction  accuracy  con-
strains the achievable temporal resolution.

The proposed DFAMFPP method addresses the long-
standing  hardware  bottleneck  in  FPP  by  introducing  a
computational framework that leverages the synergy be-
tween  physics-informed  modeling  and  deep  learning.

The  dual-frequency  angular-multiplexing  strategy  en-
sures  robust  phase  unwrapping  even  under  challenging
conditions,  such as high-speed motion or low signal-to-
noise ratios. Potential limitations include the reliance on
precise  calibration  and  the  computational  cost  of  deep
learning  inference.  Future  work  could  focus  on  hard-
ware acceleration47,48 and real-time implementation28,49 to
further broaden its applicability.

References 

 Lunn  GH. High-speed  photography. Nature 291, 617–619
(1981).

1.

 Kleinfelder S, Lim S, Liu XQ et al. A 10000 frames/s CMOS digi-
tal  pixel  sensor. IEEE  J  Solid-State  Circuits 36, 2049–2059
(2001).

2.

 Ford KR, Myer GD, Hewett TE. Reliability of landing 3D motion
analysis:  implications for  longitudinal  analyses. Med Sci  Sports
Exerc 39, 2021–2028 (2007).

3.

 Malamas EN, Petrakis  EGM, Zervakis  M et  al. A survey on in-
dustrial vision systems, applications and tools. Image Vis Com-
put 21, 171–188 (2003).

4.

 Xi XL, Liu Y, Xue P et al. High-speed multi-camera videogram-
metric  measurement  of  full-field  3D  motion  and  deformation  in
full-scale crash testing of typical  civil  aircraft. Aerosp Sci Tech-
nol 152, 109375 (2024).

5.

 Geng  JS. Structured-light  3D  surface  imaging:  a  tutorial. Adv
Opt Photonics 3, 128–160 (2011).

6.

 Gorthi  SS, Rastogi  P. Fringe projection techniques: whither we
are. Opt Lasers Eng 48, 133–140 (2010).

7.

 Zuo  C,  Feng  SJ,  Huang  L  et  al. Phase  shifting  algorithms  for
fringe  projection  profilometry:  a  review. Opt  Lasers  Eng 109,
23–59 (2018).

8.

 Li BW, Wang YJ, Dai JF et al. Some recent advances on super-
fast 3D shape measurement with digital binary defocusing tech-
niques. Opt Lasers Eng 54, 236–246 (2014).

9.

 Zuo C, Chen Q, Feng SJ et al. Optimized pulse width modula-
tion pattern strategy for three-dimensional profilometry with pro-
jector defocusing. Appl Opt 51, 4477–4490 (2012).

10.

 Liu K, Wang YC, Lau DL et al. Dual-frequency pattern scheme
for  high-speed  3-D  shape  measurement. Opt  Express 18,
5229–5244 (2010).

11.

 Zuo  C,  Chen  Q,  Gu  GH  et  al. High-speed  three-dimensional
profilometry  for  multiple  objects  with  complex  shapes. Opt  Ex-
press 20, 19493–19510 (2012).

12.

 Zuo  C,  Chen  Q,  Gu  GH  et  al. High-speed  three-dimensional
shape  measurement  for  dynamic  scenes  using  bi-frequency
tripolar  pulse-width-modulation  fringe  projection. Opt  Lasers
Eng 51, 953–960 (2013).

13.

 LeCun  Y,  Bengio  Y,  Hinton  G. Deep  learning. Nature 521,
436–444 (2015).

14.

 Schmidhuber J. Deep learning in neural networks: an overview.
Neural Netw 61, 85–117 (2015).

15.

 Zuo C, Qian JM, Feng SJ et al. Deep learning in optical metrolo-
gy: a review. Light Sci Appl 11, 39 (2022).

16.

 Feng  SJ,  Chen  Q,  Gu  GH  et  al. Fringe  pattern  analysis  using
deep learning. Adv Photonics 1, 025001 (2019).

17.

 Yin W, Che YX, Li XS et al. Physics-informed deep learning for18.

Chen WW et al. Opto-Electron Adv  8, 250021 (2025) https://doi.org/10.29026/oea.2025.250021

250021-9

 This is an early view version and will be formally published in a coming issue with other articles in due time.

https://doi.org/10.1038/291617a0
https://doi.org/10.1109/4.972156
https://doi.org/10.1109/4.972156
https://doi.org/10.1109/4.972156
https://doi.org/10.1249/mss.0b013e318149332d
https://doi.org/10.1249/mss.0b013e318149332d
https://doi.org/10.1016/S0262-8856(02)00152-X
https://doi.org/10.1016/S0262-8856(02)00152-X
https://doi.org/10.1016/S0262-8856(02)00152-X
https://doi.org/10.1016/j.ast.2024.109375
https://doi.org/10.1016/j.ast.2024.109375
https://doi.org/10.1016/j.ast.2024.109375
https://doi.org/10.1364/AOP.3.000128
https://doi.org/10.1364/AOP.3.000128
https://doi.org/10.1016/j.optlaseng.2009.09.001
https://doi.org/10.1016/j.optlaseng.2018.04.019
https://doi.org/10.1016/j.optlaseng.2013.07.010
https://doi.org/10.1364/AO.51.004477
https://doi.org/10.1364/OE.18.005229
https://doi.org/10.1364/OE.20.019493
https://doi.org/10.1364/OE.20.019493
https://doi.org/10.1364/OE.20.019493
https://doi.org/10.1016/j.optlaseng.2013.02.012
https://doi.org/10.1016/j.optlaseng.2013.02.012
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1038/s41377-022-00714-x
https://doi.org/10.29026/oea.2025.250021


fringe pattern analysis. Opto-Electron Adv 7, 230034 (2024).
 Qian JM, Feng SJ,  Li  YX et  al. Single-shot  absolute 3D shape
measurement  with  deep-learning-based  color  fringe  projection
profilometry. Opt Lett 45, 1842–1845 (2020).

19.

 Qian  JM,  Feng  SJ,  Tao  TY  et  al. Deep-learning-enabled  geo-
metric  constraints  and  phase  unwrapping  for  single-shot  abso-
lute 3D shape measurement. APL Photonics 5, 046105 (2020).

20.

 Li YX, Qian JM, Feng SJ et al. Deep-learning-enabled dual-fre-
quency  composite  fringe  projection  profilometry  for  single-shot
absolute 3D shape measurement. Opto-Electron Adv 5, 210021
(2022).

21.

 Zuo C, Tao TY, Feng SJ et al. Micro Fourier transform profilom-
etry (μFTP): 3D shape measurement at 10, 000 frames per sec-
ond. Opt Lasers Eng 102, 70–91 (2018).

22.

 Heist S, Dietrich P, Landmann M et al. GOBO projection for 3D
measurements at  highest  frame rates:  a performance analysis.
Light Sci Appl 7, 71 (2018).

23.

 Baraniuk RG. Compressive sensing [Lecture Notes]. IEEE Sig-
nal Process Mag 24, 118–121 (2007).

24.

 Park J, Gao L. Cascaded compressed-sensing single-pixel cam-
era for high-dimensional optical imaging. PhotoniX 5, 37 (2024).

25.

 Zhang ZH, Zhang B, Yuan X et al. From compressive sampling
to compressive tasking: retrieving semantics in compressed do-
main with low bandwidth. PhotoniX 3, 19 (2022).

26.

 Mait  JN,  Euliss  GW,  Athale  RA. Computational  imaging. Adv
Opt Photonics 10, 409–483 (2018).

27.

 Luo  Y,  Zhao  YF,  Li  JX  et  al. Computational  imaging  without  a
computer: seeing through random diffusers at the speed of light.
eLight 2, 4 (2022).

28.

 Gao  L,  Liang  JY,  Li  CYet  al. Single-shot  compressed  ultrafast
photography at  one hundred billion  frames per  second. Nature
516, 74–77 (2014).

29.

 Llull P, Liao XJ, Yuan X et al. Coded aperture compressive tem-
poral imaging. Opt Express 21, 10526–10545 (2013).

30.

 Reddy  D,  Veeraraghavan  A,  Chellappa  R.  P2C2:  pro-
grammable  pixel  compressive  camera  for  high  speed  imaging.
In Proceedings of the CVPR 2011 329–336 (IEEE, 2011).

31.

 Yuan  X,  Brady  DJ,  Katsaggelos  AK. Snapshot  compressive
imaging: theory, algorithms, and applications. IEEE Signal Pro-
cess Mag 38, 65–88 (2021).

32.

 Lin  HN,  Cheng  JX. Computational  coherent  raman  scattering
imaging:  breaking  physical  barriers  by  fusion  of  advanced  in-
strumentation and data science. eLight 3, 6 (2023).

33.

 Chen WW, Feng SJ, Yin W et al. Deep-learning-enabled tempo-
rally  super-resolved  multiplexed  fringe  projection  profilometry:
high-speed khz 3D imaging with low-speed camera. PhotoniX 5,
25 (2024).

34.

 Wang  BW,  Chen  WW,  Qian  JM  et  al. Single-shot  super-re-
solved  fringe  projection  profilometry  (SSSR-FPP):  100,  000
frames-per-second 3D imaging with deep learning. Light Sci Ap-
pl 14, 70 (2025).

35.

 Weise T, Leibe B, Van Gool L. Fast 3D scanning with automatic
motion  compensation.  In Proceedings  of  2007  IEEE  Confer-
ence  on  Computer  Vision  and  Pattern  Recognition 1–8  (IEEE,

36.

2007).
 Tao TY, Chen Q, Da J et al. Real-time 3-D shape measurement
with  composite  phase-shifting  fringes  and  multi-view  system.
Opt Express 24, 20253–20269 (2016).

37.

 Bräuer-Burchardt C, Munkelt C, Heinze M et al. Using geomet-
ric  constraints  to  solve  the  point  correspondence  problem  in
fringe projection based 3D measuring systems. In Proceedings
of  the  16th  International  Conference  on  Image  Analysis  and
Processing–ICIAP 2011 265–274 (Springer, 2011).

38.

 Li ZW, Zhong K, Li YF et al. Multiview phase shifting: a full-reso-
lution and high-speed 3D measurement framework for arbitrary
shape dynamic objects. Opt Lett 38, 1389–1391 (2013).

39.

 Zuo C, Huang L, Zhang ML et al. Temporal phase unwrapping
algorithms  for  fringe  projection  profilometry:  a  comparative  re-
view. Opt Lasers Eng 85, 84–103 (2016).

40.

 Gu JX, Wang ZH, Kuen J et al. Recent advances in convolution-
al neural networks. Pattern Recogn 77, 354–377 (2018).

41.

 Feng SJ, Xiao YL, Yin W et al. Fringe-pattern analysis with en-
semble deep learning. Adv Photonics Nexus 2, 036010 (2023).

42.

 Ibtehaz N, Rahman MS. MultiResUNet: rethinking the U-Net ar-
chitecture for multimodal biomedical image segmentation. Neu-
ral Netw 121, 74–87 (2020).

43.

 Ronneberger  O,  Fischer  P,  Brox  T.  U-Net:  convolutional  net-
works for biomedical image segmentation. In Proceedings of the
18th International Conference on Medical image computing and
computer-assisted  intervention–MICCAI  2015 234–241
(Springer, 2015).

44.

 Kellman MR, Bostan E, Repina NA et al. Physics-based learned
design:  optimized  coded-illumination  for  quantitative  phase
imaging. IEEE Trans Comput Imaging 5, 344–353 (2019).

45.

 Wang F,  Bian YM, Wang HC et  al. Phase imaging with an un-
trained neural network. Light Sci Appl 9, 77 (2020).

46.

 Heist S, Lutzke P, Schmidt I et al. High-speed three-dimension-
al shape measurement using GOBO projection. Opt Lasers Eng
87, 90–96 (2016).

47.

 Caspar S,  Honegger M,  Rinner  S et  al. High speed fringe pro-
jection for fast 3D inspection. Proc SPIE 8082, 80820Y (2011).

48.

 Lin X, Rivenson Y, Yardimci NT et al. All-optical machine learn-
ing  using  diffractive  deep  neural  networks. Science 361,
1004–1008 (2018).

49.

Acknowledgements
This work was supported by National Key Research and Development Pro-
gram of China (2022YFB2804603, 2022YFB2804605), National Natural Sci-
ence  Foundation  of  China  (U21B2033),  Fundamental  Research  Funds
forthe Central  Universities (2023102001,  2024202002),  National  Key Labo-
rato-ry of Shock Wave and Detonation Physics (JCKYS2024212111), China
Post-doctoral  Science Fund (2023T160318),  Open Research Fund of Jiang-
suKey Laboratory of  Spectral  Imaging & Intelligent  Sense (JSGP202105,JS-
GP202201),  and  Postgraduate  Research  &  Practice  Innovation  Program  of
Jiangsu Province (KYCX25_0695, SJCX25_0188)

Competing interests
The authors declare no competing financial interests.

Scan for Article PDF

Chen WW et al. Opto-Electron Adv  8, 250021 (2025) https://doi.org/10.29026/oea.2025.250021

250021-10

 This is an early view version and will be formally published in a coming issue with other articles in due time.

https://doi.org/10.29026/oea.2024.230034
https://doi.org/10.29026/oea.2024.230034
https://doi.org/10.29026/oea.2024.230034
https://doi.org/10.1364/OL.388994
https://doi.org/10.1063/5.0003217
https://doi.org/10.29026/oea.2022.210021
https://doi.org/10.29026/oea.2022.210021
https://doi.org/10.29026/oea.2022.210021
https://doi.org/10.1016/j.optlaseng.2017.10.013
https://doi.org/10.1038/s41377-018-0072-3
https://doi.org/10.1186/s43074-024-00152-5
https://doi.org/10.1186/s43074-022-00065-1
https://doi.org/10.1364/AOP.10.000409
https://doi.org/10.1364/AOP.10.000409
https://doi.org/10.1186/s43593-022-00012-4
https://doi.org/10.1038/nature14005
https://doi.org/10.1364/OE.21.010526
https://doi.org/10.1186/s43593-022-00038-8
https://doi.org/10.1186/s43074-024-00139-2
https://doi.org/10.1038/s41377-024-01721-w
https://doi.org/10.1038/s41377-024-01721-w
https://doi.org/10.1038/s41377-024-01721-w
https://doi.org/10.1364/OE.24.020253
https://doi.org/10.1364/OL.38.001389
https://doi.org/10.1016/j.optlaseng.2016.04.022
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.neunet.2019.08.025
https://doi.org/10.1016/j.neunet.2019.08.025
https://doi.org/10.1109/TCI.2019.2905434
https://doi.org/10.1038/s41377-020-0302-3
https://doi.org/10.1016/j.optlaseng.2016.02.017
https://doi.org/10.1117/12.888930
https://doi.org/10.1126/science.aat8084
https://doi.org/10.29026/oea.2025.250021


Supplementary information

Supplementary information and Visualization S1 for this paper is  available

at

https://doi.org/10.29026/oea.2025.250021

Chen WW et al. Opto-Electron Adv  8, 250021 (2025) https://doi.org/10.29026/oea.2025.250021

250021-11

 This is an early view version and will be formally published in a coming issue with other articles in due time.

https://doi.org/10.29026/oea.2025.250021
https://doi.org/10.29026/oea.2025.250021

	Introduction
	Methods
	Fringe pattern design and projection
	Deep neural network architecture
	Experimental setup

	Results
	Discussion and conclusion
	References

