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Background: Photoacoustic dermoscopy (PAD) is a promising branch of photoacoustic microscopy (PAM) 
that can provide a range of functional and morphologic information for clinical assessment and diagnosis of 
dermatological conditions. However, most PAM setups are unsuitable for clinical dermatology because their 
single-scale mode and narrow frequency band result in insufficient imaging depth or poor spatiotemporal 
resolution when visualizing the internal texture of the skin. 
Methods: We developed a multiscale confocal photoacoustic dermoscopy (MC-PAD) with a 
multifunction opto-sono objective that could achieve high quality dermatological imaging. Using the 
objective to coordinate the spatial resolution and penetration depth, the MC-PAD was used to visualize 
pathophysiological biomarkers and vascular morphology from the epidermis (EP) to the dermis, which 
enabled us to quantify skin abnormalities without using exogenous contrast agents for human skin. 
Results: The MC-PAD was shown to have the ability to differentiate between different types of cells 
(such as red blood cells and melanoma cells), image and quantify pigment of the skin, and visualize skin 
morphology and blood capillary landmarks. The MC-PAD detected a significant difference in the structures 
of some pigmented and vascular lesions of skin diseases compared with that of healthy skin (P<0.01). The 
café au lait macule (CALM) skin type was found to have a relatively higher melanin concentration and 
thicker stratum basale (SB) in the EP than healthy skin. The dermal vascular network of skin that had a port 
wine stain (PWS) had greater diameters and a denser distribution than healthy skin, as reported in clinical 
trials.
Conclusions: The MC-PAD has a broad range of applications for the diagnosis of human skin diseases 
and evaluation of the curative effect of treatments, and it can offer new perspectives in biomedical sciences.
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Introduction

Medical imaging technology is of great importance in 
modern clinical medicine (1-4). In dermatology, detailed 
imaging of the structure and function of the skin is 
important when performing a comprehensive assessment 
and determining a quantitative treatment (5-7). However, 
despite years of advances in medical imaging technology, 
it has remained difficult to non-invasively visualize the 
structure and function of human skin with deep penetration, 
strong contrast, and high spatial resolution (8-10). In 
clinical practice, biopsies are commonly used to evaluate 
and analyze skin diseases (11). The technique is inherently 
invasive and can only provide information that is specific 
to a very limited portion of a lesion. Optical coherence 
tomography (OCT) has been used for non-invasive high-
resolution imaging of the skin (2,12), but the technique 
still has limitations stemming from biological light 
scattering. Moreover, given their similar optical refractive 
indices, it is challenging to distinguish hair follicles, lesion 
vessels, sweat glands, and sebaceous glands within the  
dermis (13). Ultrasonography can penetrate the entire 
thickness of the human skin up to several centimeters (3,14); 
but, due to poor imaging contrast, this technique is difficult 
to identifying structures tens of microns below the skin 
surface (15). As a result, human skin diseases are often over- 
or under-treated.

The recent development of photoacoustic microscopy 
(PAM) has overcome most of the limitations of previously 
available techniques by integrating optical and ultrasonic 
imaging. It has greatly reduced the effect of tissue 
scattering of photons using one-way ultrasound detection 
while retaining a high optical absorption contrast (16-23).  
Successful use of PAM has been reported in numerous 
studies (24-35), including observations of cell distribution, 
monitoring of vascularization, and label-free photoacoustic 
(PA) angiography. However, the opto-sono objective in most 
PAM setups is insufficient for clinical use in dermatology 
given its single-scale mode (single magnification or depth 
of focus), which results in a poor depth of resolution and a 
low signal-to-noise ratio (SNR). In addition, conventional 
PAM imaging uses a narrow-band ultrasonic transducer, 
which limits the axial resolution and imaging capability of 
the entire system. 

Although a non-focal spot can increase the penetration 
depth and an ultra-high frequency transducer can improve 
the acoustic resolution in the PAM system, high-aperture 

beam illumination produces discrete flares in the images, 
and ultra-high frequency PA signals are prone to severe 
attenuation and reflection in skin tissue. To address these 
issues, we developed a multiscale confocal photoacoustic 
dermoscopy (MC-PAD) system that uses a multifunction 
opto-sono objective that is mainly composed of a focused 
broadband transducer and a custom-made multiple 
objective lens. The core technique for high-performance 
multiscale imaging is the use of multiple objective lenses 
(typical magnifications: 4×, 10×, and 20×) and a multiscale 
adjustable device (focal adjustment range of 3 cm) to ensure 
sufficient resolution and resolve the dilated lesion vessels 
from several tens of microns to a few hundred microns. In 
addition, the multifunction opto-sono objective allows a 
relatively large number of photons to scatter into deeper 
skin tissues by selecting the appropriate magnification and 
focus depth position. 

The human skin consists of the epidermis, dermis, and 
subcutaneous tissue. The epidermis includes the stratum 
corneum (SC) and stratum basale (SB). Numerous blood 
vessels are present in the dermis, and the different layers 
have different optical-absorption characteristics (36,37). 
The MC-PAD can show the epidermal structure, including 
the SC and SB, as well as blood vessels in the dermis, due 
to the strong optical absorption of melanin (the main 
component of SC and SB) and hemoglobin (the main 
component of blood vessels). Here, we demonstrate in 
clinical practice the multiscale imaging capability of MC-
PAD from the skin epidermis to the dermis with high 
resolution and deep penetration. We present an effective 
approach for dermatological imaging via the development 
of a system for MC-PAD. We also present the results of our 
investigation into how the imaging features associated with 
quantification of skin pigment and port wine stain (PWS) 
dermatological conditions relate to pathophysiological 
metrics. We investigated dermal features by developing an 
adjustable objective with a wide range of depth of focus, 
with which we were able to obtain a high depth/resolution 
ratio for MC-PAD. Finally, we discuss how the approach 
can advance research into dermatological conditions, 
evaluate the severity of these conditions, and quantify a 
treatment response. 

We present the following article in accordance with 
the Standards for Reporting Diagnostic accuracy studies 
(STARD) reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-21-878/rc).

https://qims.amegroups.com/article/view/10.21037/qims-21-878/rc
https://qims.amegroups.com/article/view/10.21037/qims-21-878/rc
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Methods

Bench-to-bedside translation of MC-PAD

We developed a multiscale high-resolution MC-PAD 
imaging system to clinically diagnose skin diseases (Figure 1). 
The detection sensitivity and SNR of the MC-PAD system 
can be greatly improved by the backward coaxial confocal 
mode (22,23). The artefacts that are induced by limited 

detection coverage can be avoided by using a broadband 
polyvinylidene fluoride (PVDF) transducer (38,39). The 
PVDF transducer has an overall diameter of 4 mm with a  
1 mm center hole that allows the laser beam to exit. Typical 
focal length is 14.3 mm. The beam is generated by the 
spherically focused structure that produces a numerical 
aperture (NA) of 0.28 (the central frequency of the PVDF 
transducer is 45 MHz).

Figure 1 A schematic of the MC-PAD system. (A) A schematic of the entire setup. (B) A photograph of the opto-sono objective with a 
two-dimensional hollow scanner. (C) The cross-sectional structure of the opto-sono objective. (D) Intensity profiles of the optical spot and 
acoustic spot at the focal distance. (E) A variation diagram of system resolution as a demonstration of imaging depth. (D,E) The NA of the 
objective lens with 4× magnification is 0.1, and the central frequency of the ultrasound transducer is about 45 MHz. MC-PAD, multiscale 
confocal photoacoustic dermoscopy; NDF, neutral density filter; PBS, polarizing beam splitter; PD, photodiode; POL, plan objective 
lens; SMF, single-mode fiber; FC, fiber collimator; BE, beam expander (2×, 5×, and 10×); MOL, multiple objective lens; UT, ultrasound 
transducer; AC, adjustable coupling cup; A/D, analog to digital; NA, numerical aperture.
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As shown in Figure 1, the system was based on a custom-
made multifunction opto-sono objective and a hollow, 
spherically focused PVDF ultrasound transducer with a 
central frequency of approximately 45 MHz and large 
bandwidth (5–85 MHz). A 532 nm pulse laser (DTL-
314QT; Laser-export Co., Ltd., Moscow, Russia) was used 
as the radiation source and offered sufficient contrast for 
skin imaging. A convex lens was used to focus the laser 
and pass it through a 25-μm pinhole for spatial filtering, 
and then the laser was focused into a single-mode fiber 
by a plan objective lens (with a working distance of  
37.5 mm, and NA of 0.1). The laser was finally focused 
by the objective, and then irradiate the tested skin surface 
to generate ultrasonic signals. A two-dimensional scanner 
(range: 5×5 cm2; scan resolution: 0.1 µm; HRXWJ-50R-2; 
TianRui ZhongHai, Beijing, China) was used to actuate 
the opto-sono objective automatically. The adjustable cup 
was filled with deionized water that served as an ultrasonic 
coupling medium. A transparent plastic film, through which 
light and sound could penetrate, was fixed on the head of 
the adjustable cup. The excitation source was eventually 
focused into multiple magnification modes. Those multiple 
magnification modes were implemented by a mechanical 
structure, which manually replaced independent lenses 
with different magnification modes, typically 4×/0.1 NA, 
10×/0.3 NA, and 20×/0.55 NA. Each independent lens 
could be manually adjusted by the multiscale adjustable 
configuration from 0 to 3 cm. The beam size after passing 
through the collimator was about 1.5 mm, and after the 
beam expander it was respectively about 3, 7.5, and 15 mm 
for 3 expanding multiples (2×, 5×, and 10×). The adjustable 
cup allowed the focus of the laser beam and sound field 
to be under the surface of the transparent film. Each skin 
cross-sectional (B-scan) image was reconstructed using the 
collected PA signals over 0.5 mm along the x direction (the 
number of scanning points was 201) and within 0.2 s, and 
the spacing distance between 2 B-scan images was 0.5 mm. 
The duration of the entire preparation process, including 
placement of the imaging head on the skin surface, was 
about 2–3 min. 

A 50 dB low-noise amplifier (LNA-650, RF BAY Inc., 
Gaithersburg, MD, USA) was used to sequentially pre-
amplify the ultrasonic signals, which was digitized by a 
high-speed data acquisition device (NI5124, National 
Instruments Corp., Austin, TX, USA), and stored on the 
acquisition PCs for subsequent image reconstruction. The 
beam spot sizes at focus were about 3.5, 2.1, and 1.3 μm 

for 3 NAs (4×/0.1 NA, 10×/0.3 NA, and 20×/0.55 NA, 
respectively), and optical depth-of-focus was about 0.35, 
0.19, 0.1 mm, respectively. The acoustic spot was about 
102 μm and acoustic depth-of-focus was about 1 mm. The 
lateral resolution of the system with 3 objective lenses was 
measured by imaging a sharp-edged surgical blade, which 
was estimated to be 3.8, 2.3, and 1.5 μm, respectively. 
The axial resolution of the system depended primarily 
on the acoustic parameter, which was estimated to be 
approximately 34 μm based on the system bandwidth and 
acoustic speed within the tissue. The maximum field of view 
in the case of each magnification depended on the motor’s 
scanning range, which was about 5×5 cm2 at most. 

To conform to the American National Standards Institute 
safety limit (20 mJ/cm2) (40), the energy density of the 
laser beam on the tissue surface was about 10 mJ/cm2. The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by the Ethics Committee of the First Medical Center of 
People’s Liberation Army (PLA) General Hospital (Clinical 
Trials. gov number, 2017 Ethic Review No. 012). Before 
skin imaging was performed, written informed consent was 
provided by all individual participants.

Implications of scalable adjustment in MC-PAD skin 
imaging

The position of the adjustable confocal opto-sono objective 
could be varied in order to shift the location of the acoustic 
and optical focuses with respect to the skin surface, so 
the resolution and imaging depth of the MC-PAD system 
can be switched in a flexible manner (Figure 2A). The 
amplitude of PA signals at different depths was presented in 
the same healthy opisthenar skin, and the penetration depth 
of skin for the PAD system was approximately 1.8 mm, as 
shown in Figure 2B. Due to the scattering properties of 
the skin, the SNR of the system deteriorated as imaging 
depth increased. Additionally, to obtain a greater imaging 
depth (≥3 mm), the use of a near-infrared light may be 
feasible. To study the influence of different NA modes 
on the imaging performance, the PA B-scan images of 
palmar skin were obtained to be reconstructed by those 
NA modes (4×/0.1, 10×/0.3, and 20×/0.55) with the same 
laser energy and focusing depth as shown in Figure 2C.  
The results showed that the high NA mode allowed for 
the rendering of fine spatial details but with reduced 
imaging depth, whereas the low NA mode allowed for fine 
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Figure 2 Skin imaging with the MC-PAD system. (A) A schematic of optical excitation and photoacoustic (PA) signal generation by 
multilayered structures of the skin for different imaging depths. The position of the adjustable confocal opto-sono objective can be varied to 
shift the location of the acoustic and optical focuses with respect to the skin surface, so the different imaging depths of the MC-PAD system 
can be switched in a flexible manner. The dz is the axial distance by which the optical focus moves. (B) PA signal amplitude at different 
imaging depths. (C) Cross-sectional PA images of palm skin at three numerical aperture (NA) modes (4×/0.1, 10×/0.3, and 20×/0.55). (D) 
Cross-sectional PA images of opisthenar skin at different focusing depths (NA, 4×/0.1). (E) Cross-sectional PA images of epidermis at 
different frequency bands (NA, 4×/0.1). (F) MC-PAD images of the opisthenar skin. PA images [from left to right: volume-rendered images 
of SC and SB, and MIP images of skin dermal vascular (DV)] displayed along the direction perpendicular to the skin surface within the limits 
marked in PA B-scan section. Each color bar represents normalized PA amplitude. MC-PAD, MC-PAD, multiscale confocal photoacoustic 
dermoscopy; EP, epidermis; DP, dermal papillae; RD, reticular dermis; Hy, hypodermis; SC, stratum corneum; SB, stratum basale; SVP, 
superficial vascular plexus; DVP, deep vascular plexus; MIP, maximum intensity projection.
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control of imaging depth but with reduced resolution of 
skin structures. We then reconstructed cross-sectional PA 
images of the opisthenar skin at different focusing depths 
(~500 μm between PA images) with the same laser energy 
and NA mode (4×/0.1) as shown in Figure 2D. The results 
showed that this multiscale adjustable structure allowed 
visualization of more vascular details that other imaging 
techniques and demonstrated the ability of the MC-PAD to 
provide enhanced structural details of the microvasculature 
by the focal adjustment. Subsequently, detected PA signals 
of the opisthenar skin were reconstructed and separated 
into different frequency bands, typically 5–90, 20–90, 
40–90, and 60–90 MHz, and the images with the different 
frequency bands were reconstructed (Figure 2E). This 
operation provided sufficient axial resolution to separate 
SC from SB using the broadband PVDF transducer. 
The imaging of SC, SB, and dermal vascular tissue was 
obtained using 20×/0.55 NA, 10×/0.3 NA, and 4×/0.1 NA, 
respectively. To better display the skin information, images 
needed to take up a larger size range, as shown in Figure 2F, 
than those in Figure 2C-2E. Consequently, Figure 2F shows 
noninvasive PA imaging of dermal vasculature, skin layers, 
and capillary loops at a level of detail and a resolution-
to-depth ratio (approximately 0.006) that has not been 
achieved by other modalities. Therefore, the combination 
of NA modes, focusing depths, and frequency equalization 
has powerful capabilities that can improve skin imaging 
techniques.

Results

MC-PAD of cells in vivo, characteristic extraction, and 
identification

This study was performed to investigate whether MC-
PAD with the 20×/0.55 NA mode could be used to identify 
specific cells. The corresponding PA signal intensities of 
red blood cells (RBCs) and murine melanoma B16F10 cells 
were measured. Upon 532 nm laser beam illumination, both 
RBCs and melanoma cells generated marked PA signals, 
but the PA intensity of melanoma cells was approximately 
1.63 times greater than that of the RBCs at 532 nm  
(Figure 3A) (24). Therefore, PA signal intensity was 
extracted as a parameter to recognize RBCs and melanoma 
cells. To confirm whether cell diameter was another 
characteristic that discerns RBCs from melanoma cells, 
cell diameters were measured in vitro (Figure 3B,3C). 

Meanwhile, to verify that MC-PAD could be used to 
detect specific cells in vivo, metastatic cells were imitated 
using B16F10 cells suspended in a 100 μL saline solution 
and injected into the circulatory system of mice via the tail 
vein. Cells were then subjected to MC-PAD monitoring 
in an ear vein. A microvasculature image of an area at 
the mouse ear edge (Figure 3D) was scanned at 2-μm 
intervals. Then, 1 appropriate blood vessel was chosen 
for the obtainment of measurements. The vessel was  
15 μm in diameter. The system was employed in the fast 
repetitive B-scan mode. The scanning lines, labelled x, 
were perpendicular to the selected blood vessel and set 
to 30 μm in 20 steps. The B-scan time series cumulating 
images are presented in Figure 3E at one point. In the x-t 
image, RBCs were circular and flowed one after another, 
which was consistent with the one-dimensional scanning 
PA signal shown in Figure 3A. 

Identification analysis of RBCs and melanoma cells was 
performed (Figure 3F). However, the diameter of RBCs 
can vary depending on maturity (for example, immature 
RBCs are larger) and disease, and the size of cancer cells, 
including melanoma, can also vary, so that cell diameter 
alone may not be sufficient to identify different cell types. 
To precisely distinguish between different kinds of cells, 
another parameter, Γ = P×D, was incorporated according 
to the maximum PA intensity (P) and cell diameter (D) 
into a pattern and an identification strategy (Figure 3G). 
The detection accuracy of in vivo PA flow cytography of 
the Γ characteristic was markedly better than that of other 
characteristics. 

MC-PAD of skin epidermal pigment: measurement and 
quantification

The deepest layer of the epidermis is the SB, which is 
the upper part of the epidermal-dermal junction (EDJ). 
The SB contains a large number of melanocytes and 
melanin particles that form a layer of pigment with 
strong optical absorption. Thus, the SB can be separated 
from the SC and EDJ because of its spatial location and 
strong optical absorption. In the study group, MC-PAD 
images were examined for epidermal pigment (melanin 
content) alterations of café au lait macule (CALM) skin. 
The parameters computed were the thickness of the SB 
and epidermis and the PA signal intensity (which has a 
linear relationship with the melanin concentration) in the 
epidermis (41). These measurements were used as label-free 
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biomarkers corresponding to the melanin content of the 
skin. The pigmentation of CALM skin is mainly distributed 
in SB that generally has a thickness greater than 60 µm (42). 
To achieve good resolution with sufficient penetration of 
the lesion epidermis, the 10× magnification mode was used 
to image CALM skin in clinical trials.

The MC-PAD images containing corresponding PA 
B-scan images of healthy skin and CALM skin from 
one Asiatic volunteer with CALM skin are shown in  
Figure 4A,4B. In addition, Figure 4C,4D show three-
dimensional (3D) PA epidermal volumetric images, and 
volume-rendered images of the SB and SC of healthy 
skin and CALM skin from the same patient, respectively. 
The blue part in the 3D PA epidermal volumetric images 

represents the melanin component of the epidermal layer, 
which was greater in CALM skin. 

We recruited 5 Asiatic volunteers with CALM skin for 
the acquisition of PA images by MC-PAD. In total, 60 
scanning positions from independent skin regions of the 
5 volunteers (n=30 CALM skin; n=30 healthy skin) were 
obtained. The results of the PA signal intensities indicated 
that the CALM skin had a higher PA signal intensity than 
that of healthy skin, as shown in Figure 4E. In addition, 
the PA signal intensities (melanin concentration) and SB 
thickness from the patient were counted and presented 
in Figure 4F, which shows that the CALM skin had a 
significantly thicker SB and higher melanin concentration 
than the healthy skin, demonstrating that MC-PAD can 

Figure 3 In vivo recognition of RBCs and murine melanoma B16F10 cells. (A) One-dimensional scanning PA capillary cytometry. PA 
detection of single B16F10 cells, and the corresponding PA signal intensities at 532 nm. (B,C) PA images of RBCs and melanoma B16F10 
cells. The scanning interval was 1 μm. (D) Superficial microvasculature PA image in a mouse ear. The scanning interval was 1 μm and 
scan points were 1,000×1,000. (E) A B-scan x-t image of cells in the vessel labelled p in (D). (F) A scatter plot of cell long diameter and PA 
intensity. (G) A scatter plot of the Γ parameters of cells (defined as Γ = P × D, where P is the maximum PA intensity of the measured cell and 
D is the cell diameter). These cell diameters were measured using the software Image J. RBCs, red blood cells; PA, photoacoustic.
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Figure 4 Comparison of in vivo contrasts from healthy skin and CALM skin by MC-PAD. (A,B) PA images of healthy and CALM skins from 
one Asiatic volunteer with CALM skin and corresponding photographs (white boxes indicate detection areas). (C,D) Three-dimensional 
PA volumetric images of the EP, and volume-rendered images of SB and SC from healthy skin and CALM skin of the patient. SB (blue) 
can be clearly distinguished from SC (yellow) below the surface at a depth of 70–210 μm. (E) PA amplitude profiles along epidermal depth 
direction of healthy skin and CALM skin from the patient. (F) Statistics, i.e., average melanin concentration and SB thickness of healthy skin 
and CALM skin of the patient (**, P<0.01; mean ± SD). Each color bar represents normalized PA amplitude. CALM, café au lait macule; 
MC-PAD, multiscale confocal photoacoustic dermoscopy; PA, photoacoustic; EP, epidermis; SB, stratum basale; SC, stratum corneum; SD, 
standard deviation.
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clearly reveal fine structures of SC and SB. Therefore, MC-
PAD can non-destructively and quantitatively reveal that 
CALM skin has a relatively higher melanin concentration 
and thicker SB in the epidermis than healthy skin and can 
be extended to assess a larger spectrum of conditions of 
pigmented dermatoses, such as pigmented nevi.

MC-PAD of healthy skin versus contralateral PWS skin in 
individuals

We then investigated whether MC-PAD could be used to 
analyze and quantify the vascular features of PWS skin. 
The PWS skin lesion vessels are mainly distributed in 
the superficial layer of the dermis, and generally have a 
diameter greater than 40 µm (43). To obtain high spatial 
resolution with sufficient imaging depth of dilated PWS 
vessels, the 4×/0.1 mode of MC-PAD was used to image 
the skin lesions. We imaged areas of healthy skin measuring  
3 mm × 3 mm from one PWS patient, which revealed 
marked changes compared with skin affected by PWS 
(Figure 5A). The elongated and dilated capillary loops of 
PWS skin were visualized in red via hemoglobin absorption. 
Detection areas A1–A6 from 6 Asiatic volunteers with 
PWS skin were used to acquire PA images by MC-PAD. 
In total, 60 scanning positions from independent regions 
of the 6 volunteers (n=30 PWS skin; n=30 healthy skin) 
were obtained. The difference in microvessel density in 
healthy and PWS skin was defined as ρ = S/N, where ρ was 
microvessel density, S was relative microvessel area (the 
ratio of the actual microvessel area to the imaging area of 
system), and N is the number of microvessels). The results 
showed that dermal vessels had greater diameters and were 
denser in appearance in PWS skin than in healthy skin 

(Figure 5B). These results are consistent with the histology 
of PWS skin (37, 43). 

Cross-sectional MC-PAD images of another PWS 
patient were compared with OCT cross-sections for the 
same areas of skin (Figure 5C). The OCT cross-sections 
confirmed the capillary elongation and increased dermal 
vascularization that had been visualized by the MC-PAD. 
Quantitative comparison of the superficial lesion vessels that 
were observed in the MC-PAD and OCT images showed a 
good correlation between the 2 methods, and both showed 
increased vascularization of the dermis, but MC-PAD offered 
a deeper imaging depth. Therefore, MC-PAD offers a 
distinct depth advantage over OCT in the diagnosis of PWS.

Conclusions

The MC-PAD system used multiple objective lenses, a 
multiscale adjustable configuration, a wide-bandwidth 
PVDF transducer, tomographic reconstruction, and high 
NA data collection, which offered an approach to identify 
and distinguish the characteristics of different types of cells 
(Figure 3). This approach could also measure and quantify 
skin pigment (Figure 4) and visualize and materialize skin 
morphology and blood capillary landmarks (Figure 5). 
Overall, the MC-PAD can discern cell types based on their 
intrinsic characteristics, including shape, size, and signal 
intensity. It can also detect the abnormal plexus of the 
dilated melanin layer located in the pigmented skin, enable 
quantification of the volume, concentration, and thickness 
of melanin, and assess visualization of skin abnormalities. 
Therefore, the MC-PAD system could have high clinical 
potential in analysis, monitoring, and treatment planning 
for skin disorders.
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Figure 5 MC-PAD of healthy skin versus contralateral PWS skin. (A) Photographs of the skin of one patient with PWS (white boxes 
indicate the detection areas) and corresponding photoacoustic images. The images depict 3 consecutive cross-section photoacoustic maps 
along the x-axis, in which the EP is denoted with white dotted lines. Below the EP, a dilated and dense vascular structure of the dermis is 
resolved (in red). (B) Box-and-whisker plots of the differences between measurements for PWS and healthy skin (**, P<0.01). The orange 
and grey parts correspond to values from the median to the third quartile and the median to the first quartile, respectively. (C) MC-PAD 
cross-sectional images (left) and corresponding OCT cross-sectional images (right) from PWS skin of another patient. MC-PAD, multiscale 
confocal photoacoustic dermoscopy; PWS, port wine stain; EP, epidermis; OCT, optical coherence tomography.
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