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This paper proposes a new registration method for infrared images under conditions of fixed-pattern noise
(FPN). Conventional registration techniques are susceptible to FPN and it is therefore very desirable to
have a registration algorithm that is tolerant to FPN. For this purpose, we utilize the difference of the
cross-power spectrum of two discrete shifted images to suppress the noise power spectrum while the shifts
information is well preserved. In particular, we show that the phase of the cross-power spectrum difference
is a periodic two-dimensional binary stripe signal with the exact shifts determined to subpixel accuracy by
the number of periods of the phase difference along each frequency axis. Robust estimates of shifts can be
obtained by transforming its discontinuities to Hough domain. Experimental results show that the proposed
method exhibits robust and accurate registration performance even for the noisy images that could not be han-
dled by conventional registration algorithms. We have also incorporated this technique to a registration-based
nonuniformity correction (NUC) framework, indicating that our registration technique is able to estimatemotion
parameters reliably, leading to satisfactory NUC result.

Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.
1. Introduction

Image registration is the process of establishing point-to-point cor-
respondence between two images of the same scene [1,2]. This process
is commonly used in infrared imaging systems, such as electronic stabi-
lization of sensors, image fusion,multi-frame super-resolution and non-
uniformity correction in infrared focal-plane arrays (IRFPA) [3–9]. In
many situations, the performance of algorithms that employ image reg-
istration information depends heavily on the accuracy of the shift esti-
mates. However, little attention has been devoted to the registration
methods for infrared images in which fixed-pattern noise (FPN) rather
than temporal noise is the dominant noise component [4,5]. FPN is per-
ceived as a superimposed pattern that is approximately constant for all
image frames. Almost all registration methods require the assumption
that the noise in observed images is both spatially and temporally inde-
pendently distributed [1,2]. The precondition, however, is usually im-
practical for infrared images especially when they are deteriorated by
FPN. Under these circumstances, the performance of these techniques
will degrade significantly.

FPN can be reduced by calibrating the sensor by means of imaging
target scenes with uniform intensities [10]. It can also be reduced from
sequences of video by post-processing algorithms, i.e., scene-based non-
uniformity corrections (NUC) [6–9]. However, some of these methods
inherently rely on accurate image registration of the raw video. These
registration-based techniques can recover the clean scene by analyzing
12 Published by Elsevier B.V. All rig
a small number of image frames, using the idea that each detector
should have an identical response when observing the same scene
point over time. Clearly, the performance of these registration-based
nonuniformitymethods is often sensitive to the accuracy of registration.
If the level of the FPN is high relative to the true scene, then a registration
algorithm may mistakenly attempt to register the fixed pattern in the
FPN-dominated image while ignoring the motion in the salient true
scene. Considering this contradiction, it is therefore very desirable to
have a registration algorithm that is tolerant to FPN.

There are many existing shift estimation algorithms for motion esti-
mation between frames. The two-dimensional (2-D) cross-correlation
is one of themost commonly used techniques [11]. To improve the per-
formance of these traditional registration techniques, a simple idea is to
first blurring each image using spatial low-pass filter, then the registra-
tion is performed on the obtained images. This scheme can performwell
when the level of FPN is low to moderate. When the level of FPN is rel-
atively high or the FPN mainly exists in the low-spatial frequency do-
main, the effect of the spatial low-pass filter is very limited. Cain et al.
[5] employed a projection-based registration technique which projects
each two-dimensional image into two one-dimensional vectors through
averaging each image across its rows and columns, resulting in vertical
and horizontal image vectors, respectively. It achieves improved perfor-
mance over the traditional 2-D cross-correlation based techniques in the
presence of FPN due to the inherent averaging in the projection. But this
method assumes the values of FPN to be independent and identically
distributed random variables. Unfortunately, real noise patterns of
IRFPA show greatly spatially correlations (such as grids and stripes)
[12,13] and they do not fit well with this spatially unstructured model.
The real structured FPN may not be well cancelled through averaging
hts reserved.
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Fig. 1. (a) Phase matrix of discrete cross-power spectrum difference corresponding to
shifts of (4,3) pixels, (b) one row of the phase-difference matrices shown in (a).
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each rows and columns, thereby leading to significant performance
deterioration.

In view of this, we propose a new technique to address the prob-
lem of subpixel registration for infrared images under conditions of
FPN. We are interested in investigating the information contained in
the Fourier domain and the proposed method is motivated by the ob-
servation that the auto-power spectrum of FPN can be cancelled in
the difference of the cross-power spectrum of two discrete shifted
images while the shift information is well preserved. By deriving an
exact model for the phase of the cross-power spectrum difference,
we show that this phase matrix is a two-dimensional binary tripe sig-
nal and the period of the square signal along each axis determines the
shifts along corresponding axis. This in particular leads to a simple so-
lution directly from the phase-difference matrix through transform-
ing its discontinuities to Hough domain. The performance of the
proposed method is evaluated with infrared images with both simu-
lated and real structured FPN, showing significantly precise and reli-
able translation estimates even under a high level of FPN.

The rest of this paper is organized as follows. In Section 2, the
problem of image registration in the presence of FPN is formulated.
In Section 3, the proposed method is explained and developed. In
Section 4, experiential results are given In Section 5, conclusions are
drawn.

2. Problem formulation

Let s be the original image, and fi(i=1, 2) be two images that are
shifted versions of s:

f i x; yð Þ ¼ s xþ δx;i; yþ δy;i
� �

; i ¼ 1;2 ð1Þ

where (δx, δy)=(δx, 2−δx, 1, δy, 2−δy, 1) is the relative translations
between the image pair. In the absence of noise and aliasing, the
shift property of Fourier transform gives:

f̂ 1 u; vð Þ ¼ f̂ 2 u; vð Þe−j uδxþvδyð Þ ð2Þ

where f̂ i is the Fourier transform offi and (u, v) are the Fourier domain
coordinates. To identify (δx, δy), one computes a normalized cross-
power spectrum between f̂ 1 and f̂ 2

ĉ u; vð Þ ¼ f̂ 1 u; vð Þf̂ 2 u; vð Þ�

f̂ 1 u; vð Þf̂ 2 u; vð Þ�
��� ��� ¼ e−j uδxþvδyð Þ ð3Þ

where the hat sign as usual indicates the Fourier transform and the
asterisk stands for the complex conjugate. Once computed, the ap-
proach cited in the literature [14] is to compute the inverse Fourier
transform of ĉ u; vð Þand a Dirac delta function can be recognized as
an intensity peak, which can be found by simply scanning for the
global maximum value. The coordinate of this peak corresponds di-
rectly to the translation vector (δx, δy).

In most infrared imaging applications, noise exists in the captured
images up to a certain level. In such conditions, the images fi(i=1, 2)
in Eq. (1) should be remodeled as

f 1 x; yð Þ ¼ s xþ δx;1; yþ δy;1
� �

þ o x; yð Þ þ n1 x; yð Þ ð4Þ

and

f 2 x; yð Þ ¼ s xþ δx;2; yþ δy;2
� �

þ o x; yð Þ þ n2 x; yð Þ: ð5Þ

where o(x, y) stands for the FPN which is assumed be fixed between
two observed images and signal independent. Note that we do not
take the assumption that the FPN is spatially independent. This is in
agreement with most observations that FPN are indeed spatially
structured distributed [12,13]. The term n1 and n2 correspond to the
additive temporal noise, which are assumed to be mutually indepen-
dent. The FPN and additive temporal noise are also assumed mutually
independent. It is noted that these conditions are valid in general ap-
plications. According to this model, the cross-power spectrum can be
expressed as:

Sf 1 f 2 u; vð Þ ¼ f̂ 1 u; vð Þf̂ 2 u; vð Þ� ¼ ŝ u; vð Þŝ� u; vð Þe−j uδxþvδyð Þ

þŝ u; vð Þô� u; vð Þe−j uδx;1þvδy;1ð Þ þ ŝ u; vð Þ�ô u; vð Þe j uδx;2þvδy;2ð Þ
þŝ u; vð Þ�n̂2 u; vð Þe j uδx;1þvδy;1ð Þ þ ŝ u; vð Þn̂2

� u; vð Þe j uδx;2þvδy;2ð Þ
þn̂1 u; vð Þô� u; vð Þ þ n̂2

� u; vð Þô u; vð Þ þ ô u; vð Þô� u; vð Þ
þn̂1 u; vð Þn̂2

� u; vð Þ ¼ ŝ u; vð Þŝ� u; vð Þe−j uδxþvδyð Þ þ ô u; vð Þô� u; vð Þ:
ð6Þ

Whitening the magnitude is normalized to unity for all fre-
quencies of the cross-power spectrum. In this case, the image
data is not cancelled out in the normalized (whiten) cross-power
spectrum

ĉ u; vð Þ ¼ Sf 1 f 2 u; vð Þ
Sf 1 f 2 u; vð Þ
��� ��� ¼

ŝ u; vð Þŝ� u; vð Þe−j uδxþvδyð Þ þ ô u; vð Þô� u; vð Þ
ŝ u; vð Þŝ� u; vð Þe−j uδxþvδyð Þ þ ô u; vð Þô� u; vð Þ
��� ��� : ð7Þ

In such circumstances, inverse Fourier transform of ĉ u; vð Þ is no
longer a Dirac delta function (Dirichlet kernel in the discrete case
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Fig. 2. (a), (b) Two noisy infrared images with shifts of (4.3, 3.2) (c) noisy stripe phase matrix of discrete cross-power spectrum difference between (a) and (b) (d) one row of the
phase matrix of discrete cross-power spectrum difference shown in (c).
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[15]) but two peaks with magnitudes related to the corresponding
frequency content. Therefore, solving in the spatial domain or the
2D fitting method [15,16] is impractical. Other subpixel phase-corre-
lation methods which work directly in the Fourier domain [17–19]
are also inapplicable, since it requires fitting a plane to noisy phase-
difference data. In view of this, we develop a new algorithm which
removes the effect of the auto-power spectrum of FPN to address
this difficulty.

3. Registration method for infrared images under conditions of
fixed-pattern noise

From the above discuss we know that due to the presence of
auto-power spectrum of FPN, it is difficult to obtain accurate dis-
placement estimates only from the cross-power spectrum of two
images. We hope that the noise power spectrum can be removed
as much as possible, so as to obtain robust estimates for real trans-
lations. So first we calculate the conjugate of cross-power spectrum
between f̂ 1 and f̂ 2

Sf 2 f 1 u; vð Þ ¼ Sf 1 f 2
� u; vð Þ ¼ ŝ u; vð Þŝ� u; vð Þej uδxþvδyð Þ þ ô u; vð Þô� u; vð Þ: ð8Þ

A subtraction between the two cross-power spectrums is per-
formed to eliminate the FPN term

ΔSff u; vð Þ ¼ Sf 1 f 2 u; vð Þ−Sf 2 f 1 u; vð Þ
¼ ŝ u; vð Þŝ� u; vð Þe−j uδxþvδyð Þ−ŝ u; vð Þŝ� u; vð Þej uδxþvδyð Þ
¼ −2jŝ u; vð Þŝ� u; vð Þ sin uδx þ vδy

� �
:

ð9Þ
Because the signal's auto-power spectrum is real and non-negative,
so the difference of cross-power spectrum between the two images is
pure imaginary, and its phase is given by

φ̂ u; vð Þ ¼ ∠ΔSff u; vð Þ¼
π=2 when sign ΔSff u; vð Þ

� �
¼ 1

−π=2 when sign ΔSff u; vð Þ
� �

¼ −1

8>><
>>: ð10Þ

where the sgn(⋅) is the signum function. The above discussion is limited
to the continuous case. When dealing with digital images, f1 and f2 are
specified only in finite size discretized arrays. However, replacing the
Fourier transform by the discrete Fourier transform (DFT), and also as-
suming a periodic extension of the images outside their compact sup-
port. From the definition of the DFT based on Fourier series, it follows
immediately upon substituting u ¼ 2πk

N and v ¼ 2πl
M that the difference

of the two discrete cross-power spectrum becomes

ΔSff k; lð Þ ¼ −2jŝ k; lð Þŝ� k; lð Þ sin 2πk
N

δx þ
2πl
M

δy

� �
; ð11Þ

where k=0,..., M−1and l=0,..., N−1. After some manipulations we
obtain

φ̂ k; lð Þ ¼ ∠ΔSff k; lð Þ¼ −π=2
k
N
δx þ

l
M

δy∈ K;
2K þ 1ð Þ

2

� �
; K∈Ζ

π=2 others

:

(
ð12Þ

Note if we denote π
2= as white (one) and denote −π

2= as black
(zero), the phase matrix becomes a discrete 2D periodic binary stripe
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signal. Fig. 1 provides an ideal examples of φ̂ k; lð Þ when (δx, δy)=(4,
3). Note how the period of the square signal along each axis deter-
mines the shifts along corresponding axis: the period along the u
axis is N

δx
, and hence there are δx repeated cycles along each row of

the phase matrix, where δx may or may not be an integer. When δx
is not an integer, the number of repeated cycles in a row is given by
the integer part of δx plus a fraction of a cycle defined by the
Fig. 4. Schematic diagram of two parallel lines in the phase matrix difference of discrete
cross-power spectrum difference.
noninteger portion of δx. A similar argument applies to the columns
of φ̂ k; lð Þ. This process of counting the number of cycles along the
rows and columns of the phase matrix of discrete cross-power spec-
trum difference is essentially to determine the shifts. Determining
the direction of shifts is much simpler in contrast. If k is fixed at
zero and l is close to zero. The value of φ̂ k; lð Þ is entirely determined
by the sign of δy.It is similarly for the direction of δx. So for the dis-
placement direction, we only need to examine the values of φ̂ k; lð Þ
at the neighborhood of(0, 0).

As indicated above, the key to solve the problem is to find how
many cycles of phase matrix of discrete cross-power spectrum differ-
ence fit in the range [0, 2π) along each frequency axis. Due to noise
and other sources of error, however, counting the number of cycles
per 2π may lead to inaccurate results. Besides, δx and δy may not be
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Fig. 5. (a) The Hough transform of the phase discontinuities shown in Fig. 4(b), (b) the
local maxima and the threshold, and (c) the peaks detected by thresholding.



Fig. 6. (a) A 512×512 infrared image acquired from a well corrected HgCdTe IRFPA, (b) ,(c) noise patterns of two IRFPAs,(d) a sample image contaminated by the noise patterns
shown in (b) and at a PSNR of 5.

Table 1
Results for image pair with shift of (3.50, 4.50) in simulated unstructured pattern noise.

PSNR 2DCC 2DCC+LPF Cain Proposed

5 dB (−0.02, 0.17) (−0.07, 0.26) (3.36, 4.25) (3.58, 4.18)
10 dB (−0.01, 0.14) (−0.12, 0.36) (3.35, 4.39) (3.58, 4.38)
15 dB (−0.03, 0.06) (3.01, 4.81) (3.37, 4.34) (3.57, 4.42)
20 dB (−0.01, 0.12) (3.13, 4.73) (3.41, 4.42) (3.52, 4.45)
25 dB (3.41, 4.59) (3.27, 4.76) (3.43, 4.55) (3.47, 4.47)
30 dB (3.49, 4.53) (3.39, 4.62) (3.42, 4.54) (3.48, 4.47)
35 dB (3.49, 4.54) (3.37, 4.60) (3.44, 4.52) (3.48, 4.47)
40 dB (3.49, 4.52) (3.41, 4.60) (3.45, 4.54) (3.48, 4.47)
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integer. Fig. 2 shows another example of noisy phase matrix of dis-
crete cross-power spectrum difference corresponding to shifts of
(4.3, 3.2). Despite the serious FPN, the underlying two-dimensional
stripe signals are clearly visible. Figs. 2(d) shows one row of
Fig. 2(c). It can be seen that it is difficult to get accurate results simply
by examine a single row or column. We must exploit the fact that a
total of M×N data points are available for robust estimation.

To overcome this problem, the first thing is to denoise the phase
matrix of discrete cross-power spectrum difference. As is shown in
Fig. 2(c), the noise consists mainly of the isolated points, which in-
spires us to adopt a median filter to remove these speckles. Tradition-
al median filter replaces each pixel value by the median of its
neighbors, i.e. the value such that 50% of the values in the neighbor-
hood are above, and 50% are below. This can be difficult and costly
to implement due to the need for sorting of the values, especially
when the filter window is large. However, in our case, the phase ma-
trix is a binary image, so the median filter is in fact a mode filter,
which replaces each pixel value by its most common neighbor. So
we can omit the sorting operation and just count the number of
ones or zeros in the window. Thus the simplified version of median
filter is computationally muchmore efficiently. To protect the original
shape of the stripe from being destroyed, the filter size should not ex-
ceed M

δs
� N

δs
, where δs is the maximum shift or upper bound of the dis-

placement in pixels between two images. Fig. 3(a) shows a denoised
version of the phase matrix of the discrete cross-power spectrum dif-
ference shown in Fig. 2(c). The shape of stripe has been basically re-
stored. The challenge now is to determine the exact fractional
portion of the repeated cycles. From Fig. 1(a) and Fig. 3(a), we can in-
tuitively find that the discontinuities of phase matrix of discrete
cross-power spectrum difference form a set of parallel lines. We
could use these discontinuities as a landmark point of the cycle to
count the number of cycles along each row or each column. From
Eq. (12) the function of the set of lines can be easily obtained:

k
N
δx þ

l
M

δy ¼ K: ð13Þ

This shows that the family of lines in the phase space parameter-
ized by K-that is, each integer value of K would give a different line
along which the phase is at the junction of� π

2. These lines can be eas-
ily obtained by the edge detection algorithms (Fig. 3(b)).

The Hough transform is the linear transform for detecting straight
lines and basically maps a line to a parameter space of(θ, ρ). Each line
itself is parameterized by the angle θ and its distance ρ from the ori-
gin. Consider two lines whose parameter equations are as follow

ρ1 ¼ x cosθ1 þ y cosθ1
ρ2 ¼ x cosθ2 þ y cosθ2

�
ð14Þ



Table 2
Results for image pair with shift of (4.50, 3.50) in simulated unstructured pattern noise.

PSNR 2DCC 2DCC+LPF Cain Proposed

5 dB (−0.31, −0.12) (−0.04, 0.06) (4.76, 3.13) (4.23, 3.65)
10 dB (−0.21, −0.14) (−0.02, −0.23) (4.67, 3.31) (4.38, 3.58)
15 dB (−0.22, −0.16) (4.13, 3.31) (4.57, 3.39) (4.51, 3.62)
20 dB (−0.26, 0.22) (4.22, 3.43) (4.61, 3.46) (4.52, 3.55)
25 dB (4.41, 3.49) (4.44, 3.42) (4.55, 3.45) (4.47, 3.52)
30 dB (4.49, 3.48) (4.49, 3.42) (4.52, 3.48) (4.48, 3.52)
35 dB (4.50, 3.49) (4.47, 3.42) (4.54, 3.47) (4.48, 3.52)
40 dB (4.50, 3.49) (4.49, 3.40) (4.54, 3.49) (4.50, 3.54)

Table 3
Results for image pair with shift of (−3.00, 2.50) in real structured pattern noise.

PSNR 2DCC 2DCC+LPF Cain Proposed

5 dB (−0.31, −0.07) (−0.47, −0.46) (−0.72, 0.44) (−3.17, 2.65)
10 dB (−0.11, −0.04) (−0.19, −0.36) (−2.12, 0.94) (−3.11, 2.52)
15 dB (−0.03, −0.06) (−3.31, 1.91) (−2.62, 2.14) (−3.07, 2.42)
20 dB (−3.31, 2.22) (−3.13, 2.37) (−2.78, 2.19) (−3.04, 2.47)
25 dB (−3.41, 2.59) (−3.17, 2.46) (−2.87, 2.39) (−3.02, 2.47)
30 dB (−3.00, 2.53) (−3.09, 2.42) (−2.96, 2.44) (−3.00, 2.48)
35 dB (−2.99, 2.50) (−3.07, 2.41) (−2.97, 2.45) (−3.00, 2.48)
40 dB (−2.99, 2.50) (−3.01, 2.41) (−2.97, 2.47) (−3.00, 2.48)
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If θ1=θ2 and ρ1≠ρ2, the two lines are considered to be parallel.
Obviouslyθ1=θ2 and the absolute value of the difference between
ρ1 and ρ1 is the space between two parallel lines. Fig. 4 gives a sche-
matic diagram of two parallel lines in the phase matrix of discrete
cross-power spectrum difference. It can be seen that the number of
cycles, that is, δx and δy, may or may not be integer values and can
be given by

δx ¼
N
2xc

¼ NΔρ
2 cosθ

; ð15Þ

and

δy ¼
M
2yc

¼ MΔρ
2 sinθ

: ð16Þ

The two equations inspire us to estimate the shifts in the Hough-
transform domain. As can be verified from the above derivations, θ re-
mains invariant among all lines and also Δρ is an invariant parameter.
Therefore in the Hough domain, we expect to see a set of peak values
situated at equal distances from each other, and parallel to the ρ axis.

Fig. 5(a) shows an example of the Hough transform of the phase
discontinuities shown in Fig. 4(b), where the peaks can be clearly
Table 4
Results for image pair with shift of (2.50, −3.00) in real structured pattern noise.

PSNR 2DCC 2DCC+LPF Cain Proposed

5 dB (0.31, 0.12) (0.21, 0.16) (0.86, −0.74) (2.35, −3.16)
10 dB (0.11, 0.12) (0.22, 0.13) (1.21, −1.31) (2.39, −3.08)
15 dB (0.22, 0.16) (0.13, 0.14) (2.07, −2.49) (2.41, −3.02)
20 dB (0.26, 0.12) (2.22, −2.43) (2.34, −2.75) (2.44, −3.05)
25 dB (2.41, −2.94) (2.44, −2.81) (2.39, −2.85) (2.47, −3.02)
30 dB (2.49, −2.98) (2.49, −2.92) (2.41, −2.89) (2.48, −3.02)
35 dB (2.50, −2.98) (2.47, −2.92) (2.41, −2.92) (2.48, −3.02)
40 dB (2.49, −2.98) (2.49, −2.93) (2.42, −2.94) (2.48, −3.02)
identified by a simple thresholding process. As is customary in
Hough transform, we used the local maxima for finding a suitable
threshold value. In our case, since all the peaks are known to be
aligned parallel to the ρ axis, we took the maximum of the Houghma-
trix for each ρ as the local maximum. This yields a curve similar to the
one shown in Fig. 5(b). We then used 1.5 times of the average of the
local maxima curve as a threshold. Specifies the size of the suppres-
sion neighborhood is also essential to avoiding fake peaks. The
min M;Nð Þ

δs
� min M;Nð Þ

δs
neighborhood around each peak should be set to

zero after the peak is identified. Fig. 5(c) shows the peaks detected
by the thresholding process.

Estimating δx and δy from these peak values in the Hough-trans-
form domain is an easy job now. A robust estimates of Δρ and θ can
thus be simply obtained by using the median value

Δρ̂ ¼ medðΔρiÞ; i ¼ 1;…; t−1 ð17Þ

and

θ̂ ¼ medðθiÞ; i ¼ 1;…; t; ð18Þ

where t is the total number of peak values. Then δx and δy can be de-
duced by Eqs. (15) and (16).

4. Experimental results

We applied the technique to both synthetic and real data. First, we
compared the proposed method with three other registration
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Fig. 7. The projected image vectors of two FPN images shown in Figs. 6(b) and (c). (a)
The projected vectors obtained by averaging each FPN image vertically; (b) the pro-
jected vectors obtained by averaging each FPN image horizontally.
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Fig. 8. The offset (a) and gain (b) FPN images obtained from the two point calibration
parameters of an uncooled infrared camera.
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methods using synthetic images with known shifts contaminated by
both the simulated and the real FPN. Then, we test our algorithm in
both offset and gain nonuniformity conditions. Finally, we applied
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Fig. 9. Mean absolute error of translation estima
our technique to real noisy infrared sequence, combining with the
registration-based NUC method presented in Ref. [9], to demonstrate
its practical effect. In all experiments, the kernel size of the median
filter in our method is set as 7×7. We have found that this choice con-
sistently yields very good results in all cases.

4.1. Application to simulated data

In this subsection, the registration of the images was compared
with three methods: the 2-D cross-correlation method (2DCC), a
combination of the spatial low-pass filtering together with the 2-D
cross-correlation method, denoted as the 2DCC plus low-pass filtering
(2DCC+LPF), and the projection-based 1-D cross-correlation method
proposed by Cain et al. In order to obtain subpixel resolution for the
three cross-correlation methods, we interpolate the original images
by zero-padding the cross-power spectrum as suggested in Ref. [20].
The 2DCC+LPF uses a Gaussian of low-pass filter of 10×10 pixels
for smoothing the images.

For synthetic data, we use the approach described in Ref. [15], to
generate images with subpixel shifts, i.e., starting from a real high res-
olution image, we low-pass-filtered and downsampled integer shifted
versions of the image. Then the relative shifts become fractional. The
original high resolution image shown in Fig. 6(a) is acquired from a
well corrected HgCdTe IRFPA camera.

In the first study, two sets of subpixel translations are (3.5, 4.5)
and (4.5, 3.5), and the FPN is considered Gaussian distributed. Clearly,
the FPN is considered as spatially unstructured in this case. We con-
sider different noise level ranging from 5 dB to 40 dB peak signal-
to-noise ratio (PSNR) environments, which can be achieved by vary-
ing the standard deviation of the FPN. Tables 1 and 2 summarize the
results obtained.

It can be observed that when the PSNR is relatively high (>30 dB),
the four tested method can all give reliable shift estimates. It seems
that, on average, over the range of the PSNR, traditional 2D cross-
correlation method performs the best. Our method also performs
very well at this lower noise level, but the accuracy is slightly lower
than the traditional 2D cross-correlation method. The accuracies of
Cain's method and the 2DCC+LPF are inferior comparatively, which
partly because the spatial averaging or smoothing may result in infor-
mation loss of the true scene. When the PSNR reduces to 20 dB, the
traditional 2D cross-correlation method fails to give correct estimates.
The accuracy of 2DCC+LPF also drops dramatically, and when the
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Fig. 10. NUC performance comparison with the two versions of the interframe registra-
tion-based NUC method: (a) the raw corrupted frame. (b) Corrected frame when tradi-
tional phase-correlation registration is applied. (c) Corrected frame when the proposed
registration method is applied.
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PSNR reduces to 10 dB, it begins to not work properly, wrongly con-
sidering there is no shift between two images. Both the proposed
method and Cain's method provides correct estimates for subpixel
shift estimation under low PSNR conditions, but it is clear that our
method consistently outperforms the Cain's method, under different
noise levels and pixels shifts.

In the second experiment, we focus on comparing the four regis-
tration algorithms when the FPN is structured. The noise patterns
shown in Figs. 6(b) and (c) are real nonuniformities acquired from
two IRFPA cameras. We first generated two sets of images with sub-
pixel translations of (−3.0, 2.5) and (2.5,−3.0), using the procedures
as before. Then the noise pattern shown in Fig. 6(b) is added to the
image pair with translations of (−3.0, 2.5), and the noise pattern
shown in Fig. 6(c) is added to the image pair with translations of
(2.5, −3.0). We vary the amounts of the added FPN images to pro-
duce image pairs with different PSNRs between 5 and 40. The results
obtained are shown in Tables 3 and 4.

A similar tendency can also be seen in the results of Tables 3 and 4,
where the same methods are applied. In general, 2DCC and 2DCC
+LPF can determine the translations in high-to-moderate PSNR envi-
ronments relatively well. They cannot, however, provide satisfactory
results under noisy environments. The performance of 2DCC+LPF is
worse than when the FPN is unstructured, which can be explained be-
cause the structured FPN could not be effectively reduced via spatial
filtering, especially when the FPN contains large low-spatial varia-
tions. It also can be noted that the accuracy of Cain's method drops
rapidly with the decline of the PSNR. Some wrong results are given
when the PSNR is under 10 dB since to the noise patterns are spatial
uneven distributed. Fig. 7 shows the projected image vectors
obtained by averaging each FPN image across its rows and columns.
Ideally, the projected vector should have a flat shape. However,
since the real FPN is structured and highly spatially correlated, it
could not be effectively canceled by averaging. Obviously, when
those FPN components dominate the whole projected vectors, the re-
sult will become unreliable. However, the proposed method again
provides satisfactory performance in all cases since the effect of FPN
is eliminated in cross-power spectrum difference, even though the
FPN is highly structured. Furthermore, when the PSNR is only 5 dB,
our method can also estimate image translation with about 0.2-
pixel accuracy. To demonstrate this noise level, we show the noisy
image in Fig. 6(d), which is contaminated by the noise patterns
shown in Fig. 6(b), at a PSNR of 5. These results clearly demonstrate
the effectiveness of the proposed method in dealing with the FPN.

4.2. Performance evaluation in both offset and gain nonuniformity

As is presented in Section 2, in the proposed method, the FPN is
modeled as additive, signal independent noise. However, it is widely
accepted that the FPN should base on a linear model [10], i.e., it con-
sists of two components: gain and offset. The true scene value is first
scaled by a gain factor and then offset by an offset term to produce the
observed detector output. Since in the proposed method, the gain is
assumed uniform across all detectors. If gain nonuniformity is pre-
sent, its performance will degenerate. Here we investigate the ability
of the proposed registration algorithm to operate in the presence of
FPN with both gain and offset components. We first generate 10
image pairs with known shifts using the same procedure as before.
Then these images are corrupted by the gain and offset FPN shown
in Fig. 8. The gain and offset images are acquired from the two point
calibration parameters of an uncooled infrared camera. By linear scal-
ing the two noise patterns, the level of offset and gain FPN can be
changed easily. The mean absolute error of the estimate is presented
for several levels of nonuniformity (indentified by standard devia-
tions) in Fig. 9.

In Fig. 9, the mean absolute error of the shift estimates both in-
creases nonlinearly with increased bias nonuniformity standard
deviation and gain nonuniformity standard deviation. Moreover, the
mean absolute error is more sensitive to gain nonuniformity standard
deviation as expect. When the gain nonuniformity standard deviation
is less than 0.3, its influence on the estimates accuracy is relatively
small. According to the linear model of FPN, this level of gain variation
can be approximated by bias variation, which our algorithm can han-
dle effectively. However, the effect of gain nonuniformity becomes
apparent when its standard deviation is greater than 0.4. In such a
case, the error will be expected to increase since the observed images
may not fit the model of our algorithm. Fortunately, researches show
that gain nonuniformity has a good time stability and offset nonuni-
formity dominates gain nonuniformity in most applications [7,8,21].
If the level of gain nonuniformity is too high to obtain good registra-
tion accuracy, it may be necessary to use calibration-based nonunifor-
mity methods beforehand to reduce its effect.



Fig. 11. Registration result of two sample images from the tested noisy video sequence: (a) The 7th frame of the video sequence. (b) The 8th frame of the video sequence. (c) Dif-
ference image obtained with traditional phase-correlation registration. (d) Difference image obtained with the proposed method.
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4.3. Application to registration-based nonuniformity correction

In this section, the proposed algorithm is tested on a real infrared se-
quence data. The data set was acquired at 6 p.m. by using a 320×256
HgCdTe FPA camera operating in the 8–14 μm range and at a rate of
25 fps. An issue encountered in performing registration on real infrared
data is the lack of ground truth; hence, the performance cannot be eval-
uated objectively. Considering that the nonuniformity correction is one
of the main applications for our registration method, we have incorpo-
rated our method into the recently developed interframe registration-
based nonuniformity correction framework [9], so that the quality of
the motion estimation can be assessed based on their impact on the re-
sults of the nonuniformity corrected images. In Ref. [9], Zuo et al.
employed a traditional phase-correlation method [14] to estimate
translations between consecutive frames. Here we replace it with our
proposed registration method and we use the same parameters as sug-
gested in Ref. [9]. We compared our modified version with the original
one. Since only the registration method is changed, the performance
difference should only be attributed to the accuracy of the registration
methods. The more accurate the registration algorithm is, the higher
NUC precision and convergence rate should be achieved.

The NUC results using 30 image frames are shown in Fig. 10. Fig. 10
(a) corresponds to uncorrected 30th frame. Fig. 10(b) corresponds to
corrected version of the 30th frame obtained when the traditional
phase correlation is used as the registration method in the interframe
registration-basedNUCmethod,while Fig. 10(c) corresponds to corrected
version of the 30th frame obtainedwhen the proposed registrationmeth-
od is used in the interframe registration-based NUC method. Of course,
due to lack of ground truth, the performance evaluation is somewhat sub-
jective. Comparing the results in Fig. 10(b) and (c), it is clear that, to the
naked eye, the correction result using the proposed registration method
has a better visual effect since the FPN is hardly perceptible. While from
the result of the original version,we can see some residual nonuniformity,
especially at the periphery of the image. This is partially because some-
times the traditional phase-correlation method fails to detect the real
translation between two dirty images, wrongly considering the motion
is insufficient, which slows the correction parameters updating process.

To better explain the difference inNUCperformance, two consecutive
frames are extracted from tested infrared sequence, shown in Fig. 11(a)
and (b). The difference of the two properly registered frames using the
traditional phase-correlation method and the proposed method are
shown in Fig. 11(c) and (d), respectively. Note thedifference images con-
tain only the overlapped area between the two images. Since the objects
and scene in the two consecutive images are stationary, the difference
image should contain only nonuniformity ideally. Comparing the two
difference images, it is clearly that the one registered by the proposed
method showsmuch less signs of the scene information and almost con-
sists of pure FPN. This observable result let us conclude that our registra-
tionmethod gives more accurate shifts estimates than traditional phase-
correlation method under conditions of real nonuniformity.

5. Conclusions

The paper proposes a new technique to address subpixel image reg-
istration directly in frequency domain by counting the number of cycles
of the phase matrix of the cross-power spectrum difference. Its main
feature is the capability to perform reliable image registration under
fixed-pattern noise environment. This is because this method utilizes
the difference of the cross-power spectrum of two discrete shifted im-
ages to suppress the noise power spectrumwhile the shifts information
is well preserved. Since no inverse transforming is required, the compu-
tational complexity is essentially determined by the Fast Fourier Trans-
form (FFT) (i.e. Nlog(N), for N points). There are of course small
overheads associated with computing the phase discontinuities matrix
and its Hough transform. Experimental results show that the proposed
method is effective in identifying subpixel translations under different
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noise levels and environments. Besides, compared with Cain's method,
our method provides a better solution for handling structured FPN. Fi-
nally, its great practical effect has been shown by applying our registra-
tion algorithm to a registration-based NUC method.

It is worth mentioning that the effectiveness of the proposed
method is based on an offset-only model for FPN and this rule cannot
be applied in every case. The real FPN is not purely additive, but has the
gain component. Experimental results show that under certain level of
gain nonuniformity, our method can also give reliable results. But our
method may not work well in the cases where the gain nonuniformity
is the dominate component of FPN. In addition, as in any shift-only reg-
istration technique, the performance may degrade if the shift transfor-
mation model does not hold. We found that, if the true motion is
sufficiently close to translation, then the degradation in performance
may be small. Of course, this point needs more detailed investigation.

Acknowledgements

This work was supported by the Research and Innovation Plan for
Graduate Students of Jiangsu Higher Education Institutions, China
(grant no. CXZZ11_0237) and Jiangsu Planned Projects for Postdoc-
toral Research Funds, China (grant no. 1101081c).

References

[1] L.G. Brown, ACM Comput. Surv. 24 (1992) 325.
[2] B. Zitová, J. Flusser, Image and Vision Computing 21 (2003) 977.
[3] M.S. Alam, J.G. Bognar, R.C. Hardie, B.J. Yasuda, IEEE T. Instrum. Meas. 49 (2000)
915.

[4] E.E. Armstrong, M.M. Hayat, R.C. Hardie, S.N. Torres, B.J. Yasuda, in: G.T. Andrew
(Ed.), SPIE, 1999, p. 150.

[5] S.C. Cain, M.M. Hayat, E.E. Armstrong, IEEE T. Image Process 10 (2001) 1860.
[6] W.F. O'Neil, Meeting of the IRIS Specialty Group on Passive Sensors 1, Tucson, AZ,

1997, p. 329.
[7] R.C. Hardie, M.M. Hayat, E. Armstrong, B. Yasuda, Appl Optics 39 (2000) 1241.
[8] B.M. Ratliff, M.M. Hayat, R.C. Hardie, J. Opt. Soc. Am. A 19 (2002) 1737.
[9] C. Zuo, Q. Chen, G.H. Gu, X.B. Sui, J. Opt. Soc. Am. A 28 (2011) 1164.

[10] D.L. Perry, E.L. Dereniak, Opt. Eng. 32 (1993) 1854.
[11] W.K. Pratt, Aerospace and Electronic Systems, IEEE Transactions on, AES-10, 1974,

p. 353.
[12] J. Pezoa, O. Medina, in: C. San Martin, S.-W. Kim (Eds.), Progress in Pattern Recogni-

tion, Image Analysis, Computer Vision, and Applications, Springer Berlin, Heidelberg,
2011, p. 55.

[13] O.J. Medina, J.E. Pezoa, S.N. Torres, in: D.L. Paul, K.S. Ashok, S.W. Priyalal, R. Manijeh,
V. Jose Luis Pau, S. Rengarajan, P.U. Melville, M. Tariq (Eds.), SPIE, 2011, p. 81550H.

[14] C.D. Kuglin, D.C. Hines, IEEE International Conference on Cybernetics and Society,
1975, p. 163.

[15] H. Foroosh, J.B. Zerubia, M. Berthod, IEEE T Image Process 11 (2002) 188.
[16] K. Takita, T. Aoki, Y. Sasaki, T. Higuchi, K. Kobayashi, Ieice T Fund Electr, E86a,

2003, p. 1925.
[17] W.S. Hoge, Ieee T Med Imaging 22 (2003) 277.
[18] H.S. Stone, M.T. Orchard, E.C. Chang, S.A. Martucci, Ieee T Geosci Remote 39

(2001) 2235.
[19] H. Foroosh, M. Balci, International Conference on Image Processing, Vols 1–5,

2004, p. 1915.
[20] J.A. Parker, R.V. Kenyon, D.E. Troxel, Medical Imaging, IEEE Transactions on 2

(1983) 31.
[21] E. Gurevich, A. Fein, in: A. Bjorn, F.F. Gabor, S. Marija (Eds.), SPIE, 2003, p. 809.


	Registration method for infrared images under conditions of fixed-pattern noise
	1. Introduction
	2. Problem formulation
	3. Registration method for infrared images under conditions of fixed-pattern noise
	4. Experimental results
	4.1. Application to simulated data
	4.2. Performance evaluation in both offset and gain nonuniformity
	4.3. Application to registration-based nonuniformity correction

	5. Conclusions
	Acknowledgements
	References


