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As a requisite and key step in some gradient-based measurement techniques, the reconstruction of the
shape, more generally the scalar potential, from the measured gradient data has been studied for many
years. In this work, three types of two-dimensional integration methods are compared under various
conditions. The merits and drawbacks of each integration method are consequently revealed to provide
suggestions in selection of a proper integration method for a particular application.
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1. Introduction

In metrology, some physical quantities from measurement may
not be our desired objective directly, but they may have certain
relationship with our objective. The measurements are therefore still
very useful and can be employed to get our desired quantities. Many
optical metrology techniques belong to this indirect measurement.
For instance, wavefront measurement techniques (Hartmann-based
wavefront sensing [1-3], lateral shearing interferometry [4-6], etc.)
reconstruct the wavefront from the slopes measured by optical
sensors. Moreover, the technique of shape from shading [7-9]
estimates the surface profile by integrating the calculated gradient
data. Similarly, three-dimensional shape measurement for specular
surfaces, e.g. phase measuring deflectometry [10-18], integrates
gradient data from metrology to get the surface shape as shown in
Fig. 1. All these techniques above only measure the derivatives of the
wanted quantity. In order to achieve our final goal, a two-
dimensional (2D) integration procedure is necessary to reconstruct
the shape from the measured derivatives.

Due to its wide application, 2D integration methods are investi-
gated by many researchers and there are lots of articles in literatures
[7,19-29]. The 2D integration problem can be considered as solving
a Poisson equation with Neumann boundary conditions [30].
Research on 2D integration methods can be found since 1970s for
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wavefront reconstruction [19,20,22,30]. Generally, finite difference
approaches were employed in those methods to connect the
measured slope and desired shape, and least squares estimations
are made for shape reconstruction. Fourier transform has been
introduced into 2D integration in 1980s [7,31]. By applying the
properties of Fourier transform, the integration operation can be
implemented easily and quickly due to the well-known Fast Fourier
Transform (FFT) algorithm. In 2004, Li et al. [23] compared the finite
difference based least squares integration method and Fourier
transform integration method with showing the finite difference
based least squares integration method has higher accuracy at that
time. By considering the boundary conditions, Talmi and Ribak [24]
pointed out the best solution of gradient integration could be
expressed in a Fourier cosine series, not the periodic Fourier series.
The cosine transform integration method is therefore proposed with
providing the integration result at half-integer positions in 2006.
Coming to 2008, Ettl et al. [25] introduced an integration method by
employing the radial basis functions which is flexible and robust. In
2012, Bon et al. [26] proposed a boundary-artifact-free Fourier
integration method by simply padding slope matrices with accord-
ingly flipped and positive or negative slope values. By noticing the
accuracy of the traditional finite difference based least squares
integration method is limited by its biquadratic shape assumption,
Huang and Asundi [27,28] proposed an iterative compensation
approach to obtain more accurate integration results. Recently, Li
et al. [29] improved the finite difference based least squares
integration method by applying higher-order numerical differentia-
tion formats.
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Slope maps in x- and y-direction&

Fig. 1. The 2D integration is a vital process for the reconstruction of shape from the
measured gradient data.

In this work, three families of integration methods are selected
into our comparison, since they have been widely used in numerous
applications. Several 2D integration methods are chosen as the
representative of their corresponding families to make a compar-
ison in both reconstruction accuracy and processing speed. These
integration methods are invented in different application fields, and
developed along their own paths. It is very interesting to know their
merits and drawbacks after the improvement in recent years. Their
“abilities” and “tempers” are revealed in order to help the selection
of a proper 2D integration method for a specific application.

2. The 2D integration methods in comparison

There are three families of 2D integration methods to be
compared in this work. The first family is the Finite-difference-
based Least-squares Integration (FLI) methods. The second big
family of integration methods is the Transform-based Integration
(TI) methods. The third one is the Radial Basis Function based
Integration (RBFI) method. Because we are interested in recon-
struction of arbitrary shapes, the well-known modal wavefront
reconstruction methods with the Zernike or other polynomials
[32] are not compared here, which are more suitable for symme-
trical optical components. During the writing up of this work,
some other integration methods are noticed, such as the spline-
based methods [33], showing convincing results and they may be
strong potential competitors as well.

2.1. Finite-difference-based least-squares integration methods with
Southwell configuration

The Traditional Finite-difference-based Least-squares Integra-
tion (TFLI) method in Southwell configuration [19] is well known
and widely used not only due to its consistency between shape
and slope locations (where you measure the slope, where you get
the shape), but more significantly, because of its biquadratic spline
shape in nature. The shape model in the Southwell configuration is
essentially a biquadratic spline with an algorithm error of O(h%)
where h stands for the interval of the sampling grids, whereas a
bilinear curve in other similar configurations [20,22]. Due to its
simple implementation and reliable performance, the TFLI method
has been widely applied for shape reconstruction. The relations of
the slope and shape in a M-by-N matrix are set locally in Eq. (1),

Zmn41—Zmn és)r(mnﬂ'*'sfn.n m=12,....M,
Xmn+1—Xmn ’ n=1,2,...,N—1
- (M
Zmn41—Zmn és{n+l.n+symv" m=12,..M-1>~
Ymn+1—Ymn 2 ’ n:1,2,m,N
where x, y, z are the world coordinates, “ =" stands for “equal in

the least squares sense”, s* and s denote the measured slope
values in x- and y-directions, respectively. The subscripts m and n
are the matrix indices. The estimation can be handled globally as

presented in Eq. (2).
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where DT stands for the transpose of D. The matrix D (usually in
sparse matrix format) and the vector G are
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With the development of metrology, an algorithm error of O(h®) at
the integration stage may no longer be acceptable. Further investiga-
tion makes improvement on this path for a better accuracy during
recent years. Iterations can be carried out to enhance the accuracy
with Iterative Finite-difference-based Least-squares Integration (IFLI)
method [27], which integrates the gradient residuals to implement
iterative compensation onto the final result. Moreover, instead of using
iterations, Li et al. [29] propose a more direct approach by considering
higher order terms in Taylor expansion into the least squares estima-
tion. Here we call it Higher-order Finite-difference-based Least-squares
Integration (HFLI) method in this work. The expression of G is selected
as Eq. (5) to maintain the same sparse matrix D as Eq. (3) which is
usually the major concern of memory cost.
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To disclose the improvement made in FLI family, a simple
comparison between methods of TFLI, IFLI, and HFLI is carried
out by integrating a gradient dataset with size of 256 (pixel) x 256
(pixel) x 2 (direction).

Z(x,y) =02 x {3(1 —x)%exp[—x% —(y+1)%].

—1O<g—x3 —y5>exp(—x2 )
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Fig. 2. The HFLI method outperforms the others in the FLI family. (a) Ground truth of shape, slope in x-direction (b) and y-direction (c), reconstruction error with the TFLI
method (e), the IFLI method (d), and the HFLI method (f), and (g) comparison of running time.
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Fig. 2 shows a ground truth of shape to reconstruct (a) (see Eq. (6))
and its slope maps in x-direction (b) and y-direction (c), while the
integration errors indicate the obvious accuracy improvement by the
IFLI method (e) and the HFLI method (f) compared with the TFLI
method (d). Here, the number of iterations in IFLI is set as k=1 only
and the form for HFLI is selected with a truncation error of O(h>). For
speed comparison, HFLI needs slightly longer time than TFLI as shown
in Fig. 2(g), and it takes k times longer than TFLI for IFLI to get the final
result, where k is the iteration number.

Considering accuracy and speed as well as the edge effect by
IFLI (the same values as TFLI at the edge), the HFLI method should
be the best one in the family of FLI methods with Southwell
configuration. The HFLI method is therefore selected as the
representative of FLI methods with Southwell configuration to
make further comparisons with other integration approaches.

2.2. Transform-based integration methods

Another big family of integration approaches is composed of
transform-based methods, which employ the property of the
derivative in the spatial frequency domain to achieve the integra-
tion goal. Generally, these transform-based methods link all the

slopes and shape globally and optimize them globally as well.
Fourier Transform, the most famous transform in the scientific
world, is well studied in the application of numerical integra-
tion [7,21,31,34]. Egs. (7) and (8) are two different ways to
reconstruct the shape in Fourier Transform Integration (FTI)
method [21,35].

_q J i 27l (F{s* G, ) +f  Fis' (%, )]
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where F and F~! stand for forward and inverse Fourier transform.

Talmi and Ribak [24]| point out that Fourier transform may
provide a suboptimal solution only due to the implicit periodic
boundary conditions, whereas the optimal solution should be
provided by applying the homogeneous Neumann boundary condi-
tions to the residual field with use of the discrete cosine transform
instead. The widely available FFT algorithm can be used to calculate
the cosine transform, but the shape mesh is shifted to half-integer
locations in their work. Bon et al. [26] present a simple way to utilize
FFT to complete the reconstruction from slopes with no boundary
artifact and keeping the shape mesh the same as the slope mesh (the
Southwell configuration). By easily padding the slope matrices with
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flipped and positive or negative slope values accordingly as Egs.
(9) and (10), Cosine Transform Integration (CTI) on the same data
mesh is actually realized [36-38].
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The same as FTI method, the CTI method could be implemented
by applying Eq. (11) (CTI-R) or Eq. (12) (CTI-C).

1) i 2alf F{S* (. v} + [, F(S' (x, )]

Z(x.y)=F { _4”2(f§+j%) : an
o S ey +i- S x )

Z(x.y)=F { P2t T, } (12)

The relation between padded Z(x, y) and originally desired z(x,
y) are

Z(—X, _Y)a

Z(X’ _y)a (13)

z(—x,Y)

Z L= .
*.y) { 2%,y) ]
Finally, z(x, y) is obtained by cropping data from the inverse

transform result Z(x, y).
z(x,y) = Crop(Z(x, )). (14

Fig. 3 demonstrates an example of non-iterative FTI method fails
to correctly reconstruct the shape when the background just simply
changed from flat (Eq. (15)) to a tilt surface (Eq. (16)), whereas the
CTI method succeeds in both cases.

z(x,y) = exp{ —(6x)> — [6(y — 0.7)]*} — exp{ — (3x)> — [3(y +0.7)1%}.
(15)

2(x,y) = 0.3x+exp{ — (6x)* — [6(y — 0.7)1%}
—exp{— (3%’ —[3(y+0.7)1’}. (16)

In fact, the Gershberg-type iteration [39] on extended slope
matrices is really a mandatory “algorithm mate” for the FTI method
to get much more accurate results (see Fig. 3(c)) in general cases. As
shown in Fig. 3(d), the CTI method is faster than the iterative FTI
method when the gradient data is complete, i.e. no missing gradient
data in slope matrices.

The CTI-C algorithm is slightly faster than the CTI-R algorithm (see
Fig. 3(d)) with the same accuracy of CTI-R algorithm, the CTI-C
algorithm is therefore chosen as the representative of CTI method as
well as transform-based global integration methods in later
comparisons.

2.3. Integration with radial basis functions

The RBFI method is proposed by Ettl et al. [25] by applying Radial
Basis Functions (RBFs) into the integration job in phase measuring
deflectometry [10-15]. An interpolation function, especially tailored
for gradient data, is expressed with a weighted combination of
analytical derivatives of the selected RBFs as Eq. (17).

0DP(X—Xi, Y —Y;
ox

) | p 0PX—Xi, Y —Y))
+pi 3y . 17y

The same as Ref. [25], a Wendland’s function is selected as Eq. (18).
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where p is a scaling factor which is able to adjust the region in effect.

By matching the analytical derivatives of z(x, y) with the mea-
sured slope values s¥(x, y) and s¥(x, y) as Eq. (19), the shape
estimation can be completed through the determination of ¢; and
p; in a least squares sense.
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F&I) || S2—xy—y) SR -xy—y) [\ Fi) [T %

(19)

Due to its relatively large memory consumption (matrices are not
sparse), the size of gradient data is usually set as about 40 (pixel) x
40 (pixel) x 2 (direction) with a common computer by hand. There-
fore, we classify this method as a regional approach. A stitching
process of the divided subsets is needed to reconstruct the whole
shape of a large dataset.

3. Comparison

Although the integration process with the HFLI, CTI, and RBFI
methods is essentially shape estimation with optimization based
on the measured gradient data, the strategies these three integra-
tion methods apply are different as shown in Fig. 4.

The HFLI method with Southwell configuration uses the rela-
tions of slopes and dimensions locally by finite difference to link
the whole map together and make estimation with an optimiza-
tion globally. The CTI method employs the transforms and their
derivatives properties to create global relations and make global
optimization as well. Due to the high memory requirement, the
RBFI method applies RBFs to set a slope-shape relation regionally
(based on radial distances) and makes regional optimization
(based on the subset size), and then globally stitches the regional
results with overlaps.

3.1. Accuracy under different grids and conditions

First of all, the reconstruction accuracy is the primary concern for
an integration method. The accuracy of these integration methods is
compared under several data grids and conditions (e.g. noise, missing
data), which are actually encountered in real applications. Compar-
isons are carried out to reveal how good or how bad they can perform,
or even whether they are applicable, when data are in rectangular,
quadrilateral, or triangular grids. As the most common data grids in
optical metrology, gradient data in rectangular grids under different
conditions are studied in detail

3.1.1. Rectangular grids

It commonly happens that measured slope data are located in a
rectangular mesh from optical metrology, due to its rectangular
positioned optical sensors (e.g. CCD sensors), or pinhole arrays (e.g.
Hartmann wavefront sensor), or gratings (e.g. grating shearing inter-
ferometry), or scanning steps (e.g. point-wise deflectometry with
scanning). Detailed investigation is carried out specifically for such
grids under the conditions of higher order components, rotation,
noise, and incompletion.

3.1.1.1. Higher order components. When reconstructing a discrete
representation of shape which has the most-similar gradient values
with the measured ones, there is an implied assumption that all of the
ignored higher order terms (no matter in what kind of forms, e.g.
polynomials, Fourier cosine series, etc.) are really negligible.

A free-form surface [z;(x, y)] with a sharp peak and valley
[z2(x, y)] expressed in Eq. (20) is sampled with a low resolution [32
(pixel) x 32 (pixel) x 2 (direction)]as show in Fig. 5(a).

ZX,Y)=21(X,Y)+22(X. ), (20)
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Fig. 3. The CTI method outperforms the FTI method. The ground truth of the shapes (a) and (b) their corresponding slope maps (b), (c) reconstruction errors from methods of
non-iterative FTI, iterative FTI, and CT, (d) the CTI-C algorithm is faster than the CTI-R algorithm and the iterative FTI method.

a b

Cc

HFLI

Global Optimization

CTI

Global Optimization

RBFI

Regional Relations

Regional Optimization
+
Global Stitching

Fig. 4. Reconstruction strategies in methods of HFLI (a), CTI (b), and RBFI (c) are different.

where

Z1(x,y)=0.2 x {3(1 —x)%exp[—x2 —(y+1)?]

- 10(%—)(3 —yf')exp(—x2 -y%)

—%eXp[—(X—i—])z —yz]}, (21)
Z5(x,y) = 0.3x+exp{ — (6x)> — [6(y — 0.7)]*}
—exp{— (3% -3y +0.7)]%}. (22)

The influence of higher order terms is more obvious in low
sampling ratio for comparison purpose. The slope maps in Fig. 5

(b) shows the sudden changes on slope around peak and valley
regions.

The shape errors after HFLI method (Fig. 5(c)) indicate that
although it has an improvement in algorithm error from TFLI method
by considering higher order terms in local slope-height relations, it
still has obvious local shape error when handling really serve
changing slopes. Different from HFLI method, CTI method generates
slope-height relations globally and the higher order terms are actually
higher frequency terms, therefore the shape errors spread into the
whole map (Fig. 5(d)). The higher order components affect the result
from RBFI method less and the influence appears regionally (Fig. 5(e)).

3.1.1.2. Rotational field. Theoretically, the gradient of a scalar
potential is a conservative field, or say a curl-free field. However,
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Fig. 6. Errors occur with the HFLI method (c), the CTI method (d), and RBFI method when a rotational field (a) is added on a gradient data (b).
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gradient data from a real measurement may include a rotational
vector field (e.g. a vortex) due to inaccurate system calibration,
inaccurate slope calculation, or the measurement noise. To study
the performance of these methods in a field with non-zero curl, a
rotational field (Fig. 6(a)) is added onto the same slope maps in
Fig. 5(b), and the resultant slope maps with a rotational field are
shown in Fig. 6(b).

From the error distribution from the HFLI, CTI, and RBFI methods
(see Fig. 6(c), (d), and (e)), it shows all the methods in our
comparison are sensitive to rotational fields, whereas it is a reason-
able result with the data in hand, because the derivative of the
reconstructed shape is the most similar gradient to the vector field

e
Std. of Height Error (mm)

, x10°
15}
1}t
051 EHFLI
cTl
—©—RBF!
1000 2000 3000 4000 5000

Std. of Noise on Angle (arcsec)

obtained from measurement. Additional information may be needed
to determine a unique gradient field from Helmholtz decomposition
of the rotational vector field. Further studies on how to diminish the
affection from fields with non-zero curl may be necessary to perform
a better integration.

3.1.1.3. Noise. In a practical measurement, noise always exists. With a
consideration on the principle of slope measurement in optical
metrology, additive angular noise is simulated on the surface
normal. In order to investigate the performance of these integration
methods under noise condition in either a large or a small dataset,
gradient data of the same shape in Eq. (20) in a dense sampling of

d
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Fig. 7. Noise on angle influence the reconstruction accuracy. (a) The ground truth of shape is a large dataset with a dense sampling. (b) The slope maps is added with an
angular noise with Std.=5000 arcs. (c¢) The whole maps of slope errors (upper) shows larger slope errors at steeper regions, and a zoomed-in small region with big slope
errors is selected (lower). (d) Reconstruction errors are similar when using large datasets of slope in (b). (e) Three integration methods behave similarly under noise
condition when handling large datasets. (f) Reconstruction errors are from integrating slope in the small region of (c) with big slope errors. (g) Reconstruction errors become
bigger with the noise getting more severe, and the CTI method gets larger errors than the other two methods do when the dataset is small.
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2048 (pixel) x 2048 (pixel) x 2 (direction) (see Fig. 7(a)) with Gaussian under the same angular noise, the slope error will be larger when the

noise (Std. 6=>5,000 arcs) are simulated on gradient (see Fig. 7(b)), surface is steeper, i.e. the absolute value of the slope is larger.
from which a small piece of data [32 (pixel) x 32 (pixel) x 2(direction)] Reasonably as shown in Fig. 7(d), the reconstruction error is
is cropped out. From the slope error maps in Fig. 7(c), it can be found, larger at the region with larger slope errors. It needs to note that a
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Fig. 8. Incomplete gradient data bring some troubles to the CTI method. (a) The mask indicates regions with available data. (b) The true 3D shape and (c) its slope data.
Reconstruction errors of the methods of HFLI (d), CTI without pre-filling (e), CTI with pre-filling (f), and RBFI (g).
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Fig. 9. The three methods are applicable to gradient data in quadrilateral grids, but only the RBFI method makes good reconstruction. (a) The rectangular grids becoming
quadrilateral ones, (b) the corresponding slope maps, and the reconstruction errors from the methods of HFLI (c), CTI (d), and RBFI (e).
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stitching process is required for RBFI method to deal with the large
dataset. A stitching method [40] can be used stitch the subset results
from RBFI method under noise condition. The integration errors
under different noise levels shown in Fig. 7(e) indicate the three
methods behave similarly under noise condition with large dataset.

The standard deviation (Std.) of slope error in that cropped
small region can be estimated out as the constant. When the Std.
of angular noise is 5000 arcs (the Std. of slope error is about
0.56 mm/mm in that region), the reconstruction errors with the
three methods are almost similar (see Fig. 7(f)). However, when
the noise is getting smaller as shown in Fig. 7(g), the influence of
the higher order components, which the CTI method suffers while
handling small data size, becomes more obvious.

3.1.1.4. Incomplete gradient data. In a practical measurement, the
missing of data absolutely happens. It may result from the
blocking of light by the aperture, “dead pixels” on detector,
unmeasurable regions on samples, out of measuring range, or
some other reasons. However, the good integration method should
be able to deal with incomplete slope data from such imperfect
measurement. Here, a mask (Fig. 8(a)) is made arbitrarily to crop
the 3D shape (Fig. 8(b)) and its slope maps and the incomplete
slope maps are shown in Fig. 8(c).

The error map from HFLI method in Fig. 8(d) indicates that
missing of gradient data has little influence on the reconstructed
shape and a similar observation can be found with RBFI method
(Fig. 8(g)) as well. The connection of local (HFLI) or regional (RBFI)
relations can naturally keep the none-slope pixels away from the
optimization. Therefore, the implementation of HFLI and RBFI method
is quite straightforward to handle incomplete gradient data. However,
it is not straightforward to apply the CTI method to process gradient
data with empty pixels. If those empty pixels in gradient data are just
simply filled with “zero”, large shape errors will show up as shown in
Fig. 8(e). Additional preprocessing to the gradient data is necessary
[41]. As shown in Fig. 8(f), if the missing gradient data is filled to
maintain the loop continuity, shape error by using the CTI method
can be reduced, but still larger than the other two methods. On the
other hand, an iterative approach is suggested for the CTI method to
deal with the incomplete dataset with good performance as well [42].

3.1.2. Other grids

In some applications, such as monoscopic phase measuring
deflectometry [11-13], the imaging device is set up to observe the
specimen in a certain perspective angle. Moreover, the lens distortion
introduces additional dimensional changes of sensor grids in world
coordinates. In this case, the rectangular grids certainly become
quadrilateral ones as shown in Fig. 9(a). The corresponding slope
values at the quadrilateral grids shown in Fig. 9(b) could be deter-
mined by some gradient measuring approach. Since all of these three
integration methods are applicable in such a situation, it is interesting
to know how their behaviors will be in quadrilateral grids.

As shown in Fig. 9(c) and (d), the HFLI and CTI methods get
obvious shape errors. Although they are already improved from each
lane, they are intentionally designed to solve the integration issues
in rectangle grids. The errors indicate their performance is limited in
quadrilateral grids. Numerical differentiation formats for non-
uniform grids may improve the reconstruction accuracy of HFLI,
but it is complicated and inconvenient in practical use. The HFLI and
CTI methods are consequently not recommended in such situations.

In sharp contrast to the two methods above, good behaviors of
RBFI method are observed when the data grids are in quadrilat-
erals (Fig. 9(e)) or even irregular shapes (triangular grids) (Fig. 10).

3.2. Speed with different data sizes

Apart from accuracy, the algorithm speed is usually in the list of
concerned aspects. Actually, the computation time of different
methods changes differently when the data size changes. In order
to see the whole picture clearly, these three methods run for a
comparison in various sizes of complete gradient data from a small
dataset with 32 (pixel) x 32 (pixel) x 2 (direction) to a huge dataset
with 2048 (pixel) x 2048 (pixel) x 2 (direction). The result is shown
in Fig. 11, in which each running time result is the average value of 30
repeats in MATLAB® with Intel®™ Core™ i7-4600M CPU @2.90 GHz.

Obviously, the HFLI method runs relatively fast when the data size
is small (e.g. 64 x 64 x 2) or even not that slow with a medium size
(eg. 256 x 256 x 2) dataset, but its computation time extremely
increases along with the data getting to a large size (eg
1024 x 1024 x 2).

Benefited from the fast transform algorithm, the CTI method makes
very nice speed performance and it is the fastest method among these
three methods in our comparison within all the data sizes.

A tiny size data (e.g. 32 x 32 x 2) can be directly handled by RBFI
method without stitching, but it runs relatively slow. To integrate
larger size data with RBFI may need to split the dataset into subsets
to integrate and then stitch them together. If the geometry is the
same in each subset and the data are complete with no missing
samples, a large intermediate matrix in computation will be same
for each subset and there is no need to perform recalculations. This
trick can save much computation time. With the enlarging of data
size, the running time of RBFI method increases slower than that of
HFLI method does. As a result, RBFI method becomes faster and
faster than HFLI method while dealing with a large size gradient
data (e.g. 2048 x 2048 x 2). However, if the geometry is not the
same for each subset or the data are incomplete, RBFI method slows
down extremely and could be the slowest one.

4. Discussion
Based on our comparison of these three integration methods

respect to accuracy and speed as shown in Fig. 12, several
observations are addressed as follows.

unit: mm/mm

ey RBFI
error (mm) .

y (mm) y (mm)
1.5 1.5
0 0
¥
135 0 15 s 0
X (mm) X (mm)

1.5 b

Fig. 10. The RBFI method can deal with gradient data in irregular grids.
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(a) With the development of these integration methods on their
own lanes, the state-of-art methods (HFLI, CTI, and RBFI) from
different lanes have been selected out. Although their ways to

Gradient
Data Size

(pixel) IF
32x32x2
B RBFI: 1.843 s

64x64x2
I RBFI: 4.625 s

128x128x2
RBFI: 4.640 s

256x256x2
RBFI: 4.821 s

512x512x2
RBFI: 5.460 s

1024x1024x2

rRBFl:7.614s

_RB[ [: 16.656 s

30 40 50 60
Running Time (s)

2048x2048x2

Fig. 11. The speed of different methods varies differently with increasing the
gradient data size.

link the slope-shape relations are different, the shape recon-
struction of each method is identically based on estimation
with given gradient data in a least squares sense. All of them
are basically able to handle various sizes of gradient data with
noise, high-order components, and incomplete slope measure-
ments, which meets general requirements in usual
applications.

(b) The CTI method is not suggested to deal with tiny size dataset,
because the ignored high-frequency terms under such low
samplings are very likely not negligible.

(c) All the methods are invented to integrate the gradient field
which should theoretically be conservative. However, a vector
field from practical measurement may contain rotational
components. A proper way to diminish the influence of the
field with non-zero curl needs further investigations.

(d) The RBFI method can deal with the gradient data in irregular
grids. The HFLI and CTI methods are not recommended if
gradient data are not in rectangular grids.
Benefited from the fast transform algorithms (e.g. FFT), the CTI
method is fastest among these three methods at various data
sizes. Comparing to the RBFI method, the HFLI method is faster
at small and medium data size, but slower when handling large
size gradient data, if the dataset is complete with the same grid
geometry for each subset in the RBFI method. However, if the
dataset is incomplete or the grid geometry is different for many
subsets, the RBFI method can be extremely time consuming.

(f) The use of the HFLI and CTI methods are pretty easy and
straightforward with no adjustable parameters. In the RBFI
method, an improper effective range (specifically, the scaling
factor) may affect the reconstruction result.

(e

N

5. Conclusions

Two-dimensional integration methods for shape reconstruction
from gradient data are reviewed in groups through the compar-
ison. Three types of integration methods are mainly compared to
show their different performance in accuracy and speed. Their
advantages and drawbacks are presented in specific cases, e.g.
higher order components, speed with various sizes, etc. It is of
significance to properly choose a suitable integration method for a
particular application.

Accuracy Speed
Integration ' / Tiny Size |Rotational| Noise | Missing | Irregular | Complete | Incomplete
Competition Dataset | Field Data Grids Dataset Dataset
N - ' GRGEEER
\ ; - {' (;;v,?t? Small | Large [ Small [Large
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o oo SN EIN
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Fig. 12. The merits of drawbacks of the three integration methods are revealed obviously through comparisons.
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