
Neurocomputing 573 (2024) 127207

Available online 29 December 2023
0925-2312/© 2023 Elsevier B.V. All rights reserved.

Survey paper 

Deep learning-powered biomedical photoacoustic imaging☆ 

Xiang Wei a,b,c, Ting Feng d, Qinghua Huang e, Qian Chen a,c, Chao Zuo a,b,c, Haigang Ma a,b,c,* 

a Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 
Province 210094, China 
b Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China 
c Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China 
d Academy for Engineering & Technology, Fudan University, Shanghai 200433, China 
e School of Artificial Intelligence, Optics and Electronics(iOPEN), Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China   

A R T I C L E  I N F O   

Communicated by Zidong Wang  

Keywords: 
Biomedical imaging 
Photoacoustic imaging 
Deep learning 
Convolutional networks 

A B S T R A C T   

Photoacoustic Imaging (PAI) is an emerging hybrid imaging modality that combines optical imaging and ul-
trasound imaging, offering advantages such as high resolution, strong contrast, and safety. Despite demonstrating 
superior imaging capabilities, PAI still has certain limitations in its clinical application, such as the trade-off 
between imaging depth and spatial resolution, and the need for further improvement in imaging speed. Deep 
Learning, as a novel machine learning technique, has gained significant attention for its ability to improve 
medical image data and has been widely applied in PAI in recent years to overcome these limitations. In this 
review, we first introduce the principles of photoacoustic imaging, followed by the development and applications 
of popular deep neural network structures such as U-Net and GAN networks. Furthermore, we comprehensively 
discuss the recent advancements in the application of deep learning in photoacoustic imaging. Finally, a sum-
mary and discussion are provided.   

1. Introduction 

1.1. Photoacoustic imaging 

Photoacoustic Imaging (PAI) is a novel non-invasive photon imaging 
technique used for disease detection, observing biological tissue struc-
ture, and assessing function. The physical basis of PAI is the photo-
acoustic effect in biological tissue. When a short-pulsed laser illuminates 
the imaged sample, the tissue or substance absorbs the light energy, 
resulting in thermal elastic expansion and causing instantaneous 
expansion and contraction of the surrounding medium, thereby gener-
ating ultrasound waves propagating towards the tissue surface and being 
received. By receiving the ultrasound signals and using acoustic inverse 
problems, the initial sound pressure signal map of the tissue surface can 
be reconstructed, enabling observation and diagnosis of biological tissue 
structure and function [1,2]. Due to the significant difference in scat-
tering intensity between ultrasound waves and photons in biological 
tissue (approximately 2–3 orders of magnitude), ultrasound scattering is 
much lower than that of photons. Therefore, PAI can overcome the 

diffraction limit of optical imaging depth (i.e., 1 mm). Moreover, PAI 
combines the high imaging depth of ultrasound imaging with the high 
contrast and high resolution of optical imaging, thereby achieving 
high-depth, high-contrast, and high-resolution imaging of biological 
tissue by leveraging the advantages of both technologies. 

The most common forms of photoacoustic imaging are photoacoustic 
tomography (PAT), photoacoustic microscopy (PAM), and photo-
acoustic endoscopy (PAE) [3,4]. PAT uses a non-focused large-diameter 
pulsed laser beam to achieve full-field illumination of the tissue surface 
and employs an array transducer to collect signals, which are then 
reconstructed into an image using inversion algorithms. Existing 
inversion algorithms include filtered back-projection (FBP), 
delay-and-sum (DAS) beamforming algorithm, Fourier-based algo-
rithms, and time reversal (TR) algorithm. PAM, on the other hand, uses a 
focused short-pulsed laser to illuminate the target point and employs a 
focused transducer to collect the PA signal point-by-point, allowing for 
image reconstruction without the need for additional inversion algo-
rithms. PAE is a type of endoscope-based photoacoustic imaging tech-
nology. Due to its unique imaging principles and the advantages of 

☆ © 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Global Science and Technology Forum Pte Ltd 
* Corresponding author at: Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and 

Technology, Nanjing, Jiangsu Province 210094, China. 
E-mail address: mahaigang@njust.edu.cn (H. Ma).  

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

https://doi.org/10.1016/j.neucom.2023.127207 
Received 12 September 2023; Received in revised form 17 November 2023; Accepted 26 December 2023   

mailto:mahaigang@njust.edu.cn
www.sciencedirect.com/science/journal/09252312
https://www.elsevier.com/locate/neucom
https://doi.org/10.1016/j.neucom.2023.127207
https://doi.org/10.1016/j.neucom.2023.127207
https://doi.org/10.1016/j.neucom.2023.127207
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.127207&domain=pdf


Neurocomputing 573 (2024) 127207

2

optics and acoustics, photoacoustic imaging has broad application 
prospects and has gradually played a role in clinical medicine, 
biomedical research, drug development, material science, and other 
biomedical fields. Its application areas are also constantly expanding 
and deepening. 

1.2. Deep learning 

With the advent of the big data era, computer computational capa-
bilities have significantly improved, and continuously emerging open- 
source and user-friendly software frameworks have led to unprece-
dented development of artificial intelligence (AI) technology. Classical 
AI technology machine learning has attracted great interest in both in-
dustry and academia, especially data-driven artificial neural network 
technology, that is, deep learning [3–6]. The deep learning method aims 
to discover complex mappings from training data to achieve optimiza-
tion of the existing parameter space problem. Unlike the lack of 
computing power in the past, today’s graphic processing units allow 
neural networks to continuously improve their depth [7,8], width [9], 
computation speed and other aspects, gradually developing various 
basic network architectures. Deep learning has become an important 
method in computer vision, natural language processing, and AI fields. 
This article introduces various networks’ applications and effects in the 
optical-acoustic field based on supervised learning perspective, focusing 
on classic deep neural network structures. 

1.3. Deep learning-powered photoacoustic imaging 

In the two previous sections, we introduced the advantages of pho-
toacoustic imaging and deep learning and found that both have very 
good prospects in their respective fields. Especially in the medical im-
aging field, photoacoustic imaging has many advantages, such as 
combining acoustic depth, optical resolution, and non-invasiveness. 
However, photoacoustic imaging still faces many challenges, including 
image quality limited by sound and light diffraction, and various prob-
lems in the data acquisition, processing, and inversion processes. For 
example, in PAT, it is difficult to achieve low-cost equipment and high 
signal-to-noise ratio image reconstruction at the same time, and the 
widely used sparse detectors currently have difficulty obtaining good 
reconstruction results through conventional inversion methods. In PAM, 
there are also deficiencies in imaging speed. Although scanning speed 
can be improved by changing the repetition rate of the excitation light 
pulse and the scanning mechanism, these methods often have an un-
avoidable impact on image quality. In short, there is a certain contra-
diction between image quality, economic benefits, and time efficiency in 
photoacoustic imaging. Although many methods have been proposed to 
solve these problems, and these methods have achieved some effec-
tiveness, further exploration and improvement are still needed. 

The intervention of deep learning has had a huge impact in the field 
of photoacoustic imaging. We have found that a large number of pho-
toacoustic imaging works based on deep learning have achieved imaging 
quality and efficiency that previous methods have difficulty achieving. 
This is also the reason why we want to write this review and organize 
and analyze recent related work. We want to organize and analyze our 
work in recent years from four important directions of photoacoustic 
imaging: PAT image reconstruction, PAM image reconstruction, photo-
acoustic image processing, and photoacoustic signal processing. Not 
only that, we also introduced the development and current status of 
common network structures such as U-Net and GAN networks in image 
processing. Finally, we summarized and prospected the review. 

The first chapter of this article introduces the principle of photo-
acoustic imaging, the principle of deep learning network, and analyzes 
the current problems of photoacoustic imaging. Chapter 2 details the 
development of current popular deep learning networks, including U- 
Net, Residual Network (ResNet), and Super-Resolution Generative 
Adversarial Network (SRGAN). Chapter 3 lists and analyzes the 

application results of current deep learning technology in various fields 
of photoacoustic imaging. Chapter 4 summarizes the application results 
and problems of deep learning in the field of photoacoustics, and looks 
forward to future development directions. The following is the article 
flowchart and Chart of Recent works on Deep Learning-powered pho-
toacoustic imaging.,. 

2. The neural network structures based on photoacoustic 
imaging 

In recent years, the combination of photoacoustic imaging and deep 
learning has brought significant improvements to photoacoustic imag-
ing. Considering the effectiveness, real-time performance, and economy 
of the method, U-Net has emerged in various aspects of photoacoustic 
imaging in recent years due to its simple and efficient network structure. 
It has been applied to PAT reconstruction, PAM reconstruction, 
denoising, and image processing of photoacoustic images. Its superiority 
in image recognition and segmentation tasks was first discovered, and 
then it was applied to image denoising. It is worth noting that the skip 
connections in U-Net ensure the validity of the image, which effectively 
improves the signal-to-noise ratio of the image and greatly suppresses 
the possible artifacts produced during the processing. Subsequently, the 
U-Net network has also been widely applied to other aspects of various 
photoacoustic imaging methods, which also proves that network opti-
mization for image recognition tasks is applicable to optimizing network 
performance for other image tasks. In addition, U-shaped deep neural 
networks also have certain robustness and generalization capabilities, 
can process different types and qualities of data, and can further 
improve model performance through techniques such as data 
augmentation. 

Overall, U-Net has great advantages in the field of photoacoustic 
imaging. It can effectively process high-dimensional data, learn features 
in the data, and achieve accurate image segmentation and localization. 
This makes it a very promising tool in the field of photoacoustic imaging, 
which can help doctors and researchers make more accurate diagnoses 
and treatments. This chapter mainly introduces the U-Net and SRGAN 
network structures, details the birth of U-Net and the development 
process of its network architecture, shares the photoacoustic microscopy 
method we are working on based on SRGAN, and finally introduces the 
classic residual block structure. 

2.1. U-Net 

2.1.1. The proposal of U-Net network 
Ronneberger et al. first proposed the U-Net network in 2015 [10], 

Fig. 1. The flowchart of this paper.  
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which was initially applied to image segmentation and won the cham-
pionships of the ISBI 2015 Cell Tracking Challenge and Caries Detection 
Challenge. To this day, U-Net has inspired the development of many 
network structures, and more and more deep learning strategies 
continue to extend based on U-Net. The U-Net network structure consists 
of a contracting path for capturing context and a symmetric expanding 
path for precise localization. U-Net can also be combined with data 
augmentation techniques to achieve end-to-end training with a small 
amount of data input [11–13]. Due to its network structure resembling 
the letter "U", it is named U-Net. The initial U-Net network structure is 
shown in Fig. 2(a). 

In U-Net network structure, the vertical arrows form the processes of 
the encoder and decoder, while the horizontal arrows represent skip 
connections that jump across multiple layers. Its multi-layer encoder 
and decoder structure together constitute an overall layout resembling 
the letter "U". The left part of U-Net is the encoder, and the right part is 

the decoder. Let’s discuss the encoder and decoder in detail.The encoder 
is responsible for extracting features from the input image. It gradually 
reduces the size of the feature map and increases the number of channels 
through multiple convolutional layers to extract more abstract features. 
Its structure consists of four blocks. Each block is composed of a 3 × 3 
convolution (using the ReLU activation function) and a pooling layer 
with a stride of 2 × 2. After processing through the four blocks, the 
feature map is gradually reduced. The output of the encoder is passed to 
the decoder, and at the same time, skip connections are made between 
the output of each stage of the encoder and the symmetric stage of the 
decoder to preserve the detailed information of the feature map. 

U-Net was initially applied to image segmentation, as shown in Fig. 2 
(b) and (c). Fig. 2(b) demonstrates the U-Net’s overlapping-tile strategy 
for seamless segmentation of images of arbitrary sizes by predicting the 
segmentation results of small selected areas through inputting the large 
selected frame image. Fig. 2(c) shows the process of observing HeLa cells 

Chart 1. Chart of Recent works on Deep Learning-powered photoacoustic imaging.  
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using differential interference contrast microscopy, where the four im-
ages represent the original image, the image overlaid with ground truth 
segmentation (different colors indicate different stages of HeLa cells), 
the generated segmentation mask (white represents foreground, black 
represents background), and the result using pixel loss weight mapping. 

U-Net’s overlapping-tile strategy has been widely used in medical 
image segmentation, effectively handling images of any size and 
achieving relatively accurate segmentation results. Meanwhile, U-Net 
can achieve end-to-end training with a small amount of data input by 
combining data augmentation and pixel loss weight mapping methods, 
making the network robust and capable of generalizing well. 

2.1.2. The development of U-Net 
U-Net is one of the currently popular network architectures, which 

was initially applied to image segmentation. With the continuous 
development and in-depth research of deep learning frameworks, the 
network structure of U-Net has also been continuously optimized and 
improved. More and more deep neural network structures have been 
discovered and combined with the U-Net architecture to further improve 
network efficiency. In addition, U-Net has been widely used in fields 
such as image reconstruction, image super-resolution, semantic seg-
mentation, and signal processing, and has achieved good results. 

In 2016, Cicek et al. proposed the 3D U-Net based on U-Net, which is 
used for 3D image segmentation [14]. Compared with U-Net, 3D U-Net 
only uses three downsampling operations and a normalization layer 
after each convolutional layer. It is worth noting that both 3D U-Net and 
U-Net do not use random dropout layers. In the 2018 MICCAI Brain 
Tumor Segmentation Challenge (BRATS), the team of the German 
Cancer Research Center used 3D U-Net and achieved the second place in 
the challenge with only a few modifications [15]. This indicates that 
compared to many new networks, 3D U-Net still has significant 
advantages. 

In 2018, residual U-shaped network (Res-UNet) and dense U-shaped 
network (Dense-UNet) were born based on the U-Net architecture. Res- 
UNet and Dense-UNet are inspired by residual connections and dense 
connections, respectively, replacing each sub-module of U-Net with a 
form of residual connection or dense connection. Among them, dense 
connection means that the output of a layer in the sub-module is used as 
part of the input of subsequent layers, while any layer’s input comes 
from the combination of outputs of previous layers. Res-UNet has been 
applied to the segmentation of retinal images [16], while Dense-UNet 
has been used to remove artifacts in images [17], which is the first 
case of using the U-Net architecture for image processing. The authors 

pointed out that U-Net is the most widely used CNN architecture for 
applying deep learning and post-processing methods to sparse tomo-
graphic image reconstruction [18]. It has many characteristics suitable 
for artifact removal, such as multi-level decomposition and 
multi-channel filtering. Moreover, on both synthetic data and experi-
mental data [19], it shows better performance in removing sparse PAT 
image artifacts than iterative methods.The core idea of DenseNet is the 
Dense Block. In a Dense Block, the input of each layer is a concatenation 
of the outputs from all previous layers. Due to the direct connections 
between each layer and all preceding layers, DenseNet can effectively 
utilize parameters, resulting in a model with fewer parameters and 
reduced risk of overfitting. With the dense connectivity design, every 
layer in DenseNet has direct access to the feature maps from previous 
layers, facilitating feature propagation and reuse, which helps in 
learning richer feature representations. 

Lin et al. proposed a robust deep learning network for ultrasonic 
photoacoustic microscopy with two modes dense network [20](US-PAM 
DenseNet), aimed at improving the performance of the model in dis-
tinguishing malignant from non-cancerous tissues based on 
co-registration of dual-mode ultrasound (US) and PAM images, as well 
as individualized normal reference images, as training. In Fig. 3, the 
US-PAM DenseNet similarly classifies the entire US-PAM B scan by ROI 
grade and computes the ROI heat map, highlighting the rectal cancer 
region.In Fig. 3(a), Five channels are generated from the selected ROI as 
the model input, which has dimensions of 128 × 64 × 5. Solid arrows 
indicate data flows and connections inside the model: different colors 
correspond to different data origins. Connections are made between 
every pair of layers in the DenseNet architecture. The model has three 
layers, with 64 initial kernels in the first layer, a kernel growth rate of 12 
from one layer to the next, and block repetition numbers of 4, 8, and 6 
respectively for the three layers. The size of each model layer is marked 
under the layer icons. 

In the same year, U-Net began to be applied to direct PAT recon-
struction of sparse data from raw sensors. 

Guan et al. proposed a new deep learning method called Pixel-DL 
(Pixel-wise Deep Learning) [21]. It first utilizes pixel-wise interpola-
tion controlled by the physical propagation of photoacoustic waves, and 
then employs convolutional neural networks (CNNs) to reconstruct 
images. Synthetic phantom data from mouse brain, lung, and retinal 
vascular system were used for training and testing. The results show that 
Pixel-DL achieves comparable or better performance compared to iter-
ative methods, making it suitable for real-time photoacoustic tomogra-
phy (PAT) rendering and improving image reconstruction quality in 

Fig. 2. Network structure and image segmentation; (a) Basic structure of U-Net network; (b) Seamless segmentation effect; (c) Progressive treatment of Hela cells, the 
four results are the original image, the image overlapped with the true value segmentation, the generated segmentation mask, and the result of using pixel loss 
weight mapping. 
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limited-view and sparse PAT scenarios.Fig. 4(c) shows the improvement 
of Pixel-DL.Comparable to iterative reconstruction, Pixel-DL had similar 
performance for the fundus vasculature and outperformed it for the lung 
vasculature dataset.In this work, three different CNN-based deep 
learning methods for limited-view and sparse PAT image reconstruction 
were used, as shown in Fig. 4(a). Fig. 4(a)(I) shows inputs into the CNN 
for each deep learning approach. The Post-DL CNN implementation used 
residual learning which included a skip connection between the input 
and final addition operation. The initial Pixel-DL input contains “N” 
feature-maps corresponding to the number of sensors in the imaging 
system; (II) The FD-UNet is comprised of a contracting and expanding 
path with concatenation connections; (III) The output of the CNN is the 
desired PAT image. In Post-DL, residual learning is used to acquire the 
final PAT image. In Post-DL, the sensor data is reconstructed into an 
image with artifacts using time reversal, and then CNN is utilized as a 

post-processing step to remove the artifacts and enhance the image. In 
Pixel-DL, window-correlated information in the sensor data is interpo-
lated on a pixel-by-pixel basis and mapped to the image space. In the 
improved Direct-DL implementation (mDirect-DL), a combination of 
linear interpolation and downsampling is used to ensure that the 
interpolated sensor data has the same dimensions as the final PAT 
image.In Fig. 5(b)(IV) The red semi-circle represents the sensor array, 
and the gray grid represents the defined reconstruction grid. In Fig. 5(b) 
(V)Color represents the time at which a pressure measurement was 
taken and is included to highlight the use of time-of-flight to map the 
sensor data to the reconstruction grid. 

In 2019, Lan et al. proposed a Y-Net network based on the U-Net idea 
[22]. Unlike the general U-Net, Y-Net has two inputs and one output, i. 
e., two encoders and one decoder. By using the measured raw data and 
the beamformed image as inputs, Y-Net solves the PAT image 

Fig. 3. The architecture of US-PAM DenseNet and the application of US-PAM DenseNet in generating thermal maps of suspicious tumor regions; (a) The white dotted 
box shows an example ROI selected from a co-registered US-PAM B scan. (b) The white dotted box shows an example ROI selected from a co-registered US-PAM B 
scan. Five channels are generated from the selected ROI as the model input, which has dimensions of 128 × 64 × 5. Solid arrows indicate data flows and connections 
inside the model: different colors correspond to different data origins. Connections are made between every pair of layers in the DenseNet architecture. The model has 
three layers, with 64 initial kernels in the first layer, a kernel growth rate of 12 from one layer to the next, and block repetition numbers of 4, 8, and 6 respectively for 
the three layers. The size of each model layer is marked under the layer icons.Pipeline for applying US-PAM DenseNet to diagnose a whole US-PAM B scan and 
generate an attention heat map of suspicious cancer regions to facilitate surgeons decision making. The processing pipeline is illustrated in the blue box. In steps 3, 4, 
and 5, green dotted boxes show the ROIs that US-PAM DenseNet classifies as normal, red shows the cancer ROIs, and cyan shows artifacts. In step 5, guided 
backpropagation is computed for all three potential classification outcomes, i.e., normal, cancer and artifact, weighted with their respective prediction scores. 
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reconstruction problem, which can also be called hybrid processing. 
Inspired by the Y-Net network idea, in 2022, Guo et al. proposed an 
attention-guided network based on multi-feature fusion (AS-Net) for PA 
reconstruction, aiming to solve the PA reconstruction problem under 
sparse conditions of ultrasonic transducers in photoacoustic tomography 
[23]. 

In Fig. 5, Firstly, 2-D PA raw data is transformed into a 3-D square 
matrix by Folded Transformation (FT). Then AS-Net produces the multi- 
feature fusion base on the attention mechanism for PA reconstruction. 
ASKF-Net architecture consists of a basic PA reconstruction (BPR) 
module, semantic feature extraction (SFE) module, and feature fusion 
(FF) module. BPR module is a modified Auto-Encoder architecture used 
to reconstruct images from the PA signal, while the SFE module aims to 
extract semantic features from the DAS image. FF module is used to fuse 
the semantic feature into the output of the BPR module and generate the 
final reconstructed image. 

In 2022, MENG et al. proposed a deep tissue acoustic-resolution 
photoacoustic microscopy technique based on a two-stage deep 
learning network [24]. This technique can adaptively restore 
high-resolution photoacoustic images at different defocusing depths, 

thereby partially solving the problem of poor imaging quality of 
off-focus plane targets. Specifically, the network structure consists of 
two stages. The first stage of the deep learning network is used to 
reconstruct the region far away from the focus, and the second stage 
reconstructs the region near the focus. In order to achieve image 
reconstruction, a residual U-shaped network with attention gates 
(Res-UNet_AG) is also designed in this study. 

2.2. Generative adversarial network 

Super-Resolution Generative Adversarial Network (SRGAN) is a 
network proposed by Christian Ledig et al.in 2017 in their paper [25]. 
This paper presents a super-resolution method based on generative 
adversarial networks, which can convert low-resolution images into 
high-resolution and realistic images. The appearance of SRGAN has 
attracted wide attention in the field of image processing and has ach-
ieved good results in practical applications. 

The main body of the SRGAN network consists of two independent 
and combinable training network structures, namely the generator and 
discriminator. The network loss function consists of a perceptual loss 

Fig. 4. The proposed FD-UNet network architecture, the introduced pixel interpolation process and PAT sensor data acquired with 32 sensors and a semi-circle view; 
(a)(I) Inputs into the CNN for each deep learning approach. The Post-DL CNN implementation used residual learning which included a skip connection between the 
input and final addition operation. The initial Pixel-DL input contains “N” feature-maps corresponding to the number of sensors in the imaging system; (II) The FD- 
UNet is comprised of a contracting and expanding path with concatenation connections; (III) The output of the CNN is the desired PAT image. In Post-DL, residual 
learning is used to acquire the final PAT image; (b)(IV) There are Schematic of the PAT system for imaging the vasculature phantom. The first sensor (S1) is circled 
and used as an example for applying pixel-wise interpolation to a single sensor; The PAT time series pressure sensor data measured by the sensor array; Resulting 
pixel-interpolated data after applying pixel-wise interpolation to each sensor based on the reconstruction grid; (V) There are Sensor data for S1; Calculated time-of- 
flight for a signal originating at each pixel position and traveling to S1; Pressure measurements are mapped from the S1 sensor data to the reconstruction grid based 
on the calculate time-of-flight for each pixel.(c)Data were acquired respectively on images of lung and fundus vasculature. 
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function, which corresponds to the content loss of the generator, and an 
adversarial loss function of the discriminator weighted by the two. The 
training idea of the network is to input low-resolution images into the 
generator network to obtain super-resolution images, and then input the 
super-resolution images into the discriminator network. The discrimi-
nator network will output a binary result representing the "truthfulness" 
of the image. If the discriminator outputs that the image is fake, the loss 
value will be returned to the generator network for further training; if it 
is true, the discriminator will continue to train. In summary, the 
generator and discriminator mutually constrain each other and train 
with a related loss function. The goal of the generator can be understood 
as "deceiving" the discriminator, while the goal of the discriminator is to 
optimize the authenticity of the generator.The network iteration stops 
when the minimum error is reached, and the generator at this time is 
taken as the final result of the network training. The content loss func-
tion used in this paper is different from the spatial loss and is based on 
the feature space Mean Squared Error (MSE) loss of a certain layer 
weight of the VGG19 model [26,27]. This loss function can improve the 
semantic recognition and readability of the image. The paper compares 

the reconstruction effects of three methods, interpolation, ResNet, and 
SRGAN (the generator is ResNet). The results show that SRGAN has a 
better effect in extracting image features. Fig. 6 shows the SRGAN 
network structure. 

In 2018, Wang et al. proposed an enhanced super-resolution gener-
ative adversarial network to solve the artifacts generated by SRGAN in 
image super-resolution [28]. The super-resolution generative adversa-
rial network (SRGAN) can generate realistic textures during the single 
image super-resolution process. However, the details of the recon-
structed image are often accompanied by artifacts. In order to further 
improve the visual quality of SRGAN, the authors conducted in-depth 
research on SRGAN and improved three key components: network 
structure, adversarial loss, and perceptual loss, to obtain an enhanced 
SRGAN (ESRGAN). The residual-in-residual dense block (RRDB) without 
batch normalization is introduced as the basic network building unit. In 
addition, the authors used the idea of relative error to let the discrimi-
nator predict the relative realism instead of the absolute value. Finally, 
the activation before the feature is used to improve the perceptual loss 
and provide stronger supervision for brightness consistency and texture 

Fig. 5. Illustration of the reconstruction framework from Guo et al., which includes PA raw data preprocessing and AS-Net reconstruction network.  

Fig. 6. The SRGAN structure. (a) The Generator Network of SRGAN structure.The main function is to generate parameters. (b) The Discriminator Network of SRGAN 
structure.The main function is to cooperate and build generate corresponding parameters which could be used to train Generator Network for improvement. 
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restoration. The network improvements are shown in Fig. 7. 
Fig. 7(a) shows the network flow of ESRGAN, where Residual Blocks 

in the SRGAN generator are treated as a type of feature extraction layer 
called Basic Block. Fig. 7(b) shows that ESRGAN removes the normali-
zation layer (BN, Batch Normalization) in the Residual Blocks and adds 
Dense Blocks as feature extraction layers after Residual Blocks. In each 
Residual Block, the BN layer appears twice to ensure that the network 
gradient does not explode, but it significantly slows down the network 
training speed and reduces the amount of feature information, which 
leads to a significant impact on the reconstruction effect. Dense Blocks 
can also solve the problem of gradient diffusion and explosion, and will 
not reduce the image reconstruction effect. The authors also proposed 
optimizing the loss function of the discriminator, which is different from 
the standard discriminator in SRGAN. It estimates the real probability of 
the input image, that is, trying to predict the probability that the real 
image is relatively more realistic than the fake image. This modification 
helps to learn sharper edges and more detailed textures. 

2.3. Residual blocks and residual networks 

U-Net is constantly developing in terms of width and depth in the 
field of photoacoustic imaging, especially in the areas of reconstruction 
and image processing in PAM. With the continuous improvement of 
imaging speed, image effectiveness, and the requirements for biaxial 
resolution, the ordinary U-Net network structure is difficult to meet the 
situation of deepening the width and depth. The introduction of Resid-
ual Blocks into U-Net has enabled the network to reach unprecedented 
depths, and Residual Blocks have been fully applied not only in U-Net 
but also in other network structures such as the generator network of 
SRGAN. Szegedy et al. summarized the impact of network structures 
including Residual Blocks on image recognition tasks [29]. The authors 
analyzed the inherent importance of residual connections for training 
very deep neural networks. High-performance networks are often very 
deep, and deep neural networks are difficult to train compared to 
shallow neural networks because of the problems of gradient vanishing 
and exploding, as well as the increased computational complexity that 
increases the hardware requirements for network training. Skip con-
nections are an important component structure of Residual Blocks, 
which can obtain weights from a certain layer of the network layer and 
quickly feedback to another layer, usually skipping connections to 
deeper layers. This structure can reflect the weights of the lower layers 
of the network in the next layers of the network, thereby avoiding 
gradient vanishing and exploding problems, and improving the effi-
ciency and stability of network training. Currently, it is common to use 
residual connections to replace filter cascading stages. 

The authors also pointed out that optimizing convolutional neural 
networks with recognition performance as the goal can also be 

transformed into performance improvements in other tasks. Using Re-
sidual Blocks to construct residual networks (ResNet) that can train deep 
networks not only has good results in image segmentation but can also 
be further extended to other fields such as medical imaging. He et al. 
first proposed ResNet to solve the problems of gradient vanishing and 
exploding in deep networks while successfully increasing the number of 
network layers to the order of 10^3 while ensuring the constraint of the 
loss function. ResNet is composed of Residual Blocks [30,31]. The pro-
posal of ResNet and Residual Blocks ensures the effectiveness of training 
deep neural networks. Even if the network depth reaches the level of 
103, the loss function can be optimized to ensure a reduction in training 
error. 

3. Application of deep learning in photoacoustic imaging 

3.1. Photoacoustic image reconstruction 

Deep learning methods, as a new information mining method, have a 
wide range of applications in multidimensional information processing, 
such as reconstruction, denoising, super-resolution, etc., and have ach-
ieved many good results.Currently, there are also some non-iterative 
reconstruction schemes proposed, such as direct estimation, PA signal 
model reconstruction, and PA signal or image enhancement through 
deep learning. 

The direct reconstruction method solves the PA wave equation, 
which captures the mapping from signal to image with the PA signal as 
input. Waibel et al. established a direct estimation from light and sound 
signal detector data to PA imaging [32], input the synthetic data of the 
128-element linear detector into an improved U-Net, and reconstructed 
the final initial PA pressure signal. Schwab et al. used deep learning to 
learn the weights of reflected data on different channels and trained 
neural networks for vessel phantom. Meanwhile, the model used 
Shepp-Logan phantom to verify. They also proposed a data-driven reg-
ularization method [33], which significantly suppresses noise by 
applying truncated singular value decomposition (SVD) [34] and then 
restoring truncated SVD coordinate coefficients. Lan proposed using 
three different sensor data (2.25 MHz, 5 MHz, 7.5 MHz) as input and 
using U-net for direct reconstruction. Feng et al. improved Res-Unet for 
direct reconstruction of simple phantoms and compared it with some 
U-net models [35]. Tong Tong [36] trained a feature pyramid network 
(FPnet) as post-processing using in vivo data. Mohammad Abu Anas 
et al. proposed a deep CNN network structure for beamforming PA data 
[37], which consists of five dense blocks consisting of convolutional 
layers with different sizes. The article discusses the influence of variable 
sound speed on this method and verifies its robustness under variable 
sound speed. 

In particular, in the PAI system, due to the existence of optical 

Fig. 7. ESRGAN Network; (a) ESRGAN flow; (b) Modified Residual Block and RRDB.  
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scattering, the effective excitation degree of deep targets is affected to a 
certain extent, which is a problem that cannot be ignored. To solve this 
problem, Johnstonbaugh et al. designed an encoder-decoder network for 
predicting objects in deep tissue [38]. This study introduced acoustic 
and optical attenuation in simulation and compared it with actual sit-
uations. Allman et al. used VGG16 beam to detect and eliminate re-
flections from point sources [39], and all experiments used simple 
(point) phantoms. This method uses neural networks to eliminate arti-
facts caused by reflections, which greatly improves imaging speed. 

In summary, there is currently widespread research on non-iterative 
reconstruction methods, indicating the urgent need for real-time pho-
toacoustic imaging. Not only in PAT, but also in PAM and PAE, there are 
various problems with real-time imaging. Factors affecting imaging 
speed in traditional PAM algorithms include the repetition rate of the 
excitation light pulse, scanning mechanism, signal preprocessing, and 
image post-processing. Common solutions such as increasing pulse 
repetition rate, sampling scanning method, and pixel stacking have been 
verified, but at the same time, they also face the lack of imaging quality. 
Considering the current research status of PAE, there are not many 
studies on PAE reconstruction using deep learning, so it will not be 
further described here. 

3.1.1. Photoacoustic tomography image reconstruction 
Image reconstruction is an important part of photoacoustic 

computed tomography (PAT), which is responsible for converting the 
raw signals received by the ultrasound transducer into an initial pressure 
distribution image. Due to the ill-posed nature of photoacoustic imaging 
and the lack of an accurate inverse model in practical situations (limited 
field of view and sparse sampling), photoacoustic tomography recon-
struction is still challenging. In PAT, the purpose of image reconstruc-
tion is to reconstruct the initial PA pressure distribution, which is 
positively correlated with the optical absorption intensity of biological 
tissues. The sensor array receives PA signals P (P (r, t) | r, t represents 3D 
position and time) excited by short-pulsed laser at different ionization 
levels, and based on these PA signals, the acoustic-thermal information 
H (r, t) is reconstructed through some inverse reconstruction methods, 
and then A (r) is further reconstructed, i.e., the distribution of tissue 
optical absorption intensity. Currently, the most commonly used inverse 
reconstruction methods include model-based methods such as back-
projection (BP) and time reversal (TR); sparse data-based reconstruction 
methods such as compressed sensing (CS), wavelet transform (WT), and 
discrete cosine transform (DCT); data mining methods such as deep 
learning; and model-based iterative methods. Among them, back-
projection method is the most widely used, while BP and its derived 
algorithms such as filtered backprojection (FBP) are considered the most 
famous PAT reconstruction algorithm due to their simple implementa-
tion [40,41]. 

If experimental conditions are sufficient, i.e., a sufficiently large and 
dense ultrasound transducer array is distributed on the inner radius of a 
circular or elliptical detector, the photoacoustic inverse problem of the 
backprojection method can be expressed as follows [40]: 

A(r)∝
∫

dθ
1
t

∂p(r0, t)
∂t

|t=(|r0 − r|/c) (1) 

Here, r is the position of the acoustic pressure; c is the speed of sound; 
θ is the angle between the ultrasound transducer and the acoustic 
pressure signal; r0 is any position of the ultrasound transducer on the 
inner radius of the circular or elliptical detector; p(r0, t) is the known 
condition for the inverse operation, i.e., the acoustic pressure signal 
received by the ultrasound array at that position; A(r) is the spatial 
distribution of tissue optical absorption intensity. 

Kim et al. proposed to modify 2D raw data (with time and detector 
dimensions) into a 3D array (with two spatial dimensions and one 
channel dimension), where the channel data packages correspond to the 
propagation delay distribution at a spatial point and serves as the input 
to the neural network [42]. Traditional popular machine learning 

methods train on incomplete images obtained under ill-posed conditions 
through standard reconstruction methods [43–46]. Due to the loss of 
previously captured weak information that is difficult to reconstruct, the 
fine structure of the reconstructed image is often unsatisfactory. Kim’s 
method trains on the basis of the first step of most traditional recon-
struction methods, greatly simplifying the learning process. The 
expansion of the channel dimension preserves more information and 
improves learning accuracy. 

Fig. 8(a) shows the input data of the neural network. Using simple 
acoustic propagation physics rules in r (x, z) and the linear array 
transducer system, 3D transformed data is obtained by the propagation 
delay distribution of specific image points at different depths, which are 
used as inputs to the network. 

Fig. 8(b) shows the CNN network architecture used in the study. 
Prior to data input into the network, pre-processing was performed by 
looking up a priori LUT tables on the original signal (2048 × 128 ob-
tained by adding noise to real images), converting it into a 
512 × 128 × 128 data array containing delay information. Reformat-
ting the original channel data into a multi-channel array as a pre- 
processing step improves learning efficiency for highly complex 
network structures. This neural network uses U-net as a basis and de-
composes the signal through multi-scale feature mapping. By combining 
trainable networks with transformation methods, the structure of 
vascular networks was simulated in simulations and experiments. 
Overall, this method significantly improves image quality compared to 
traditional methods for reconstructing PA data, but loses a little complex 
absorption body geometry and may produce small artifacts. 

Antholzer et al. proposed a direct and efficient reconstruction algo-
rithm based on deep learning for the sparse data problem in re-
constructions [47]. The first step uses the PAT filtered backprojection 
algorithm, followed by optimizing the reconstruction results using the 
U-net architecture. It not only solves the time-consuming forward and 
adjoint problems, but also has better imaging effects than direct filtered 
backprojection algorithms, and performs similarly to existing iterative 
methods for sparse data PAT.Because iterative algorithms have their 
own limitations. For example, the reconstruction quality strongly de-
pends on the used a-priori model about the objects to be recovered. For 
example, TV minimization assumes sparsity of the gradient of the image 
to be reconstructed. Such assumptions are often not strictly satisfied in 
real world scenarios which again limits the theoretically achievable 
reconstruction quality.On the other hand, iterative reconstruction al-
gorithms tend to be slower as they require repeated application of the 
PAT forward operator and its adjoint.Antholzer further proposed 
another three-layered S-net network for direct reconstruction for the 
sparse data problem, where the input is an image with artifacts and a 
real ground image obtained through a priori method. In simulation ex-
periments, S-net can effectively eliminate artifacts caused by sparse data 
and greatly improve reconstruction efficiency compared to traditional 
image reconstruction methods [48–51]. The author also summarizes a 
deep network generally used for image enhancement after PAT image 
reconstruction. In the first step, the FBP algorithm (or another standard 
linear reconstruction method, using FBP as an example here) is applied 
to sparse data. In the second step, a deep CNN is applied to intermediate 
reconstruction, which outputs an image with almost no artificial arti-
facts.This can be explained as a deep network with FBP in the first layer 
and CNN in the remaining layers. 

Image reconstruction is also an important part of functional imaging, 
including blood oxygen detection and various molecular detections. Due 
to the fact that hemoglobin is the main substance absorbed by human 
cells below 1000 nm, PAT can quantitatively detect hemoglobin (HbO2) 
and deoxyhemoglobin (HbR). Since the oxygen saturation (sO2) of he-
moglobin in normal tissue is higher than that in malignant tissue, sO2 is 
an important physiological index of the body [52–54]. sO2 is defined as 
the fraction of HbO2 relative to the total hemoglobin concentration in 
the blood: 
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sO2(x, y) =
CHbO2 (x, y)

CHbO2 (x, y) + CHbR(x, y)
× 100% (2) 

Here CHbO2 and CHbR represent the concentration of oxygenated and 
deoxygenated hemoglobin, respectively, while x and y denote the spatial 
position. According to the above formula, the basic principle of using 
photoacoustic tomography (PAT) for quantitative blood oxygen syn-
thesis imaging is that HbO2 and HbR have significant absorption dif-
ferences at different wavelengths of light. Similarly, quantitative 
spectroscopic photoacoustic imaging (QS-PAI) is an imaging technique 
that measures at multiple wavelengths of light to provide information 
related to molecular composition [55]. The aim is to convert 
multi-wavelength PA images into a final image that mainly highlights 
the quantitative and accurate estimation of chromophore spatial con-
centration changes in scattering media. The main problem with QS-PAI 
is essentially an inversion problem of light propagation operators. The 
current common two-stage inversion strategy can be summarized as 
follows: 1. determining the absorption coefficient; 2. determining the 
chromophore concentration. Due to the characteristics of scattering 
media, accurate nonlinear inversion of spatially structured light flux is 
difficult to achieve, and it is unrealistic to rely on strict conditions, such 
as known scattering coefficients and homogeneous background optical 
properties. In the inversion process, linear substitution instead of 
nonlinear inversion is used to determine the absorption coefficient by 

using multi-wavelength PA images and light flux related to the absorp-
tion coefficient and scattering coefficient, which may result in large 
errors. 

Cai et al. proposed the first deep learning framework Res-Unet for 
quantitative PA imaging [56]. Res-Unet takes the entire initial pressure 
image distributed at different wavelengths as input, so that recon-
struction can best utilize all measurement signals. To prevent the 
degradation of deep networks, residual learning mechanism is adopted. 
In Res-Unet, comprehensive contextual information is extracted from 
multispectral initial pressure images to quantitatively estimate chro-
mophore concentration or sO2. The CNN architecture implemented 
using U-net is used to measure object contours, perform optical inver-
sion, estimate the main absorbing chromophores and their absorption 
spectra, and perform linear decomposition. 

Yang et al. proposed a deep residual and recursive neural network 
(DR2U-net) for quantitative estimation of hemoglobin oxygenation in 
photoacoustic imaging [57]. The proposed DR2U-net can extract flux 
distribution information from the optical absorption image using only 
two wavelengths of light in Monte Carlo simulations, and then generate 
quantitative sO2 images. Through testing on simulated biological tis-
sues, the measured sO2 results have high accuracy, with an error as low 
as 1.27 %, compared to traditional linear mixing methods (48.76 %). In 
the network structure, deep networks can enrich feature information, so 

Fig. 8. System diagram. (a) Schematic of photoacoustic data acquisition; (b) CNN-Net.  
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the article uses residual connections mentioned above to solve possible 
gradient explosion and improve training accuracy [58]. Batch normal-
ization is also used to accelerate convergence speed and reduce covar-
iate shift. This approach effectively reduces the nonlinear effect of 
scattered light flux while increasing system robustness and reducing 
noise interference. 

Rajendran and Pramanik proposed a novel deep learning architec-
ture for tangential resolution in circular-scan photoacoustic tomography 
(PAT) imaging system [59]. The article uses a U-Net-based convolu-
tional neural network combined with 9 residual blocks to improve the 
tangential resolution of PAT images. This is the first study to use a U-Net 
structure neural network for tangential resolution of PAT images. In 
general, in photoacoustic tomography, axial resolution does not change 
and is influenced by the detection bandwidth. However, tangential 
resolution will change with the size of the detector aperture. Especially 
when the aperture size is smaller, the tangential resolution is higher. 
However, if a small-aperture detector is used, the sensitivity of the 
sensor will decrease. Therefore, a large-aperture detector is the main 
choice for circular-scan PAT imaging systems. The proposed TARES 
network was implemented using Python 3.7 and TensorFlow v2.3 deep 
learning library [60]. The model was trained using simulated PA data 
and validated using experimental model data and human PA images 
[61–64]. The training model can detect data well and simulate body 
images of humans and animals. 

Gao et al. proposed a U-Net-based convolutional neural network to 
extract effective photoacoustic information hidden in speckle patterns in 
a vascular network image dataset under porous media [65]. As shown in  
Fig. 9, human skull belongs to a typical multi-scattering medium, and 
traditional ultrasound imaging has many challenges in imaging deep 
and fine structures due to significant scattering of sound signals during 
excitation and reception. The article uses photoacoustic imaging prin-
ciples and deep neural networks to solve the issues of frequency-domain 
wideband scattering in transcranial photoacoustic microvascular imag-
ing and superposition of spatial domain main lobe and side lobe signals 
[66,67]. In short, the neural network can effectively extract valid in-
formation from highly blurred speckle patterns for rapid reconstruction 
of target images, providing broad application prospects in transcranial 

photoacoustic imaging [68,69]. 

3.1.2. Photoacoustic microscopic imaging reconstruction 
Zhou et al. proposed a method using ResNet to improve the quality of 

sparse PAM images [70], which can simultaneously maintain good 
image quality and accelerate image acquisition speed [71–73]. In this 
work, the dataset used was PAM images of oak and magnolia leaf veins. 
Immerse the leaves in a container with black ink for more than 7 h, then 
place them on a glass slide and seal them with silicone gel (GE sealant). 
For each PAM image, use an OR-PAM probe with a resolution of 2 µ m, 
consisting of a beam profiler and 10 × Beam expander measurement at 
256 × Scan leaf samples at 256 scanning points with a scanning step of 
8 µ m. Finally, a real image dataset of 268 original fully sampled PAM 
images was obtained. Corresponding low pixel images pass through 
2 × And 4 × Downsampling acquisition. 

The proposed ResNet structure is shown in Fig. 10(a). The authors 
used 16 residual blocks and 8 squeeze and excitation (SE) blocks as the 
key part of feature extraction. Inspired by SRGAN [74], the residual 
block shown in Fig. 10(b) can extract features well in the SR task. The SE 
block with channel attention mechanism (as shown in Fig. 10(c)) helps 
network convergence and performance. The "Upconv" block consists of 
2× upsampling layers and standard convolution layers (kernel size 3, 
filter number 256, stride 1). The Tanh activation function is used after 
the final output layer. 

Zhao et al. proposed a multi-task residual dense network (MT-RDN) 
deep learning system and method [75]. The MT-RDN network adopts an 
innovative strategy combining multi-supervised learning, dual-channel 
sample collection, and reasonable weight allocation. The proposed 
deep learning method is combined with an improved OR-PAM system 
for application. This study obtained good images for the first time under 
ultra-low laser dose (reduced by 32 times). The network method aims to 
solve the challenges of image quality deterioration caused by low 
single-pulse laser energy and undersampling during high-speed imaging. 

In the proposed system method, the original images (i.e., under-
sampled images obtained under low excitation laser energy) are 
collected at 532 and 560 nanometer wavelengths and assigned to two 
different network input channels input1 and input2 respectively. The 

Fig. 9. Schematic diagram and method comparison diagram. (a) the schematic diagram of transcranial photoacoustic imaging; (b) the reconstruction effect of DAS 
and this network on plaque respectively; (c) and (d) the reconstruction effect of DAS and this network on whole image respectively. 
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low pixel input of the network is obtained by down-sampling the orig-
inal image using 2x and 4x undersampling images at half of the single- 
pulse laser energy (i.e., ANSI limit of single-pulse laser energy), and 
then segmenting the original image as input to the MT-RDN network. 
The 2x undersampled image is cut into slices of 100 × 100 pixels, and 
the 4x undersampled image is cut into slices of 50 × 50 pixels. MT-RDN 
has three sub-networks. The first sub-network is used to process data 
input 1 (i.e., 532 nm data) to obtain output 1, and the second sub- 
network is used to process data input 2 (i.e., 560 nm data) to obtain 
output 2. Outputs 1 and 2 are further combined and processed by Sub- 
network 3 to obtain output 3. Ground truth images 1–3 are obtained 
from full-sampled images obtained at 532 nm and 560 nm ANSI limits of 
single-pulse laser energy, and ground truth images obtained using the 
Paivef method [76]. 

3.2. Photoacoustic image processing 

The goal of image processing is to improve the quality and clarity of 
important details or targets in an image for specific applications by 
manipulating the image. Often, image enhancement is closely associated 
with the subsequent steps of photoacoustic image reconstruction. Image 
processing techniques such as noise reduction, smoothing, contrast 
stretching, sharpening, edge enhancement, and super resolution are 
commonly used to increase imaging readability and efficiency. These 
operations all belong to image processing, with the aim of improving the 
interpretability and effectiveness of the resulting image. Image pro-
cessing often follows image reconstruction algorithms. 

3.2.1. Improvement of signal-to-noise ratio of photoacoustic images 
In photoacoustic (PA) signals, the initially acquired PA signal and 

image often suffer from low signal-to-noise ratio (SNR) due to the weak 
amplitude of the PA signal and strong random noise from external in-
struments and the environment. In practice, the PA waves generated by 
low-cost, low-energy laser diodes are very weak and almost buried by 
noise. Additionally, deep tissue imaging is accompanied by severe 
attenuation, such as scattering, leading to the problem of low SNR in PA 
signals [77]. Consequently, the reconstructed PA images have poor 
quality with noise. Therefore, effective denoising techniques are 
required for reconstructing artifact-free PA images from measurements 
containing noise signals [78–80]. Although traditional Kalman filters 
(KF) [81,82] can remove Gaussian noise in the time domain [83–86], 
they lack adaptability under real-time estimation conditions due to their 
fixed model. The effectiveness of the traditional KF relies on the proper 
definition of two key parameters: the system noise matrix (Q) and the 
measurement noise matrix (R). However, it is often challenging to 

obtain accurate statistical data for these parameters in practical situa-
tions. To overcome this challenge, there are existing methods for elim-
inating white noise. The most common one is data averaging, which has 
been used in PAI. However, it requires additional storage space for data 
and imposes high requirements on time [87]. In addition to white noise, 
electrical noise generated by the photoacoustic imaging system [88,89] 
and interference in the acquired photoacoustic signals can significantly 
degrade image contrast in multispectral photoacoustic tomography 
(MSOT). 

He et al. proposed an attention enhanced GAN that uses an improved 
U-net generator to remove noise from PAM images [90]. The network 
does not need to manually select settings for different noisy images, but 
instead uses an attention enhanced generative adversarial network to 
extract image features and adaptively remove varying degrees of 
Gaussian, Poisson, and Rayleigh noise. The proposed method has been 
validated on both synthetic and real datasets, including phantom (leaf 
vein) and in vivo (mouse ear blood vessels and zebrafish pigment) ex-
periments. The network structure diagram and denoising effect are 
shown in Fig. 12. To effectively capture features and distinguishing in-
formation with varying importance, an attention mechanism is applied 
in their network Different from regular CNNs which may treat all in-
formation equally, attention blocks additionally introduce attention 
weights for different feature channels or spatial positions Specifically, 
this method utilizes the attention block, ie., the GC block, to enhance the 
attention to long range dependencies and that better handle unexpected 
noise instance of focusing on signal pixels The detailed structure of the 
GC attention block includes 1 × 1 conversions and layer normalization 
GC blocks are placed after each standard unit block of the encoder in the 
generator.Fig. 11(a) shows the GAN network structure diagram. The 
network structure includes a generator and a discriminator. Fig. 11(b) 
displays a comparison of the results of neural network imaging and other 
methods in the mouse ear vascular region. (Scale bar: 250 µm. All im-
ages, excluding zoom images, share the same scale bar. The values in the 
colorbar indicate relative PA intensity) On the left side of Fig. 11(c) is 
the sample image before denoising, which includes mouse ear blood 
vessels, zebrafish pigment, and enlarged color box areas in the above 
samples. On the right is the denoised image, which includes mouse ear 
blood vessels, zebrafish pigment, and enlarged color box areas in the 
above image. (Scale: 500 µm). 

3.2.2. Improvement of photoacoustic image resolution 
Deep learning methods can also be applied to improve the resolution 

of photoacoustic (PA) images. Traditional acoustic-resolution PA im-
aging systems are often limited to imaging resolutions on the order of 
100 micrometers due to the optical diffraction limit and the acoustic 

Fig. 10. Resnet Network diagram; (a) ResNet structure; (b) Residual Block structure; (c) Squeeze and Excitation (SE) Block.  
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diffraction limit. On the other hand, optical-resolution imaging systems 
can achieve spatial depths of around 1 mm due to the optical diffraction 
limit but have limited applicability in clinical medicine. Similar to the 
post-processing methods for sparse data or array-angle-limited problems 
in PA tomography (PAT), deep learning has been widely used in super- 
resolution reconstruction of photoacoustic images by implementing end- 
to-end image optimization. 

Cheng et al. proposed a deep-penetration high-resolution photo-
acoustic microscopy technique based on deep learning generative 
adversarial network (GAN) architecture [91]. This method employed 
Wasserstein GAN (WGAN) as the training network to learn from 
low-resolution absorption-reconstruction photoacoustic microscopy 
(AR-PAM) images towards high-resolution optical-resolution photo-
acoustic microscopy (OR-PAM) images at the same depth. In this WGAN 
network, the generator takes AR images as input and generates 
high-resolution images, which are then passed to the discriminator to 
determine their similarity to ground truth and high-resolution images. 
As mentioned earlier, this generative adversarial network involves an 
adversarial cooperative training between the generator (G) and the 

discriminator (D): G generates an image that closely resembles the target 
image or its label to deceive D, while D provides feedback by discerning 
between real and generated images. In general, the network aims to 
minimize the mutual information difference (also known as 
Jensen-Shannon divergence) between the produced data and the real 
data. The article employed Wasserstein distance as the selected objective 
instead of Jensen-Shannon divergence to address the issues of vanishing 
gradients and model collapse in the generator [92–94]. The imaging 
results are shown in Fig. 12(a)–(c). 

The degradation model of AR-PAM imaging is influenced by the 
imaging depth and the center frequency of the ultrasonic transducer, 
which may vary under different imaging conditions and cannot be 
processed using a single neural network model. To address this limita-
tion, Zhang et al. proposed a supplementary framework that combines 
the advantages of model based and learning based methods and avoids 
their limitations, which can be used to enhance the image quality of AR- 
PAM images [95]. Firstly, a deep convolutional neural network is used 
to implicitly capture the image statistical and structural information of 
the target vascular image, thereby obtaining a Plug and Play (PnP) prior, 

Fig. 11. Network structure diagram and denoising effect illustration. (a) Network structure diagram; (b) Representative results of the mouse ear blood vessel dataset 
acquired by in vivo experiment. Top raw: a representative sample from the synthetic noisy dataset; bottom row: a representative sample from the real noisy dataset; 
(c) Demonstration of denoising effects on mouse ear vasculature and zebrafish pigment. 
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Fig. 12. WGAN network results for mouse ear vasculature and results of an adaptive enhancement method with a deep CNN prior. (a-c) WAGAN network for mouse 
ear vasculature: (a) Network input AR-PAM image, (a1, a2, a3) enlarged regions selected by white dashed boxes; (b) Network output image, (b1, b2, b3) enlarged 
regions selected by white dashed boxes; (c) Ground truth OR-PAM image, (c1, c2, c3) enlarged regions selected by white dashed boxes; (d-i) Adaptive enhancement 
method with a deep CNN prior: (d) Example AR-PAM image enhancement in different iterations by model based equation (upper row) and FFDNet (bottom row); (e) 
AR-PAM imaging result; (f) OR-PAM imaging result; (g) Result enhanced using the FDU-Net on (e); (h) Enhancement result using the total variation algorithm on (e); 
(i) Result enhanced using the proposed algorithm on (e); (j) Signal intensity distribution along the vertical dashed line. (Scale bar: 1 millimeter). 
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while avoiding the process of designing complex manual regularization 
terms. Subsequently, this PnP prior is further inserted into the model 
based framework so that it can adaptively handle the variational 
degradation process. The proposed framework was first applied to 
simulation research and demonstrated its excellent performance and 
adaptability (with a huge dynamic range). In addition, some in vivo 
experiments were conducted to test the framework’s ability to handle 
various real imaging scenes. The results show that this method can 
adaptively enhance AR-PAM images obtained across different imaging 
systems and depths, expanding the application scenarios of this method. 
This work adopted a combination of network optimization and degra-
dation models, iterating eight times each other. The advantage of this 
approach is to use neural networks to correct artifacts generated by 
degradation methods, and model methods to correct images when the 
optimization effect of network images decreases, achieving the effect of 
improving image effectiveness and resolution.The iteration model and 
imaging results are shown in Fig. 12(d)–(j). In the three simulation 
scenarios created, the proposed algorithm achieved optimal perfor-
mance in terms of PSNR and SSIM values; In vivo testing results using 
this algorithm showed significant increases in SNR and CNR values from 
6.34 and 5.79, respectively, to 35.37 and 29.66, as shown in Fig. 12(j). 

3.2.3. Photoacoustic image segmentation and recognition processing 
Image detection and recognition involve the task of identifying 

specific elements in medical images [96–98]. In many cases, the images 
are three-dimensional, making efficient analysis crucial. The ability to 
differentiate and classify different elements is fundamental in medical 
image analysis, and image segmentation is a necessary method for 
processing medical images. Image segmentation has greatly benefited 
from the latest developments in deep learning. In image segmentation, 
the goal is to accurately delineate the contours of organs or anatomical 
structures, and methods based on convolutional neural networks (CNNs) 
have gradually become dominant in this field. Deep learning not only 
helps in selecting and extracting features but also aids in constructing 
new features[99–101]. Moreover, it can provide predictive models that 
not only diagnose diseases but also measure and predict targets, offering 
actionable insights to improve efficiency for medical professionals. 
There have been numerous successful examples of deep 
learning-assisted image processing in photoacoustic imaging, and the 
segmentation and recognition methods used in photoacoustic imaging 
can be applied to other medical imaging modalities as well. 

Zhang et al. proposed an emerging deep learning-based method for 
breast cancer diagnosis in photoacoustic tomography (PAT) [96]. This 
method employed a preprocessing algorithm to enhance the quality and 
uniformity of input breast cancer images. Additionally, a transfer 
learning algorithm was utilized to address the issue of insufficient 
training data, resulting in improved classification performance. The 
network categorized existing breast cancer datasets into six classes 
based on the BI-RADS level, helping doctors better diagnose and treat 
cancer based on breast imaging reports and data system levels. 

In magnetic resonance imaging (MRI) field, Wu et al. proposed an 
oriented novel attention-based glioma grading network (AGGN) [102]. 
By applying the dual-domain attention mechanism, both channel and 
spatial information can be considered to assign weights, which benefits 
highlighting the key modalities and locations in the feature maps. 
Multi-branch convolution and pooling operations are applied in a 
multi-scale feature extraction module to separately obtain shallow and 
deep features on each modality, and a multi-modal information fusion 
module is adopted to sufficiently merge low-level detailed and 
high-level semantic features, which promotes the synergistic interaction 
among different modality information. The results have demonstrated 
the effectiveness and superiority of the proposed AGGN in comparison to 
other advanced models, which also presents high generalization ability 
and strong robustness. 

Li et al. proposed a feature learning enhanced convolutional neural 
network (FLE-CNN) for cancer detection from histopathology images 

[103]. They built a highly generalized computer-aided diagnosis (CAD) 
system. The FLE-CNN included an information refinement unit 
employing depth- and point-wise convolutions is meticulously designed, 
where a dual-domain attention mechanism is adopted to focus primarily 
on the important areas. Experimental results demonstrate the merits of 
the proposed FLE-CNN in terms of feature extraction, which has ach-
ieved average sensitivity, specificity, precision, accuracy and F1 score of 
0.9992, 0.9998, 0.9992, 0.9997 and 0.9992 in a five-class cancer 
detection task, and in comparison to some other advanced deep learning 
models, above indicators have been improved by 1.23 %, 0.31 %, 1.24 
%, 0.5 % and 1.26 %, respectively. 

3.3. Photoacoustic signal processing 

Awasthi et al. proposed a deep learning-based photoacoustic (PA) 
sinogram super-resolution denoising model [104]. The loss function of 
this model is scaled root mean square error, which is used for 
super-resolution, denoising, and bandwidth (BW) enhancement of PA 
signals acquired at region boundaries [105]. The network and method 
presented in the paper have the following characteristics:It is the first 
single network that performs super-resolution, denoising, and BW 
enhancement of PA data in the sinogram domain. Most deep learning 
networks are proposed in the image space to improve reconstructed 
images. This network exhibits inherent robustness and generalization 
abilities. It also demonstrates robustness when trained on numerical 
models.The improved structure can be used to enhance raw data 
(sinogram) acquired experimentally, improving the results of inverse 
problems and inherently reducing biases introduced by image recon-
struction methods.The introduction of scaled root mean square loss 
function to train the network on sinogram data containing extremely 
low values can be extended to other applications with similar properties 
as PA data. Fig. 13(a) and (b) show the network flowchart and structure 
diagram. 

Similarly, Zhang et al. also proposed using sinogram data as input to 
remove artifacts produced by photoacoustic tomography imaging [106]. 
In their work, a two-dimensional brain PA numerical phantom dataset 
was generated based on magnetic resonance angiography (MRA) and 
T1-weighted images from the ixi dataset. The dataset was then used as 
input to a U-net network for training. The simulated artifact images were 
corrected against prior high-resolution images, resulting in a trained 
network that effectively corrects the acoustic aberration caused by the 
skull. Fig. 13(c) illustrates the experimental workflow, (d) presents 
comparisons of three sets of simulated brain imaging sinogram maps 
before and after artifact removal, and (e) shows a comparison of 
normalized signals from one of the models. 

In photoacoustic imaging, previous signal processing techniques 
have been found insufficient to eliminate the influence of electrical noise 
because they often rely on simplified models and fail to capture the 
complex characteristics of both the signal and the noise. Dehner et al. 
proposed a discriminative deep learning approach to separate electrical 
noise from the photoacoustic signal prior to image reconstruction as 
shown in Fig. 14 [107]. In Fig. 14(a), Data layout of a measured mul-
tispectral stack of sinograms. The depicted sinogram shows the recorded 
signals during a representative scan of a human breast lesion at 960 nm. 
Magnification of the marked signals, which were recorded prior to re-
sponses from tissue and thus are predominately comprised of electrical 
noise. Histogram and fitted Gaussian distribution (R2 = 99.5 %) for 
parts of the electrical noise with visually low amounts of parasitic noise 
(signals marked with the dashed rectangle) illustrating the character-
ization of the thermal noise of the system. In Fig. 14(b), there are Noisy 
sinogram from a representative scan of a human breast lesion.Electrical 
noise component inferred by the neural network on the left side. 
Denoised sinogram obtained by subtracting the above two. On the right 
side are Magnifications of the marked areas in the left charts. Quanti-
tative evaluation of the denoising performance below. There are Com-
parison of the SNR distributions in simulated photoacoustic sinograms 
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that are distorted by electrical noise before and after denoising. The 
mean gain is 10.9 dB. Evaluation of in vivo scans of human breast le-
sions. Mean SNR (SNRmean) of individual time samples. The average 
increase is 20.8 dB. Individual SNRmean of all detectors. The average 
increase is 22.4 dB. Average SNR gains (“SNR after denoising - SNR 
before denoising”) of the trained model for photoacoustic signals that 
were corrupted by a combination of measured electrical noise sinograms 
scaled with factor EN ∈{0, 0.5, 1,., 3}, and white Gaussian noise with 
standard deviations σGN ∈{0, 0.2, 0.4,., 2}. In Fig. 14(c), The first row 
shows the NMF spectra obtained from the original and denoised human 
breast lesion MSOT images from Dataset-BC, as well as the reference 
absorption spectra of the most prominent chromophores in breast tissue. 
The second and third rows show the before and after denoising com-
parison images, with the left column representing the pre-denoising 
image and the right column representing the post-denoising image. Vi-
sualizations of the NMF decomposition of a typical MSOT image are 
shown for pre-denoising and post-denoising at a depth of approximately 
2 cm in malignant breast tumor. The contribution of the three spectra to 
the image is color-coded, with these spectra corresponding to the ab-
sorption spectra of hemoglobin (second row), fat, and water (third row). 
The tumor location determined from the ultrasound image is delineated 
by white contours. The proposed deep learning algorithm is based on 
two key features. Firstly, it learns the spatiotemporal correlation be-
tween the noise and the signal by using the entire photoacoustic sino-
gram as input. Secondly, it is trained on a large dataset consisting of 
experimentally acquired pure noise and synthetic photoacoustic signals. 

The network utilizes a U-Net neural network architecture with 5 
depths and 64 channel widths [108,109]. The basic expressive power of 
the network is reduced by estimating the interference signal. The L1 
norm (L1 loss) is used as the loss function, and the ADAM optimizer 

[110] is employed with a learning rate of 0.0001, decayed linearly to 0. 
The ADAM optimizer has a batch size of 1, and the momentum param-
eters are set to β1 = 0.5 and β2 = 0.999. To speed up the learning pro-
cess, Dehner et al. used a neural network input value of a constant 0.004, 
which brings the signal range to [− 1; 1]. After passing through the 
artificial neural network, all signals were rescaled back to their original 
range. During training, the decomposition with the minimum loss over 
the data was validated, and the final model was selected. 

Gutta et al. proposed a deep learning-based method for bandwidth 
enhancement of photoacoustic (PA) data [111]. During the process of 
photoacoustic tomography (PAT), the acquired PA signals from the 
surface of the tissue are always limited to a certain frequency band, 
while finer details of the image often reside in the high-frequency region 
of the PA signal. By utilizing a deep learning network, it is possible to 
effectively enhance the bandwidth of the PA signal without increasing 
computational complexity, thereby improving the contrast restoration 
and reconstruction quality of PA images.The network is trained with 
limited-bandwidth signals as input and full-bandwidth signals as output. 
The enhanced acoustic (PA) signal is then used as input to analysis 
reconstruction algorithms such as backprojection. This approach en-
ables simple and efficient restoration of frequency band information but 
is limited by the constraints of prior algorithms and cannot achieve 
breakthroughs without real ground truth data. 

Zhou et al. proposed a conditional generative adversarial network 
(cGAN) for distinguishing the photoacoustic (PA) signals generated by 
fiber-separated dual-wavelength excitation lasers [112]. The time delay 
between the signals is approximately 38 nm. Improving the imaging 
speed of multi-parameter photoacoustic microscopy (PAM) is a key 
focus in this direction. To avoid temporal overlap, the A-line rate is 
limited to within 3 MHz due to the speed of sound in biological tissues.In 

Fig. 13. Application of Sinogram Graph as Network Input in PAT. (a) Network diagram proposed by Awasthi et al.; (b) Network structure. (c) The experimental flow 
chart proposed by Zhang et al., whose flow includes prior image segmentation, making skull simulation structure, optical simulation, acoustic simulation, sinogram 
image training and finally obtaining the artifact free image; (d) Normalized PA sinograms and normalized DAS reconstructed human brain PAT images from 
viscoelastic media acoustic model. (e) Normalized PA signal is taken as the first channel of one of the skull simulation models. Signals are reference PA signal, PA 
signal with skull aberration obtained from fluid media acoustic model, PA signal with skull aberration obtained from viscoelastic media acoustic model, PA signal 
with skull aberration obtained from fluid media acoustic model after U-net Correction, PA signal with skull aberration obtained from viscoelastic media acoustic 
model after U-net correction. 
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order to achieve high-speed photoacoustic imaging of hemoglobin ox-
ygen saturation, stimulated Raman scattering in optical fibers is widely 
used as a conventional method for generating dual-wavelength excita-
tion at 558 nm from a commercially available 532 nm laser. However, 

the length of the fiber used for efficient wavelength conversion is typi-
cally short, resulting in only a small time delay being obtained, leading 
to significant overlap in the acquired A-line signals at the two wave-
lengths. The proposed cGAN network allows for PAM excitation using 

Fig. 14. The experiment is based on the schematic diagram of a handheld MSOT system, the evaluation diagram of signal signal-to-noise ratio, and the impact of 
denoising on the spectral content of photoacoustic images. (a) The experiment is based on the schematic diagram of the hand-held MSOT system Illustration of the 
scanning procedure using the handheld imaging probe of the test system. (b) Evaluation of the proposed denoising approach in the signal domain. (c) The impact of 
denoising on the spectral content of photoacoustic images. 

Fig. 15. Schematic of the cGAN and Dual wavelength A-scan signal graph. (a) The grayscale images are x – z projections of the three-dimensional dataset. A 
representative A-line, along the red dashed line, is shown above each ofthe x – z projection images. Scale bar: 300 µm. (b) 532-nm excited A-line (green) and digitally 
delayed 558-nm excited A-line (yellow). a.u., arbitrary units. Digital sum of the two A-lines. Non-overlapping A-lines (green: 532nmand yellow: 558 nm) generated 
by the cGAN. Percentage error of sO2 values as a function oftime delay. The error bars represent standard deviations. (c) Representative B-scans as the target, input, 
and output of the cGAN, consisting of 256 original, mixed, and unmixed A-lines, respectively. 
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multi-spectral laser pulses, addressing the issue of insufficient energy in 
single-color laser pulses as shown in Fig. 15. This technology presents an 
innovative approach towards achieving ultra-high-speed multi-param-
eter PAM. 

4. Summary and outlook 

4.1. Summary 

Deep learning, as a cutting-edge data acquisition technology, has 
been widely used in various fields of photoacoustic imaging such as 
image reconstruction, image processing, and signal processing. It can 
adjust parameters according to different network requirements to ach-
ieve a balance between strong robustness, high imaging speed, and 
artifact removal. 

Compared with the iterative reconstruction method, the overall error 
of the denoising process after back projection reconstruction is higher 
than that of the iterative reconstruction method, especially in the case of 
limited angle scanning, which will produce mechanical artifacts, and the 
error at the imaging boundary is also more obvious. However, it is 
known that both deep learning-based image processing algorithms and 
traditional iterative reconstruction algorithms can overcome these me-
chanical artifacts by using prior mapping relationships. Compared with 
the post-processing methods of sparse data reconstruction in PAM, the 
deep learning-based reconstruction method not only has faster recon-
struction speed but also greatly improves reconstruction efficiency. In 
addition, in terms of photoacoustic image processing, deep learning also 
has great advantages, including: higher flexibility and accuracy in 
handling complex and variable photoacoustic signals; outstanding per-
formance in many image processing tasks such as image segmentation, 
classification, and reconstruction; ability to handle large amounts of 
training data, thereby improving model generalization ability and pre-
diction performance; good scalability, allowing the model complexity to 
be adjusted based on task requirements and computing resources. 
Furthermore, deep learning models can utilize knowledge learned from 
other domains for transfer learning, thereby accelerating model training 
and improving performance. 

The application prospects of deep learning in the field of photo-
acoustic imaging are vast, with continuously emerging network archi-
tectures for reconstruction algorithms in photoacoustic tomography, as 
well as for subsequent processing and forward sinogram processing. 
There is also ample room for improvement in various aspects of pho-
toacoustic microscopy (PAM), such as scanning mechanism enhance-
ments, excitation mechanism improvements, and post-processing 
techniques. 

4.2. Data acquisition 

Big data is the core of deep learning, but there is currently no open 
dataset for photoacoustic image reconstruction. In current experiments, 
the test sets used to train and validate the CNN are generally obtained 
through three methods: real human photoacoustic imaging results, im-
aging results of phantoms, and computer-simulated images. Since pho-
toacoustic imaging has not been widely used for clinical diagnosis and 
treatment of diseases, the available clinical case data is severely lacking. 
The flexibility of phantom images is low, and the cost of making phan-
toms is high. Furthermore, it takes a long time to construct the data set 
required for deep learning. Computer simulation involves forward nu-
merical simulation of the optical forward problem (the propagation of 
pulsed laser in tissue) and the acoustic forward problem (the process of 
tissue absorbing light energy, expanding due to heating, then emitting 
ultrasonic waves and propagating towards the tissue surface), obtaining 
the simulated initial sound pressure distribution map as the expected 
output image. The low-quality images reconstructed from limited-angle 
photoacoustic measurement data using standard reconstruction algo-
rithms are used as input images to form the training set of the CNN. The 

authenticity and effectiveness of the sample still need to be further 
discussed. In summary, there is currently a lack of large-scale open 
source training samples for photoacoustic imaging. 

Gao et al. proposed a computing method of four-dimensional (4D) 
spectral-spatial imaging for PAD [113]，This method takes the optical 
and acoustic properties of heterogeneous skin tissues into account, 
which can be used to correct the optical field of excitation light, 
detectable ultrasonic field, and provide accurate single-spectrum anal-
ysis or multi-spectral imaging solutions of PAD for multilayered skin 
tissues. Simulation datasets obtained from the computational model 
were used to train neural networks to further improve the imaging 
quality of the PAD system.Most deep learning-based photoacoustic im-
aging needs thousands pairs of labeled input-output data to train the 
neural network, especially those applications in clinical skin imaging, 
which requires even larger amounts of data. However， in many cases 
the ground truth corresponding to the experimental data is inaccessible. 
This work as an efficient “learning from computational model” imple-
mented an efficient method for obtaining simulation data.Considering 
human skin tissues are multilayered physiopathological structures with 
variability in optical absorption and acoustic impedance, this work 
further verify the simulation method from angles such as beam type, 
ultrasonic transducer performance, laser focusing position, and multi-
spectral analysis.The article also proposes two neural networks trained 
on the dataset obtained through this method, namely the spread spec-
trum network and the enhanced imaging depth network.The feasibility 
of simulated datasets generated by computational modeling for neural 
network training was also demonstrated, helping to solve the major 
challenge of deep learning techniques in photoacoustic skin imaging 
that cannot obtain ground truth in many cases, with the potential to 
further improve the imaging quality of the PAD system through image 
reconstruction, information processing, and artificial intelligence 
methods as shown in Fig. 16(b–c). Fig. 16 (a) verifies the effectiveness of 
the simulation model under different luminous flux conditions of 
6 mJ/cm2, 12 mJ/cm2, and 18 mJ/cm2. Fig. 16(b) shows the results of 
palm skin imaging optimized by two networks. 

4.3. Interpretability 

In addition to the lack of widely available and specialized data, the 
reliability and interpretability of deep learning methods are also 
receiving increasing attention. Lisboa et al. published a review of 
interpretability discussions in machine learning in 2020 [114], in which 
they classified interpretability discussions corresponding to the devel-
opment of machine learning. 

The article further proposes that there is currently no complete 
consensus on how to evaluate the quality of interpretable or interpret-
able methods. The evaluation methods that can explain ML include the 
"Real Humans in Ieal Tasks" proposed by Doshi Velez and Kim and the 
"AI rationalization" proposed by Ehsan et al. The quality of a given 
explanation needs to be evaluated in the context of its task, measuring 
the extent to which the explanation promotes and improves decision- 
making. 

Salahuddin et al. published a review of interpretable methods for 
deep neural networks in medical image analysis in 2022 [115]. The 
article pointed out that interpretable artificial intelligence (XAI) refers 
to an AI solution that can provide some details about its functionality in 
a way that end users can understand. At present, the interpretability of 
deep neural networks is widely defined as attempting to explain the 
decision-making process of a model in a way that can be understood by 
end users. 

Dai et al. [116] used a conceptual alignment deep autoencoder to 
analyze tongue images that represent different body constituent types 
based on traditional Chinese medicine principles. Koh et al. introduced 
Concept Bottleneck Models for osteoarthritis grading and used 10 clin-
ical concepts such as joint space narrowing, bone spurs, calcification, 
etc.In their study, Dai et al. employed a novel deep autoencoder with 
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conceptual alignment to investigate tongue images, which are repre-
sentative of diverse body constituent types according to the principles of 
traditional Chinese medicine. The utilization of this approach enabled a 
comprehensive analysis and interpretation of the underlying features 
associated with each body type. 

Furthermore, Koh et al. [117] presented an innovative framework 
known as Concept Bottleneck Models for the purpose of osteoarthritis 
grading. This model incorporated ten important clinical concepts 
including joint space narrowing, bone spurs, calcification, among 
others. By leveraging these concepts, the researchers were able to 
establish a robust and informative grading system for the evaluation of 
osteoarthritis severity. 

The above two are both based on the perspective of conceptual 
interpretability, and there are also more interpretable classifications, 
including: Case based models, Counter actual interpretation, Language 
description et al. 

4.4. Conclusion and outlook 

In the switchable optical and acoustic resolution photoacoustic 
endomicroscope proposed by Ma et al. in 2020 [118], high-resolution 
imaging of the surface and deep layers is achieved by switching between 
optical and acoustic resolution systems at different depths in the skin. 
We can contemplate by acquiring a dataset from this system, the 
high-resolution surface images and deep-layer images are combined and 
fed into a deep neural network, enabling the high-resolution images to 
learn depth information from the deep-layer images, and the deep-layer 
images to learn resolution from the high-resolution images. This 
approach may ultimately lead to a single system that combines the ad-
vantages of both types of photoacoustic microscopy.There is also the 
possibility of mutual learning between systems with different numerical 
apertures (NA) and corresponding scanning mechanisms, or between 
different excitation wavelengths. Can we achieve complementary effects 

between penetration depth and imaging resolution? These are all worth 
considering.Furthermore, in the field of photoacoustic endoscopy, the 
lack of corresponding datasets has limited the widespread use of deep 
learning methods. Therefore, exploring deep neural network-based ap-
proaches for photoacoustic endoscopy is also an important area of 
research. 

In the previous article [94], the example of learning from low reso-
lution AR-PAM images to high-resolution OR-PAM images can improve 
a certain imaging performance and expand the applicability of the sys-
tem through learning between different imaging systems. In the field of 
photoacoustic imaging microscopy, AR-PAM and OR-PAM are comple-
mentary in imaging depth and resolution, OR-PAM can currently ach-
ieve an imaging depth of around 1.5 mm, with resolution at the micron 
or submicron level, while AR-PAM has an imaging depth of over 10 mm, 
but the corresponding resolution also has an order of magnitude atten-
uation. If a prior method can be used to obtain a prior of OR-PAM images 
at the same depth, the image features of this prior can be retained 
through a neural network method and applied in the corresponding 
AR-PAM system, that is, the results of the AR-PAM imaging system can 
be obtained through a neural network, and a high depth AR-PAM image 
with corresponding OR-PAM resolution can be obtained. Compared with 
general prior methods, the biggest advantage of OR-PAM prior is that it 
preserves the basic features of photoacoustic images, and its feedback 
signal composition is also ultrasound. This brings great convenience to 
the preservation of image features of tissue signal strength and phase. It 
is obvious that the combined imaging system can effectively improve 
imaging quality and obtain high-quality images at corresponding depths 
that were previously difficult to obtain. The corresponding potential 
mutual learning work can be envisioned. For example, OR-PAM learns 
imaging depth from AR-PAM images. Although the resolution of 
AR-PAM images is not as good as that of OR-PAM, it is possible to learn 
the intensity of AR-PAM signals from the perspective of photoacoustic 
signals by preserving the features of OR-PAM images, aiming to discover 

Fig. 16. The model adopts focused Gaussian beam images with different power densities of 532 nm wavelength incident beams and network generalization test 
results. (a) When the power densities are 6 mJ/cm2, 12 mJ/cm2, and 18 mJ/cm2 and he three dimensional imaging result; (b) 3D PA image of palm skin and 3D PA 
image obtained after the spread spectrum network and the depth enhanced network processing (c) The corresponding color slices in the figure. 
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weak photoacoustic signals in deep tissues. Due to the complementarity 
between AR-PAM and OR-PAM in the field of photoacoustic microscopy, 
it can be imagined that their mutual learning will become a reality in the 
near future. Photoacoustic tomography, on the other hand, has a higher 
imaging depth, and its imaging speed and imaging range are signifi-
cantly different from microscopic systems. Its image features and system 
application scenarios are also inconsistent with microscopic systems. 
Therefore, the mutual learning between fault systems and microscopic 
systems still requires further development and integration of photo-
acoustic imaging. Not only is there mutual learning within photo-
acoustic imaging, but this approach can also be applied in bimodal 
imaging systems and in conditions of different system parameters. 
Bimodal imaging refers to the combination of two or more imaging 
techniques to obtain different types of information simultaneously or 
sequentially for image reconstruction and analysis. Mutual learning can 
be extended to, for example, mutual learning between ultrasound im-
aging and photoacoustic imaging, mutual learning between 1064 nm 
and 532 nm wavelength systems, and mutual learning between different 
NA systems.In summary, the ultimate goal of potential mutual learning 
currently lies in improving the system’s penetration ability or imaging 
quality, provided that the two imaging systems are close or the imaging 
results can learn from each other. 

The achievements of deep learning in photoacoustic imaging are 
undeniable, such as its applications in image reconstruction, signal-to- 
noise ratio improvement, and super-resolution. These achievements 
provide new ideas and methods for the development of photoacoustic 
imaging technology. However, there are still some challenges and lim-
itations for deep learning models in photoacoustic imaging. For 
example, deep learning models require high training data demands, 
requiring a large amount of labeled data and computing resources. 
Although many network methods, such as U-Net structure and unsu-
pervised learning, attempt to solve the data problem, there is still 
considerable room for improvement. Additionally, interpretability of 
deep learning models is also an issue that needs to be addressed. 

In future research, we can try to further optimize the performance 
and interpretability of deep learning models to better meet the appli-
cation requirements of photoacoustic imaging technology in clinical 
medicine and life sciences. At the same time, we can also explore 
combining deep learning with other technologies to discover more po-
tential applications. As mentioned earlier, the work of Zhang et al. [95] 
is a good application and extension of neural network methods. For the 
interpretability of neural network methods, the author proposed a new 
approach that combines network and model methods. The model 
method corrected the image content forward, while the neural network 
corrects image artifacts. This alternating iteration method greatly 
improved the interpretability of neural networks. However, the draw-
back of this method is that the training difficulty and reconstruction 
time of the network have increased. Perhaps a more efficient network 
structure can be used as an alternative to iterative methods to improve 
imaging speed. In short, the idea of combining the principle of preser-
ving models with neural networks is worth learning and continuing. Can 
deep learning also be better applied and explained from the perspective 
of photoacoustic signals? In photoacoustic tomography, the quality of 
the sine wave of the signal determines the quality of the reconstructed 
image. Unlike general image learning neural networks such as Awasthi 
[104] and Zhang [106], training photoacoustic signals to achieve signal 
amplification and denoising is also a way of applying deep learning. In 
future work, a collaborative learning approach can be envisioned. The 
signal learning network provides deep imaging signals and amplifies 
them, while the image learning network provides deep image features to 
achieve joint learning, discover deep structures, and efficiently image. 

This review focuses on deep learning enabled photoacoustic imag-
ing, and analyzes recent deep learning work from four perspectives: 
photoacoustic imaging PAT reconstruction, PAM reconstruction, image 
processing, and signal processing. The article also starts from neural 
network structures such as U-Net, GAN network, and Dense Block, 

organizing their early work in the field of biomedical imaging, and 
introducing readers to common neural network structures and their 
origins in the biomedical field. Finally, the article summarizes the 
analysis and summary of deep learning in improving imaging capabil-
ities from four perspectives, proposes the current problems and diffi-
culties of neural networks, and further provides ideas for solving the 
problems. In summary, the rapid development of neural networks has 
continuously empowered photoacoustic imaging and even biomedical 
imaging in recent years. They have made epoch-making contributions to 
the depth and quality of imaging results, as well as to the improvement 
of imaging system efficiency and imaging speed. 

CRediT authorship contribution statement 

Chen Qian: Supervision. Zuo Chao: Funding acquisition. Ma Hai-
gang: Conceptualization, Data curation, Investigation, Supervision, 
Writing – review & editing. Wei Xiang: Investigation, Methodology, 
Writing – original draft, Writing – review & editing. Huang Qinghua: 
Resources. Feng Ting: Conceptualization. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data Availability 

No data was used for the research described in the article. 

Acknowledgements 

This work was supported by National Natural Science Foundation of 
China (62275121, 12204239, 12326609, 62071382, 62227818), Youth 
Foundation of Jiangsu Province (BK20220946), Fundamental Research 
Funds for the Central Universities (30923011024), Jiangsu Provincial 
Basic Research Program Frontier Leading Special Project 
(BK20192003). 

References 

[1] Yang C., Lan H., Gao F. Accelerated photoacoustic tomography reconstruction via 
recurrent inference machines[C]//2019 41st Annual International Conference of 
the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2019: 
6371–6374. 

[2] P. Beard, Biomedical photoacoustic imaging, Interface Focus 1 (4) (2011) 
602–631. 

[3] C. Yang, H. Lan, F. Gao, et al., Review of deep learning for photoacoustic imaging, 
Photoacoustics 21 (2021) 100215. 

[4] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press,, 2016. 
[5] Q. Huang, H. Tian, L. Jia, et al., A review of deep learning segmentation methods 

for carotid artery ultrasound images, Neurocomputing (2023) 126298. 
[6] Y. Guo, Y. Liu, A. Oerlemans, et al., Deep learning for visual understanding: a 

review, Neurocomputing 187 (2016) 27–48. 
[7] A. Salehi, M. Balasubramanian, DDCNet: deep dilated convolutional neural 

network for dense prediction, Neurocomputing 523 (2023) 116–129. 
[8] J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. 61 

(2015) 85–117. 
[9] K. Kawaguchi, J. Huang, L.P. Kaelbling, Effect of depth and width on local 

minima in deep learning, Neural Comput. 31 (7) (2019) 1462–1498. 
[10] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical 

image segmentation[C]//medical image computing and computer-assisted 
intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 
October 5-9, 2015. Proceedings, Part III 18, Springer International Publishing,, 
2015, pp. 234–241. October 5-9, 2015. 

[11] Du G., Cao X., Liang J., et al. Medical image segmentation based on u-net: A 
review[J]. Journal of Imaging Science and Technology, 2020. 

[12] N. Man, S. Guo, K.F.C. Yiu, et al., Multi-layer segmentation of retina OCT images 
via advanced U-net architecture, Neurocomputing 515 (2023) 185–200. 

[13] Z. Huang, J. Miao, H. Song, et al., A novel tongue segmentation method based on 
improved U-Net, Neurocomputing 500 (2022) 73–89. 
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