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Abstract— This document provides supplementary in-
formation for ”Temporal phase unwrapping using deep
learning”.

I. ARCHITECTURE OF THE DEEP NEURAL
NETWORK

The whole framework of our proposed method is com-
posed of three key steps: data process (wrapped phase
recovery), phase unwrapping based on deep neural net-
work, and phase-to-height mapping, as shown in Fig. 1
of the manuscript. The deep neural network, consisting
of convolutional layers, pooling layers, residual blocks,
upsampling blocks, and concatenate layer, is used to
predict the fringe order map kh(x, y) from input data
(Φl(x, y) and φh(x, y)). The architecture of the deep
neural network for training temporal phase unwrapping
is depicted in Fig. 1. Among these layers and blocks, the
convolutional layer and the pooling layer are common
in the convolutional neural network. The size of all the
kernels (or filters) used throughout the networks con-
volutional layers is 3 × 3. The residual block, making
up of two convolutional layers and ReLU as shown in
Fig. 1 by proposed He et al. [1], is the basic block of
the residual network and perform a shortcut operation
between the input tensor and two convolutional layers,
which can speed up the convergence of deep networks
and improve the network capability by adding layers
with considerable depth. The ReLU is an activation
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function as follows:

ReLU(x) = max(0, x). (1)

And then we introduce the multi-scale pooling layer to
downsample the input tensors, which can compress and
extract the main features of the tensors for the reduction
of computation complexity and the prevention of over-
fitting. In the first path of the deep neural network,
since the phase images are successively processed by
one convolutional layer, a group of residual blocks, and
another convolutional layer without any pooling layer
and upsampling block, it keeps the tensor data in the
original size of input data. On the contrary, the remain-
ing three paths provide sparse solutions in the image
plane due to the pooling operation with different scales.
Therefore, in order to against the effect of pooling layers
with different scales, different numbers of upsampling
blocks will be required to make the sizes of the tensors
in the paths uniform. The upsampling block, including
a convolutional layer, a ReLU, and a sub-pixel layer as
shown in Fig. 2 by proposed Shi et al. [2], is applied
for the image and video super-resolution and can learn
an array of upscaling filters to upscale the final low-
resolution feature maps of each path into the high-
resolution output instead of using bicubic interpolation.
After the feature tensors of the four paths are gathered,
as an important operation without learnable weights, the
concatenate layer is applied for the feature combination
on channel axis. And then one convolutional layer with
200 kernels makes the final prediction of the network
based on the output of the concatenate layer. Due to the
whole optimized design of the network, the proposed
network has a total of approximately 1.4 million learn-
able parameters, which make high-performance TPU
possible.

II. EXPERIMENTIAL SETUP AND DATA
PROCESS

To prepare datasets for the deep neural network, a
common FPP system is set up including a monochrome
camera (Basler acA640-750um with the resolution of
640 × 480) and a DLP projector (LightCrafter 4500Pro
with the resolution of 912 × 1140) in Fig. 3. In our
experiments, the three-step phase-shifting fringe patterns
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Fig. 1: Detailed architectures of the deep neural network
for training temporal phase unwrapping.

with different frequencies (including 1, 8, 16, 32, and 64)
are sequentially projected on the surfaces of multiple
samples and synchronously captured by the camera.
According to Eqs. (2) - (7) of the manuscript, due to
the multiple use of MF-TPU, the wrapped phases and
the corresponding kh(x, y) with different frequencies
can be correctly acquired to create the training data,
the verification data, and the test data. Aiming at phase
unwrapping for different φh(x, y), the proposed network
will be trained using the different dataset (including
the single-period phases Φl(x, y), φh(x, y) and kh(x, y)
with the corresponding high frequency), which are di-
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Fig. 2: Architectures of the upsampling block and the
sub-pixel layer.

vided into 800 image pairs for training, 200 image pairs
for validation, and 200 image pairs for testing. These
data need to be preprocessed before training the deep
neural network. Since the images captured by the camera
contains the background and the measured object, the
background can be removed by the following formula:

B(x, y) =
1

2

√
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2
+ [B2(x, y)]

2
,
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nπ

2
,
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nπ

2
,
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where B(x, y) is the intensity modulation of Icn(x, y),
Thr1 is the preset threshold to distinguish the ob-
ject from the low-modulation background. After thresh-
olding, the valid measurement points labelled by
Maskv(x, y) are further used for network training and
3D reconstruction, It should be noted that the threshold
Thr1 should be adjusted for object surfaces with dif-
ferent reflectivities. In most cases, Thr1 is set as 0.01
for various objects in our experiments. The proposed
network is implemented using TensorFlow framework
(Google) and is computed on a GTX Titan graphics
card (NVIDIA). In the network configuration, the loss
function is set as mean square error (MSE), the op-
timizer is Adam, the size of mini-batch is 2, and the
training epoch is set as 300. To avoid over-fitting as
the common problem of the deep neural network, L2
regularization is adopted in each convolution layer of
residual blocks and upsampling blocks instead of all
convolution layers of the proposed network, which can
enhance the generalization ability of the network.

After training at 300 epoch took about 10 hours, the
losses of the training and validation dataset are shown



as in Fig. 4. It can be drew a conclusion from Fig.
4 that the train loss and validation loss of models for
TPU with different high frequency are both reduced
significantly due to the optimized design of the network
and data process which contains choosing kh(x, y) as
the network’s label and the background removal opera-
tion. Besides, the overfitting problem has been slightly
mitigated by comparing Figs. 4 (a) and 4 (b). This result
indirectly reveals that our method can provide better
phase unwrapping results and even directly and reliably
recover the absolute phase with 64 periods from one
unit-frequency phase.
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Fig. 3: Schematic of the FPP system for 3D measure-
ments.

III. SPECIFIC OPERATION OF THE DEEP
NEURAL NETWORK

It is often acknowledged that deep learning models
are like “black boxes”. It is difficult for the public to
understand how deep learning works and why their per-
formance is so good. Though this view may be partially
correct for some types of deep learning models, the truth
is quite different for convolutional neural networks. The
representations of data learned by convolutional layers
are highly amenable to visualization, which is largely
because they are representations of visual concepts. With
the rapid development of convolutional neural networks,
various techniques have been developed to visualize and
interpret these representations [3]. For the purposes of
this supplementary information, we will not investigate
all of them, but we will introduce some of the most
accessible and useful visualization tools to reveal the
specific operational behavior of our trained network.

In the first two subsections, we have introduced in
detail that how to design a deep neural network for phase
unwrapping and how to prepare the dataset for training
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Fig. 4: Loss curves of the training and validation dataset
for the proposed neural networks. (a) Loss curves of the
training dataset. (b) Loss curves of the validation dataset.

the proposed network. So we already know the input,
output, and the entire operating flow of the network.
As a practical case, the phase unwrapping result for a
sample of the testing dataset is shown in Fig. 5. It can
help to discover the specific operation of every layer in a
bottom-up manner by checking the operation of the last
convolution layer. 200 feature maps of the four paths
collected by the concatenate layer will directly serve as
the input of the last convolution layer as shown in Fig. 6.
As described in Supplementary Section 1, without using
any pooling layer and upsampling block, these layers
from the first path of the deep neural network output
50 feature maps, some of which are similar in structure
and content to the final predictions of the network. In
contrast, 150 feature maps from the other three paths
will be treated as sparse solutions in the image plane
due to the pooling operation with different scales. The
operation of the last convolution layer can be formulated
as:

p =

199∑
i=0

fi ∗ wi + b, (3)

where fi is the i-th input feature map, wi is a learnable
2D filter kernel with a size of 3 × 3, ∗ refers to the con-
volution operation, b is a bias, and p is the output. Due
to a large number of convolution operations involved,
it is difficult to visually observe the specific operation



of the last convolution layer on the input feature map
from the weight matrix. Therefore, we try to find the
calculation relationship between the input feature map
and the weight in the frequency domain which can be
expressed as

Gi = Fi ·Wi, (4)

where Fi and Gi are the Fourier transform of the i-
th input feature map and fi ∗ wi, Wi is the Fourier
transform of a filter kernel (i.e., the transfer function).
The first 50 weight matrices from the last convolutional
layer of the network are extracted and transformed into
transfer functions by the zero-padding operation on the
spatial domain as shown in Fig. 7. It can be deduced
from Figs. 6 and 7 that the final result predicted by
the network is mainly composed of some feature maps
similar in structure and content. So the next step is
to analyze the relationship between these feature maps
and the final prediction result, such as the 26th input
feature map f26 and the result Prediction as shown
in Figs. 8 (a) and (c). We take one cross-section on
f26 and Prediction to present the comparison results
in Fig. 8 (d). Obviously, the change regulation of f26
is close with Prediction but the value is almost half of
Prediction. Then f26 is implemented with some simple
transformation operations according to the following
formula:

g26 = ceil(2 × (f26 ∗ w26)), (5)

where ceil() is an upward rounding function, g26 and
the corresponding comparison are both shown in Figs.
8 (b) and (e). Although Eq. (5) is an empirically driven
formula, it can be strongly proved from this comparison
result that the 26th feature map has a high correlation
with the prediction results. Undoubtedly, the feature
maps from the first path mainly constitute the low-
frequency component of the prediction result. Since
the pooling operation extends the receptive domain of
convolution layers, 150 feature maps from the other
three paths represent the high-frequency components
of the prediction result as auxiliary information and
make results of the first path high-quality. Different from
previous works, the results present in this supplementary
information that we reveal for the first time the specific
operation of the network for phase unwrapping.

IV. THE COMPENSATION OPERATION FOR
FRINGE ORDER ERRORS

In the first experiment of the manuscript, it can be
find that the fringe order errors are mostly concen-
trated on the dark regions and object edges where the
fringe quality is low. Different from MF-TPU, phase
unwrapping errors caused by the low signal-to-noise
ratio (SNR) region of phases is significantly reduced by
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Fig. 5: The phase unwrapping result for a sample of the
testing dataset.
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kernels of the last convolution layer in the deep neural
network.
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Fig. 8: Comparison results between f26, g26, and Prediction. (a) The 26-th input feature map f26; (b) g26 obtained
according Eq. (5); (c) The prediction result Prediction; (d) The comparison results between f26 and Prediction;
(e) The comparison results between g26 and Prediction;

using DL-TPU. For these low SNR region, the remaining
phase errors have the characteristics of accumulation and
can be easily further corrected by some compensation
algorithm for fringe order errors [4]–[6]. For the sim-
plest case, it is common that the median filter can be
applied to effectively reduce phase unwrapping errors
of MF-TPU. But it still cannot remove and correct error
points completely using median filters of different sizes
(including 3 × 3, 5 × 5, and 7 × 7) as shown in Figs.
9(a) − (d). Although the neural network also involves
of several convolution kernels (the size is 3 × 3 in
DL-TPU) essentially, it can achieve much better phase
unwrapping performance due to a large number of
convolution operation on the multi-scale path in Fig.
9(e). Consequently, the trained models can substantially
decrease error points to provide better phase unwrapping
results (even fh = 64) and lower error rates, which
demonstrates the capability and reliability of DL-TPU
for phase unwrapping.
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