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In this paper, we present a simple and effective scene-based nonuniformity correction (NUC) method for infrared
focal plane arrays based on interframe registration. This method estimates the global translation between two
adjacent frames and minimizes the mean square error between the two properly registered images to make
any two detectors with the same scene produce the same output value. In this way, the accumulation of the re-
gistration error can be avoided and the NUC can be achieved. The advantages of the proposed algorithm lie in its
low computational complexity and storage requirements and ability to capture temporal drifts in the nonunifor-
mity parameters. The performance of the proposed technique is thoroughly studied with infrared image sequences
with simulated nonuniformity and infrared imagery with real nonuniformity. It shows a significantly fast and
reliable fixed-pattern noise reduction and obtains an effective frame-by-frame adaptive estimation of each detec-
tor’s gain and offset. © 2011 Optical Society of America

OCIS codes: 040.1240, 100.2000, 100.2550, 100.2980, 110.3080.

1. INTRODUCTION
Infrared focal plane array (IRFPA) sensors are widely used in
the fields of aviation, industry, agriculture, medicine, and
scientific research. However, the nonuniformity, produced
by mismatches during the fabrication process of the IRFPA
can considerably degrade the spatial resolution and tempera-
ture resolvability, since it results in a fixed pattern noise
(FPN) that is superimposed on the observed images [1,2].
Corresponding nonuniformity correction (NUC) algorithms
have been proposed to solve the problem.

NUC techniques are mainly classified into two categories
[2], one of which is the calibration-based NUC method. It
applies a rather simple theory, and is easy to implement
and integrate with hardware. Two-point correction is the most
commonly used technique to counteract FPN. It employs two
blackbodies at different temperatures to calculate the exact
gain and offset of each detector on the IRFPA through the
use of a simple line fitting procedure [3–5]. However, the non-
uniformity is always influenced by such external conditions as
ambient temperature, variation in the transistor bias voltage,
and the time-dependent nature of the object irradiance. All
these factors have made each detector of the focal plane drift
slowly with the time lapse [6]. Therefore, these calibration-
based NUC methods require the procedure to be periodically
performed so as to guarantee the correction of the temporal
drift of the FPN. To make up for the inconvenience, many
scene-based NUC (SBNUC) techniques [7–18] have been pro-
posed that, to some degree, overcome the correction error
caused by the drifting response of the IRFPA. The correction
coefficients can be adaptively updated according to the scene
information.

On the whole, scene-based algorithms are generally identi-
fied by two main approaches, namely, statistical methods and
registration-based methods. Algorithms based on statistics

usually make some spatiotemporal assumptions on the irradi-
ance collected by each detector in the array. Based on these
assumptions, some quantities are extracted to estimate the
correction coefficients for the FPN. Some representatives
of this kind are the temporal high-pass filter technique [7],
the constant statistics method [8], neural-network-based
NUC [9], and the constant rangemethod and its corresponding
extensions [10–12]. The other kind of SBNUC is based on re-
gistration. These techniques all use the idea that each detector
should have an identical response when observing the same
scene point over time. Therefore, registration-based methods
require accurate estimation of the motion between frames.
Some representatives of this sort of algorithm are O’Neil’s
method [13], motion compensated average (MCA) [14], and
algebraic scene-based algorithms [15].

Statistics-based SBNUC methods are used and studied
widely because of their relatively lower computational com-
plexity, smaller storage demands, and better real-time perfor-
mance. However, they are motion dependent and sensitive to
extreme scene [16,17]. Therefore, it is hard to guarantee both
the convergence speed and stability of the algorithm. If high
convergence speed is pursued excessively, ghosting artifacts
are easily generated, superimposing on the new “corrected”
scene [17,18]. On the other hand, registration-based NUC
algorithms offer higher convergence speed, and almost no
ghosting artifacts can be found. However, they are not that
practical because of their high computational complexity
and large storage demands. Meanwhile, the registration and
correction errors can be conveyed accumulatively, seriously
affecting the correction accuracy.

This paper puts forward a novel SBNUC algorithm called
interframe registration-based least mean square (IRLMS)
NUC. In this algorithm, the irradiation of objects is as-
sumed unchanged during the interframe time interval and a
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phase-correlation method is adopted for accurate motion es-
timation. Thus, NUC can be achieved by minimizing the mean
square error between two properly aligned images using the
least mean square (LMS) algorithm. This paper is organized as
follows. In Section 2, a detailed analysis of the correction
algorithm put forward by this paper is given. In Section 3,
comparisons with two related NUC techniques are presented.
The accuracy of the adopted registration method and some
performance issues are discussed in Section 4. Experimental
results are presented in Section 5. Finally, the conclusions of
the paper are summarized in Section 6.

2. NONUNIFORMITY CORRECTION
A. Nonuniformity Observation Model
First, we assume that the photoresponses of the individual de-
tectors in a focal plane array can be characterized by a linear
irradiance–voltage model [19], and their output is given by

Ynði; jÞ ¼ gnði; jÞ · Xnði; jÞ þ onði; jÞ: ð1Þ

Here, subscript n is the frame index. gnði; jÞ and onði; jÞ are,
respectively, the real gain and offset of the ði; jÞth detector.
Xnði; jÞ stands for the real incident infrared photon flux col-
lected by the respective detector, and the observed pixel value
is given by Ynði; jÞ. We assume that the gains and offsets drift
slowly in time, so they share the same subscript n.

NUC is performed by applying a linear mapping to the
observed pixel values Ynði; jÞ to provide an estimate of the
true scene value Xnði; jÞ so that the detectors appear to be
performing uniformly. This correction is given by

Xnði; jÞ ¼ wnði; jÞ · Ynði; jÞ þ bnði; jÞ; ð2Þ
wherewnði; jÞ and bnði; jÞ are, respectively, the gain and offset
of the linear correction model of the ði; jÞth detector. Their
relation with the real gain and offset can be represented by

wnði; jÞ ¼
1

gnði; jÞ
; ð3Þ

bnði; jÞ ¼ −
onði; jÞ
gnði; jÞ

: ð4Þ

Therefore, if ideal estimates of wnði; jÞ and bnði; jÞ or gnði; jÞ
and onði; jÞ can be obtained, then NUC can be realized
through Eq. (2).

B. Motion Estimation
Take two images f 1ðx; yÞ and f 2ðx; yÞ into consideration,
if there exist relative shifts of x0 and y0, respectively, in
the horizontal and vertical directions between f 1ðx; yÞ and
f 2ðx; yÞ, i.e.,

f 2ðx; yÞ ¼ f 1ðx − x0; y − y0Þ: ð5Þ

Based on the Fourier shift theorem, their relative translation
can be obtained by calculating their normalized cross-power
spectrum:

ĉðu; vÞ ¼ F2ðu; vÞF�
1ðu; vÞ

jF2ðu; vÞF�
1ðu; vÞj

¼ e−2πjðux0þvy0Þ; ð6Þ

where the asterisk denotes complex conjugation, F1ðu; vÞ and
F2ðu; vÞ are, respectively, the Fourier transforms of f 1ðx; yÞ
and f 2ðx; yÞ, and ðu; vÞ are the Fourier domain coordinates.
Once computed, the approach cited in the literature [20] is
to compute the inverse Fourier transform of ĉðu; vÞ and a
Dirac delta function can be recognized as an intensity peak.
The coordinate of this peak corresponds directly to the trans-
lation vector ðx0; y0Þ.

If the translation of a subpixel is taken into consideration,
interpolation by zero padding the cross-power spectrum to a
larger array of dimensions ðκM; κNÞ is suggested in [21],
where M and N are the image dimensions. Through this
method, an estimated translation with κ−1 pixel accuracy
can be obtained.

In general, when the sensor is at work, the interframe
changes of the scene in the field of view are relatively small.
The translation between two adjacent observed frames can be
obtained by

ðdi; djÞ ¼ argmax
i;j

Re

�
FFT−1

� �Ynðu; vÞ · �Y �
n−1ðu; vÞ

j�Ynðu; vÞ · �Y �
n−1ðu; vÞj

��
; ð7Þ

where the bar notation indicates the Fourier transform. The
changes of the irradiance mainly have an influence on ampli-
tude, with only a minor effect on phase in the frequency
domain. Therefore the phase-correlation method is resilient
to noise, bad pixels, and other defects typical of infrared
images. In this paper, the motion is assumed to consist only
of translation, neglecting any scaling, rotation or other warp-
ing of the images.

The change of scene irradiation and local motion can be
ignored because of the rather short time; if there is no non-
uniformity and registration error, then there is obviously

Ynði; jÞ ¼ Yn−1ði − di; j − djÞ ¼ FFT−1ð�Yn−1ðu; vÞe−2πjðudiþvdjÞÞ:
ð8Þ

Equation (8) assumes that there is a one-to-one mapping of
pixels in the two adjacent frames. This is, of course not true.
Some new scene data has inevitably been introduced at the
edges of the image, while some has been translated out of
the image frame and lost. Evidently, the validity of the equa-
tion is confined to the overlapped area between frame n − 1
and frame n (see Fig. 1).

C. Nonuniformity Correction
From the discussion above, if there is an ideal situation, i.e.,
registration error can be ignored, and there is no nonunifor-
mity or irradiation change of the scene between the two
frames, then the Eq. (8) is established. However, Eq. (8) is
never valid due to the presence of random noise and nonuni-
formity. Therefore, we define the error function:

enði; jÞ ¼ X̂n−1ði − di; j − djÞ − X̂nði; jÞ: ð9Þ

Here the error function enði; jÞ is defined as the corresponding
difference between the two adjacent corrected frames. By
contrast, in Scribner’s method, the desired image is a blurred
version of the observed frame [9]. In our algorithm, the
corrected (using estimated parameters) n − 1th frame is
considered to be the reference frame and the shift of the
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nth frame is determined with respect to the reference frame.
We set the corresponding value in frame n − 1 as the “target
value” of the ði; jÞth detector in the nth frame, i.e.,

enði; jÞ ¼ Tnði; jÞ − ðwnði; jÞ · Ynði; jÞ þ bnði; jÞÞ; ð10Þ

where

Tnði; jÞ ¼ FFT−1ð �̂Xn−1ðu; vÞe−2πjðudiþvdjÞÞ: ð11Þ

In particular, when the translation of two frames is of an
integral pixel, then Eq. (11) can be transformed as

enði; jÞ ¼ ðwnði − di; j − djÞ · Yn−1ði − di; j − djÞ
þ bnði − di; j − djÞÞ − ðwnði; jÞ · Ynði; jÞ þ bnði; jÞÞ:

ð12Þ

To minimize the error enði; jÞ in the mean square error sense, a
functional J is defined as

Jði; jÞ ¼
X
n

enði; jÞ2

¼
X
n

ðTnði; jÞ − ðwnði; jÞ · Ynði; jÞ þ bnði; jÞÞÞ2; ð13Þ

where the correction parameters wnði; jÞ and bnði; jÞ must be
recursively updated in order to minimize the cost function
equation [Eq. (13)] that allows good NUC performance.
Now, if we minimize Eq. (13) with respect to the parameters
wnði; jÞ and bnði; jÞ using a stochastic gradient-descent
strategy [9,17] over frames, the correcting parameters can
be updated as

wnþ1ði; jÞ ¼
�
wnði; jÞ þ a · enði; jÞ · Ynði; jÞ when pixel ði; jÞis in the overlapped area
wnði; jÞ other

; ð14Þ

bnþ1ði; jÞ ¼
�
bnði; jÞ þ a · enði; jÞ when pixelði; jÞis in the overlapped area
bnði; jÞ other

; ð15Þ

where the parameter a is known as the learning rate. It should
be pointed out that the correction parameters are only up-
dated in the overlapped part between frame n − 1 and frame
n. The learning rate a stands for the step size of each iteration.
The value of a governs the convergence behavior of the algo-
rithm. A higher convergence speed will be gained with a larger
a, while good stability of the algorithm can be achieved with a
relatively small a. The block scheme of the whole algorithm is
shown in Fig. 2, where a one-frame delay element is repre-
sented as a box with a z−1 symbol.

D. Convergence
In the previous subsection, the LMS algorithm with the error
function of Eq. (9) is used to realize the iterative estimation of
correction gain and offset parameters. But there is nothing to
prove the rationality of the error function. Here, a simple
analysis of when the relative displacement is of an integral
number is undertaken. Then, the cost function J should be

Jði; jÞ ¼
X
n

enði; jÞ2

¼
X
n

ððwnði − di; j − djÞ · Yn−1ði − di; j − djÞ

þ bnði − di; j − djÞÞ − ðwnði; jÞ · Ynði; jÞ þ bnði; jÞÞÞ2:
ð16Þ

Substitute Eq. (1) into Eq. (16):

Jði; jÞ ¼
X
n

ððwnði − di; j − djÞ · gn−1ði − di; j − djÞ

· Xn−1ði − di; j − djÞ
þwnði − di; j − djÞon−1ði − di; j − djÞ
þ bnði − di; j − djÞÞ
− ðwnði; jÞ · gnði; jÞ · Xnði; jÞ þwnði; jÞ · onði; jÞ
þ bnði; jÞÞÞ2: ð17Þ

If the registration error and change of irradiance of the scene
can be ignored, Xn−1ði − di; j − djÞ is the irradiance that the
focal plane’s ði; jÞth detector in the nth frame has collected:

Xn−1ði − di; j − djÞ ¼ Xnði; jÞ: ð18Þ

If Eq. (17) is required to be a minimum, it is clear that

wnði − di; j − djÞ · gn−1ði − di; j − djÞ ¼ wnði; jÞ · gnði; jÞ;
wnði − di; j − djÞ · on−1ði − di; j − djÞ þ bnði − di; j − djÞ

¼ wnði; jÞ · onði; jÞ þ bnði; jÞ: ð19ÞFig. 1. Schematic diagram of the overlay of two frames.
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It should be presumed that the motion between two adjacent
frames is random, n is large enough, and the nonuniformity
drifts very slowly in time and is almost fixed with respect
to frame index n. Thus,

wnði; jÞ · gnði; jÞ ¼ wnðk; lÞ · gnðk; lÞ;
wnði; jÞ · onði; jÞ þ bnði; jÞ ¼ wnðk; lÞ · onðk; lÞ þ bnðk; lÞ;
∀i; j; k; l ∈ Z; i; l ≤ M; j; k ≤ N: ð20Þ

Without loss of generality, we assume

wnði; jÞ · gnði; jÞ ¼ 1;

wnði; jÞ · onði; jÞ þ bnði; jÞ ¼ 0;

∀i; j ∈ Z; i ≤ M; j ≤ N: ð21Þ

Then we can get

wnði; jÞ ¼
1

gnði; jÞ
; bnði; jÞ ¼ −

onði; jÞ
gnði; jÞ

: ð22Þ

It can be seen from the above analysis that minimizing the
cost function J is equivalent to approaching the ideal correc-
tion gain and offset. Hence, it is reasonable to set the corre-
sponding value in frame n − 1 as the “target value” of the
ði; jÞth detector in the nth frame. With the increase of iteration
times, the error will gradually decrease, making any two de-
tectors with the same scene generate the same output value.
When J is minimized to zero, that means the nonuniformity of
the IRFPA has been totally removed, then the LMS iteration
has reached steady state. However, due to the drift of nonu-
niformity, registration error, local motion between images,
and the temporal noise, the algorithm can never achieve stea-
dy state. Therefore, the algorithm should not stop iterating to
guarantee the correction of the temporal drift of the FPN.
Note that, if a significant number of bad pixels are present,
a bad pixel detection and replacement method may be
required prior to the registration to produce an unbiased
“desired” image.

3. COMPARATIVE STUDY OF RELATED
METHODS
In this section, the proposed IRLMS method is compared with
two well-established NUC techniques. The first one is Scrib-
ner’s algorithm [9], which is also called LMS for short since it
is a LMS-based technique. It is a representative of statistical
SBNUC methods and has been widely studied because of its
small computational load and memory requirement. Besides,
both IRLMS and the Scribner’s algorithm use the stochastic
steepest decent technique to optimize the correction coeffi-
cients. The second one is MCA [14], because it is a represen-
tative of registration-based SBNUC methods and shares the
similar idea that each detector should have an identical
response when observing the same scene point for a short
time. The comparisons are focused on the rationality and
computational load in this section. The comparisons of their
experimental performance will be illustrated in Section 5.

A. Rationality and Feasibility
The basic idea of Scribner’s method is that applying a local
neighborhood interpolating function to create the “desired”
image then using the LMS algorithm based on the stochastic
gradient drives the corrected image toward it. This method
works very well when the fixed pattern noise shows less spa-
tial correlation since the interpolating function is usually a
spatial low-pass smoothing filter and the FPN can be effec-
tively averaged. However, it is clear that the local spatial aver-
age is not always a good estimate for the real incident infrared
irradiance. Thus, an enhanced version of the Sicribner’s meth-
od, known as gated adaptive LMS (GALMS) [17] was recently
proposed to counteract the ghosting artifacts caused by this
inconsistency. In the GALMS method, the updating process
halts to prevent the signal of the scene being assumed as
the nonuniformity noise when the global motion is insuffi-
cient. In addition, an adaptive learning rate is introduced to
increase the efficiency of the learning process. The GALMS
method largely solves the “burn-in” problem in Scribner’s
method and shows great improvement in NUC performance.

In contrast, the MCA technique developed by Hardie et al.
[14] employs the idea that the average of properly registered
observed image frames gives an unbiased estimate of the true
scene. For offset-only correction, i.e., the gain is assumed

Fig. 2. Block diagram of the proposed algorithm.
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uniform across all detectors with a value of unity, the offset
parameters are given by simply subtracting the observed
image from the true scene estimate. For the linear model
[Eq. (1)], gain and offset parameters can be obtained by using
a least-square fit. MCA can get great NUC results within only
tens of frames and introduce fewer artifacts than the GALMS
since the estimate of true scene is more accurate and reason-
able. Compared with GALMS, the MCA technique does not use
any statistical assumptions about the scene and each point of
the true scene is determined by the pixel values that represent
the same scene position. Thus, the true signal is enhanced
while the fixed pattern noise is reduced, and the interference
of true scene signals in the correction parameters is almost
eliminated through the registration operation, while each
point of the “desired” image of GALMS is only a coarse
approximation from its neighborhood. And, inevitably, the
correction image will suffer degradation in visual quality to
varying degrees.

As we know, in the MCA method, the most critical step is
creating the true scene estimate, i.e., a panoramic image. With
the estimate of the desired scene data in hand, subsequent
NUC can be performed straightforwardly. However, it is
usually impractical to generate a panoramic image first and
then correct the IRFPA. So, in general conditions, panorama
accumulation and NUC should be performed simultaneously.
However, there is little information available in the literature
[14] about these problems, such as how to update the panor-
ama, especially when the scene does not remain sufficiently
unchanged over time, or how to perform the algorithm in a
more efficient way for practical applications.

Compared with GALMS and MCA, the “desired” image in
IRLMS is less intuitive since it is only a properly shifted frame
without any denoising operation, such as spatial smoothing or
temporal averaging. In IRLMS, we do not explicitly drive the
corrected image toward the true scene value, however; we fo-
cus only on the actual task for NUC, i.e., making any two de-
tectors with the same scene produce the same output value.
As discussed in Subsection 2.C, it could get an equivalent NUC
effect while avoiding the strenuous work of estimating the
true scene. When solved by the stochastic gradient-descent
method, the update is a function of only the current frame
and the previous frame, which makes the algorithm very easy
to implement in practice.

There are grounds for believing that the IRLMS method
produces even fewer artifacts andhas higher steady-state accu-
racy. First, we assume that the observed scenes do not change
significantly during the time between two consecutive frames.
This is often reasonable for most cases because of the rather
short time. Then, the IRLMS method automatically has no up-
datewhennomotion is present,which is optimumwith regards
to “burn-in” since SBNUC generally requires motion between
frames. Finally, the updating process almost stops when the
nonuniformity is totally removed since the properly shifted
twoadjacent image framesarealmost thesame,whichprevents
the correction coefficients from being wrongly updated.

B. Computational Complexity and Storage Demands
Small computational load and low memory requirements are
two important aspects for real-time applications. It seems that
GALMS is most suitable for real-time performance because
there is no need for registration. However, it poses more

problems for real-time implementations, especially if a large
filter mask is required while an IRFPA’s nonuniformity mostly
concentrates on low spatial frequency and shows great spatial
correlations. Obviously, the calculation of GALMS is mainly
concentrated on spatial smoothing and calculating local
variance for each pixel. Usually, the local variance can be
calculated within a smaller window and the spatial smoothing
convolution can be accelerated by separating the two-
dimensional filter into two one-dimensional filters. So the com-
putational complexity ofGALMS in this case isOð2nwMNÞ for a
nw × nw filter window.

MCA involves many calculations since it is not an iterative
algorithm. Without consideration of the registration opera-
tion, the complexity of the correction operation is OðLMNÞ
for offset-only correction and Oð8LMNÞ for linear correction
because the least-square fitting involves some matrix opera-
tions [14]. L stands for the number of frames used for estima-
tion and usually L should be larger than 20 to ensure accuracy.
In addition, the MCA methods require much more memory
since a panoramic image must be stored.

However, for the IRLMS method, only three multiplications
and two additions are required per sensor per update. There-
fore, the complexity of the IRLMS algorithm is essentially
determined by the registration method. The complexity of the
registration algorithm can be reduced to Oðκ1

2MNÞ without sa-
crificing accuracy [22]. There isnocritical differencebetweena
smaller κ and a larger κ since the actual registration accuracy is
largely determined by the level of nonuniformity. Further dis-
cussionsconcerningtheregistrationaccuracyunderconditions
of nonuniformity are presented in Subsection 4.A. In general,
κ ¼ 10 is sufficient to meet the accuracy requirements since
our method is an iterative algorithm. Therefore, the computa-
tionalcomplexityofIRLMSisevenlowerthanthatoftheGALMS
algorithmwitha largewindow. Inaddition, IRLMScanbe imple-
mentedwith very littlememory since the extra storage demand
is only one previous image frame.

4. KEY PERFORMANCE ISSUES
In this section, the performance of the proposed correction
algorithm is studied using images and sequences corrupted
by simulated nonuniformity. Three main areas are studied:
the accuracy of registration in the presence of fixed pattern
noise, choosing a proper learning rate, and displacement
between frames.

A. Registration Accuracy with Nonuniformity
The performance of NUC algorithm proposed in this paper
depends greatly on the accuracy of estimation of the global
motion between the frames. In order to estimate the accuracy
of the registration algorithm adopted by this paper under the
conditions of fixed pattern noise, an 8 bit gray-scale 320 × 256
image pair with known relative displacement is studied. Nor-
mal distributed gain and offset nonuniformity are applied to
the image pair to study the relationship between registration
error and level of nonuniformity. Figure 3 shows the relation-
ship between the mean absolute error (MAE) of translation
estimates with the levels of gain and offset.

Under an ideal circumstance, the registration MAE should
be controlled under 0.1. But the proposed algorithm only
takes the relative displacement between two frames into
consideration and the error does not accumulate with the
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frames. Therefore, a value under 0.3 can be accepted, that is,
the standard deviations of gain and offset are, respectively,
under 0.4 and 40. Besides, nonuniformity will decrease with
the frame number and the registration accuracy will increase
gradually. If the level of the IRFPA’s nonuniformity exceeds
this range, the noise becomes too dominant in the image
and no relative translation can be detected. At this point,
calibration-based NUC methods or statistical scene-based
algorithms can be performed beforehand since they require
no registration. Once the nonuniformity is reduced to some
degree, the proposedmethod can be used for periodic updates.

B. Learning Rate Analysis
The following experiment is designed for studying the pro-
posed IRLMS method under different learning rates. The infra-
red sequence with artificial nonuniformity is generated from a
clear 300 frame infrared video sequence acquired at 50 frames
per second (FPS), using a synthetic gain with a unit-mean
Gaussian distribution with standard deviation of 0.2, and a
synthetic offset with a zero-mean Gaussian distribution with
standard deviation of 40. The experiment is repeated for three
learning rate values: 0.025, 0.05, and 0.1. The metric used to
measure the NUC performance is given by the root-mean-
square error (RMSE), which is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M · N

X
i;j

ðXði; jÞ − X̂ði; jÞÞ2
s

; ð23Þ

where Xði; jÞ is the ði; jÞth pixel’s value of the true frame,
while X̂ði; jÞ is the pixel’s value of the corrected frame. RMSE
is used to measure the overall difference between a clean re-
ference image against its noisy and nonuniformity corrected
versions. The RMSE curves versus frame numbers of three
different learning rates are shown in Fig. 4.

It can be observed from Fig. 4 that smaller learning rates
lead to slower and softer performance curves, but they are
more stable than those of larger values. Using a ¼ 0:1, RMSE
can be reduced below 20 within only 20 frames, after which
relatively large fluctuations appear in the curve; especially
when it is near the 100th frame, RMSE rebounds to the posi-
tion of nearly 30, and then the curve fluctuates around 20.
When a is set as 0.025, the curve falls rather stably and, after
300 frames, the RMSE reaches 5.39. However, the conver-
gence speed is relatively slow and the RMSE does not fall be-
low 20 until 100 frames are used. Therefore, a good balance
among correction quality, convergence speed, and stability
must be considered. Considering these, relatively ideal con-
vergence speed and stability can be attained when a is 0.05.

C. Relative Translation Analysis
During the previous analysis, we found that using a ¼ 0:05
provides a reasonable trade-off between convergence speed
and stability. Apart from learning rate, the displacement be-
tween frames also affects the performance of the proposed
algorithm. For some high-frame-rate infrared cameras, whose
frame rates can exceed 200 FPS, almost no translation
between two frames can be detected in most cases. The per-
formance of the proposed method will obviously degenerate if
we still use two adjacent frames to register. A simple idea in
this case is to perform correction by choosing frame pairs
with intervals of k rather than 1. Then, the error function
Eq. (9) can be modified as

enði; jÞ ¼ X̂n−kði − di; j − djÞ − X̂nði; jÞ: ð24Þ

By adjusting the value of k, the relative translation of the
image pair can be controlled.

Fig. 3. Mean absolute error of translation estimates for various levels
of gain and offset nonuniformity in an 8 bit gray-scale image.

Fig. 4. (Color online) RMSE versus frame number using different learning rates.
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The displacement between two adjacent frames is the
primary focus of this test. In order to test the relationship
between displacement between two adjacent frames and
the efficiency of correction, a 50 FPS 320 × 256 long-wave
infrared camera is used. However, it moves very slowly; thus,
a 300 frame “high-frame-rate” video sequence is gained. Then
the sequence is corrupted with the same level of nonunifor-
mity as in Subsection 4.B. The average displacement d is
defined as

d ¼
P

m
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diðnÞ2 þ djðnÞ2

q
m

; ð25Þ

where m is the number of iteration times, and diðnÞ and djðnÞ
are, respectively, the horizontal and vertical shifts between
the mth image pair. Different values of k are chosen to gen-
erate different values of d. With different values of d, the final
RMSE values after 300 iterations are compared. The relation-
ship between RMSE and d is shown in Fig. 5.

From Fig. 5, it is found that the final RMSE is relatively large
when the average relative displacement d is either too large or
too small. If the value of d is too small, the pixel will be in less
touch with the pixels relatively far from it, so it will be hard for
the nonuniformity of low spatial frequency to get adequate
correction. If the value of d is too large, the overlapped area
between two frames will be too small, resulting in fewer
updated correction parameters in each iteration. Meanwhile,
the registration error will increase with d since the images
obviously share less and less of the scene data. Fortunately,
d should be controlled within the range of 2–8, ideally, which
is not that narrow. When setting the value of k, it is best that
the value of d falls into this range. However, there is no guar-
antee that the value of k is appropriate throughout the video
sequence and it cannot be properly chosen beforehand in
many practical applications. A more practicable solution is
to update the correction coefficients only if sufficient dis-
placement is measured between the current frame and a re-
ference frame. The reference frame is only refreshed when the
correction coefficient is updated. Figure 5 can be used as the
reference for choosing this trigger displacement.

5. EXPERIMENTAL RESULTS
To compare the various SBNUC algorithms, and, in particular,
to demonstrate the efficacy of the proposed IRLMS algorithm,
we apply our method to both simulated and real data.

A. Applications to Simulated Nonuniformity
The performance of IRLMS is studied and compared with the
performance of GALMS and MCA by applying these algo-
rithms to 14bit infrared image sequences corrupted by simu-
lated nonuniformity. The infrared sequences with artificial
nonuniformity are generated from a clear 600 frame infrared
video sequence with the same level nonuniformity as in
Subsection 3.B. The metric used to measure the NUC perfor-
mance is given by the peak signal-to-noise ratio (PSNR),
which is widely used to quantify the differences between
two images, and it is defined as

PSNR ¼ 20 log10

�
2b − 1
RMSE

�
; ð26Þ

where b represents the number of bits per pixel in the image,
which, in this case, is equal to 14. The PSNR of the corrupted
image sequences with simulated nonuniformity are about
23:5dB for all the frames. Larger values for the PSNR indicate
better performance.

The GALMS method is tested with a step size of 0.05 and
two window sizes of 3 × 3 for an average filter and 21 × 21
for a Gaussian low-pass filter (recommended in [17]). The
change threshold is set to 20. The learning rate a takes the
value of 0.05 in IRLMS, and update trigger displacement is
set to 3.5. The single-step discrete Fourier transform approach
[22] is adopted for the implementation of the registration
method. In MCA, the first 30 frames are registered and a
panoramic image is created before correction. Then the cor-
rection gain and offset are estimated using the 30 frames by
least-square fitting and the following frames are corrected
using the estimated parameters.

1. Nonuniformity Correction Performance
The PSNR evolution of the three tested algorithms is displayed
in Fig. 6. The curve of MCA does not increase before frame 30
since its correction parameters are calculated by the first 30
frames. It can be noted from Fig. 6 that the IRLMS method
significantly outperforms the other methods due to its faster
convergence speed and higher PSNR. For the first 50 frames,
the curves of IRLMS and GALMS have a stable increasing ten-
dency. The speed of the IRLMS algorithm takes the lead and it
only takes 50 frames to cross the 35dB barrier. For the rest of
the sequence, it never goes below this quality. GALMS with a
3 × 3 window converges slower than IRLMS for the first 150

Fig. 5. (Color online) Relationship between RMSE and average displacement d (after 300 times iteration, learning rate a ¼ 0:05).
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frames and it keeps a gap of nearly 1:2dB below IRLMS for the
remaining test videos. The performance of GALMS with a 21 ×
21window is worse than that achieved with a smaller window.
This is mostly due to the spatial independence of the nonuni-
formity. A 3 × 3 window is large enough for averaging the
nonuniformity with a Gaussian distribution, while a larger
window leads to greater estimation errors. Using the para-
meters calculated by the first 30 frames, the PSNR of MCA
for all subsequent frames is around 36dB. It is rather high
in the early stage, but it is overtaken by IRLMS and GALMS
with a 3 × 3 window subsequently, since its correction para-
meters are not updated.

Figure 7 (Media 1) shows the images for the 570th frame.
Figure 7(a) shows the raw image corrupted with simulated
nonuniformity. The outputs using GALMS, MCA, and IRLMS

are shown in Figs. 7(b)–7(e), respectively. In the outputs of
GALMS, some ghosting artifacts of the wire poles can be ap-
preciated. There is also some residual nonuniformity that can
be perceived in the output of MCA. However, we can hardly
see any ghosting artifact in the IRLMS’s output and the level of
residual nonuniformity is rather low. In order to render the
results more perceptible, the error images for these methods
are shown in Fig. 8, scaled identically. It is clear that the error
images of GALMS have more scene information. These results
are ratified by the PSNR of each image displayed.

2. Computational Efficiency
In Subsection 3.B, we developed a brief analysis on the
computational complexity and memory demand of the three
algorithms. In real computer systems, however, memory

Fig. 7. (Media 1) Simulated nonuniformity image results. (a) Image with simulated gain and offset nonuniformity (PSNR ¼ 23:6 dB). (b) Corrected
with GALMS 3 × 3 (PSNR ¼ 36:6 dB). (c) Corrected with GALMS 21 × 21 (PSNR ¼ 34:7 dB). (d) Corrected with MCA (PSNR ¼ 36:4dB). (e)
Corrected with IRLMS (PSNR ¼ 38:3 dB).

Fig. 6. (Color online) PSNR results of the synthetic noisy test sequence corrected using different NUC methods.
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hierarchy, operating system planning, and many other practi-
cal factors must be taken into account and a theoretical anal-
ysis is not enough. We are more interested in how fast the
different methods are in actual operation. These tests were
made with an Intel Core2 Duo T5870 2:0GHz processor and
2Gbyte RAM in conjunction with MATLAB’s cputime func-
tion. In MCA, the estimation of the linear correction pa-
rameters takes approximately 55 s. So here we only compare
IRLMS with GALMS. Table 1 shows a rough average of CPU
time consumed per frame of the two algorithms. It seems that
IRLMS is more time consuming than GALMS with a 3 × 3 aver-
age window and its speed is very close to that of GALMS with
a 21 × 21 Gaussian window. This is probably because most of
the functions GALMS used are provided by MATLAB, while
the registration function used in IRLMS is a self-edit and with-
out any significant optimization.

B. Applications to Real Infrared Data
In this subsection, the algorithm put forward is applied to two
sets of real infrared data. The first set of data was collected at
11 a.m. by using a 320 × 256HgCdTe FPA camera operating in
the 3−5 μm range and working at 25 FPS. The second set was
acquired at 6 p.m. by using another 320 × 256 HgCdTe FPA
camera operating in the 8−14 μm range and at a rate of 50
FPS. Two sample images of the two test sequences are shown
in Fig. 9. A serious striping effect can be found in Fig. 9(a) and
it mainly exists in the high spatial frequency of the image,
while the FPN in Fig. 9(b) shows more low spatial frequency
characteristics.

When dealing with real infrared images, it is not always
possible to obtain the calibration data needed to perform a
radiometrically accurate correction to be used as a reference
for comparison purposes, so the PSNR cannot be calculated.
However, the roughness index ρ is often used as a measure or
indicator of the amount of FPN present in a real image. The
index is calculated as follows:

ρ ¼ ‖h1 � I‖1 þ ‖h2 � I‖1

‖I‖1
; ð27Þ

where h1 and h2 are a horizontal and a vertical difference
filter, respectively, I is the image under analysis, ‖I‖1 is
the L1 norm of I, and � represents discrete convolution. Note

Fig. 8. Error images for (a) GALMS 3 × 3; (b) GALMS 21 × 21; (c) MCA; (d) IRLMS. All images are scaled to the same display range.

Table 1. Average CPU Time Consumed per Frame

for GALMS and IRLMS

GALMS
3 × 3

GALMS
21 × 21

IRLMS

Average CPU time per frame (s) 0.069 0.172 0.181
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the roughness index ρ does not require the knowledge of the
true image, so it can be used as a measure of NUC in real
infrared data. In addition, the video sequences were generated
from all the different versions of corrected data for visual

analysis. Afterward, the NUC over the two test sequences
was done using the selected algorithms with the same para-
meter sets as in Subsection 5.A. The results of the mean rough-
ness over each sequence are presented in Table 2. From there,
the IRLMS clearly outperformed all the other algorithms in the
mean sense.

A performance measurement like the roughness index can
help, but it does not necessarily indicate good correction per-
formance or whether there is the presence of artifacts. There-
fore, the video sequences must be watched to perform a visual
evaluation (Media 2 and Media 3). From the two video
sequences, it is very noticeable that the IRLMS compensates
the nonuniformity the fastest and performs the best over the

Fig. 10. (Media 2) NUC performance comparison of frame 50 of the first test sequence. (a) Unprocessed (ρ ¼ 2:059 × 10−3); (b) GALMS 3 × 3
(ρ ¼ 1:552 × 10−3); (c) GALMS 21 × 21 (ρ ¼ 1:419 × 10−3); (d) MCA (ρ ¼ 1:371 × 10−3); (e) IRLMS (ρ ¼ 1:355 × 10−3).

Fig. 9. Sample images of the two test sequences. (a) Frame 1 of the first test sequence. (b) Frame 1 of the second test sequence.

Table 2. Mean Roughness ρ�×10−3� Results for

the Two Test Sequences

Algorithm Sequence I Sequence II

Unprocessed 1.974 1.292
GALMS 3 × 3 1.313 0.761
GALMS 21 × 21 1.219 0.662

MCA 1.201 0.691
IRLMS 1.141 0.613
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two sequences. Besides, it effectively generates much fewer
ghosting artifacts than the other techniques. Frame samples
of the two sequences at different stages of the NUC process
are presented in Figs. 10–13.

Figures 10 and 11 show frame 50 of each individual subse-
quence. It can be seen that the proposed IRLMS algorithm
almost eliminated the FPN within only 50 frames. It is no won-
der that MCA also gives good results because its correction

Fig. 12. (Media 2) NUC performance comparison of frame 150 of the first test sequence. (a) Unprocessed (ρ ¼ 1:769 × 10−3); (b) GALMS 3 × 3
(ρ ¼ 0:997 × 10−3); (c) GALMS 21 × 21 (ρ ¼ 0:929 × 10−3); (d) MCA (ρ ¼ 0:871 × 10−3); (e) IRLMS (ρ ¼ 0:855 × 10−3).

Fig. 11. (Media 3) NUC performance comparison of frame 50 of the second test sequence. (a) Unprocessed (ρ ¼ 1:632 × 10−3); (b) GALMS 3 × 3
(ρ ¼ 1:251 × 10−3); (c) GALMS 21 × 21 (ρ ¼ 1:129 × 10−3); (d) MCA (ρ ¼ 0:971 × 10−3); (e) IRLMS (ρ ¼ 0:852 × 10−3).
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parameters are calculated by thoroughly examining the first
30 frames. The GALMS method, in contrast, converges more
slowly. Because of the spatial correlations of the nonunifor-
mity, a 3 × 3 average window is probably too small to smooth
the nonuniformity effectively, leading to a much slower
convergence rate than the Gaussian cases discussed in
Subsection 5.A. GALMS with a 21 × 21 window obtains better
results compared with the one with a 3 × 3 window. But in its
outputs, especially in Fig. 11(b), some low spatial frequency
nonuniformity and ghost artifacts are clearly visible.

Figures 12 and 13 show frame 150 of the first sequence and
frame 230 of the second sequence, respectively. It can be seen
that the nonuniformity presented in the raw frame has been
notably reduced by all the NUC methods. However, the ghost-
ing artifacts can be perceived in the outputs of GALMS. Also,
the residual low spatial nonuniformity is also visible in the out-
put of the GALMS with a 3 × 3window. In the outputs of MCA,
we can see some residual nonuniformity, especially near the
borders of the images, because the parameters are estimated
using only 30 frames and all these frames may not share the
exact same field of view. However, in the correction outputs
of IRLMS, the residual nonuniformity is too low to be detected
by the naked eyes, and almost no ghosting artifact can be
detected.

6. DISCUSSION AND CONCLUSIONS
In this paper, a novel interframe-registration-based correction
for NUC in IRFPAs has been presented. This method uses a
phase-correlation method to estimate the motion between two
adjacent images and an LMS algorithm to calculate the gain
and offset correction coefficient of the FPA. The mean square
error between the two registered images is minimized to make

every two detectors with the same scene produce the same
output value. Thus, the accumulation of the registration error
can be avoided and the NUC is easily obtained. The strength of
the proposed algorithm lies in its reasonably simple assump-
tions and smaller calculation and memory requirements,
which make it more competitive in real-time processing.

Some experiments have been done to test the proposed al-
gorithm. It is shown that its performance can be further im-
proved by properly controlling the update process. In
addition, we have compared our method with the GALMS
and MCA SBNUC algorithms, which represent perhaps the
most commonly employed statistical method and registra-
tion-basedmethod. Experimental results demonstrate its great
performance and capabilities to avoid undesirable effects.

Since our method is based on registration, it also shares
some limitations with most registration-based NUC methods
and may not work for some particular conditions. The correc-
tion errors may result from local motion, scene rotation,
changes of scene irradiation, etc. When the scene objects are
imaged at a relatively small distance, warping of the images
should also be taken into account. However, corresponding
countermeasures are not so complicated in our method. A
possible solution is to create the reference frame using a more
complex registration method that takes these factors into
consideration.
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