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We comment on the recent Letter [Opt. Lett. 38, 2666 (2013)], in which the authors presented an imaging technique
called light field moment imaging. We wish to show that this method can be associated with transport of intensity
equation at the geometric optics limit. © 2014 Optical Society of America
OCIS codes: (110.1758) Computational imaging; (180.6900) Three-dimensional microscopy; (100.5070) Phase

retrieval; (100.3010) Image reconstruction techniques.
http://dx.doi.org/10.1364/OL.39.000654

In a recent Letter, Orth and Crozier [1] reported a method
termed light field moment imaging (LMI) to extract the
first angular moment of the light field by solving a
partially differential equation (PDE) with only a pair of
images exhibiting a slight defocusing. With the moment
retrieved, one can readily reconstruct perspective-shifted
views of the original scene under the empirical
assumption that the angular distribution of the light field
is Gaussian. The main purpose of this Letter is not to
discuss the reasonability or to improve this empirical
assumption. In fact, we want to establish the relation
between LMI and the deterministic phase retrieval
method—transport of intensity equation (TIE) [2].
Starting with the more rigorous wave optics, we
represent the paraxial quasi-monochromatic partially
coherent stochastic field u�x� using Wigner distribution
function (WDF) [3]:

W�x; u� �
Z

Γ�x� x0∕2; x − x0∕2� exp�−i2πux0�dx0; (1)

where x and u are the two-dimensional (2D) spatial and
spatial frequency vectors and Γ is the mutual intensity.
The paraxial propagation of WDF takes the form
W�x; u; z� � W�x − λzu; u; 0�, where z is the propagation
distance [3]. Combining the representation of intensity—
a projection of the WDF onto u plane I�x� � R

W�x; u�du,
we obtain the TIE for the partially coherent field [4]:

∂I�x�
∂z

� −λ∇x ·
Z

uW�x; u�du; (2)

where∇x is the gradient operator over x. In the coherent
limit u�x� �

���������
I�x�

p
exp�iϕ�x��, Eq. (2) reduces to

Teague’s TIE [2], and the normalized spatial frequency
moment of WDF relates to the phase gradient:

R
uW�x; u�duR
W�x; u�du � 1

2π
∇xϕ: (3)

The formal resemblance between TIE [Eq. (2)] and the
PDE {Eq. (3) in [1]} of LMI implies the equivalence of
the WDF and the light field; that is, the physically

measurable light field L�x; θ� approaches WDF at
geometric optics limit [5]. Applying the approximation
L�x; θ� ≈ W�x; λu� to Eq. (3),

∂I�x�
∂z

≈ −∇x ·
Z

θL�x; θ�dθ: (4)

Invoking the paraxial approximation θ ≈ �tan θx; tan θy�
to eliminate the illumination factor cos4 θ [1], the “re-
corded light field” reduces to the L�x; θ� and then Eq. (4)
reduces to Eq. (3) in [1]. Therefore, the PDE of LMI
is equal to partially coherent TIE at the geometric optics
limit. It is seen from Eq. (3) that the “phase” measured
by TIE is a scalar potential whose gradient yields the
(irrotational component of) normalized first-order local
moment of WDF, which describes exactly the normal-
ized ensemble-averaged transverse energy flux den-
sity (Poynting vector). Under the geometric optics
assumption, the Poynting vector propagates in the
Eikonal way; thus, the ensemble-averaged transverse
Poynting vector is equal to the angular moment of the
light field in LMI.

For a partially coherent field, the 4D WDF is generally
non-redundant, and two projections of WDF are insuffi-
cient to fully recover the field. The empirical Gaussian
angular distribution assumption in [1] seems not physi-
cally founded, but it raises an interesting question: is
there any other situation (except the coherent case) that
we can fully characterize the optical field without meas-
uring the whole phase–space distribution? The answer,
apparently, is yes. However, this question is not trivial,
but of great practical importance, because identifying
the phase–space redundancies explicitly enables the der-
ivation of more-efficient computational schemes for spe-
cific problems. We leave this for future investigations.
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