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Deep-learning-enabled dual-frequency
composite fringe projection profilometry for
single-shot absolute 3D shape measurement
Yixuan Li1,2†, Jiaming Qian1,2†, Shijie Feng1,2, Qian Chen1,2* and
Chao Zuo1,2*

Single-shot high-speed 3D imaging is important for reconstructions of dynamic objects. For fringe projection profilometry
(FPP), however, it is still challenging to recover accurate 3D shapes of isolated objects by a single fringe image. In this
paper, we demonstrate that the deep neural networks can be trained to directly recover the absolute phase from a unique
fringe image that involves spatially multiplexed fringe patterns of different frequencies. The extracted phase is free from
spectrum-aliasing problem which is hard to avoid for traditional spatial-multiplexing methods. Experiments on both static
and dynamic scenes show that the proposed approach is robust to object motion and can obtain high-quality 3D recon-
structions of isolated objects within a single fringe image.

Keywords: fringe projection profilometry (FPP); phase unwrapping; deep learning

Li YX, Qian JM, Feng SJ, Chen Q, Zuo C. Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-
shot absolute 3D shape measurement. Opto-Electron Adv 5, 210021 (2022).

  

Introduction
The development of information technology has acceler-
ated  human  life  into  the  digital  three-dimensional  (3D)
world. Among many 3D optical measurement technolo-
gies,  fringe  projection  profilometry  (FPP)  stands  out  as
one  of  the  most  promising  3D imaging  methods  due  to
its non-contact,  high  spatial  resolution,  high  measure-
ment accuracy, and good system flexibility1−5. Nowadays,
FPP has  been  widely  applied  in  intelligent  manufactur-
ing, cultural  relic  scanning,  human-computer  interac-
tion and some other fields6−9. In some important applica-
tions, such as rapid reverse engineering and online qual-
ity control10,11, it is essential to obtain high-quality 3D in-

formation in continuously changing dynamic scenes12−14.
For FPP, the projector projects a series of fringe patterns
onto  the  target  object,  and  then  the  camera  captures
these  images  modulated  and  deformed  by  the  object.
With the  captured  fringe  patterns,  the  phase  informa-
tion of the measured object can be extracted through the
fringe analysis algorithms. The most popular fringe ana-
lysis approaches  are  the  Fourier  transform  (FT)  meth-
ods15−19 and the phase-shifting (PS) methods20,21.  The FT
approaches  can  utilize  only  a  single  high-frequency
fringe pattern, where the phase information is recovered
by applying a properly designed band-pass filter, such as
the  Hanning window,  to  extract  phase-related spectrum 
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information in  the  frequency  domain.  However,  spec-
trum aliasing  may  cause  low  phase  quality  around  dis-
continuities and isolated regions  of  the  phase  map.  Un-
like the FT methods, the PS technologies usually require
three  or  more  PS  fringe  patterns  in  the  time  domain  to
retrieve the phase map. Such methods are quite robust to
ambient  illumination  and  varying  surface  reflectivity,
and can achieve pixel-wise phase measurement with high
resolution and accuracy. For both FT and PS algorithms,
the  retrieved  phase  distribution  is  mathematically
wrapped to  principle  values  of  arctangent  function  ran-
ging between  and . Consequently, the phase value is
wrapped whenever there is a  jump. To solve the phase
ambiguity problem  and  establish  a  unique  pixel  corres-
pondence between  the  camera  and  the  projector  to  en-
sure correct 3D reconstruction, phase unwrapping must
be  carried  out.  One  of  the  most  commonly  used  phase
unwrapping methods  are  the  temporal  phase  unwrap-
ping  (TPU)  algorithms22,  which  can  obtain  the  absolute
phase with  the  assistance  of  multi-frequency  fringe  im-
ages.  However,  such  sacrifice  of  time  resolution  using  a
large number of images seriously decreases the 3D meas-
urement efficiency of  FPP.  Therefore,  in order  to meas-
ure dynamic scenes, researchers usually reduce the fringe
patterns required  for  phase  unwrapping,  thus  to  im-
prove the efficiency of per 3D reconstruction23,24. Ideally,
the absolute depth is expected to be obtained by a single-
shot fringe pattern.

The strategy of spatial frequency multiplexing is an ef-
fective  single-frame  3D  measurement  technology25−32.
The  earliest  idea  of  spatial  frequency  multiplexing  was
proposed by Takeda et al25. By combining multiple sinus-
oids with  different  two-component  spatial  carrier  fre-
quencies into a fringe pattern, they developed single-shot
spatial-frequency  multiplexing  for  the  FT  technique15

with the Chinese remainder theorem phase unwrapping
technique (referred to as the G-S algorithm) to measure
3D objects with discontinuous and isolated surfaces. An-
other  similar  approach  combined  traditional  multi-
frame structure light pattern into a single composite pat-
tern and can recover the depth data of moving or non-ri-
gid  object  in  real-time27. Although  special  fringe  com-
posite  design is  realized  to  separate  the  spectrum in  the
above  work25,27, it  is  still  unable  to  avoid  spectrum  ali-
asing entirely. Therefore, the resulting low phase quality
around discontinuities and isolated regions of the phase
map makes these methods unable to be applied in high-
accuracy  3D  measurement  field.  Liu  et  al.23 proposed  a

dual-frequency  composite  PS  scheme,  where  high-fre-
quency wrapped phase with high-quality obtained by the
PS  method  is  unwrapped  according  to  a  low-frequency
phase  through  three  look-up  tables  (LUTs)  algorithm.
Although higher-quality 3D measurement is allowed, the
5 fringe patterns required by the PS method increase the
sensitivity to dynamic scenes.

In recent years, many studies have used deep learning
as a tool to solve or improve the measurement efficiency
issues  in  traditional  FPP33−38.  Feng  et  al.33,37 proposed  a
fringe analysis  approach  using  deep  learning.  By  com-
bining the  physical  model  of  the  traditional  PS method,
high-quality  phase  information  can  be  extracted  from  a
single-frame  fringe  image.  Shi  et  al.39 proposed  a  deep
learning-based  fringe  enhancement  method  to  improve
the  phase  imaging  quality  of  the  FT  method.  However,
the  above  two  methods  can  only  achieve  high-quality
single-shot wrapped  phase  acquisition.  In  order  to  im-
prove the efficiency of phase unwrapping, Yin et al.34 ap-
plied  deep  learning  to  perform  TPU.  Although  a  large
number of projected images required by traditional TPU
are reduced, at least two phase maps with one frequency
and high frequency are  needed.  Qian et  al.36 proposed a
deep-learning-enabled  geometric  constraints  and  phase
unwrapping  method  for  single-shot  absolute  3D  shape
measurement.  Although  robust  phase  unwrapping  can
be achieved on a single-frame projection,  it  is  at  the ex-
pense of  increased hardware costs,  where they used two
cameras.  Besides,  they also combined deep learning and
the color-coded technology  to  develop  a  single-shot  ab-
solute 3D  shape  measurement  with  color  fringe  projec-
tion profilometry38. However, this method will fail when
measuring  colored  objects.  In  addition,  there  are  also
some end-to-end methods for linking fringe images and
absolute  depth  information35,40,41. However,  these  meth-
ods may  be  difficult  to  obtain  high-precision  measure-
ment results  in  practical  applications,  or  may  not  guar-
antee stable fringe ambiguity removal.

Considering the  traditional  multi-frequency  compos-
ite  methods  cannot  guarantee  single-frame  high-accur-
acy 3D imaging,  and inspired  by  the  successful  applica-
tions  of  deep  learning  in  FPP,  we  propose  a  single-shot
deep  learning-based  dual-frequency  composite  fringe
projection profilometry, which can achieve spectrum-ali-
asing-free high-quality  phase  information  retrieval,  ro-
bust phase  ambiguity  removal  and  high-accuracy  dy-
namic 3D shape measurement under the premise of only
a single fringe projection image.

Li YX et al. Opto-Electron Adv  5, 210021 (2022) https://doi.org/10.29026/oea.2022.210021

210021-2

 

Jou
rna

l P
re-

pro
of



Different from the  traditional  end-to-end deep learn-
ing network that directly links the fringe image to abso-
lute  phase/depth35,40,41,  we  incorporate  the  concept  of
spatial  frequency  multiplexing  in  deep  learning  and
design an unambiguous composite fringe image input to
ensure that the networks have robust phase unwrapping
performance. Besides, in order to provide the deep neur-
al  networks  with  the  capability  to  overcome  the  serious
spectrum aliasing problem that traditional spectrum sep-
aration technology  cannot  deal  with,  the  fringe  projec-
tion  images  without  this  problem  are  used  to  generate
the aliasing-free labels.  After proper training,  the neural
networks can  directly  recover  robust  absolute  phase  in-
formation  through  a  composite  fringe  input  image.
Compared  with  traditional  spatial  frequency-multiplex-
ing FT methods and deep learning techniques, our meth-
od can achieve higher quality phase information extrac-
tion as  well  as  more  robust  phase  unwrapping  for  ob-
jects with complex surface.

The remainder of this paper is organized as follows. In
Section Principle,  the  basic  principle  of  dual-frequency
composite fringe  projection  profilometry,  the  acquisi-
tion  of  deep  learning  training  data,  the  proposed  deep
learning-based composite fringe projection profilometry
(DCFPP) method  and  the  network  architectures  are  in-
troduced  respectively.  In  Section Experiments and  res-
ults,  experimental  verifications  and  comparison  results
are  presented  in  detail.  In  the  final  Section Conclusions,
we draw conclusions. 

Principle
 

Single-shot dual-frequency composite fringe
projection profilometry
In FPP,  to  achieve  3D  measurement  for  high-speed  dy-
namic scenes, it is necessary to minimize the number of
projection  frame  per  3D  reconstruction31.  In  this  work,
we aim at challenging the physical limit of the number of
fringe patterns required for 3D imaging, and retrieval 3D
data from a single frame.

Generally,  phase unwrapping is  a  crucial  step in FPP,
which  establishes  the  unique  correspondence  between
different views, thereby allowing absolute 3D reconstruc-
tion. Meanwhile, it is also the operation that most affects
3D  measurement  efficiency42.  Therefore,  the  key  to
achieve single-shot 3D shape measurement is to remove
phase ambiguity through single-frame fringe image. One
of the conventional single-shot phase unwrapping meth-

Ipcp(x, y)

ods  is  the  spatial  phase  unwrapping  algorithm43,  which
can directly  recover the absolute phase from only single
wrapped phase  map  through  the  phase  values  of  spa-
tially  adjacent  pixels.  However,  this  method  cannot
uniquely  determine the period numbers  for  the  cases  of
large discontinuities  or  spatially  isolated  surfaces.  In-
spired  by  the  recent  successful  applications  of  deep
learning  techniques  on  FPP,  we  consider  applying  deep
neural  networks  to  perform  single-shot  absolute  phase
acquisition.  Since  the  reliability  of  deep  learning  largely
depends on the raw input information, if the input itself
is ambiguous,  the  network  is  by  no  means  always  reli-
able44. Thus, in order to robustly eliminate the phase sin-
gularity, we must design an unambiguous input pattern.
To this  end,  refer  to  the  traditional  temporal  phase  un-
wrapping  (TPU)  algorithms22,  which  project  a  series  of
fringe patterns with different frequencies and determine
the pixel-wise fringe orders through the unique wrapped
phase  distribution  in  the  time  domain,  we  superimpose
the time domain information of different frequencies in-
to the spatial domain to generate a composite fringe pat-
tern. As the phase unwrapping network input, the com-
posite  pattern  should  have  sufficient  capability  to  resist
phase ambiguity,  in  other  words,  multi-frequency  in-
formation  separated  from  the  composite  fringe  pattern
should  achieve  the  unambiguous  phase  unwrapping.  In
this  work,  we  design  a  dual-frequency  composite  fringe
coding strategy, where two vertical sinusoidal fringe pat-
terns with  different  frequencies  are  added.  The  com-
posed fringe pattern  (Fig. 1(a)) can be expressed
as Eq. (1): 

Ipcp(x, y) = ap(x, y)+bp(x, y)[cos(2πx/λh)+cos(2πx/λl)],
(1)

(x, y) ap

bp λh λl

Ipcp

where  is the image pixel coordinate,  denotes the
mean intensity,  represents the amplitude,  and  are
the wavelengths of the two hybrid sinusoidal fringe pat-
terns  with  high  and  low  frequencies,  respectively.  After
illuminating the  object  with  the  composite  fringe  pat-
tern  through a digital  projector,  the intensities  of  the
captured image can be expressed as: 

Iccp(x, y) = A(x, y) + B(x, y)[cosΦh(x, y) + cosΦl(x, y)],
(2)

A(x, y)
B(x, y)

where  is the average intensity relating to the pat-
tern  brightness  and  background  illumination,  is
the intensity modulation relating to the pattern contrast
and surface  reflectivity.  Besides,  the  captured composite
fringe image contains two phase information of high and
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Φh Φl

φh φl 2π

low frequency, which are  and  respectively. In con-
ventional  fringe  analysis  methods,  the  extracted  initial
phase is the wrapped phase  and  with  phase dis-
continuities  due  to  the  arctangent  function45.  Thus,
phase unwrapping is required to remove the fringe ambi-
guities and correctly extract the absolute depth of the ob-
ject42.  The  absolute  phase  maps  corresponding  to  the
wrapped  phases  of  the  hybrid  sinusoidal  fringe  image
can be represented as:  {

Φh(x, y) = φh(x, y) + 2πkh(x, y)
Φl(x, y) = φl(x, y) + 2πkl(x, y)

, (3)

kh kl
φh φl kh, kl ∈ [0,K− 1] K

where,  and  are the integer fringe order correspond-
ing to the wrapped phases  and , , 
denotes the number of the used fringes.

λh λl

LCM(λh, λl)

(φh,φl)

W×H
λh λl

For  two  wrapped  phase  maps  with  different
wavelengths,  theoretically,  we  can  use  the  traditional
number-theoretical approach22, which is one of the TPU
algorithms,  to  perform absolute  phase unwrapping.  The
basic idea of this method relies on the fact that for suit-
able chosen fringe wavelengths  and , their least com-
mon  multiple  determines  the  maximum
range on the absolute phase axis within which the com-
bination  of  wrapped  phase  values  is  unique46,47.
For  a  projection pattern with  resolution, the  se-
lected two different wavelengths  and  should satisfy
the following inequality to exclude phase ambiguity: 

LCM(λh, λl) ⩾ W , (4)

LCM()

LCM(λh, λl)

where  represents  the  least  common  multiple
function. That is to say, if  (called the unam-

LCM()

λhλl

kh kl

biguous  range)  can  exceed  the  lateral  resolution  of  the
projected pattern, the phase ambiguity of the whole field
can  be  eliminated.  Specially,  when  the  selected
wavelengths are relatively prime, the  function can
be  simplified  to  the  multiplication  of  two  wavelengths
and the range of unambiguous phase becomes . After
examining  that  the  pairs  of  wrapped  phase  values  are
unique, the fringe orders  and  of the two phase maps
can be determined.

λh λl

Since  the  two  sets  of  fringe  patterns  have  different
wavelengths (  and ), their absolute phase map should
have the following relationship: 

Φh(x, y)
Φl(x, y)

=
λl

λh
. (5)

Combining Eqs. (3) and (5), we can get the following re-
lation: 

λlφh(x, y)− λhφl(x, y)
2π

= kl(x, y)λh − kh(x, y)λl. (6)

(kh, kl)

Stair
(kh, kl)

According to  the  number  theory  method,  the  fringe  or-
der  pairs  can  be  determined  by  the  pre-com-
puted  lookup  table  (LUT)  which  establishes  the  unique
correspondence  between  the  left  side  (called func-
tion) and : 

(kh, kl) = LUT [Stair(x, y)] . (7)

StairAnd the  function can be expressed as: 

Stair(x, y) = round
(
λlφh(x, y)− λhφl(x, y)

2π

)
, (8)

round(·)where the  represents a rounding function.

 

a

b

(×12) (×12)

Projected pattern sequency

Wrapped phase

Absolute phase

Captured N-step phase-shifting fringe patterns

λh λl

Ih1

Il1
Il2

Il12

Ih2
Ih12

Mh

Dh

Ml

Dl

Φh

Φl

Φh

λh+λl

Fig. 1 | The process of generating training data. (a) The projection mode includes dual-frequency 12-step phase-shifting fringe projection pat-

terns and dual-frequency composite fringe pattern. (b) A set of captured images and the corresponding labels contain numerator term, denomin-

ator term, and absolute phase map.
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Refer to  the  optimal  dual-frequency  selection  ap-
proaches48−50, the high-frequency is as high as possible to
allow  high-accuracy  measurement,  while  the  low-fre-
quency  cannot  be  too  low  to  ensure  the  stability  of  the
phase unwrapping, and the relative minimum gap of the
combined  frequencies  should  be  as  large  as  possible  to
improve the fault tolerance rate of phase unwrapping, we
finally  select  the  frequency  combination  of  a  high-fre-
quency fringe with wavelength of 19 pixels and a low-fre-
quency fringe with wavelength of 51 pixels to synthesize
a  single-frame  composite  fringe  pattern.  It  can  perform
unambiguous  phase  unwrapping  of  points  within  the
range of 969 pixels,  which means that the whole field of
the projected  pattern  can  carry  out  absolute  phase  un-
wrapping. 

Generate training data
The purpose of the data-driven-based deep learning net-
work is to apply a large number of training data includ-
ing the input values (the samples) and the ground-truth
values  (the  targets/labels)  to  train  a  model,  the  output
values  predicted  by  which  can  be  infinitely  close  to  the
ground-truth  value.  In  this  work,  we  aim  at  utilizing
deep learning to  predict  high-quality  the absolute  phase
map through a single fringe image.

λh λl

In  order  to  make  the  trained  deep  neural  network
overcome the problem of spectrum aliasing, we use dual-
frequency  12-step  phase-shifting  fringe  patterns  (Fig.
1(a)) to  generate  high-quality,  high-precision,  and spec-
trum-aliasing-free network  labels.  In  particular,  the  se-
lected two frequencies/wavelength  and  are the same
as the composite  dual-frequency/dual-wavelength of  the
composite  fringe  pattern.  The  captured  high-frequency
and low-frequency  sinusoidal  fringe  images  can  be  ex-
pressed as: 

Ichn(x, y) = Ah(x, y) + Bh(x, y)cos
[
φh(x, y) +

2π(n− 1)
12

]
Icln(x, y) = Al(x, y) + Bl(x, y)cos

[
φl(x, y) +

2π(n− 1)
12

]
,

(9)
Ichn Icln n

n , · · · , Ah Al Ichn
Icln Bh Bl

φh φl

where  and  represent  the  intensity  of  the th cap-
tured image with  high and low frequencies  respectively,

=1,2 12,  and  are  the  average  intensity  of 
and ,  and  are the  corresponding  amplitude  in-
tensity maps. Then, the wrapped phase  and  can be
obtained through the least-squares algorithm: 

φh(x, y) = tan−1

∑12

n=1
Ichn(x, y)sin(2π(n− 1)/12 )∑12

n=1
Ichn(x, y)cos(2π(n− 1)/12 )

= tan−1Mh(x, y)
Dh(x, y)

φl(x, y) = tan−1

∑12

n=1
Icln(x, y)sin(2π(n− 1)/12 )∑12

n=1
Icln(x, y)cos(2π(n− 1)/12 )

= tan−1Ml(x, y)
Dl(x, y)

, (10)

Mh Dh

φh Ml Dl

φl

Φh

where set  and  as the numerator term and the de-
nominator  term  of  the  arctangent  function  of  wrapped
phase ,  and set  and  as  the  numerator  term and
the  denominator  term  of  the  arctangent  function  of
wrapped phase . In order to eliminate the ambiguity of
the  high-frequency wrapped phase,  we use  the  number-
theoretical method (Eqs. (3), (7) and (8)) to unwrap the
high-frequency  wrapped  phase  into  an  absolute  phase

.
It  should  be  emphasized  that  for  the  following  three

reasons, we  do  not  adopt  an  end-to-end network  struc-
ture that directly link the input fringe images to the out-
put absolute  phase/depth,  but  choose  a  network  struc-
ture  that  predicting  the  numerator  and  denominator
map  of  the  wrapped  phase  arctangent  function  and  a
low-accuracy  absolute  phase  map.  1)  Since  a  single-fre-
quency  fringe  image  is  insufficient  to  eliminate  the
phase/depth  ambiguity  in  FPP  while  the  multi-fre-
quency fringe  images  can  effectively  remove  this  ambi-
guity through the TPU algorithm22, we use a single dual-
frequency composite fringe image. As the network input,
this composite  image  can  not  only  retain  the  character-
istics of a single frame projection, but also can be decom-
posed  into  two  fringe  images  with  different
wavelengths/frequencies,  which  effectively  removes  the
ambiguity of  phase retrieval  in essence and ensures that
the  absolute  3D  shape  measurement  is  not  affected  by
any assumptions and prior knowledge,  such as continu-
ous surface, limited measurement range, geometric con-
straints. 2)  Since  the  difficulty  of  establishing  an  accur-
ate correspondence between the fringe intensity inform-
ation and  the  high-accuracy  absolute  phase  value,  espe-
cially  when  the  surface  of  the  measured  object  contains
sharp edges,  discontinuities  or  large  reflectivity  vari-
ations, a simple input-output network structure only can
usually  obtain  compromised  imaging  accuracy36.  Based
on this  consideration,  we use  deep learning to  predict  a
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rough absolute phase containing the correct fringe order
information  from  the  designed  composite  fringe  image.
3) Our deep neural network is trained to predict the nu-
merator and denominator of the arctangent function, to
bypass the  difficulties  associated  with  reproducing  ab-
rupt  phase  wraps,  and  thus,  obtain  a  high-quality
phase information33.

Mh

Dh

Φh

Therefore, in this work, the output of the network we
constructed  includes  the  numerator  and  denominator
used to calculate high-quality phase information, as well
as the  rough absolute  phase  that  provides  the  fringe  or-
der information.  The  labels  of  the  training  data  corres-
ponding to these outputs are the numerator , the de-
nominator ,  and  the  high-frequency  absolute  phase

. Figure 1(a) is  our  projection  mode,  and Fig. 1(b)
shows set of fringe images and the labels generated from
these images.

B(x, y)

In addition, in order to enhance the network learning
ability,  we  set  an  appropriate  modulation  threshold  to
mask the invalid points of the training data maps by us-
ing  the  modulation  function  (Eq.  (11))  and  the
Mask function (Eq. (12)): 

B(x, y) = 2
N

√
Mh(x, y)2 + Dh(x, y)2 , (11)

 

Mask(x, y) =
{

B(x, y), B(x, y) ⩾ Thr
0, B(x, y) < Thr . (12)

ThrThe value  of  threshold  is  set  to  8,  which is  suitable
for most of our measurement scenarios in this work. 

Deep-learning-based single-shot composite fringe
projection profilometry (DCFPP)
Our purpose  is  to  propose  a  single-shot  fringe  projec-
tion profilometry  using  deep  learning,  which  can  ro-
bustly  recover  high-quality  absolute  phase  information
from a composite fringe image, thus to perform high-ac-
curacy 3D  reconstruction.  The  flowchart  of  our  pro-
posed approach (DCFPP) is shown in Fig. 2.

λh = 19 λl = 51

LCM(19, 51) = 969 > 912

[0, 255]
ap + bp = 255

λh = 19
λl = 51 ap = 130 bp = 125

Step  1: Selection  of  wavelength  combination  strategy
to  generate  a  composite  fringe  pattern.  We  choose  two
wavelength  and  with  the  unambiguous
range  pixels  that  satisfy  the Eq.  (4):

(mentioned  in  Section Single-
shot dual-frequency  composite  fringe  projection  profilo-
metry), to generate the composite fringe image, which is
sufficient  to  overcome  phase  ambiguity,  as  the  input  of
the  deep  convolution  neural  network.  In  order  to  cover
the  entire  dynamic  range  of  the  projector ,  we  set

 in Eq.  (1),  and  the  composite  pattern
along with its cross-section intensity profile for ,

, , and  is illustrated in Fig. 2(b).
Step 2: Preparation for network training data. Accord-

ing  to  the  principle  mentioned  in  Section Generate
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Fig. 2 | Flowchart of our proposed approach. (a) Part of network training data sets. (b) Hardware system and the cross-section intensity distri-

bution of the designed composite fringe pattern. (c) Test data and prediction results obtained by the training model.
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Mh

Dh

training  data, we  use  two  sets  of  12-step  PS  fringe  im-
ages with the same dual-wavelength  and  of compos-
ite  pattern to calculate  the numerator terms  and the
denominator  terms  of  spectrum-aliasing-free  high-
frequency  wrapped  phases  and  absolute  phases  as  the
ground-truth values of the neural network.

float32

Step  3: Training  data  preprocessing.  Before  feeding
the input data and targets  into the neural  network,  data
preprocessing is  required.  Such  operation  aims  at  mak-
ing the raw data more amenable to neural networks, in-
cluding vectorization and normalization. First, all inputs
and targets in a neural network must be tensors of float-
ing-point,  this  step  called  data  vectorization,  and  in  the
experiment,  we  transform  them  into  array  of
shape (number of images, 640, 480). Besides, it should be
noted that all network inputs and targets need to be con-
verted to a format compatible with TensorFlow. In gen-
eral, it is unreliable to input relatively large values or het-
erogeneous data (that  is,  the size between the input and
the target may differ ten or even a thousand times) into a
neural  network.  Thus,  data  normalization  is  required.
We divide the input images by 255 to convert the previ-
ous gray values from 0–255 range to 0–1 range.

Iccp(x, y)

Step 4: Training the neural network models. After pre-
paring the training data sets, including a large number of
unambiguous  input  data  sets  and  corresponding  high-
quality  ground-truth  data  sets  as  shown  in Fig. 2(a),  we
put these specially  designed inputs  and outputs  into the
U-Net  networks,  so  that  the  network  will  have  a  more
powerful  absolute  phase  retrieval  capability.  In  terms of
phase  information  acquisition,  such  data-driven-based
training  network  can  overcome  the  problem  of  poor
imaging quality caused by frequency aliasing and has the
high-quality  phase  information  extraction  function  like
the traditional PS algorithms; And in terms of phase un-
wrapping,  it  can  directly  recover  absolute  phase  from  a
single  fringe image,  so as  to reach the physical  limit  the
number of  the fringe image required for a single 3D re-
construction and maximize the efficiency of 3D imaging.
As  shown  in Fig. 2(c), we  construct  two  deep  convolu-
tional  neural  networks  with  the  same  structure  except
the final convolution layer, referred to as the U-Net1 and
U-Net2,  to  perform  phase  information  extraction  and
phase unwrapping tasks, separately. The specific reasons
for choosing  two  networks  instead  of  one  will  be  ex-
plained  in  Section Network  architecture.  Plenty  of  raw
composite  fringe  images  are  fed  into  the  two
deep  convolution  neural  networks,  then  U-Net1  will  be

Mh Dh

Φh

trained  with  the  corresponding  and  as  ground-
truth to generate a phase acquisition model, and U-Net2
will  be  trained  with  the  corresponding  absolute  phases

 as  the  ground-truth  to  obtain  a  phase  unwrapping
model.

Mdl Ddl

Mdl Ddl

φdl(x, y)

Step 5: Prediction for absolute phase. The U-Net1 net-
work  is  responsible  for  predicting  the  numerator  terms

 and  the  denominator  terms  of  a  single-frame
composite  fringe  image.  Then,  taken  the  output  results

 and  into  the  arctangent  function,  the  wrapped
phase distribution  can be extracted:
 

φdl(x, y) = tan−1Mdl(x, y)
Ddl(x, y)

. (13)

Φcoarse(x, y)

φdl

Φcoarse

kdl(x, y)
Φdl(x, y)

Simultaneously, the  U-Net2  predicts  the  “coarse”  abso-
lute  phase  of  the  single-frame  composite
fringe image.  Due to  the  environmental  light,  large  sur-
face reflectivity and discontinuities, it is hard to get high-
quality  phase  information  directly.  Thus,  feeding  the
wrapped phases  from U-Net1 and the “coarse” abso-
lute phase  from U-Net2 into Eq. (14) to obtain the
fringe  order ,  the  high-quality  absolute  phase

 can be recovered by Eq.(15). 

kdl(x, y) = Round
[
Φcoarse(x, y)− φdl(x, y)

2π

]
, (14)

 

Φdl(x, y) = φdl(x, y) + 2πkdl(x, y). (15)

Step  6: 3D  shape  reconstruction.  Finally,  by  utilizing
the pre-calibrated parameters of the FPP system51−53,  3D
information of the objects can be reconstructed. 

Network architecture
Next,  we  will  further  discuss  the  selection  strategy  and
main architecture of the deep learning networks (Fig. 3).
For  the  network  architecture  selection,  we  respectively
use one  U-Net  network  and  two  U-Net  parallel  net-
works to achieve phase retrieval  and phase unwrapping.
Figure 4 shows the  comparison  results  of  phase  predic-
tion using one U-Net network and two U-Net networks,
from which we can draw conclusions:  Using one U-Net
network can predict an absolute phase of the object with-
in the allowable error from different surface complexity,
however, since this method directly outputs the absolute
phase from the network, the absolute phase predict cap-
ability  and  quality  of  this  end-to-end  structure  is  worse
than the result of two U-Net parallel networks. Thus, we
use two U-Net parallel networks (marked as U-Net1 and
U-Net2) to train the network models.
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Taken U-Net1 network as an example to reveal the in-

ternal  structure  of  the  constructed  networks,  the  input

tensors of size (H, W,  1) are successively processed by a

stack of convolutional layers, pooling layers, upsampling

blocks,  and  concatenate  layers.  Each  of  convolutional

layer represents a  convolution operation,  which extracts

patches from its input feature map and applies the same

transformation  to  all  of  these  patches,  producing  an
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Fig. 3 | The U-Net network architecture.
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Fig. 4 | Comparison between one U-Net network and two U-Net networks (the proposed method). (a, d, g, j) The raw composite fringe im-

ages  from  four  different  measurement  scenes.  (b, e, h, k)  The  absolute  phase  result  error  between  deep-learning-predicted  value  and  the

ground-truth value by using one U-Net network. (c, f, i, l) The absolute phase result error between deep-learning-predicted value and the ground-

truth value by using two U-Net networks.
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output feature map. For each convolution layer, the ker-
nel size is 3×3 with convolution stride one and zero-pad-
ding,  and  it  is  activated  by  the  rectified  linear  unit
(ReLU)  except  for  the  last  1×1  convolution  layer.  The
output of the convolutional layer is a 3D tensor of shape
(h, w, d), where h×w is the size of feature map input, d is
the number of channels also representing filters that en-
code  specific  aspects  of  the  input  data.  The  number  of
channels is controlled by the first argument passed to the
convolutional  layers  which  is  set  to  32  in  the  proposed
U-Net network.  The  role  of  pooling  layer  is  to  aggress-
ively  downsample  feature  maps,  consists  of  extracting
windows from the input feature maps and outputting the
max value of each channel. Usually, max pooling layer is
done with 2×2 windows and stride 2,  in order to down-
sample the feature maps by a factor of 2. Thus, the size of
composite  image  input H×W tend  to  shrink  as  it  gets
deeper in the network. After downsampling the input by
five  times  for  better  extraction,  the  upsampling  block
needs to match the raw input size. Then, copy the convo-
lutional layer and merge it with the upsampling layer in-
to  a  concatenate  layer.  Besides,  the  ultimate  goal  of  the
network  is  to  achieve  a  model  that  can  be  generalized,
that  is,  perform  well  on  never-seen-before  data.
However, overfitting  is  the  central  obstacle.  The  pro-
cessing  of  fighting  overfitting  is  regularization.  In  this
network, we use the Dropout which is one of the most ef-
fective and  most  commonly  used  regularization  tech-
niques  for  neural  networks  to  fight  overfitting.  The  loss
function  we  select  in  this  neural  network  is  mean
squared  error  (MSE),  which  is  used  to  compare  these
predictions  with  the  targets  and  generate  a  loss  value.
The  optimizer  chooses  the  Adam  optimization  scheme,
which  is  used  to  update  the  network  weights  with  the
loss value  and  achieve  better  gradient  propagation.  Fi-
nally, the network of layers chained together maps input
data to predictions. 

Experiments and results
To verify the performance of the proposed DCFPP meth-
od, we  construct  a  monocular  FPP  system,  which  con-
sists of  a  monochrome  camera  and  a  digital  light  pro-
cessing (DLP) projector.  The camera used in the system
is a Basler acA640-750 μm one equipped with an 8.5 mm
Computar lense, which has 8-bit pixel depth and a max-
imum frame rate of 750 fps at a full 640×480 resolution.
The used projector is a LightCrafter 4500 one with a res-
olution of 912×1140 and a projection pattern rate of 120

Hz  with  8-bit.  The  field  of  view (FOV)  of  the  system is
about 210 mm×160 mm, and the distance from the cam-
era  to  the  region  of  interest  is  approximately  400mm.
The  network  training  experiment  is  computed  on  a
desktop  with  Intel  Core  i7-7800X  CPU  and  a  NVIDIA
GeForce GTX 1080 Ti GPU, and we use the Python deep
learning framework  Keras  with  the  TensorFlow  plat-
form (developed  by  Google)  to  speed  up  the  computa-
tion of the training model. 

Training the network model and testing the data

Iccp Mh

Dh Φh Mh Dh

Φh

λh λl

Mh

Dh Φ

As mentioned earlier,  a set  of input and output data for
training the network includes a dual-frequency compos-
ite fringe image , as well as the numerator , denom-
inator  and  the  absolute  phase ,  where  and 
are  calculated  by  the  12-step  PS  method,  and  is ob-
tained  by  the  number  theory  method (refer  to Generate
training data). We project 25 fringe patterns each time in
one projection period,  including 24 PS sinusoidal  fringe
patterns  and  one  dual-frequency  composite  pattern.
Making  full  use  of  the  three-color  wheel  projection
mechanism of the DLP projector,  three different images
can be captured in red, green, and blue channels respect-
ively, and combined into a single RGB image. Therefore,
the system projection speed can actually be increased by
three times. In this experiment, we set the pattern expos-
ure to 148500 μs and the pattern period to 150000 μs. To
maximize the  generalization  ability  of  the  neural  net-
work, we need to obtain more training data. Thus, in the
training experiment, a total of 1032 datasets from differ-
ent  scenes  are  collected  including  800  training  sets  and
232 validation sets. Each of dataset contains one compos-
ite  dual-wavelength  ( =19, =51)  fringe  image  inputs,
the  ground-truth  values  numerator  and denominat-
or , and the ground-truth values the absolute phase .
Figure 5 shows some typical shooting scenes of the train-
ing datasets.  The  convolutional  neural  network  is  ex-
ecuted  in  200  epochs,  of  which  the  mini-batch  (used  to
compute a single gradient-descent update for the weights
of  the  model)  is  2,  the  initial  model  will  be  learned
through the  above process.  In  order  to  further  optimize
this model, network parameters and structure need to be
adjusted. Due  to  data  augmentation,  the  time  for  net-
work  training  takes  8.3  hours  on  an  NVIDIA  graphics
card.

We collect 60 scenes data that different from the train-
ing  and  the  validation  sets  to  test  the  accuracy  of  the
model.  The processing speed of our approach can reach
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about 15 fps. We can put the captured and processed im-
age  data  into  the  trained  network  model  to  retrieve  the
phase information of target object and complete the off-
line  3D  measurement.  Although  our  system  can  only
complete 3D measurement of complex objects and mov-
ing  objects  in  an  offline  state,  our  single-frame imaging
method provides basic support for real-time online pro-
cessing.

It  should be noted that since our network models  are
trained  from  the  composite  fringe  images  with  dual
wavelengths (19 and 51) and the fringe images with dif-
ferent  wavelengths  at  the  same  position  correspond  to
different fringe orders, the trained model is only valid for
composite  fringe  images  with  wavelengths  19  and  51.
However,  as  long  as  the  selected  frequency/wavelength
combination  meets  the  selection  conditions  mentioned
in  Section Single-shot  dual-frequency  composite  fringe
projection profilometry to eliminate fringe pattern ambi-
guity, the trained model on the composite fringe images
with the  selected  frequency  combination  can  also  per-
form single-frame  measurement  on  the  composite  im-

age with the same frequency combination. 

Qualitative evaluation
To test  the  proposed  approach,  we  conducted  static  ex-
periments and dynamic experiments, respectively.

Iccp(x, y) λh λl

We first  measured  four  static  scenarios  that  our  net-
work  has  never  seen  before,  including  a  Voltaire  statue
plaster model,  a  David  plaster  model,  little  girl  and wo-
men combination models, and a metal workpiece. These
scenes  involve  a  single  object  with  continuous  complex
surface  shapes,  a  combination  of  multiple  objects  with
isolated  surfaces,  and  workpieces  with  different  surface
reflectivity  materials. Figure 6(a–d) show  the  captured
composite fringe images  with =19 pixel, =51
pixel which are  the input  of  the constructed neural  net-
work,  and Fig. 6(e–h) are  corresponding  cross-sections
of their spectrum intensities, from which we can see that
the  spectrum  aliasing  is  so  serious  that  it  is  difficult  to
separate and  extract  effective  dual-frequency  informa-
tion through applying the filter window in the frequency
domain.  The  U-Net1  network  model  predicts

 

Fig. 5 | Part of input training datasets. The surface shapes contain single complex surface, geometric surface and discontinuous surface, and

the materials include plaster, plastic, and paper.
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the numerator  and denominator  results for each
input image, as shown in the first two columns of Fig. 7.
These intermediate  results  are  then  fed  into  the  arctan-
gent  function  (Eq.  (13)) to  calculate  the  phase  distribu-
tion ,  as  shown in the third column of Fig. 7.  The U-
Net2  training  model  is  responsible  for  outputting  a
coarse absolute phase map, and then the high-quality ab-
solute  phase  can  be  calculated  through Eq.  (14) and
Eq.  (15),  as  shown in  the  last  column of Fig. 7.  We also
compare our proposed DCFPP with the traditional dual-
frequency composite FT method in the above four static
scenes.  Since  the  3D  information  is  obtained  from  the
phase data, the 3D measurement accuracy can be reflec-
ted by the accuracy of the phase data. In the experiment,
we  directly  perform  error  analysis  on  the  recovered
phase  information  of  the  objects.  Taking  the  wrapped
phase maps calculated by the 12-step PS method and the
absolute phase generated by the traditional number the-
ory  method  as  the  ground-truth  values,  the  high-fre-
quency  phase  errors  of  our  approach  and  traditional
method are shown in Fig. 8, where the first column (Fig.
8(a, e, i, m))  and  the  third  column  (Fig. 8(c, g, k, o))  are
the  errors  of  traditional  method,  the  second  columns

(Fig. 8(b, f, j, n))  and  the  last  columns  (Fig. 8(d, h, l, p))
show the phase error results  of  the proposed DCFPP.  It
can be seen that, compared with the traditional method,
our  method  can  significantly  improve  the  performance
of phase extraction and phase unwrapping from a single
fringe  image.  Due  to  frequency  spectrum  aliasing
between fundamental frequency (the low-frequency) and
zero  frequency  (refer  to Fig. 6), the  foundational  spec-
trum cannot be filtered out exactly, and the inexact phase
information will lead to poor phase imaging quality, thus
causing  serious  phase  unwrapping  errors.  By  contrast,
our  approach  eliminates  the  need  to  analyze  the  image
spectrum and directly retrievals the high-quality aliasing-
free  absolute  phase  by  the  unambiguous  composite
fringe input. The comparison results of traditional dual-
frequency  composite  FT  methods  proved  that  DCFPP
can  significantly  improve  the  performance  of  single
fringe  phase  retrieval  and  phase  unwrapping.  For  the
quantitative  analysis  of  the  method,  we  calculate  the
mean  absolute  error  (MAE)  of  the  wrapped  phase  and
absolute  phase  from  these  four  scenes,  as  shown  in  the
Table 1.  For  the  traditional  method,  the  low-quality
wrapped phase leads to serious phase unwrapping errors,
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Fig. 7 | The prediction results of our proposed method (DCFPP) in four static scenarios. (a, e, i, m) The numerator  results. (b, f, j, n)

The denominator  results. (c, g, k, o) The wrapped phase  results. (d, h, l, p) The high-quality absolute phase maps .
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so that the calculated absolute phase has larger error val-
ues.  For  the  DCFPP,  the  reason why the  absolute  phase
MAE is smaller than the wrapped phase MAE is that 
jump area of the predicted wrapped phase and the cutoff
area of the label wrapped phase do not completely coin-
cide.  The  errors  close  to  caused  by  these  very  slight
misalignments (often only one pixel  apart)  will  be elim-
inated after phase unwrapping.

Furthermore,  through  phase-height  mapping  and  the
calibration parameters of  the camera-projector FPP sys-
tem,  the  3D  reconstruction  results  of  the  above  four
scenarios can be obtained. Figure 9 shows the comparis-
on results of the three methods: the end-to-end network,
the  DCFPP  method  and  the  12-step  PS  with  number-

theoretic method (the ground-truth generation method).
Fig. 9(a, d, g, j) are  the  results  of  the  method40.  In  their
end-to-end deep neural network, they use one single-fre-
quency  fringe  pattern  as  input  and  directly  output  the
corresponding  depth  map.  From  which  we  can  see  that
the 3D reconstruction results of the end-to-end network
are poor. The low accuracy results further verify the the-
oretical analysis in Section Generate training data that a
single-frequency fringe image is insufficient to eliminate
the phase/depth ambiguity. Our proposed method (pro-
posed method (Fig. 9(b, e, h, k)) using only one compos-
ite  image  can  yield  the  imaging  quality  comparable  to
that obtained by the traditional 12-step PS with number-
theoretic method (Fig. 9(c, f, i, l)).
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Fig. 8 | Phase error comparison results of traditional dual-frequency composite FT method and the proposed DCFPP method. (a, e, i,
m) The wrapped phase error calculated by traditional method. (b, f, j, n) The wrapped phase error predicted by the DCFPP. (c, g, k, o) The ab-

solute phase error of traditional method. (d, h, l, p) The absolute phase error of the DCFPP.

 
Table 1 | MAE of wrapped phase and absolute phase of the traditional dual-frequency composite FT method and the proposed DCFPP
method (noted that the “FT method” mentioned in the table refers to the traditional dual-frequency composite FT method).
 

MAE (rad)
Scenario 1 Scenario 2 Scenario 3 Scenario 4

FT DCFPP FT DCFPP FT DCFPP FT DCFPP

Wrapped phase 0.259 0.063 0.255 0.089 0.430 0.125 0.923 0.092

Absolute phase 3.314 0.034 2.185 0.071 4.333 0.083 5.707 0.055
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In  the  second  experiment,  we  measure  an  object  in
constant motion  to  validate  the  capability  of  the  pro-
posed  DCFPP  approach  in  the  dynamic  scenarios. Fig-
ure 10 shows the 3D reconstruction results  of  a  rotating
Voltaire  plaster  statue  model  using  DCFPP  method  in
selected  moments.  During  the  measurement,  a  single-
frame composite  fringe  pattern  is  continuously  projec-
ted on the surface of the object, and a monochrome cam-
era simultaneously captures the gray fringe image of each
frame. In conventional phase-shifting profilometry, mo-
tion  introduces  additional  phase  shift,  which  breaks  the
basic  assumptions  of  phase-shifting  profilometry  and
produces  motion  ripples  in  the  reconstructed  result6,

while our  method  uses  only  one  image,  which  funda-
mentally overcomes the influence of motion, so there are
no  motion  ripples.  The  whole  measurement  process  of
the rotating plaster statue is shown in Fig. 10 (Multime-
dia  view).  It  can  be  seen  that  due  to  the  single-frame
nature  of  DCFPP,  the  motion-induced  artifacts  can  be
avoided in the reconstruction process.
 

Quantitative evaluation

R = 25.4

At  last,  to  quantitatively  evaluate  the  3D reconstruction
precision of the proposed method, we respectively meas-
ured  a  standard  ceramic  plate  and  a  standard  ceramic
sphere  with  radii  mm.  The  precision  analysis
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results  are  shown  in Fig. 11,  where Fig. 11(a) and 11(d)
are the 3D reconstruction results calculated by our meth-
od, Fig. 11(c) and 11(f) respectively show  the  distribu-
tion  of  errors  of  the  plate  and  the  standard  ceramic
sphere.  Specifically,  the  ground-truth  values  of  both  of
them  are  generated  by  fitting  a  plane  or  a  sphere  using
3D reconstruction data. The root mean square (RMS) er-
ror  of  them  are  0.054  mm  and  0.065  mm,  respectively.
This  experiment  proves  that  our  method  can  achieve
high-quality  3D  measurement  just  using  a  single  fringe
image. 

Conclusions
In  this  study,  we  present  a  deep  learning-based  single-
shot 3D measurement technology, which is able to recov-
er  the  absolute  3D  information  of  complex  scenes  with
large  surface  discontinuities  or  isolated  objects  while
projecting  only  a  single  composite  fringe  pattern.  By
combining  the  deep  learning  network  with  the  physical

model  of  FPP,  we  take  a  well-designed  unambiguous
composite fringe pattern as input, and the phase inform-
ation  without  spectrum  aliasing  as  the  ground-truth  to
drive the neural networks to achieve robust, high-quality
single-shot  absolute phase recovery.  Compared with the
traditional  spatial  frequency  multiplexing  FT  method,
our DCFPP approach avoids the resulting poor 3D meas-
urement  accuracy  caused  by  spectrum  aliasing,  whose
imaging quality is comparable to the performance of tra-
ditional  12-step  PS  method  which  uses  more  than  12
fringe patterns.

This paper aims to show that deep learning is an effi-
cient tool for synthesizing temporal and spatial informa-
tion. It can avoid the spectrum aliasing problem of tradi-
tional single-frame phase measurement methods, and as-
sist  in  achieving  robust  phase  unwrapping  for  complex
scenes with  large  surface  discontinuities  or  isolated  ob-
jects from a single fringe image. However, due to the in-
tensity  containing  varying  reflectance  that  cannot  be
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correctly mapped to the absolute phase distribution with
high-accuracy,  it  is  still  difficult  to  retrieve  high-quality
absolute phase information in an end-to-end deep learn-
ing-based  network.  In  the  future,  we  will  explore  more
advanced network  structures  and  integrate  more  suit-
able physical models into deep learning networks to real-
ize  higher-speed,  higher-accuracy  and  more  robust  3D
shape  measurement  through  fewer  neural  networks  or
even an end-to-end manner.
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