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a b s t r a c t 

Fringe pattern based measurement techniques are crucial both in macroscale, e.g., fringe projection profilometry, 

and microscale, e.g., label-free quantitative phase microscopy. Accurate estimation of the local fringe density 

map can significantly facilitate almost all stages of fringe pattern analysis process. Example includes: (1) using 

density map as a determinant for the selection of the proper window size in windowed Fourier transform method, 

(2) guiding the decomposition process in empirical mode decomposition, (3) improving the phase unwrapping 

accuracy by providing additional reliability indicators, (4) guiding phase estimation process in regularized phase 

tracking. For these reasons, the accurate and robust estimation of local fringe density map is of high importance 

and can boost fringe pattern analysis on different stages of processing path, resulting in increased capacity of the 

full-field noncontact/noninvasive optical measurement system. In this paper, we propose a new, accurate, robust, 

and fast numerical solution for local fringe density map estimation called DeepDensity. DeepDensity is based 

on the convolutional neural network and deep learning, making it significantly outperform other conventional 

solutions to this problem. Numerical simulations and experimental results corroborate the effectiveness of the 

proposed DeepDensity. 
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. Introduction 

Various branches of science and technology are developed through

he study of objects on the nano-, micro- and macro-scale. Looking for

echniques that allow for precise, non-invasive and fast measurement in

he full field of view, one naturally pays attention to the optical methods,

.e., interferometry [1–4] , holographic microscopy [5–8] , fringe projec-

ion [9] or moiré technique [10] . All of the mentioned methods may

e classified as fringe-based techniques, which means that the measure-

ent result is not given in a straightforward way but is encoded in the

ringe pattern phase or amplitude modulation. Recorded fringe pattern

ntensity distribution may be described as: 

 ( 𝑥, 𝑦 ) = 𝑎 ( 𝑥, 𝑦 ) + 𝑏 ( 𝑥, 𝑦 ) cos 
( 2 𝜋
𝑇 

( 𝑥 ⋅ cos ( 𝜃) + 𝑦 ⋅ sin ( 𝜃) ) + 𝜑 ( 𝑥, 𝑦 ) 
)
+ 𝑛 ( 𝑥, 𝑦 )

(1) 

here 𝑥, 𝑦 ∈ Ω are spatial coordinates and Ω stands for image domain,

 ( 𝑥, 𝑦 ) denotes background illumination term, 𝑏 ( 𝑥, 𝑦 ) denotes fringe pat-

ern amplitude modulation term, 𝜑 ( 𝑥, 𝑦 ) denotes fringe pattern phase

odulation term, 2 𝜋
𝑇 
( 𝑥 ⋅ cos ( 𝜃) + 𝑦 ⋅ sin ( 𝜃) ) is a component describing

arrier fringes, 𝑇 denotes period of carrier fringes, 𝜃 is an orientation
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f carrier fringes and 𝑛 ( 𝑥, 𝑦 ) stands for additive noise distribution. The

nfluence of some of the most important fringe pattern components onto

he fringe pattern intensity distribution may be seen in Fig. 1 . Addition-

lly in Fig. 1 (f) the local fringe density map calculated for Fig. 1 (d) is

resented. Local fringe density (LFD) map is strictly connected with the

nstantaneous (local) spatial frequency of fringes. Along the x and y di-

ection local frequencies can be estimated as partial derivatives of the

hase function ph(x,y) (the argument of the cosine function in Eq. (1) )

11] : 

𝜕𝑝ℎ ( 𝑥, 𝑦 ) 
𝜕𝑥 

= 

2 𝜋
𝑇 

cos ( 𝜃) + 

𝜕𝜑 ( 𝑥, 𝑦 ) 
𝜕𝑥 

, (2)

𝜕𝑝ℎ ( 𝑥, 𝑦 ) 
𝜕𝑦 

= 

2 𝜋
𝑇 

sin ( 𝜃) + 

𝜕𝜑 ( 𝑥, 𝑦 ) 
𝜕𝑦 

. (3)

Therefore LFD can be calculated from the phase function as: 

𝐹 𝐷 ( 𝑥, 𝑦 ) = 

√ ( 

𝜕𝑝ℎ ( 𝑥, 𝑦 ) 
𝜕𝑥 

) 2 
+ 

( 

𝜕𝑝ℎ ( 𝑥, 𝑦 ) 
𝜕𝑦 

) 2 
. (4)

It can be seen that LFD map variates spatially around the carrier

requency according to the introduced/measured local phase deviations.
pw.edu.pl (M. Trusiak). 
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Fig. 1. Fringe pattern image components 

(image size 512 × 512 px): (a) carrier 

fringes with T = 80 and 𝜽 = 0 , (b) input car- 

rier fringes with Gaussian amplitude modu- 

lation, (c) amplitude modulation from (b), 

(d) input carrier fringes with phase modu- 

lation, (e) phase modulation from (d), (f) 

local fringe density map of Fig. 1 (d) calcu- 

lated using Eq. (4) basing on Fig. 1 (e). 
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The complete fringe pattern based measurement process may be gen-

rally divided into two steps: (1) recording of the fringe pattern (i.e.,

nterferogram, hologram, moirégram) and (2) the measurand decoding

rom the recorded intensity distribution. Numerous algorithmic solu-

ions were proposed in order to provide an accurate and robust phase (or

mplitude) extraction. Temporal phase shifting (TPS) [12–15] is consid-

red as the most precise and computationally efficient phase extraction

ethod. However, it requires recording of the set of fringe patterns with

ntroduced phase shift, either known [13–15] or unknown [16–19] . It

s inconvenient because that way the measurement of dynamic objects

r in the unstable environment is impossible. The problem of multi-

rame recording was solved utilizing the polarization approaches and

he multi-camera system to instantaneously record phase-shifted inter-

erograms by different cameras [20] or use the pixelated phase-mask of

 single camera [21] . These modifications complicate the measurement

rocess considerably, however. Hence the single-frame fringe pattern

nalysis techniques are highly demanded. The most popular representa-

ive of such techniques is the Fourier transform method [22] . It does not

llow for efficient analysis of fringe patterns with greatly variable den-

ity, however, and generally requires high spatial carrier frequency. In

rder to analyze fringe patterns with changing LFD map the windowed

ourier transform (WFT) method [23] was developed, where by using

he window of specified size we gain the information about localization

f particular spatial frequencies. It was proven that using one window

ize for a whole image is not efficient, thus solutions allowing for adap-

ive selection of window size were proposed based on the Hilbert-Huang

ransform [24] , guided by the principal component analysis [25] , based

n the local stationary length of signal [26] and defined by the local

requency [27] . From the point of view of our work the most interesting

s the latter one, where the selection of the proper window size is based

n the local frequency estimation and therefore the accurate LFD map

stimation is desired. Another fringe pattern analysis technique called

ilbert spiral transform (HST) [28] can also cope with fringe patterns

ith greatly variable density while it does not require filtration in a fre-

uency domain. Nevertheless, HST needs a background prefiltration in

he image domain [29–34] . There are two main approaches to the HST

refiltration: variational image decomposition [29–31] and empirical

ode decomposition [32–34] . In the case of empirical mode decom-

osition the latest, novel algorithmic solution [35] needs LFD map for

uidance of the decomposition process and as a result minimization of

ode-mixing phenomenon. Finally, regardless the fringe pattern anal-

sis technique (TPS, Fourier transform, WFT or Hilbert transform) due

o the periodicity of the cosine function directly estimated phase map

s not continuous but given in the form of modulo 2 𝜋. For that reason

hase unwrapping procedure is needed [ 36 , 37 ]. It was proven [38] that

he information about LFD map can improve significantly the phase un-

rapping process. Different approach called regularized phase tracker

RPT) [39–41] can be also used for single-frame fringe pattern demod-

lation. This solution is a relevant one, because it provides directly an

nwrapped phase map. Two main downsides of this method compli-

ating and extending calculations are the need for normalization of the

ringe pattern and critical point sensitivity. To overcome the second one

ome solutions using a priori knowledge about local spatial frequencies

ere proposed [42–44] . Because of the fact that all critical points have

ery low local spatial frequency they can be isolated and processed last

hanks to the guidance by local spatial frequencies. It is therefore clear
2 
hat accurate and robust estimation of LFD map is of high importance

nd can boost fringe pattern analysis on different stages of the process-

ng path, resulting in increased capacity of the full-field noninvasive

ptical measurement systems. 

In the literature we can find different approaches to the LFD calcula-

ion. The accumulated differences approach [45] provides a simple and

irect fringe density estimation, however it was primarily aimed at cal-

ulating the fringe orientation hence the LFD map is estimated roughly.

his method was advanced by the variational image decomposition pre-

rocessing [46] , but still the mechanism of the LFD map calculation

tayed the same and cannot be considered as a very accurate one. More

recise approach proposed for calculating the local fringe density in the

oisy wrapped phase maps was based on the Fourier transform [38] .

he main disadvantage of this approach is connected with a global na-

ure of the Fourier transform, where only information about signal spa-

ial frequencies without their localization in image domain is given in

 straightforward way. In the case of windowed approach we are still

ealing with the uncertainty principle which comes down to the impos-

ibility of determining the exact frequency and its localization at the

ame time. This problem was solved with the use of the time-scale sig-

al analysis approach provided by continuous wavelet transform [47] .

evertheless, it was done at the expense of increasing the calculation

ime and the computational complexity. Another method for local fringe

ensity determination was based on the adaptive filtering [48] tuned at

ifferent spatial frequencies. It provides very accurate LFD maps, but

eeds adjusting of many parameter values. Similarly to the previously

entioned methods the estimation of the LFD map is done in the spa-

ial frequency domain with accuracy proportional to the selected filter

idth. In the literature we can also find methods based on the Riesz

ransform for single frame phase function [49] and its derivative esti-

ation [50] . As it was mentioned, the LFD map can be estimated directly

rom the derivative of phase function and therefore this approach is also

nteresting. 

In this paper we propose a different and thus novel approach to the

FD map estimation. It is clear that there is a relation between the local

ringe density and input fringe pattern (fringes shape and characteris-

ic), but straightforward definition of this relationship is not a simple

atter. It is worth noticing that algorithms based on neural networks

ake over the task of defining the relationship between the input data

nd the desired output. Instead of a priori definition by a researcher,

ought-after relationship is found in the neural network learning process

y modification and tuning of network parameters using basic mathe-

atic operations grouped in the structure determined by the network

rchitecture [51] . In the process of the supervised learning, the weights

f the individual layers (neurons) are defined in a feedback loop using

he regularization methods. In the case of the image analysis the most

nteresting type of neural network is the convolutional neural network

CNN), where the basic mathematical operation is defined by the con-

olution. CNNs were already successfully adapted in the fringe pattern

nalysis for the fringe pattern filtration [52–56] , defining the optimal

indow for Fourier transform approach [57–59] , phase extraction [60–

5] and phase unwrapping [66–72] . Inspired by the remarkable proper-

ies of the neural network based algorithms and their continuous success

tory in a field of the fringe pattern analysis in this work, for the first

ime to the best of our knowledge, the CNN architecture tailored for

he LFD map estimation is proposed and called DeepDensity. We want
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Fig. 2. The general scheme of the investigated neural network architecture. 
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o acknowledge that proposed network does not supersede mathemat-

cally rigorous phase extraction algorithmic solutions, but it only sup-

orts them. The LFD map can be computed once the access to the fringe

attern phase map is granted, however in the experimental reality the

hase map is the main mystery, thus single frame (single fringe pattern)

ccurate LFD estimation technique is of great interest. The use of neu-

al networks to determine the final result of the optical measurement

ay raise legitimate metrological concerns and therefore for the sake

f versatility and independence from measurement technique we still

ecommend the use of fully mathematically sound solutions for phase

etrieval such as Hilbert spiral transform [28–34] or temporal phase

hifting. 

The paper is structured as follows: Section 2 introduces proposed

eepDensity neural network architecture for the local fringe pattern

ensity map estimation and investigates the influence of a specialized

etwork architecture on the network accuracy; Section 3 contains nu-

erical evaluation of the proposed novel neural network based tech-

ique for the local fringe pattern density estimation using simulated

nd experimental data comparing the obtained results with the refer-

nce fringe pattern density maps calculated from TPS-based phase maps;

ection 4 concludes the paper. 

. Proposed neural network architecture 

Our research to find the optimal neural network architecture was

nspired by a network developed for the fringe pattern phase extrac-

ion [60] . Since the local fringe density map can be calculated from the

erivatives of the phase function it is a reasonable initial guess for our

eepDensity neural network. Nevertheless, the learning process in our

etwork would lead to the straightforward estimation of LFD map, not

he phase function estimation as it was performed in [60] . In Fig. 2 the

ackbone of the proposed architecture is presented. The input of the

eveloped neural network is a grayscale fringe pattern (interferogram,

ologram, moiregram) of width W and height H. At this point of explain-

ng the calculation path it is worth to mention that since we want to meet

ur previous statement that the neural network would not influence the

nal result of optical measurement the input fringe pattern is already

refiltered by unsupervised variational image decomposition [73] and

roposed neural network is only responsible for LFD map calculation,

aking it robust and versatile in terms of fringe pattern shape and qual-
3 
ty. Then, the network architecture is divided into different paths con-

aining convolutional layers and residual blocks. The individual paths

iffer in the size of downsampling by a pooling layer. The number of

aths needed for our task constituted one of the main parameters to be

efined for the DeepDensity network architecture. Another important

arameter taken into consideration during our analysis was a number

f filters in each convolutional layer. In order to determine the best mod-

fication of the initial network architecture a thorough investigation of

he mentioned network parameters and their influence on the achieved

earning accuracy was conducted. Data calculated in each path was up-

ampled to match the input image size and then concatenated as a result

f which the number of channels multiplies by the number of paths. Fi-

ally, the last convolutional layer with a single channel gives the output

ocal fringe density map. 

All of the different network architectures examined in this pa-

er were trained during the process of the supervised learning with

he use of a computer generated fringe patterns data set. Platform

sed for deep network training: Intel i7 8700K(CPU), NVIDIA GeForce

660ti 6GB(GPU), 64GB(RAM), Windows 10(OS), Matlab Deep Learn-

ng Toolbox TM (Software). To provide the same learning properties for

ll tested networks, we used minibatch size 2. Other parameter values,

ike learning rate ( 0.0001 ), type of optimizer ( ADAM ), number of train-

ng ( 1500 ) and validation ( 150 ) data samples have been selected after

any trial iterations. Validation data set was tested after every 100 it-

rations and training data were shuffled after every epoch of training.

uring the learning process deep convolutional neural networks learn

o match the input image (fringe pattern) to a target label (LFD map).

rained network can subsequently be used to perform a local fringe den-

ity map reconstruction on a new input image without knowing the

round-truth. However, the training step is a time consuming process

nd typically requires a large number of the input images – ground truth

airs in the training dataset, afterwards the reconstruction process typ-

cally takes only a fraction of a second. This automatic, non-iterative

nd fast reconstruction is the biggest advantage of the deep learning

pproach. Nevertheless, the transferability of a trained neural network

rom one measurement instrument to another remains an issue to be

ddressed. In fact, in majority of cases during the assembly of a new

easurement instrument the new training dataset should be recollected

nd training process should be repeated. In our case in order to achieve

atisfactory variety of fringe patterns phase function was simulated
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Table 1 

Evaluation of 4 tested networks with a different number of paths. 

Paths Filters 

Mean RMSE on 

validation dataset 

Execution 

time [s] 

Learning 

time [min] 

1 50 0.0039 0.0540 114 

2 50 0.0038 0.1462 206 

3 50 0.0028 0.1804 207 

4 50 0.0046 0.1961 1385 

2

 

t  

W  

t  

n  

t  

a  

l  

T  

a  

d  

a  

t  

t  

a  

d  

a  

t  

o  

e  

o  

a  

b  

s  

t  

p  

s

 

b  

w  

t  

b  

f  

fi  

I  
sing randomly chosen polynomials of orders from 2 to 5 and sampled

cross the X and Y axes of the image. Fringe patterns in our training set

ere assumed to be noiseless and without any background (we assume

uccessful prefiltering of studied experimental fringe patterns), so the

ost meaningful simulated term was the phase function described as: 

𝑝ℎ ( 𝑥, 𝑦 ) = { 𝑘 ⋅ 𝑥 ⋅ ( 𝑟𝑎𝑛𝑑( ) − 0 . 5 ) + 𝑘 ⋅ 𝑦 ⋅ ( 𝑟𝑎𝑛𝑑( ) − 0 . 5 ) } + 10 ⋅
 ( 𝑥, 𝑦 ) , (5) where k is an integer value between 1 and 400, x, y

re described by uniformly distributed values between – 𝜋 and 𝜋,

and() describes a function returning random value between 0 and 1

nd P(x,y) is a function of combined polynomials. First term in Eq. 5

marked by braces) defines the carrier fringes with fringes frequency

efined by k parameter and function rand() determines orientation of

ringes. A crucial term in a formula for phase which gives large variety

f acquired fringes is P(x,y) describing the actual phase modulation

iven by: 

 ( 𝑥, 𝑦 ) = 𝑃 1 ( 𝑥 ) + 𝑃 2 ( 𝑦 ) , (6)

here P 1 (x), P 2 (y) are values of random polynomials of orders from 2

o 5 acquired for X and Y axes, respectively. To generate those random

olynomials we firstly took 5 uniformly distributed values between – 𝜋

nd 𝜋 in x and y direction. For each of those values we have selected

andom value in chosen range. For 5 pairs of points in X and Y direction

e have fitted polynomials and those where the functions P 1 (x) and

 2 (y) . 

For a phase function defined in this way, the complete formula for

imulated fringe patterns can be described as: 

 ( 𝑥, 𝑦 ) = 0 . 5 + 0 . 5 ⋅ cos ( 𝑝ℎ ( 𝑥, 𝑦 ) ) . (7)

The pixel values range of simulated fringe patterns where purposely

ormalized to < 0,1 > so that the uVID fringe pattern prefiltration reality

an be reflected and the neural network could achieve as big computa-

ional accuracy as possible. In our work we simulated fringe patterns of

he size W = 512 px and H = 512 px. Once again it is worth to mention

hat we are aiming at CNN processing of prefiltered fringe patterns so

ur simulated data is free of varying background, amplitude modula-

ion and noise. This assumption is a main reason that we could achieve

 successful and universal learning outcome on relatively small train-

ng dataset including 1500 fringe patterns. In Fig. 3 seven sample fringe

atterns from simulated dataset are shown. 

In order to evaluate the accuracy and performance of each trained

etwork, a validation set including 150 images representing input fringe

atterns was generated. Numerically determined by the Eq. (4) LFD

aps were treated as ground truth network output. Quantity that was

hosen to determine network accuracy in this paper was the Root Mean

quared Error (RMSE). Additionally, the mean time of each prediction

as been determined to test the performance of each network. 
4 
.1. Influence of the number of paths on the learning accuracy 

First network architecture parameter we took under the investiga-

ion was the influence of the number of paths on the learning accuracy.

e started with the number of convolutional filters in every path equal

o 50, which was suggested by the authors in [60] . Four different neural

etwork architectures (ranging from 1 to 4 paths in each network) were

ested on previously mentioned 150 fringe patterns validation dataset

nd the results are presented in Table 1 . As it should be expected the

earning time increases with the increasing complexity of the network.

he same is true for the execution time of a single data instance in the

lready learned network. The latter is the most interesting because it

irectly affects the overall processing time of a fringe pattern. As long

s we can agree to a one-time extended learning time, we should pay at-

ention to keeping execution time on as low level as possible. Analysing

he RMSE values shown in Table 1 one can notice that 3 paths network

rchitecture gives definitely the best results on our random validation

ataset. It seems that 1 path and 2 paths neural network architectures

re insufficient and we are dealing here with the problem of underfit-

ing. It is possible that this problem could be solved by longer training

r changing of optimization algorithms but the best solution is simply to

nlarge the network architecture. On the other hand too big extension

f the network architecture may lead to the overfitting, see results for

 4 paths network. This problem could be probably solved with much

igger training dataset, however our goal was the simplification of the

olution and making it universal so we do not want to risk fitting only to

he data from the training dataset. Considering all mentioned above, 3

aths neural network architecture is quantitatively selected as the most

uitable for our task. 

General analysis on a random validation dataset has been extended

y a detailed analysis, presented in Fig. 4 , on 100 fringe pattern dataset

ith phase function described by Matlab function called peaks and con-

rolled carrier fringes frequency that have not been seen by network

efore. The range of simulated carrier fringes periods was from 6 px (85

ringes visible in the field of view) to 126 px (4 fringes visible in the

eld of view). All previously mentioned observations were confirmed.

t should be noticed that the biggest errors appear for the high spatial
Fig. 3. Sample fringe patterns from simulated dataset: (a) 

k = 50, 2 order polynomial in X direction, 2 order polynomial 

in Y direction, (b) k = 100, 2 order polynomial in X direction, 2 

order polynomial in Y direction, (c) k = 300, 2 order polynomial 

in X direction, 2 order polynomial in Y direction, (d) k = 250, 

3 order polynomial in X direction, 3 order polynomial in Y di- 

rection, (e) k = 50, 3 order polynomial in X direction, 3 order 

polynomial in Y direction, (f) k = 150, 3 order polynomial in X 

direction, 5 order polynomial in Y direction, (g) k = 200, 4 order 

polynomial in X direction, 2 order polynomial in Y direction. 
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Fig. 4. Detailed analysis of the neural networks performance: (a) comparison 

of the performance of 4 different architectures on simulated dataset, (b) fringe 

pattern with carrier fringes period 6 px and (c), (d), (e), (f) error maps for 1, 2, 

3, 4 paths CNN architecture, respectively (g) fringe pattern with carrier fringes 

period 40 px and (h), (i), (j), (k) error maps for 1, 2, 3, 4 paths CNN architecture, 

respectively, (l) fringe pattern with carrier fringes period 126 px and (m), (n), 

(o), (p) error maps for 1, 2, 3, 4 paths CNN architecture, respectively. 
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Fig. 5. Detailed analysis of the neural networks performance: (a) comparison 

of the performance of 6 different architectures on simulated dataset, (b), (c), 

(d), (e), (f), (g) carrier fringes period 6 px error maps for 10, 20, 30, 40, 50, 60 

convolutional filters in every path of neural network architecture, respectively, 

(h), (i), (j), (k), (l), (m) carrier fringes period 40 px error maps for 10, 20, 30, 

40, 50, 60 convolutional filters in every path of neural network architecture, 

respectively, (n), (o), (p), (r), (s), (t) carrier fringes period 126 px error maps 

for 10, 20, 30, 40, 50, 60 convolutional filters in every path of neural network 

architecture, respectively. 

Fig. 6. Comparison of the performance of DeepDensity network architecture 

and architecture with 2 paths and 120 filters on simulated dataset of 100 fringe 

patterns. 
requency fringes, while for lower spatial frequencies errors are on the

ame level. The high spatial frequency fringes results should not be a

uge surprise, because those are extreme cases on the limit of Nyquist

ampling theorem and the errors are still on a reasonable level. 

.2. Influence of the number of convolutional filters in every path on the 

earning accuracy 

Once the number of paths in our neural network architecture was

xed we took under the consideration another parameter of the network

rchitecture – number of convolutional filters in every path. Similarly as

n the previous subsection the impact of the complexity of the network

rchitecture on the accuracy of the results was tested and is presented

n Table 2 . As it can be easily deduced, the more convolutional filters in

very path the more complex the neural network architecture is. In the

ase of 10, 20, 30 and 40 filters we are dealing with underfitting, while
able 2 

valuation of networks with 3 paths and different number of convolutional fil- 

ers. 

Paths Filters RMSE Execution time [s] Learning time [min] 

3 10 0.0081 0.0536 25 

3 20 0.0069 0.0815 62 

3 30 0.0047 0.1033 91 

3 40 0.0046 0.1492 131 

3 50 0.0028 0.1804 207 

3 60 0.0039 0.2096 232 

f  

t  

a  

w  

t  

fi  
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a  

d

 

f  

D  

5 
or 60 filters we are dealing with overfitting. At this point it is proven

hat 50 filters is an optimal value in the case of 3-path neural network

rchitecture developed for the task of LFD map calculation. The easiest

ay to reduce underfitting is a complication of neural network architec-

ure and because of that the RMSE values decreased as the number of

lters increased. Once the optimum point is reached the network, dur-

ng the learning, starts to match the data from the training dataset too

ccurately and does not allow for correct determination of LFD maps for

ata outside this dataset – the overfitting should be therefore omitted. 

Above mentioned analysis was confirmed by the results estimated

rom 100 fringe pattern dataset described in the previous subsection.

etailed analysis is presented in Fig. 5 . Highlighted LFD error maps were
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Fig. 7. DeepDensity learning curves. 
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Fig. 8. Influence of change of carrier fringes orientation on DeepDensity accu- 

racy. 
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alculated for the same fringe patterns as presented in Fig. 4 (b),(g),(l).

MSE for the neural network with 3 paths and 50 filters have the lowest

alues and additionally the extent of changes in the whole analyzed

ange of carrier fringes spatial frequencies is the smallest. Therefore,

ur proposed convolutional neural network architecture (50 filters and

 paths) provides the most stable performance and has achieved the

est generalization of the sought input fringe pattern – output LFD map

elationship. 
ig. 9. Experimentally recorded TPS series of interferograms with phase shift equa

i), (j) LFD maps calculated by DeepDensity from presented frames, (k) LFD map cal

ine) by all DeepDensity results compared to reference TPS based density map, (m) 

eference TPS based density map, (n) LFD map calculated from TPS estimated phase

y all DeepDensity results compared to reference TPS + BM3D based density map, (p

eference TPS + BM3D based density map. 

6 
.3. Proposed network architecture 

In previous subsections we conducted an analysis which led to the

efinition of DeepDensity network architecture. This architecture may

e described by two main parameters: 3 paths and 50 convolutional fil-

ers in every path. However, there is one more question that needs to
l to 𝜋/2: (a), (b), (c), (d), (e) subsequent frames from the series, (f), (g), (h), 

culated from TPS estimated phase function, (l) y-cross section (marked by red 

x-cross section (marked by pink line) by all DeepDensity results compared to 

 function denoised by BM3D method, (o) y-cross section (marked by red line) 

) x-cross section (marked by pink line) by all DeepDensity results compared to 
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Fig. 10. Analysis of the preprocessing influence on DeepDensity estimated LFD map: (a) reference fringe pattern calculated as the ideal cosine of the TPS estimated 

phase function, (b) LFD map calculated from reference fringes by DeepDensity, (c) y-cross section (marked by red line) through DeepDensity result calculated from 

reference fringes Fig. 10 (a) compared to reference TPS + BM3D based density map, (d) x-cross section (marked by pink line) through DeepDensity result calculated 

from reference fringes Fig. 10 (a) compared to reference TPS + BM3D based density map. 
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e answered to make sure that proposed architecture is definitely the

ost suitable one. In Section 2.1 . we showed that neural network with

 paths suffers from the underfitting problem and we also claimed that

t can be solved by complication of CNN architecture. Provided solu-

ion was connected with additional path. Another way for complication

f architecture is to add bigger number of convolutional filters in ev-

ry path. We performed an analysis to check if increasing the number

f convolutional filters in two paths can equalize the effect of adding

n additional path. The similar level of RMSE value to our DeepDen-

ity neural network was achieved for neural network with 2 paths and

20 filters and was equal to 0.0031. Even though overall performance

f both networks is similar, as it can be seen in Fig. 6 , the execution

ime in the case of the network with 2 paths is much longer. Execu-

ion time of a single data instance for DeepDensity is equal to 0.1804 s,

hile in the case of 2 paths and 120 filters neural network it is 0.28 s.

dditionally, in the case of the latter network the learning time needed

or achieving that accuracy is 1779 min, which is much longer than 207

in needed for DeepDensity learning process. We thus corroborated the

ptimal nature of selected 3 path 50 filter architecture. Additionally, in

ig. 7 the learning curves of DeepDensity are presented, which proves

hat training is not affected with overfitting. 

Once the final version of the DeepDensity neural network architec-

ure is determined the further analysis of its performance may be carried

ut. In Fig. 8 the influence of the carrier fringes orientation variation on

he DeepDensity accuracy is presented. Every point on this graph was

stimated by averaging the results for 10 fringe patterns of the same

rientation and different spatial frequencies in the range from 1 to 100

ringes visible in the field of view. That way received reliance is only de-

endent on the orientation of fringes and is not tweaked by the fringes
 p  

able 3 

umerical analysis of the accuracy of estimated results from Fig. 9 and Fig. 10 . 

DeepDensity input data 

Frame 1 Frame 2 Fr

Reference 

LFD map 

TPS RMSE 0.0978 RMSE 0.0982 RM

TPS + BM3D RMSE 0.0348 RMSE 0.0335 RM

7 
patial frequency. It can be seen that the accuracy of the results varies

ith the rotation of the fringes orientation, but the range of changes is

mall and all results can be considered as very satisfactory. Since Deep-

ensity was trained on the data size 512 × 512 px its generalization to

ifferent input image sizes was also tested and no significant difference

as observed between the accuracy of the obtained results. 

. Experimental verification 

Proposed DeepDensity neural network architecture was also tested

n the experimentally recorded fringe patterns. In order to show the ver-

atility of our solution we decided to focus on two extreme cases of fringe

atterns: 5 frames of TPS recorded interferograms of single polystyrene

icrosphere of approx. 90 um in diameter [74] and the silicon waveg-

ide structure manufactured using etching [ 75 , 76 ]. In Fig. 9 (a–e) the

 phase-shifted interferograms are presented. As it can be seen in the

rst mentioned case we are dealing with closed fringes, which in gen-

ral is problematic for a single frame fringe pattern analysis techniques.

n the introduction it was mentioned that the most accurate fringe pat-

ern analysis technique is multi frame method – temporal phase shift-

ng. For that reason using presented phase shifting series we calculated

hase function which can be considered very accurate and then using

erivatives of the designated phase function, we have defined a refer-

nce local fringe density map ( Fig. 9 (k)). It should be mentioned that

ven though the phase function characteristic is calculated accurately

ith the use of TPS algorithm the noise is not minimized completely

sing 5-frames scheme. The noise level is additionally amplified during

he derivatives calculation. It is highlighted in LFD map cross sections

resented in Fig. 9 (l) and (m). In order to make the comparison of
ame 3 Frame 4 Frame 5 

Reference 

fringes 

SE 0.0982 RMSE 0.0980 RMSE 0.0980 RMSE 0.0947 

SE 0.0362 RMSE 0.0317 RMSE 0.0349 RMSE 0.0164 
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Fig. 11. Analysis of the experimentally recorded interferogram with homogenous LFD map and high amplitude modulation: (a) registered interferogram, (b) pre- 

processing result, (c) DeepDensity based LFD map calculated from registered interferogram without preprocessing, (d) DeepDensity based LFD map calculated from 

registered interferogram with preprocessing, (e) mean x-cross sections by both results compared to known fringes density value. 
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ur DeepDensity solution to the reference one clear-cut we decided to

inimize the noise in the TPS calculated phase map with the use of

ighly effective and accurate denoising method called block-matching

D denoising (BM3D) [77] . The effect of denoising procedure is pre-

ented in Fig. 9 (n–p). While the general characteristic of reference LFD

ap was preserved, the noise level was minimized. Analyzing Deep-

ensity based LFD maps shown in Fig. 9 (f–j) one can see that there is a

oticeable difference between subsequent results in the area described

y the lowest density closed fringe. This effect is also clearly visible in

he cross-sections presented in Fig. 9 (l) and (o). These errors are not

aused by the DeepDensity but are the result of preprocessing imper-

ection. To confirm this claim we calculated the reference fringe pat-

ern as a cosine of TPS defined phase function. That way we simulate

he situation of having the ‘ideal’ numerical preprocessing tool. Esti-

ated fringe pattern and LFD map calculated from it by DeepDensity

re presented in Fig. 10 (a) and (b), respectively. In that case it can be

learly seen that LFD map is estimated accurately even around the area

f closed fringe. The cross-sections shown in Fig. 10 (c) and (d) prove

he compliance of the DeepDensity based results with the reference

nes. 

All observations mentioned above are confirmed in the RMSE val-

es presented in Table 3 . If we take the TPS based LFD map without

enoising as a reference LFD map the noise has the greatest impact on

alculated RMSE values and all errors are on the same level. On the

ther hand, if we add the BM3D denoising step to calculation of a ref-

rence LFD map the influence of preprocessing on the results is clearly

isible. It was also proven that DeepDensity itself provides highly ac-

urate results achieving very low RMSE value in the case of reference

ringes (perfectly cosinusoidal). 

In the second considered case we are dealing with slightly different

roblem than described above. LFD map we want to estimate is ho-

ogenous and therefore not complicated, but registered interferogram
8 
as high amplitude modulation ( Fig. 11 (a)). When we give the fringe

attern without preprocessing to the DeepDensity network input the un-

ltered amplitude modulation leaks to final LFD map ( Fig. 11 (c)). Once

gain the importance of the successful preprocessing is highlighted. Af-

er the accurate uVID-based fringe pattern preprocessing ( Fig. 11 (b))

eepDensity provided correct LFD map ( Fig. 11 (d)). 

. Conclusions 

In this paper, we have proposed an accurate, robust, and fast numeri-

al solution for the local fringe density map calculation called DeepDen-

ity. In the recent years neural networks and deep learning attracted

he attention of the scientific groups working in the full field optical

etrology [1–10] . Joining this pursue, DeepDensity is the first neural

etwork based solution for local fringe density map estimation, which

rovides support for the fringe pattern based measurement techniques

e.g., Windowed Fourier Transform [27] , Hilbert spiral transform [35] ,

hase unwrapping procedure [38] , regularized phase tracker [42–44] ).

rovided solution meaningfully extends the range of applications for

eural network based algorithms and highlights the features of fringe

atterns, which make them ideal for deep learning. Even if the underly-

ng phase function varies drastically between different measurements,

ringe patterns generally have a similar structure as most of them can

e described by a spatially self-similar cosine function. That makes the

earning process easier, and it was shown that reliable network param-

ters can be learned based on a relatively small training dataset. On

he other hand, DeepDensity also fills the gap in the search for increas-

ngly accurate fringe pattern analysis tools. It was proven that LFD map

ould be very useful on different stages of fringe pattern analysis process,

tarting with prefiltration, through phase estimation, to phase unwrap-

ing. Our DeepDensity LFD map estimation technique stands out among

he other reported techniques for fringe pattern density map calculation
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ecause of its accuracy and universality. The LFD maps estimated with

he use of other known methods are of too sparse sampling [35] , too

ough estimate [45] , exhibit local bias removal [48] , need high carrier

requency [11] or work on demodulated phase map directly [38] . The

alidity and effectiveness of the DeepDensity was corroborated both on

imulated and experimental data. The main advantages of the DeepDen-

ity are the accuracy (RMSE was kept on a low level even in the case

f complicated experimentally recorded fringes), robustness (DeepDen-

ity provided accurate results both in the case of highly variable and

omogenous LFD maps), and speed (the execution time of a single data

nstance for DeepDensity is about 0.1804 s). 

It needs to be highlighted that DeepDensity aims at the analysis of

he prefiltered experimental data. Proposed DeepDensity network does

ot supersede mathematically rigorous phase extraction algorithmic so-

utions, but it only supports them (e.g., Windowed Fourier Transform

27] , Hilbert spiral transform [35] , phase unwrapping procedure [38] ,

egularized phase tracker [42–44] ). Because we are aiming at process-

ng of prefiltered fringe patterns our simulated training dataset is free of

arying background, amplitude modulation and noise. That way Deep-

ensity model was trained to map the relationship between the fringes

pure cosine function) and the LFD map. This approach makes Deep-

ensity universal and independent from the specific measurement set-

p, because the learned relationship between input pure fringes and

utput local fringe density is universal and algorithmically defined and

 successful and universal learning outcome was achieved on relatively

mall training dataset including 1500 fringe patterns. During the experi-

ental analysis we noticed that small noise, background, and amplitude

ariations do not jeopardize significantly the accuracy of the estimated

FD maps. In the case of planned applications (focused at supporting the

ringe pattern analysis, not superseding it) low level of errors should not

eopardize overall fringe pattern analysis and can be accepted. These is-

ues will be developed in our future work. 

As for the future work, we are also planning to increase the training

ataset by fringe patterns with background and amplitude modulation

n order to make it less sensitive to inaccurate preprocessing. 
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