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Digital holographic microscopy (DHM) is a well-known powerful technique allowing measurement of the spatial
distributions of both the amplitude and phase produced by a transparent sample. Nevertheless, in order to im-
prove the transverse resolution of the DHM system, a microscope objective has to be introduced in the object
beam path, which inevitably leads to phase aberration in the object wavefront. In recent decades, a multitude of
techniques have been proposed to compensate for this phase aberration, and the principal component analysis
(PCA) technique has proven to be one of the most promising approaches due to its high compensation accuracy,
low computational complexity, and simplicity to implement. However, when it comes to high-order phase aber-
ration, which is common for a mal-aligned DHM system, the PCA technique usually performs poorly since it is
unable to fit the cross-terms of the standard Zernike polynomials. To address this problem, here we propose a
multi-step phase-aberration-compensation method based on optimal PCA and sub-sampling where PCA is first
applied to remove the non-cross-aberration terms, followed by sub-sampled fitting for the remaining cross-
aberration correction. The key advantage of our approach is that it can handle both the conventional objective
phase curvature and high-order aberrations such as astigmatism and anamorphism with very little computational
overhead. Simulation and experimental results demonstrate that our method outperforms state-of-the-art
approaches, and the compensation results are consistent with those obtained from the double-exposure
method. © 2019 Optical Society of America

https://doi.org/10.1364/AO.58.000389

1. INTRODUCTION

Digital holography is a well-known, powerful technique allowing
quantitative amplitude and phase-contrast microscopy, as well as
detection of changes in optical path length with sub-wavelength
interferometric sensitivity. The numerically reconstructed holo-
graphic image contains both amplitude and phase information of
the object wave. In combination with microscopic resolution,
this offers new possibilities for detecting refractive index changes
and variations in the morphology of transparent cellular samples
[1–6]. For the interdisciplinary fields of biomedicine [7–10], life
sciences [11–14], bio-engineering [15,16], and biophotonics
[17–19], digital holographic microscopy (DHM) has opened

up new perspectives for the visualization and quantification of
the integral cellular refractive index, cell drymass, and, for adher-
ent grown cells, cell shape in a nondestructive, real-time (more
than 25 frames per second, 1024 × 1024 pixel), marker-free
(unlabeled), and full-field (no scanning required) manner.
Nevertheless, in order to improve the transverse resolution of
the DHM system, a microscope objective has to be introduced
in the object beam path, which inevitably causes a spherical
wavefront in the object wave field that generates phase curvature
in the reconstructed wave field. This phase aberration should be
compensated in order to accurately determine the phase delay
induced by the measured specimen [20–23].
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In past decades, a multitude of techniques have been pro-
posed with the aim to remove such phase aberrations, which
can be categorized into two categories: physical [24–28] and
numerical [21,23,29–36]. Physical compensation methods
are generally achieved through introducing the same wavefront
curvature in the reference beam by introducing either a same-
objective lens [24–26] or position-adjustable lens [26], or by
adopting a bi-telecentric optical configuration [27,28], which
can only provide partial aberration. In practice, these methods
are difficult to implement due to the complicated optical sys-
tem configuration and the requirement for a precise alignment
of all the optical elements involved. The numerical compensa-
tion methods, in contrast, compensate the phase aberration
through post-processing of the digital hologram or the recon-
structed phase. The most straightforward method of this
category is double exposure [31,32], in which a reference holo-
gram needs to be recorded without the presence of specimen.
Subtraction of the reference phase from the original phase map
produces a quantitative phase map completely free of aberra-
tions. However, in most practical applications, the phase aber-
ration may drift with the changes of focus and other
experimental conditions, necessitating repeated and elaborated
re-calibration. As a result, reference-free methods have been
studied to continuously compensate the phase aberration with-
out using references and interrupting observation. In most
reference-free methods, a phase mask (i.e., the estimate of aber-
ration) is created and applied to either the reconstruction or
hologram plane. In order to get the phase mask, Colomb et al.
[33] proposed a general fitting procedure applied on specimen
areas known to be flat. However, the pre-knowledge about the
setup or/and specimen under test is difficult to obtain before-
hand. Therefore, in most cases, the phase mask can only be
estimated by directly applying Zernike polynomial fitting
[29] or two-dimensional (2D) least-square fitting [23] on
the whole phase map. As a result, these approaches face a
relatively heavy computational burden. Moreover, the estimate
of phase mask is prone to be deviated by the phase values of
areas occupied by the sample. This problem was explicitly
considered in the recent deep-learning-based phase-error-
compensation approach [30], in which the sample-free region
is detected based on a convolutional neural network that allows
for Zernike polynomial fitting to obtain a much more reliable
phase mask which is undisturbed by the sample phase.
However, the success of the deep-learning-based approach is
largely dependent on abundant ground truth training datasets,
which are often unavailable or at least require massive human
intervention.

Principal component analysis (PCA), a well-known statisti-
cal tool that uses an orthogonal transformation to convert a
large set of variables to a small set of linearly uncorrelated var-
iables (called principal components) that still contain most of
the information in the large set, has been widely used in sta-
tistics, machine learning, and information theory, where data
analysis is preferably done in a dimension-reduced space rather
than the original space for higher accuracy and lower complex-
ity [21]. Due to its effectiveness in dimensionality reduction
and feature extraction, a PCA algorithm has been introduced
in DHM as an efficient tool to extract the phase-aberration

term from the first principal component of the phase distribu-
tion [21]. The advantages of the PCA method are threefold.
First, with the help of the implicit eigen-filtering nature of
PCA, the phase-aberration term can be automatically separated
from the sample phase with much less perturbation. Second, by
separating the aberration terms to two singular vectors, phase
unwrapping and fitting of the data is reduced to one dimen-
sion, which significantly improves compensating efficiency and
phase-unwrapping accuracy. Finally, by implementing PCA
only on the reduced-sized spectrum where the aberration term
is concentrated on, the compensation accuracy can be further
improved, and meanwhile the computation time can be further
reduced [36]. Despite all these advantages, the validity of the
PCA approach relies on the pre-condition that the phase-
aberration function can be broken down into two dominant
vectors along the x and y axes, leaving cross and higher-order
terms of the standard polynomial unaccounted for. However,
such aberrations are not uncommon for DHM systems in
which the beam paths are misaligned, or low-quality optical
elements are employed.

To this end, here we propose a multi-step phase-aberration-
compensation method based on optimal PCA and sub-
sampling (MOPCA), where PCA is first applied to remove
the non-cross-aberration terms and then the 2D polynomial
fitting is performed on the sub-sampled residual phase map to
extract the cross-aberration term. The key advantage of our
approach is that it can handle both the conventional objective
phase curvature as well as the cross- and higher-order aberra-
tions, such as astigmatism and coma, with very little computa-
tional overhead. As a result, MOPCA preserves all the
advantages of the PCA approach while effectively compensating
for its deficiencies. Thus, the universality and versatility of
the PCA-based phase-aberration-compensation algorithm are
significantly enhanced. Simulation and experimental results
demonstrate that our method outperforms state-of-the-art
approaches, and the compensation results are consistent with
those obtained from the double-exposure method, even in the
presence of significant cross- and higher-order aberrations.

2. PRINCIPLE

A. Phase Aberration Model in DHM
Digital holography consists of recording a digitized hologram
using an electronic device [e.g., a charge coupled device
(CCD)], and later reconstructing the hologram numerically
with a computer. A digital hologram is created by interference;
that is, an unknown wavefront coming from the object, called
object wave, is combined with the reference wave to produce a
fringe pattern modulated by the phases of the two waves. For
the off-axis configuration (there exists a small angle between the
object wave and reference wave), the intensity distribution of
the hologram can be presented as

IH � jOj2 � jRj2 � RO� � R�O, (1)

where R�x, y� and O�x, y� are the reference and object waves,
and * denotes the complex conjugate. Due to the small angle
between the reference and object waves, the virtual image term
can be extracted by filtering the hologram’s 2D spectrum:
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IFH � jRjjOj exp�jφ�x, y��Q�x, y�, (2)

where IFH �x, y� is the Fourier spectrum of the virtual image, j is
the imaginary unit, φ�x, y� is the phase of the test object, and
Q�x, y� is the phase-aberration term needed to be compensated.

In the traditional phase-aberration model in DHM, the
phase aberration mainly consists of two parts: the spherical term
induced by the microscope objective and the tilt term caused by
the off-axis geometry. Thus, Q�x, y� can be represented as

Q�x, y� � exp� j�kxx � kyy�� exp� j�l xx2 � l yy2��, (3)

where factors kx and ky denote the linear phase difference be-
tween O and R due to the off-axis geometry. The parameters l x
and l y describe the phase divergence caused by the mismatch in
spherical phase curvature.

When the aberration term Q�x, y� is obtained, its conjugate
Q��x, y� can be multiplied with the filtered hologram, leading
to an aberration-free virtual image:

Q��x, y�IFH �x, y� � jRjjOj exp� jφ�x, y��: (4)

However, in addition to the spherical and tilt aberration terms,
high-order non-cross and cross-aberration terms such as coma
and astigmatism caused by the misalignment of the optical
path, which are not uncommon, are also contained in
DHM. Therefore, Q�x, y� can be rewritten as

Q�x, y� � exp

"
j

XN
n�1, p�1, q�1

�anxn � bnyn � cp,qxpyq�
#
, (5)

where an, bn are the coefficients of nth-order non-cross aberra-
tion xn, yn, respectively, and cp,q is the coefficient of cross-
aberration term xpyq .

B. High-Order Phase Aberration Compensation
Based on PCA
The phase-aberration-compensation method based on PCA can
automatically extract the phase-aberration term into the first
principal component, which is then broken down along the
x and y axes to convert the 2D surface fitting and 2D phase
unwrapping into 1D procedures in two orthogonal directions.
For small objects with sparse distribution, the PCA-based
method can provide fast and accurate phase-aberration com-
pensation, of which the block diagram is shown in Fig. 1.

Observing Eq. (5), it can be found that the ideal model
for aberration Q�x, y� is a rank one matrix when only non-
cross-aberration terms exist, which means that the phase-
aberration matrix should only have one principal component.
To illustrate this point, we simulate an aberration term with
a unit amplitude and a phase containing second- and third-
order non-cross-aberration terms, of which the resolution is
1280 × 960 and the pixel size is 0.5 μm; these parameters
are used in the all simulations in this paper:

Q�x, y� � expf j��a3x3 � b3y3� � �a2x2 � b2y2��g, (6)

where a3 � b3 � 8 and a2 � b2 � 4.
Figure 2(a) shows the wrapped phase of the non-cross-

aberration term Q�x, y�. After PCA, the phase reconstructions
using the first, first two, and first three principal components
are shown in Figs. 2(b)–2(d), respectively. It can be seen that
the difference between the aberration phase reconstructed from
the first, first two, and first three components can be ignored,
and the aberration is extracted to the first principal component.
Furthermore, the singular value of the first principal compo-
nent is 1014 times more than that of the second principal
component, which fully satisfies the requirement for approxi-
mation using the first principal component. In addition, the
2D phase-unwrapping process is transformed into two 1D
phase-unwrapping processes after PCA. The wrapped phase
of the two dominant vectors is shown in Figs. 2(e) and 2(f ),
of which the unwrapped phase is shown in Figs. 2(g) and 2(h).

From the results shown in Fig. 2, it can be seen that the
PCA-based method can provide accurate and fast compensa-
tion for high-order phase aberration, and only the fitting order
needs to be adjusted. In order to further accelerate the speed, an
optimal PCA-based (OPCA) method is proposed in Ref. [36],
where PCA is implemented on the reduced-sized spectrum
where the aberration is concentrated on, and the compensation
accuracy can be further improved since the unrelated spectrum
information is rejected through spectrum filtering. When ap-
plying Fourier transform (FT), we are actually implementing
discrete FT (DFT) on the discrete sequence, which has an
assumption that the sequence is periodic; this will cause boun-
dary errors. Therefore, the first and the last points of the se-
quence need to be removed when fitting the dominant vectors.
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Fig. 1. Block diagram of PCA-based phase-aberration compensa-
tion method.
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Fig. 2. Phase of non-cross-aberration terms and the results of PCA.
(a) Original phase map. (b) Phase formed from the first principal
component. (c) and (d) show the phase reconstructed from the first
two and three principal components. (e) and (f ) show the wrapped
phase of the left and right dominant singular vectors of the first prin-
cipal component. (g) and (h) show the unwrapped phase of the left and
right dominant singular vectors of the first principal component.
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To verify the effectiveness of the OPCA method for high-
order non-cross-aberration terms, the following simulation is
performed. We simulate three aberration terms with unit am-
plitude and phase containing the third-, fourth-, and fifth-order
non-cross terms of x and y, respectively:

Q1�x, y� � exp� j�a3x3 � b3y3��, (7)

Q2�x, y� � exp� j�a4x4 � b4y4��, (8)

Q3�x, y� � exp� j�a5x5 � b5y5��, (9)

where a3 � b3 � 2, a4 � b4 � 1.6, and a5 � b5 � 3.2.
The wrapped phase of each order aberration term is

shown in Figs. 3(a)–3(c). After FT, the spectrum is obtained
[Figs. 3(d)–3(f )]. In order to accelerate the operation speed of
PCA, a small area in the middle of the spectrum is intercepted
to obtain the sub-sampled spectrum [Figs. 3(g)–3(i)], of which
the size is 40 × 30. After inverse FT (IFT), the phase map of the
sub-sampled aberration is shown in Figs. 3(j)–3(l). In order to
avoid the ringing effect caused by spectrum truncation, the
phase map is up-sampled to get the full-resolution aberration
phase map [Figs. 3(m)–3(o)].

In the simulation, the root mean square errors (RMSEs)
between the recovered phase of the third-, fourth-, and
fifth-order aberrations and their corresponding true phases
are 0.0085 (rad), 0.0420 (rad), and 0.0491 (rad). Compared
to the value of their corresponding true phase, the RMSEs
can be ignored, and the phase recovered using this method
meets the requirement of accuracy.

It is proved that the sub-sampling method in OPCA is
suitable for the phase reconstruction of high-order non-cross-
aberration terms through this simulation, and we find that the
spectrum shape of each order aberration changes as the order
increases. Therefore, the size of the intercepted area needs to be
appropriately selected to contain as much energy as possible
when intercepting the spectrum.

C. Phase Error Compensation in the Presence of
Cross-Aberration Term
DHM not only contains non-cross-aberration terms, but also
contains cross-aberration terms such as xy, which is known as
vertical astigmatism often caused by the misalignment of the
optical path; they can be expressed in the form of Eq. (5).
PCA-based phase-aberration method can only provide appro-
priate compensation for non-cross-aberration terms, which is a
rank 1 matrix, while the rank of the aberration matrix is not 1
in the existence of cross-aberration terms, which means that the
aberration term cannot be extracted to one single component.
Thus, the problem of phase-aberration compensation in the
existence of cross-aberration terms is discussed.

First, the effectiveness of the OPCA method for cross-aber-
ration terms, such as astigmatism, is investigated. An aberration
of which the amplitude is unity and the phase only contains
cross term xy is simulated:

Q�x, y� � exp�j�c1,1xy��, (10)

where c1,1 � 14.
The phase of the cross-aberration term is shown in Fig. 4(a).

After PCA, the phase reconstructions using the first, first two, and
first three principal components are shown in Figs. 4(b)–4(d),
respectively. It can be seen that the difference between the
phases reconstructed using the first, first two, and first three
principal components is large, and the reconstructed phase
gradually approaches the original phase as the number of
principal components used for phase reconstruction increases.
Furthermore, the singular value of the first principal compo-
nent and those of the second and third principal components
are almost the same, and the aberration phase is not concen-
trated in one single component. Thus, PCA-based compensa-
tion method is incapable of removing the cross-aberration term
xy, and the 2D fitting cannot be converted into two 1D fit-
tings. So the nonlinear least-squares fitting method is adopted
to fit the aberration directly. However, the time required for 2D
fitting of the full-resolution phase map shown in Fig. 4(a) is
about 22 s, which is too long to accept. Besides, the fitting
speed is directly related to the size of the image for fitting.
Therefore, inspired by the sub-sampling method in OPCA,
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Fig. 3. Results of OPCA method for each order aberration. (a), (b),
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(e) Full-resolution normalized aberration spectrum. (f ) Normalized
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sub-sampled aberration spectrum. (h) Phase map recovered through
up-sampling.
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a simple way to accelerate the speed is to intercept a smaller
spectrum. Considering that the energy of cross-aberration term
xy mainly resides in the low-frequency domain [Fig. 4(e)],
a 40 × 30 aberration spectrum of the cross term xy [Fig. 4(f )]
is cropped, which is shown in Fig. 4(f ). After IFT, the sub-
sampled phase map is obtained [Fig. 4(g)]. A 2D phase-
unwrapping method based on sorting by reliability following
a non-continuous path is used to unwrap phase. At this point
we can find that, due to the complexity of the 2D phase un-
wrapping, the speed and accuracy using a sub-sampled image
are both high, compared to that using the full-resolution image.
Similarly, since the 2D FT is actually implemented using the
2D DFT, which has a periodic assumption that the image is
periodic, this will cause a boundary error. Thus, we need to
remove the first and last rows and columns before aberration
fitting. Furthermore, in order to avoid the ringing effect caused
by spectrum truncation, the phase is up-sampled to get the
full-resolution aberration phase map [Fig. 4(h)].

Through simulation, it can be found that the RMSE of the
recovered phase is 0.0016 (rad), which can be ignored com-
pared to the value of the true phase, which satisfies the required
fitting accuracy. We also find that the RMSE increases as
the size of the intercepted spectrum decreases, and a 40 × 30
spectrum contains more than 80% energy of the whole �1
spectrum; this meets the requirement for accurate phase recov-
ery for most aberration terms, and the time spent using a
40 × 30 spectrum window is also acceptable.

D. Multi-Step Phase Aberration Compensation
Based on OPCA and Sub-sampling
From the previous discussions in Sections 2.B and 2.C, it can
be seen that although phase-aberration-compensation methods
based on PCA or OPCA are efficient, they are only applicable
to the compensation of non-cross-aberration terms, and not
suitable for the compensation of cross-aberrations terms.
Therefore, under circumstances in which high-order non-cross
and cross-aberration terms coexist, the aberration cannot be
compensated using only the OPCA method. Therefore, we
propose a multi-step phase-aberration-compensation method

based on OPCA and sub-sampling (MOPCA), which is suit-
able for situations in which the hologram contains non-cross
and cross-aberration terms at the same time. For non-cross-
aberration terms, the aberration can be compensated using the
OPCA method, and then the residual cross-aberration terms
can be fitted by performing 2D fitting on the sub-sampled
residual phase map. The accurate full-resolution phase map
can be obtained after up-sampling. A block diagram of the
compensation process is shown in Fig. 5.

3. SIMULATION

Since the efficiency and accuracy of the previous methods
are verified under the circumstance in which only individual
aberration terms exist, we now discuss the effectiveness of
the MOPCA method when high-order non-cross and cross-
aberration terms coexist through simulation. First, an aberra-
tion in which the amplitude is unity and the phase contains
second- and third-order non-cross terms and cross term xy
is simulated:

Q�x, y� � expfj��a2x2 � b2y2� � �a3x3 � b3y3� � c1,1xy�g,
(11)

where a2 � b2 � 6, a3 � b3 � 2.4, and c1,1 � 8.
The wrapped phase is shown in Fig. 6(a), and an area of size

40 × 30 located in the center of the full-resolution spectrum is
cropped [Fig. 6(b)]. After IFT, the recovered wrapped phase is
shown in Fig. 6(c). The phase of the first principal component
[Fig. 6(d)] and the residual phase [Fig. 6(e)] can be obtained
after PCA. The two extracted 1D vectors are fitted along the
x- and y-axes to obtain the correct sub-sampled phase map.
For the residual phase aberration excluding the first principal
component, considering the fact that its phase is not concen-
trated in one single component, a 2D fitting method based
on least-square fitting is implemented to recover the correct
sub-sampled phase map [Fig. 6(g)]. Afterwards, the fitted
sub-sampled phase is up-sampled to reduce the ringing effect,
and to obtain the full-resolution phase map of non-cross
and cross-aberration terms [Figs. 6(h) and 6(i)]. The overall
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aberration phase map [Fig. 6(j)] can be obtained by adding the
two phase maps together. Compared with the phase obtained
by unwrapping the original aberration phase [Fig. 6(k)], it can
be found that the phase difference [Fig. 6(l)] of the recovered
full-resolution phase can be neglected.

The time required for phase aberration compensation
after phase unwrapping using Zernike polynomial fitting,
least-square fitting, and MOPCA is shown in Table 1, using
MATLAB R2014a for simulation on a 2.30 GHz laptop.
Compared to the other two traditional methods, the proposed
MOPCA method has a considerable speed improvement, and
the RMSE of the phase recovered using the MOPCA method is
0.007(rad), which can be ignored compared with the original
phase and meets the accuracy requirement.

4. EXPERIMENT

Based on previous discussions, two experiments were per-
formed where MOPCA was implemented to remove the phase
aberration. In the first experiment, the hologram was taken with
a blank sample placed on the stage of a holographic microscope.

In the other experiment, the hologram was taken with HeLa
cell samples on the stage. In order to illustrate the advantages
of the proposed method, the double-exposure approach, least-
square fitting method, and Zernike polynomial fitting method
are also implemented to remove the phase aberration. In the
experiments, we used a camera (DMK 23U274, 1600x1200)
with a pixel size of 4.4 μm, and the images were obtained with
the objective lens (Olympus UPLFLN, 0.3 NA) at a magnifi-
cation of 10 and a laser (Thorlabs HNLS008R-EC) with a
wavelength of 633 nm.

In the first experiment, MOPCA (in which the size of the
cropped spectrum is 40 × 30), double exposure, least-square fit-
ting using the full-resolution image, and Zernike polynomial
fitting using the first nine Zernike polynomial terms were
implemented to remove aberrations in a hologram obtained
with a blank sample on the stage. The results of each step are
shown to illustrate the experimental procedure. The hologram
captured by the camera is shown in Fig. 7(a), the spectrum of
which is shown in Fig. 7(b). The full-resolution phase map
[Fig. 7(e)] is obtained after spectrum centering [Fig. 7(c)]
and IFT. Here, we need to point out that in order to achieve
higher accuracy and more details in phase reconstruction, the
entire �1 spectrum is intercepted [Fig. 7(c)]. The area in the
center of the �1 spectrum with a size of 40 × 30 [Fig. 7(d)] is
cropped to perform IFT. After IFT, the sub-sampled phase is
recovered [Fig. 7(f )], and PCA is performed afterwards. The
phase of the first principal component is shown in Fig. 7(g).
Afterwards, the phase of the first principal component and
the residual component is fitted and up-sampled [Figs. 7(i)
and 7(j)] to avoid ringing effect. The overall aberration phase
map [Fig. 7(k)] is obtained by adding the two aberration terms
together. Finally, the phase of the aberration term is com-
pensated and the reconstructed phase without aberration
[Fig. 7(o)] is obtained. Compared with the original aberration
phase map, the compensated phase map without aberration
has a much smoother background [Fig. 7(o)], and the phase
compensation results of the double-exposure approach, Zernike
polynomial fitting, and least-square fitting are shown in
Figs. 7(l)–7(n), respectively.

To show the details of the phase-compensation results, the
aberration-free phase map obtained using double exposure is
used as the standard value. The residual phase, which is the dif-
ference between the phase recovered using Zernike polynomial
fitting, least-square fitting, and MOPCA and that recovered
using double-exposure approach resulting from the parasitic in-
terference and laser speckle noise (which are considered as phase
aberration in the double-exposure approach indiscriminately) are
shown in Figs. 7(p)–7(r), respectively.

The time spent on aberration compensation using Zernike
polynomial fitting, least-square fitting, and MOPCA as pro-
posed in this paper after phase unwrapping, as well as the
RMSEs between the phase recovered using these three methods
and the double-exposure approach, are shown in Table 2. It can
be seen that the phase recovered using these methods are ac-
curate, and the MOPCA method has an obvious advantage
in operation speed.

Next, MOPCA (in which the spectrum size is 48 × 36 to meet
the energy requirement), double exposure, Zernike polynomial
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Fig. 6. Results of the MOPCA method for mixed aberration.
(a) Wrapped phase of the simulated aberration. (b) Cropped normal-
ized aberration spectrum. (c) Sub-sampled aberration phase map.
(d) Sub-sampled phase of the first principal component. (e) Sub-
sampled unwrapped phase of the residual aberration apart from that
of the first principal component. (f ) Fitted phase of the first principal
component. (g) Fitted phase of the residual aberration shown in (e).
(h) and (i) show the full-resolution phase of the first principal com-
ponent and that of the residual aberration recovered through up-
sampling. (j) shows the full-resolution phase recovered through
MOPCA. (k) and (l) show the unwrapped phase of the original aber-
ration and the difference between phases shown in (j) and (k).

Table 1. Time Cost and RMSE of the Aberration
Compensation for Q�x , y� Using Zernike Polynomial
Fitting, Least-Square Fitting, and MOPCA

Method Time (s) RMSE (rad)

Zernike polynomial fitting 2.36 0.027
Least-square fitting 78.42 0.712
MOPCA 0.10 0.007
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fitting (using the first nine Zernike polynomial terms), and
least-square fitting using the full-resolution image were per-
formed on the hologram of HeLa cells. Similarly, we show
the results of each step in MOPCA. Figure 8(a) shows the
image shot by the camera, the spectrum of which is shown
in Fig. 8(b). The full-resolution phase map [Fig. 8(e)] can
be obtained after spectrum centering [Fig. 8(c)] and IFT.
Here, in order to achieve more details in phase reconstruction,

the entire �1 spectrum is intercepted. We cropped the area at
the center of the�1 spectrum with a size of 40 × 30 [Fig. 8(d)]
to perform IFT. After IFT, the sub-sampled phase map was
recovered [Fig. 8(f )]. Then, PCA was performed on the sub-
sampled image and the phase of the first principal component
is shown in Fig. 8(g). Afterwards, the phase of the first principal
component and the residual phase are fitted, and in order to
avoid ringing effect, the phase is up-sampled to get the full-
resolution phase map [Figs. 8(i) and 8(j)]. The overall aberra-
tion phase map [Fig. 8(k)] is obtained by adding the two
aberration maps together. Finally, the phase of aberration term
is compensated and the aberration-free phase map of the HeLa
cells [Fig. 8(o)] is obtained. The aberration-free phase map of
HeLa cells recovered through the double-exposure approach,
Zernike polynomial fitting, and least-square fitting are shown
in Figs. 8(l)–8(n), respectively. To further show the details of
the phase-compensation results, the aberration-free phase map
obtained using double exposure is used as the standard value,
and the residual phase between the phase recovered using
Zernike polynomial fitting, least-square fitting, and MOPCA
is shown in Figs. 8(p)–8(r). It should be noted that some object
information also appears in all phase residual maps; this is due
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Fig. 7. Phase-aberration compensation using MOPCA and three
other traditional methods with a blank sample on the stage.
(a) Hologram shot by the camera. (b) Normalized spectrum of the
hologram. (c) Centered �1 order spectrum. (d) Full-resolution phase
map with aberration. (e) Cropped sub-sampled �1 order spectrum.
(f ) Sub-sampled phase map. (g) Phase of the first principal component.
(h) Residual phase map. (i) Full-resolution phase map recovered
through up-sampling. (j) Full-resolution phase of the residual aberra-
tion. (k) Full-resolution aberration phase map. (l) shows the aberra-
tion-free phase map using double exposure method, which is at the
same scale with (k). (m), (n), and (o) show the phase-compensation
results of Zernike polynomial fitting, least-square fitting, and
MOPCA, respectively. (p), (q), and (r) show the corresponding
residual phases between the aberration-free phases shown in (m),
(n), and (o) and that shown in (l).

Table 2. Time Spent on the Phase-Aberration
Compensation and RMSE between the Phase Recovered
Using Zernike Polynomial Fitting, Least-Square Fitting,
and MOPCA and that Recovered Through Double-
Exposure Approach with a Blank Sample Placed on the
Stage

Method Time (s) RMSE (rad)

Zernike polynomial fitting 1.57 0.131
Least-square fitting 15.87 0.162
MOPCA 0.14 0.167
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Fig. 8. Phase-aberration compensation on HeLa cells using the pro-
posed MOPCA algorithm and three other traditional methods.
(a) Hologram shot by camera. (b) Normalized spectrum of the holo-
gram. (c) Centered�1 order spectrum. (d) Cropped sub-sampled�1
order spectrum. (e) Full-resolution phase map with aberration.
(f ) Sub-sampled phase map. (g) Phase of the extracted first principal
component. (h) Residual phase map. (i) Full-resolution phase map re-
covered through up-sampling. (j) Full-resolution phase of the residual
aberration. (k) Full-resolution phase map of the aberration.
(l) Aberration-free phase map of HeLa cells using double-exposure
method. (m), (n), and (o) show the phase-compensation results of
Zernike polynomial fitting, least-square fitting, and MOPCA, respec-
tively. (p), (q), and (r) show the corresponding residual phase between
the phase shown in (m), (n), and (o) and that shown in (l).
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to the phase-unwrapping errors around cell regions with signifi-
cant phase wraps.

It can also be found in experiment that if PCA is performed
on the full-resolution image, the object’s information will
lead to a worse result when fitting the residual cross terms, in-
dicating that the object’s phase affects the fitting accuracy to
some extent. It is illustrated that intercepting a small �1 spec-
trum and fitting the sub-sampled aberrations can effectively
avoid the influence of the phase information induced by the
object on the aberration fitting when the tested object has a
high spatial frequency. However, if the object has a phase of
low frequency which is close to that of the aberration, it is
difficult to effectively remove the influence of the object’s phase
on the aberration fitting by intercepting the low-frequency
domain.

The time spent on the aberration compensation using
Zernike polynomial fitting, least-square fitting, and MOPCA
as proposed in this paper after phase unwrapping, as well as
the RMSEs between the phase recovered using the latter three
methods and that recovered through the double-exposure ap-
proach, are shown in Table 3. From the phase-compensation
results of these three methods, it can be seen that using the
proposed MOPCA method not only has higher accuracy
compared to the other traditional methods, but also has a
considerable speed improvement.

5. CONCLUSION

In summary, this paper proves that the OPCA aberration com-
pensation method is suitable for the compensation of high-
order non-cross-aberration terms in DHM, and since the PCA
results of aberration term xy are not concentrated in one single
component, it is not possible to use PCA-based compensation
methods alone to compensate for cross-aberration terms.
Therefore, for cases in which non-cross-aberration and cross-
aberration terms coexist, this paper proposes a multi-step
numerical aberration-compensation method based on OPCA
and sub-sampling. For cross-aberration terms existing in the
hologram, since the sub-sampling method reduces the size
of the image for 2D fitting, the speed is greatly accelerated.
Moreover, because of the complexity of 2D phase unwrapping,
using a smaller image for phase unwrapping not only accelerates
the speed, but also improves the accuracy.

Although only cross-aberration term xy is discussed in this
paper and other high-order cross-aberration terms are disre-
garded, this method should nevertheless be extendable to the
compensation of other such terms, such as x2y. That is, when

compensating aberration which contains high-order cross-
aberration terms, the fitting can be achieved by changing the
fitting order of the residual aberration-fitting process in the
MOPCA method. In addition, as the order of aberration in-
creases, the spectrum shape changes correspondingly. There-
fore, when sub-sampling high-order aberration terms, it is
necessary to pay attention to whether the high-frequency com-
ponents contained in the intercepted spectrum are sufficient.
Certainly, we could add a step of adaptively selecting the
�1 order aberration spectrum to satisfy the condition that
the energy of the selected aberration spectrum must account
for more than 80% of the total energy of the full-resolution
spectrum. This would not only improve the aberration-
compensation accuracy, but also make MOPCA a completely
adaptive compensation method for all aberration types without
any manual intervention. This may be our next research
direction.

When samples with low phase variation are tested, the
method we propose may not provide appropriate compensa-
tion, in contrast to the compensation method based on
deep-learning mentioned in Ref [30]. Additionally, our method
is not efficient for punctual defects; these are problems we are
going to solve in the future.
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