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Aberration-corrected differential phase contrast
microscopy with annular illuminations
Yao Fan1,2,3†, Chenyue Zheng1,2,3†, Yefeng Shu1,2,3, Qingyang Fu1,2,3,
Lixiang Xiong1,2,3, Guifeng Lu1,2,3, Jiasong Sun1,2,3*, Chao Zuo1,2,3* and
Qian Chen1,2,3*

Quantitative phase imaging (QPI) enables non-invasive cellular analysis by utilizing cell thickness and refractive index as
intrinsic probes, revolutionizing label-free microscopy in cellular research. Differential phase contrast (DPC), a non-inter-
ferometric  QPI  technique,  requires  only  four  intensity  images  under  asymmetric  illumination  to  recover  the  phase of  a
sample, offering the advantages of being label-free, non-coherent and highly robust. Its phase reconstruction result re-
lies on precise modeling of the phase transfer function (PTF). However, in real optical systems, the PTF will deviate from
its theoretical ideal due to the unknown wavefront aberrations, which will lead to significant artifacts and distortions in the
reconstructed phase. We propose an aberration-corrected DPC (ACDPC) method that utilizes three intensity images un-
der annular illumination to jointly retrieve the aberration and the phase, achieving high-quality QPI with minimal raw data.
By employing three annular illuminations precisely matched to the numerical aperture of the objective lens, the object in-
formation is transmitted into the acquired intensity with a high signal-to-noise ratio. Phase retrieval is achieved by an iter-
ative deconvolution algorithm that uses simulated annealing to estimate the aberration and further employs regularized
deconvolution to reconstruct the phase, ultimately obtaining a refined complex pupil function and an aberration-corrected
quantitative phase. We demonstrate that ACDPC is robust to multi-order aberrations without any priori knowledge, and
can  effectively  retrieve  and  correct  system  aberrations  to  obtain  high-quality  quantitative  phase.  Experimental  results
show that ACDPC can clearly reproduce subcellular structures such as vesicles and lipid droplets with higher resolution
than conventional DPC, which opens up new possibilities for more accurate subcellular structure analysis in cell biology.
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Introduction
Light  microscopy  plays  a  crucial  role  in  biomedical  re-
search,  pharmaceutical  discovery,  and  materials  science
by providing visual images and data of biological cells to
support  analyses  of  key  properties  such  as  morphologi-

cal  features,  internal  structure,  dynamic  behavior,  and
functional  change1−4.  Recent  advances  in  biological  cell
research  have  greatly  facilitated  the  widespread  applica-
tion of label-free microscopy at the cellular and subcellu-
lar  scales5−8.  Phase  encodes  essential  information  about 
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the  optical  path  length  differences  induced  by  samples9,
providing a non-invasive means to quantify refractive in-
dex  and  thickness  distributions.  Capitalizing  on  this
physical property, quantitative phase imaging (QPI) uti-
lizes  phase  (Thickness)  as  an endogenous "probe"  to  re-
construct  cellular  morphology  and  biophysical  parame-
ters without phototoxic effects,  opening up new ways to
explore  the  cellular  microcosm10−15.  As  one  of  the  most
promising  QPI  techniques,  differential  phase  contrast
(DPC) exploits the phase transfer properties of asymmet-
ric illumination and recovers the sample's phase by solv-
ing the inverse problem16−18. It requires only four intensi-
ty  measurements  to  obtain  the  quantitative  phase  with
high  robustness  and  high  lateral  resolution  reaching  to
the incoherent diffraction limit, demonstrating powerful
imaging capabilities in cell applications19, 20.

Although DPC is  an  important  advancement  in  non-
interferometric  QPI,  its  reconstruction  algorithm  poses
challenges  because  it  requires  accurate  physical  model-
ing  from intensity  to  phase19,21.  DPC employs  the  phase
transfer function (PTF) to quantitatively characterize the
relationship  between  the  intensity  signal  and  the  object
phase,  which  is  modeled  as  a  multidimensional  integral
of  the  illumination  with  the  pupil  function  of  the
system22.  The undesired aberration as  the phase term of
the pupil function alters the PTF response and may dete-
riorate image results23.  Commercial  microscopes are de-
signed to  minimize  the  effects  of  aberration  as  much as
possible  by  optimizing  the  optical  system,  but  unavoid-
able system defects and disturbances from external envi-
ronments may cause pupil to deviate from the ideal val-
ue, resulting in severe phase distortion, blurring, and ar-
tifacts.  To  address  this  problem,  the  sample-indepen-
dence  nature  of  aberration  motivates  wavefront  sensing
and adaptive optics to be introduced into QPI to pre-es-
timate  and  quantify  the  system  aberration  prior  to  data
acquisition24, 25.  However,  the  specific  wavefront  sensor
devices and the additional aberration estimation step in-
crease  the  complexity  and  technical  challenges  of  the
phase reconstruction process.

Advances  in  phase  retrieval  algorithms  have  opened
up new ways to jointly recover sample phase and system
aberration  from  raw  intensities  without  any  additional
hardware,  with  the  advantages  of  automatic  correction
and  wide  sample  adaptability26−31.  Inspired  by  this  idea,
self-correcting  methods  have  been  developed  in  QPI
techniques  to  ensure  high-quality,  artifact-free  output
phases.  Fourier  ptychographic  microscopy  (FPM)  em-

2NAobj

ploys alternating projection (AP) iterations to simultane-
ously recover the phase of the object and the aberration,
thus  obtaining  high-resolution  complex  field  informa-
tion with a large field of view32−35. The AP is also utilized
in DPC to recover the complex transmittance function of
the object as well as the aberration using only four inten-
sity images (Three asymmetric illuminations and a colli-
mated  incident  illumination)36.  Nevertheless,  its  aberra-
tion retrieval relies heavily on the sensitivity of the addi-
tionally  acquired  images  under  the  collimated  illumina-
tion  (Coherent  illumination)  to  the  aberration.  More-
over,  the  use  of  half-circular  illumination  results  in  a
small PTF response at low frequencies and high frequen-
cies  approaching ,  which in turn limits  the imag-
ing resolution and signal-to-noise ratio (SNR). Recently,
the  annular  illumination  with  illumination  numerical
aperture (NA) matching the NA of the objective lens has
been identified  provides  an  optimal  (spectrum coverage
and transfer response) phase transfer response for high-
resolution,  high-contrast  reconstructed  phase  with  less
data requirements37−39.

We propose an artifact-free aberration-corrected DPC
(ACDPC) QPI  method grounded in  the  annular  illumi-
nation  (Optimized  PTF)  and  leveraging  simulated  an-
nealing to solve the optimization problem for aberration
retrieval.  Consequently,  only three acquired data frames
are required to reconstruct both the object phase and the
complex pupil function, achieving aberration-free, high-
resolution QPI.  Phase  retrieval  is  facilitated  by  an  itera-
tive  deconvolution algorithm,  which incorporates  simu-
lated annealing for  aberration estimation and a  temper-
ing process to expedite convergence, ultimately resulting
in  a  refined  complex  pupil  function  and  an  aberration-
corrected  quantitative  phase.  Furthermore,  we  analyze
the  data  redundancy  requirements  and  propose  a  mini-
mum data scheme for ACDPC, i.e., at least three images
are required to recover phase and aberration simultane-
ously.  Both  simulations  and  experiments  validate  that
the  proposed  ACDPC  method  is  robust  against  5th-or-
der  aberrations  and  ensures  high-quality  quantitative
phase  reconstruction.  ACDPC  achieves  artifact-free,
high-resolution  QPI,  demonstrating  its  adaptability  to
various  optical  microscope  systems,  paving  the  way  for
practical applications in biological research. 

Method
 

Phase transfer modeling with complex pupil function
DPC,  a  technique  with  partially  coherent  imaging,
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t(x) = exp[iϕ(x)] ≈ 1+ iϕ(x)

Φ(u)

employs  asymmetric  half-circular  illuminations  to  se-
quentially  illuminate  the  sample,  capturing  two  phase
contrast  images  for  each  shearing  direction.  The  ac-
quired  intensity  image  is  bilinearly  related  to  the  object
information.  In  order  to  establish an explicit  expression
of the intensity and object distributions, the weak object
approximation  (which  re-
quires  that  the  phase  perturbation  of  the  sample  to  the
incident  light  be  sufficiently  weak)  is  introduced  to  lin-
earize the phase distributions of the intensity signals with
the object. Then, the acquired intensity can be expressed
as a superposition of the DC component with the prod-
uct of the phase  of the object and the correspond-
ing transfer  function (the derivation of  the intensity  ex-
pression  for  partially  coherent  imaging  under  the  weak
scattering  approximation  can  be  found  in  Section  1  of
Supplementary information)21: 

I (x) = F−1 [Bδ (u) + iPTF (u)Φ (u)] , (1)

I(x) Bδ(u)
PTF(u)

where  is the acquired intensity, and  is the DC
component.  is  the  PTF  that  characterizes  the
quantitative  relationship between the phase of  an object
and the captured intensity signal: 

PTFlr(u) =x
Slr(uj) [P∗(uj)P(u+ uj)− P(uj)P∗(uj − u)] d2ujx

|Slr(uj)| |P(uj)|2 d2uj

,

(2)

S(u) P(u)

NAobj

λ

here  represents the illumination function,  de-
notes  the  complex  pupil  function of  the  system.  Ideally,
the pupil function is modeled as a uniformly distributed
low-pass filter (with a cutoff frequency of 1 inside and 0
outside, and its cutoff frequency is determined by the NA
of  the  objective  lens  and  the  illumination  wave-
length ) to independently analyze the effect of illumina-
tion  on  the  PTF.  Our  prior  research  analyzed  the  rela-
tionship between the illumination and the PTF of  DPC,
revealing  that  annular  illumination  (Illumination  NA
equal  to  the  objective  NA)  substantially  boosts  the  PTF
response  across  the  entire  incoherent  diffraction  band-
width37,38,40. According to Eq. (2), the PTF under a single
illumination is a superposition of two shifted pupil func-
tions  with  opposite  values37.  When the  illumination  an-
gle corresponds to a lower spatial frequency, the PTF re-
sponses  of  the  overlapping  parts  cancel  each  other  out.
As  a  result,  conventional  half-circular  illumination  im-
plies a narrower frequency range and weaker PTF values.

NAill = NAobjThe  annular  illumination  ( )  produces  the
optimal  PTF,  which  is  tangent  to  the  two  apertures,  of-
fering  maximum  spectrum  coverage  and  uncut  values
(As in the left half of Fig. 1(b) and 1(c)).

P(u)When there is aberration in the system,  is a com-
plex pupil function whose amplitude is the circular aper-
ture while the aberration is contained in the phase. This
complex pupil function leads to a change in the PTF re-
sponse  with  characteristics  different  from  those  of  the
ideal  pupil.  As  depicted  in Fig. 1,  the  PTFs  for  different
illumination angles in the complex pupil function are no
longer completely numerically symmetric. Consequently,
the overlapping parts of the PTF do not cancel each oth-
er  out,  which  provides  a  theoretical  basis  for  enhancing
the  PTF  response  at  low  frequencies  by  modulation  of
the pupil. However, this asymmetric response of PTF al-
so increases  the complexity  of  the pupil  retrieval,  which
is  the  reason  why  QPI  techniques  for  partially  coherent
imaging have difficulty in resolving aberrations directly.
Furthermore,  we  present  the  PTF  associated  with  the
complex pupil  function under half-circular  and half-an-
nular  illuminations,  as  shown  in  the  right  half  of Fig.
1(c).  Compared  to  the  ideal  pupil  condition,  the  pres-
ence of aberrations reduces PTF response in both illumi-
nation modes. Crucially, however, half-annular illumina-
tion  demonstrates  measurable  response  improvements
over  half-circular  illumination  under  aberration  condi-
tions, highlighting its universal applicability in achieving
high-quality  phase  reconstruction  through  optimized
PTF spectrum coverage and enhanced transfer  response
characteristics.  This  half-annular  illumination  will  be
used as an illumination optimization strategy for correct-
ing  aberrations,  providing  new  insights  for  quantitative
studies of samples in the presence of aberrations. 

Artifact-free aberration-corrected DPC method
In  an  actual  microscope  system,  defects  in  the  optical
system  and  external  environment  disturbances  intro-
duce  undesired  optical  aberrations41,42,  which  are  mani-
fested  as  phase  terms  in  the  pupil  function.  Thus,  the
pupil  function  can  be  modeled  as  a  weighted  sum  of
Zernike polynomials43−45, parameterized by a small num-
ber of coefficients: 

P (u) = circ (u) exp
[
i

M∑
m=0

cmZm

]
, (3)

cmZm Zmwhere  denotes  the  Zernike  polynomial,  and  is
the M-th Zernike modes. Substituting the complex pupil
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function into the PTF expression in Eq. (2), the resulting
response  in  the  overlapping  regions  no  longer  stacks  to
cancel each other out and retains certain transfer proper-
ties.  As a  result,  the complex pupil  changes the symme-
try  of  the  PTF,  complicating  the  derivation  of  the  pupil
and  illumination  from  the  PTF46.  However,  a  benefit  is
that  the  complex  pupil  function  prevents  the  PTF  from
canceling  out  under  mismatched  illumination,  which
would open up the possibility of accurate QPI under re-
laxed illumination.

S(u) = δ(u− uj) |uj| = NAobj/λ

Consider the PTF under complex pupil is expressed as
a  2D  integral  of  the  illumination  and  pupil  functions,
which  is  coupled  with  the  object  information  in  the  in-
tensity  signal16.  Consequently,  solving  for  both  the  ob-
ject phase and pupil functions analytically is a great chal-
lenge.  ACDPC  uses  three  annular  illuminations  to  ac-
quire  data  for  system  aberration  retrieval  and  sample
phase  recovery.  Specifically,  three  annular  illumination
patterns  with  ( )  120°

apart are sequentially lit to obtain three intensity images,
as  shown  in Fig. 2(b).  They  are  aligned  with  three  dis-
tinct  shearing directions to achieve full  spectrum cover-
age  of  the  intensity  measurements.  We  further  propose
an  iterative  reconstruction  algorithm  that  incorporates
embedded  annealing  and  tempering  processes  for  aber-
ration  correction  to  simultaneously  address  the  tasks  of
phase  recovery  and aberration retrieval.  Specifically,  the
pupil  function  is  iteratively  refined  by  annealing  and
tempering algorithms to estimate the system aberration,
resulting  in  a  PTF  considering  the  actual  aberrations,
which  is  subsequently  employed  for  deconvolution  re-
construction  to  solve  the  inverse  problem  of  DPC.  The
phase  reconstruction  with  aberration  correction  is  con-
sidered  as  solving  the  optimization  problem with  a  cost
function is defined as: 

min
ϕ,c

f (u) =
3∑

j=1

∥Ij (u)− PTFj (u; c)ϕ (u)∥2
2

∥Ij (u)∥22
, (4)
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Fig. 1 | PTF with ideal pupil and complex pupil under different illuminations. (a) Ideal pupil without aberration and complex pupil with aberration

for simulation. (b) Comparison of PTFs with ideal pupil and complex pupil under single point illumination at different angles. (c) Comparison of

PTFs with ideal pupil and complex pupil under half-circular and half-annular (NAill = NAobj) illuminations.
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jwhere  denotes the index of intensity image after remov-
ing the DC term from the original image. The deconvo-
lution  reconstruction  of  DPC  is  performed  by  the
Tikhonov regularization47: 

ϕk+1 (x) = F−1


∑3

j=1

[
PTF∗

j (u, ck) · Ij (u)
]

∑3

j=1

∣∣PTF∗
j (u, ck)

∣∣2 + β

 , (5)

β represents the regularization parameter to avoid exces-
sive amplification of noise. Due to the asymmetry of the
PTF under complex pupil, the intensity spectrum residu-
al under different illuminations will decrease as updated
aberration  converges  to  the  true  value.  Thus,  the  cost
function will guide the pupil function to approximate to-
wards  the  real  aberration,  thus  simultaneously  estimat-
ing  the  accurate  PTF and  reconstructed  phase.  Further-
more, we delve into the minimum data requirements for
retrieving  both  the  pupil  function  and the  object  phase,
determining that acquiring data under three annular illu-
minations would yield the least raw data while still effec-
tively decoupling phase and aberration information (The
simulation analysis  of  data  redundancy can be  found in
Section 3 in the Supplementary information).

The  flowchart  of  ACDPC  joint  optimization  algo-
rithm, which incorporates an embedded annealing-tem-
pering aberration correction,  is  illustrated in Fig. 2.  The
algorithm  starts  with  a  conventional  DPC  reconstruc-
tion, which performs a deconvolution reconstruction by
setting  the  initial  Zernike  coefficients  to  zero  to  obtain

f fmin

the  initial  phase  for  subsequent  iterations.  This  initial
phase is used to calculate  as the initial  according to
Eq.  (4).  During  each  iteration,  the  Zernike  coefficients
are refined by generating random values within an adap-
tively  adjusted  range,  which  is  used  to  update  the  PTF
and  thus  perform  phase  reconstruction.  The  estimated
phase  and  the  updated  pupil  are  then  utilized  to  gener-
ate the estimated intensity through the transfer function
method, which is  used for the evaluate of the cost func-
tion in Eq.  (4).  The newly updated pupil  function is  ac-
cepted depending on the change in the cost function us-
ing the Metropolis criterion as the importance sampling
judgment method. We design a learning rate decay strat-
egy  based  on  natural  exponential  decay  to  optimize  the
search  process  (The  details  can  be  seen  in  Section  2  of
the  Supplementary  information).  During  initial  itera-
tions,  gradual  contraction  of  the  search  range  ensures
thorough  global  exploration  to  prevent  premature  con-
vergence  to  local  optima.  As  the  cost  function  values
progressively diminish, the search range undergoes rapid
contraction,  facilitating  concentrated  local  exploitation
near  potential  optimal  solutions.  This  dynamic  adjust-
ment  mechanism sustains  robust  global  search capabili-
ties  in  early  phases  while  transitioning to  intensified  lo-
cal  exploitation  during  later  iterations,  thereby  enhanc-
ing solution precision and convergence rate through sys-
tematic  space  refinement.  The  iterative  process  will  be
performed  several  times  until  the  reconstructed  phase
and estimated aberration generate an estimated intensity
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Fig. 2 | The flowchart of ACDPC iterative reconstruction joint optimization algorithm. (a) ACDPC imaging system based on half-annular illumina-

tion. (b) Three annular illumination patterns and their intensity images. (c) The flowchart of ACDPC method.
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with negligible difference from the acquired image. Fur-
thermore, to prevent ACDPC from getting stuck in local
minima, a tempering process is incorporated to allow the
algorithm  to  escape  from  the  local  optimum  trap  when
the  loop  termination  condition  is  not  met  and  no  new
solution has been accepted for a specified number of iter-
ations. In comparison to existing aberration recovery al-
gorithms, ACDPC retrieves the aberration of the system
without  requiring  any  physical  prior  information  and
achieves  high-quality  quantitative  phase  imaging  with
aberration correction. 

Simulation results for different aberrations

×

Optical  system  aberrations  usually  originate  from  the
imperfect design of the optical system and improper set-
ting  of  system  parameters.  In  existing  commercially
available  microscopes,  defocus  aberrations  are  the  most
commonly encountered challenge as aberrations such as
spherical  or  chromatic  aberration  are  usually  mitigated
to the greatest extent possible at the optical design stage.
Significant  defocus  aberrations  were  introduced  in  the
objective  pupil  using  an  Abbe-based  model  to  generate
intensity  images  along  three  shearing  directions  under
annular  illumination.  The  complex  transmittance  func-
tion of  the object  is  constructed here to consider  purely
phase  objects  where  the  amplitude  remains  constant,
with  the  phase  serving  as  the  resolution  target  for  the
USAF.  Suppose  that  such  a  sample  is  illuminated  at  a
wavelength  of  525  nm,  and  the  light  field  through  the
sample is collected by a 20 , 0.4 NA objective lens, and
finally imaged on a sensor with a pixel size of 1.85 μm.

We  firstly  compared  the  reconstructed  phase  of  the
conventional  DPC method (Four  half-circular  illumina-
tions)  and  ACDPC  method  (Three  annular  illumina-
tions) with defocus aberration (Fig. 3). In DPC, the defo-
cus  aberration  causes  the  phase  details  to  be  distorted,
while ACDPC is highly robust to varying levels of aber-
ration,  yielding  high-quality  reconstructed  phase  reach-
ing  the  theoretical  resolution  of  the  incoherent  diffrac-
tion  limit.  The  result  with  a  defocus  aberration  coeffi-
cient of 2 was selected to zoom in for further demonstra-
tion and comparison, and the results are displayed in Fig.
3(b). The uniform pupil of the conventional DPC fails to
account  for  the  actual  defocus  aberration,  leading  to  a
mismatch  between  its  PTF  and  intensity  signal,  which
eventually results in severe distortion of the reconstruct-
ed  phase.  ACDPC  demonstrates  the  capability  of  high-
quality  phase  reconstruction  because  it  retrieves  a  pupil

function  that  is  consistent  with  the  ground truth.  Thus,
the  resulting  PTF  accurately  characterizes  the  quantita-
tive transfer relationship between the intensity signal and
the  phase  of  the  object.  In  order  to  demonstrate  the
adaptability  of  ACDPC to different aberrations,  we ran-
domly  generated  ten  aberrations  and  performed  ten
ACDPC  iterations  for  each  of  them  to  statistically  ana-
lyze the average iteration times and the RMSE of the re-
constructed  phases.  The  initial  aberration  is  randomly
generated  and  a  random  perturbation  term  with  expo-
nential  decay properties is  dynamically superimposed at
each iterative  update.  As  explained in Fig. 3(c),  ACDPC
at  different  aberrations  converges  to  a  stable  value  for
about  2000  iterations.  In  addition,  the  RMSE  of  the  re-
constructed  phase  wit  the  ground  truth  is  concentrated
around a small value, which means that the iterative pro-
cess  will  always  converge  to  a  result  that  is  consistent
with the ground-truth phase.  This statistical  consistency
confirms the stable convergence characteristics of ACD-
PC in phase retrieval applications.

In  order  to  assess  the  performance  of  ACDPC  under
more  complex  aberrations,  we  further  simulated  multi-
order aberrations for comparison.  ACDPC well  corrects
the reconstruction phase artifacts and restores the detail
information  (Fig. 3(d)).  As  can  be  seen  in Fig. 3(f),  the
reconstruction under the conventional DPC deviates sig-
nificantly from the true phase value, while ACDPC ideal-
ly  attains  a  lateral  resolution of  up to  345 nm (theoreti-
cal resolution). Figure 3(g) gives the retrieved aberration
coefficients  and  the  given  truth  coefficients,  and  the  re-
sults show that they are in good agreement. The simula-
tion results indicate that ACDPC is capable of accurately
recovering multi-order aberrations to cope with the task
of high-quality QPI under complex optical systems. 

Results
 

Experiment on USAF resolution target

×

To  demonstrate  the  performance  of  the  proposed
method  on  a  real  imaging  system,  ACDPC  was  imple-
mented in a commercial  inverted microscope (Olympus
inverted microscope IX73)  by  replacing the  light  source
with a programmable LED array. It was controlled via an
FPGA  to  produce  three  annular  illumination  patterns
with  an  illumination  wavelength  of  505  nm.  The  light
field passing through the object is collected by an objec-
tive lens with 10 , 0.25 NA and finally imaged on an in-
dustrial camera with pixel size of 1.67 μm (The imaging
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source DMK 24UJ003).  In such a  configuration,  the ex-
pected  lateral  resolution  is  505  nm  (half-width  resolu-
tion), corresponding to Element 6 in Group 9 of the US-
AF target. By manually adjusting the samples to be locat-
ed  on  different  defocus  planes  (−10  μm,  +10  μm,  +20
μm), we obtained three sets of image data whose aberra-
tion levels exceeded those of the actual system. These da-
ta were used for the conventional DPC deconvolution re-
construction  and  ACDPC  method,  and  the  results  are
displayed in Fig. 4.  In  the  original  image away from the
focal  plane,  we  can observe  a  loss  of  detail  information,
which  leads  to  severe  phase  blurring  and  artifacts  with
DPC reconstruction.  This  is  because the intensity  varia-
tions due to pupil  aberration are incorrectly  assigned to
the  reconstructed  phase  during  the  solving  process.
ACDPC is robust to aberrations at different defocus dis-
tances  from −10  μm  to  10  μm  and  obtains  high-quality
reconstructed phases consistent with the focal plane at a
large  defocus  distance.  As  shown  in Fig. 4,  ACDPC
achieves a lateral resolution of 505 nm, and imaging arti-
facts and distortions are effectively eliminated. Although

there  is  a  degradation  in  the  reconstruction  quality  of
ACDPC at  larger  aberrations (+20 μm),  it  is  effective in
improving the reconstructed resolution and quality com-
pared to the conventional DPC method (Fig. 4(e)). 

Experiment on biological cells
DPC technique achieves theoretical resolution of the in-
coherent diffraction limit, facilitating high-resolution vi-
sualization  and  observation  of  subcellular  structures
within cells. Nevertheless, the aberrations may introduce
imaging distortions, impeding the full realization of the-
oretical  resolution  and  obscuring  the  fine  structural  de-
tails  within the  cell.  To demonstrate  the  effectiveness  of
ACDPC  for  biological  cells,  we  conducted  an  experi-
ment on NIH 3T3 cells (Mouse Embryonic Fibroblasts).
3T3  cells  were  cultured  using  DMEM  medium  (Gibco,
CA,  USA).  DMEM  mediun  were  added  with  10%  fetal
bovine  serum  (fBS)  and  1%  penicilin/streptomycin.  All
cells were cultured at a temperature of 37 °C in ahumidi-
fied atmosphere with 5% CO248. Cells were fixed with 4%
paraformaldehyde  (Solarbio,  Beijing,  China)  after  48  h
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culture.  In  the  acquisition process,  the  cells  were  placed
in the same experimental system as described above, and
two  sets  of  intensity  images  were  recorded  by  manually
adjusting the focus to introduce different defocus aberra-
tions for both regions. They are used to perform the DPC
and ACDPC methods, and their results are shown in Fig.
5.  We  utilized  the  graphics  processing  unit  (GPU)  to
highly parallelize the execution of ACDPC, which allows
us  to  extract  morphological  parameters  at  the  cellular
level across the entire field of view with 4 min. It can be
found that  despite  manual  adjustments  to  focus  the  cell
sample as much as possible, the actual imaging results of
DPC still  suffer  from aberration damage.  Observing  the
subcellular structure of the cells in the two regions of in-
terest  (ROI)  in Fig. 5(a),  it  can  be  clearly  seen  that  the
aberration under DPC leads to the confusion of  cellular
lipid  droplet  and  cytodesma.  ACDPC  efficiently  re-
trieved  the  systematic  aberration  and  obtained  a  clearly
defined,  artifact-free  cell  structure.  The  results  of Fig.
5(b) demonstrate a more severe loss of detail, and its ROI

can  clearly  demonstrate  the  comparison  of  the  recon-
struction results of DPC and ACDPC on the subcellular
structure  of  the  cell.  Notice  that  the  aberrations  re-
trieved from the  two sets  of  experimental  results  have  a
similar  distribution  due  to  the  use  of  the  same  experi-
mental  system,  while  the  larger  Zernike  coefficients  in
Fig. 5(d) imply  more  severe  defocusing.  This  can  like-
wise  be  found  by  comparing  the  clarity  of  the  phase  of
Fig. 5(a) and 5(d).  To  further  validate  the  time-varying
aberration correction capability of ACDPC, we conduct-
ed a dynamic experiment on in vitro cultured HeLa cells
(The result can be seen in the Supplementary Movie S2).
The  results  demonstrate  that  ACDPC  effectively  miti-
gates  time-varying  aberrations  while  enabling  high-fi-
delity quantitative phase reconstruction. 

Conclusions
We  have  proposed  an  artifact-free  aberration-corrected
DPC (ACDPC) algorithm empowering  QPI  microscopy
with  high  robustness  against  aberration.  When
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aberrations  are  present,  conventional  DPC  incorrectly
assign  aberrations  to  reconstructed  phases,  resulting  in
phase artifacts and blurring. ACDPC employs annular il-
lumination to optimize the PTF, providing a numerical-
ly  enhanced  phase  transfer  response  to  ensure  that  the
signal is recorded with a greater SNR. The simulated an-
nealing algorithm and the deconvolution reconstruction
are  combined  to  achieve  both  aberration  retrieval  and
phase restoration without any priori knowledge. In addi-
tion,  minimal  data  redundancy  to  achieve  high  quality
phase reconstruction and aberration correction was also
analyzed.  Therefore,  instead of  acquiring  additional  im-
ages  under  coherent  illumination  to  record  aberration
information,  as  in  the  existing  aberration  correction
DPC  method,  ACDPC  can  achieve  high-quality  phase
reconstruction and aberration correction by utilizing on-
ly  three  images  under  annular  illumination.  Experi-

ments  with  USAF  resolution  targets  and  NIH  3T3  cells
demonstrated the superior aberration correction capabil-
ity of ACDPC to reproduce the quantitative phase distri-
bution of the sample without artifacts under realistic ex-
perimental  conditions.  These  advantages  make  ACDPC
promising for biological cell imaging applications.

It  should  be  emphasized  that  this  manuscript  focuses
on  aberration-corrected  DPC  QPI,  whose  validity  do-
main  is  confined  to  samples  satisfying  the  weak  object
approximation  (WOA)  for  quantitative  characterization
of  morphological  features.  In  contrast,  for  thick  speci-
mens  violating  this  approximation,  the  reconstruction
framework  must  be  extended  by  incorporating  scatter-
ing-informed  imaging  models  into  3D  diffraction  to-
mography  (3D-DT).  We  are  continuing  to  explore  the
potential  of  aberration-correction  strategies  in  this  ad-
vanced modality to achieve high-fidelity refractive index
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distribution  reconstruction  across  complex  volumetric
specimens. Notably, while the proposed method achieves
imaging resolution at  the  incoherent  diffraction limit,  it
exhibits inherent compatibility with advanced super-res-
olution strategies such as synthetic aperture imaging and
microsphere-assisted  near-field  enhancement49−51.  This
synergistic  integration  provides  a  promising  pathway  to
transcend  existing  resolution  boundaries  in  label-free
microscopy,  which  constitutes  a  primary  objective  for
our future research endeavors.
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