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Abstract
With the advances in scientific foundations and technological implementations, optical metrology has become
versatile problem-solving backbones in manufacturing, fundamental research, and engineering applications, such as
quality control, nondestructive testing, experimental mechanics, and biomedicine. In recent years, deep learning, a
subfield of machine learning, is emerging as a powerful tool to address problems by learning from data, largely driven
by the availability of massive datasets, enhanced computational power, fast data storage, and novel training
algorithms for the deep neural network. It is currently promoting increased interests and gaining extensive attention
for its utilization in the field of optical metrology. Unlike the traditional “physics-based” approach, deep-learning-
enabled optical metrology is a kind of “data-driven” approach, which has already provided numerous alternative
solutions to many challenging problems in this field with better performances. In this review, we present an overview
of the current status and the latest progress of deep-learning technologies in the field of optical metrology. We first
briefly introduce both traditional image-processing algorithms in optical metrology and the basic concepts of deep
learning, followed by a comprehensive review of its applications in various optical metrology tasks, such as fringe
denoising, phase retrieval, phase unwrapping, subset correlation, and error compensation. The open challenges faced
by the current deep-learning approach in optical metrology are then discussed. Finally, the directions for future
research are outlined.

Introduction
Optical metrology is the science and technology of

making measurements with the use of light as standards
or information carriers1–3. Light is characterized by its
fundamental properties, namely, amplitude, phase,
wavelength, direction, frequency, speed, polarization,
and coherence. In optical metrology, these fundamental
properties of light are ingeniously utilized as informa-
tion carriers of a measurand, enabling a wide range of
optical metrology tools that allow the measurement
of a wide range of subjects4–6. For example, optical

interferometry takes advantage of the wavelength of
light as a precise dividing marker of length. The speed
of light defines the international standard of length, the
meter, as the length traveled in vacuum during a time
interval of 1/299,792,458 of a second7. As a result,
optical metrology is being increasingly adopted in many
applications where reliable data about the distance,
displacement, dimensions, shape, roughness, surface
properties, strain, and stress state of the object under test
are required8–10. Optical metrology is a broad and inter-
disciplinary field relating to diverse disciplines such as
photomechanics, optical imaging, and computer vision.
There is no strict boundary between those fields, and in
fact, the term “optical metrology” is often interchangeably
used with “optical measurement”, in which achieving
higher precision, sensitivity, repeatability, and speed is
always a priority11,12.
There are a few inventions that revolutionized optical

metrology. The first is the invention of laser13,14. The
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advent of laser interferometry could be traced back to
experiments conducted independently in 1962 by Deni-
syuk15 and Leith and Upatnix16 with the objective of
marrying coherent light produced by lasers with Gabor’s
holography method17. The use of lasers as a light source in
optical metrology marked the first time that such highly
controlled light became available as a physical medium to
measure the physical properties of samples, opening up
new possibilities for optical metrology. The second revo-
lution was initiated with the invention of charged coupled
device (CCD) cameras in 1969, which replaced the earlier
photographic emulsions by virtue of recording optical
intensity signals from the measurand digitally8. The use of
the CCD camera as a recording device in optical metrology
represented another important milestone: the compat-
ibility of light with electricity, i.e., “light” can be converted
into “electrical quantity (current, voltage, etc.)”. This
means that the computational storage, access, analysis, and
transmission of captured data are easily attainable, leading
to the “digital transition” of optical metrology. Computer-
based signal processing tools were introduced to automate
the quantitative determination of optical metrology data,
eliminating the inconvenience associated with the manual,
labor-intensive, time-consuming evaluation of fringe pat-
terns18–20. Methods such as digital interferometry21, digital
holography22, and digital image correlation (DIC)23 have
become state of the art by now.
With the digital transition, image processing plays an

essential role in optical metrology for the purpose of
converting the observed measurements (generally dis-
played in the form of deformed fringe/speckle patterns)
into the desired attributes (such as geometric coordi-
nates, displacements, strain, refractive index, and oth-
ers) of an object under study. Such information-
recovery process is similar to those of computer vision
and computational imaging, presenting as an inverse
problem that is often ill-posed with respect to the
existence, uniqueness, and stability of the solution24–27.
Tremendous progress has been achieved in terms of
accurate mathematical modeling (statistical models of
noise and the observational data)28, regularization
techniques29, numerical methods, and their efficient
implementations30. For the field of optical metrology,
however, the situation becomes quite different due to
the fact that the optical measurements are frequently
carried out in a highly controlled environment. Instead
of explicitly interpreting optical metrology tasks from
the perspective of solving inverse problems (based on a
formal optimization framework), mainstream scientists
in optical metrology prefer to bypass the ill-posedness
and simplify the problem by means of active strategies,
such as sample manipulation, system adjustment, and
multiple acquisitions31. A typical example is the phase-
shifting technique32, which sacrifices the time and effort

of capturing multiple fringe patterns to exchange for a
deterministic and straightforward solution. Under such
circumstances, the phase retrieval problem is well-posed
or even over-determined (when the phase-shifting step
is larger than 3), and employing more evolved algo-
rithms, such as compressed sensing33 and nonconvex
(low-rank) regularization34 seem redundant and unne-
cessary, especially as they fail to demonstrate clear
advantages over classical ones in terms of accuracy,
adaptability, speed, and, more importantly, ease-of-use.
This gives us the key question and motivation of this
review paper: whether machine learning will be the
driving force in optical metrology not only provides
superior solutions to the growing new challenges but
also tolerates imperfect measurement conditions with
the least efforts, such as additive noise, phase-shifting
error, intensity nonlinearity, motion, and vibration.
In the past few years, we have indeed witnessed the

rapid progress on high-level artificial intelligence (AI),
where deep representations based on convolutional and
recurrent neural network models are learned directly
from the captured data to solve many tasks in computer
vision, computational imaging, and computer-aided
diagnosis with unprecedented performance35–37. The
early framework for deep learning was established on
artificial neural networks (ANNs) in the 1980s38, yet
only recently the real impact of deep learning became
significant due to the advent of fast graphics processing
units (GPUs) and the availability of large datasets39. In
particular, deep learning has revolutionized the com-
puter vision community, introducing non-traditional
and effective solutions to numerous challenging pro-
blems such as object detection and recognition40, object
segmentation41, pedestrian detection42, image super-
resolution43, as well as medical image-related applica-
tions44. Similarly, in computational imaging, deep
learning has led to rapid growth in algorithms and
methods for solving a variety of ill-posed inverse com-
putational imaging problems45, such as super-resolution
microscopy46, lensless phase imaging47, computational
ghost imaging48, and image through scattering media49.
In this context, researchers in optical metrology have
also made significant explorations in this regard with
very promising results within just a few short years, as
evidenced by the ever-increasing and the respectable
number of publications50–55. Meanwhile, those research
works are scattered rather than systematic, which gives
us the second motivation to provide a comprehensive
review to understand their principles, implementations,
advantages, applications, and challenges. It should be
noted that optical metrology covers a wide range of
methods and applications today. It would be beyond
the scope of this review to discuss all relevant technol-
ogies and trends. We, therefore, restrict our focus to
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phase/correlation measurement techniques, such as
interferometry, holography, fringe projection, and
DIC. Although phase retrieval and wave-field
sensing technologies, such as defocus variation
(Gerchberg–Saxton–Fienup-type methods56,57), trans-
port of intensity equation (TIE)58,59, aperture modula-
tion60, ptychography61,62, and wavefront sensing (e.g.,
Shack–Hartmann63, Pyramid64, and computational
shear interferometry65), has been recently introduced to
optical metrology66–68, they may be more appropriately
placed in the field of “computational imaging”. The
reader is referred to the earlier review by Barbastathis
et al.45 for more detailed information on this topic. It is
also worth mentioning that (passive) stereovision, which
extracts depth information from stereo images, is an
important branch of photogrammetry that has been
extensively studied by the computer vision community.
Although stereovision techniques do not strictly fall into
the category of optical metrology, due to the fact that
many ideas and algorithms in DIC and fringe projection
were “borrowed” from stereovision, they are also
included in this review.
The remainder of this review is organized as follows.

We start by summarizing the relevant foundations and
image formation models of different optical metrology
approaches, which are generally required as a priori
knowledge in conventional optical metrology methods.
Next, we present a general hierarchy of the image-
processing algorithms that are most commonly used in
conventional optical metrology in the “Image processing
in optical metrology” section. After a brief introduction
to the history and basic concept of deep learning, we
recapitulate the advantages of using deep learning in
optical metrology tasks by interpreting the concept as an
optimization problem. We then present a recollection of
the deep learning methods that have been proposed in
optical metrology, suggesting the pervasive penetration
of deep learning in almost all aspects of the image-
processing hierarchy. The “Challenges” section discusses
both technical and implementation challenges faced by
the current deep-learning approach in optical metrology.
In the “Future directions” section, we give our outlook
for the prospects for deep learning in optical metrology.
Finally, conclusions and closing remarks are given in the
“Conclusions” section.

Image formation in optical metrology
Optical metrology methods often form images (e.g.,

fringe/speckle patterns) for processing. Thus image for-
mation is essential to reconstruct various quantities. In
most interferometric metrological methods, the image is
formed by the coherent superposition of the object and
reference beams. As a result, the raw intensity across the
object is modulated by a harmonic function, resulting in

the bright and dark contrasts, known as fringe patterns.
A typical fringe pattern can be written as18,19

I x; yð Þ ¼ A x; yð Þ þ B x; yð Þ cos ϕ x; yð Þ½ � ð1Þ

where (x, y) refers to the spatial coordinates along the
horizontal and vertical directions, A(x, y) is the back-
ground intensity, B(x, y) is the fringe amplitude, ϕ(x, y)
is the phase distribution. In most cases, phase is the
primary quantity of the fringe pattern to be retrieved as
it is related to the final object quantities of interest, such
as surface shape, mechanical displacement, 3D coordi-
nates, and their derivations. The related techniques
include classical interferometry, photoelasticity, holo-
graphical interferometry, digital holography, etc. On a
different note, the fringe patterns can also be created
noninterferometrically by overlapping of two periodic
gratings as in geometric moiré, or incoherent projection
of structured patterns onto the object surface as in
fringe projection profilometry (FPP)/deflectometry. As
summarized in Fig. 1, though the final fringe patterns
obtained in all forms of fringe-based techniques
discussed herein are similar in form, the physics behind
the image formation process and the meanings of the
fringe parameters are different. In DIC, the measured
intensity images are speckle patterns of the specimen
surface before and after deformation,

Id x; yð Þ ¼ Ir xþ Dxðx; yÞ; yþ Dyðx; yÞ
� � ð2Þ

where Dxðx; yÞ;Dyðx; yÞ
� �

refers to the displacement
vector-field mapping from the undeformed/reference
pattern Ir(x, y) to the deformed one Id(x, y). It directly
provides full-field displacements and strain distribu-
tions of the sample surface. The DIC technique can also
be combined with binocular stereovision or stereopho-
togrammetry to recover depth and out-of-plane defor-
mation of the surface from the displacement field (so-
called disparity) by exploiting the unique textures
present in two or more images of the object taken from
different viewpoints. The image formation processes for
typical optical metrology methods are briefly described
as follows.
(1) Classical interferometry: In classical

interferometry, the fringe pattern is formed by
superimposition of two smooth coherent
wavefronts, one of which is typically a flat or
spherical reference wavefront and the other a
distorted wavefront formed and directed by optical
components69,70 (Fig. 1a). The phase of the fringe
pattern reflects the difference between the ideal
reference wavefront and object wavefront. Typical
examples of classical interferometry include the use
of configurations such as the Michelson, Fizeau,
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Twyman Green, and Mach-Zehnder interferometers
to characterize the surface, aberration, or roughness
of optical components with high accuracy, of the
order of a fraction of the wavelength.

(2) Photoelasticity: Photoelasticity is a nondestructive,
full-field, optical metrology technique for
measuring the stress developed in transparent
objects under loading71,72. Photoelasticity is based
on an optomechanical property, so-called “double
refraction” or “birefringence” observed in many
transparent polymers. Combined with two circular
polarizers (linear polarizer coupled with quarter
waveplate) and illuminated with a conventional
light source, a loaded photoelastic sample (or
photoelastic coating applied to an ordinary
sample) can produce fringe patterns whose phases
are associated with the difference between the
principal stresses in a plane perpendicular to the
light propagation direction73 (Fig. 1b).

(3) Geometric moiré/Moiré interferometry: In
optical metrology, the moiré technique is defined
as the utilization of the moiré phenomenon to
measure shape, deformation, or displacements of
surfaces74,75. A moiré pattern is formed by the
superposition of two periodic or quasi-periodic
gratings. One of these gratings is called reference
grating, and the other one is object grating
mounted or engraved on the surface to be
studied, which is subjected to distortions induced
by surface changes. For in-plane displacement and
strain measurements, moiré technology has evolved
from low-sensitivity geometric moiré75–77 to high-
sensitivity moiré interferometry75,78. In moiré
interferometry, two collimated coherent beams
interfere to produce a virtual reference grating
with high frequencies, which interacts with the
object grating to create the moiré pattern with
fringes representing subwavelength in-plane
displacements per contour (Fig. 1c).

(4) Holographic interferometry: Holography,
invented by Gabor17 in the 1940 s, is a technique
that records an interference pattern and uses
diffraction to reproduce a wavefront, resulting in
a 3D image that still has the depth, parallax, and
other properties of the original scene. The principle
of holography can also be utilized as an optical
metrology tool. In holographic interferometry, a
wavefront is first stored in the hologram and later
interferometrically compared with another,
producing fringe patterns that yield quantitative
information about the object surface deriving
these two wavefronts79,80. This comparison can be
made in three different ways that constitute the
basic approaches of holographic interferometry:

real-time81, double-exposure82, and time-average
holographic interferometry83,84 (Fig. 1d), allowing
for both qualitative visualization and quantitative
measurement of real-time deformation and
perturbation, changes of the state between two
specific time points, and vibration mode and
amplitude, respectively.

(5) Digital holography: Digital holography utilizes a
digital camera (CMOS or CCD) to record the
hologram produced by the interference between a
reference wave and an object wave emanating
from the sample85,86 (Fig. 1e). Unlike classical
interferometry, the sample may not be precisely in-
focus and can even be recorded without using any
imaging lenses. The numerical propagation using
Fresnel transform or angular spectrum algorithm
enables digital refocusing at any depths of the
sample without physically moving it. In addition,
digital holography also provides an alternative and
much simpler way to realize double-exposure87

and time-averaged holographic interferometry88,89,
without additional benefits of quantitative
evaluation of holographic interferograms and
flexible phase-aberration compensation86,90.

(6) Electronic speckle pattern interferometry
(ESPI): In ESPI, the tested object generally has
an optically rough surface. When illuminated by a
coherent laser beam, it will create a speckle pattern
with random phase, amplitude, and intensity91,92.
If the object is displaced or deformed, the object-
to-image distance will change, and the phase of the
speckle pattern will change accordingly. In ESPI,
two speckle patterns are acquired one each for the
undeformed and deformed states, by double
exposure, and the absolute difference between
these two deformed patterns results in the form of
fringes superimposed on the speckle pattern where
each fringe contour normally represents a
displacement of half a wavelength (Fig. 1f).

(7) Electronic speckle shearing interferometry
(shearography): Electronic speckle shearing
interferometry, commonly known as
shearography, is an optical measurement
technique similar to ESPI. However, instead
of using a separate known reference beam,
shearography uses the test object itself as the
reference; and the interference pattern is created
by two sheared speckle fields originated from the
light scattered by the surface of the object under
test93,94. In shearography, the phase encoded in the
fringe pattern depicts the derivatives of the surface
displacements, i.e., to the strain developed on the
object surface (Fig. 1g). Consequently, the
anomalies or defects on the surface of the object
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can be revealed more prominently, rendering
shearography one of the most powerful tools for
nondestructive testing applications.

(8) Fringe projection profilometry/deflectometry:
Fringe projection is a widely used
noninterferometic optical metrology technique
for measuring the topography of an object at a
certain angle between the observation and the
projection point95,96. The sinusoidal pattern in
fringe projection techniques is generally
incoherently formed by a digital video projector
and directly projected onto the object surface. The
corresponding distorted fringe pattern is recorded
by a digital camera. The average intensity and
intensity modulation of the captured fringe pattern
are associated with the surface reflectivity and
ambient illuminations, and the phase is associated
with the surface height32 (Fig. 1h). Deflectometry
is another structured light technique similar to
FPP, but instead of being produced by a projector,
similar types of fringe patterns are displayed on a
planar screen and distorted by the reflective
(mirror-like) test surface97,98. The phase
measured in deflectometry is directly sensitive to
the surface slope (similar to shearography), so it is
more effective for detecting shape defects99,100.

(9) Digital image correction (DIC)/stereovision:
DIC is another important noninterferometic
optical metrology method that employs image
correlation techniques for measuring full-field
shape, displacement, and strains of an object
surface23,101,102. Generally, the object surface
should have a random intensity distribution (i.e.,
a random speckle pattern), which distorts together
with the sample surface as a carrier of deformation
information. Images of the object at different
loadings are captured with one (2D-DIC)23, or two

synchronized cameras (3D-DIC)103, and then
these images are analyzed with correlation-based
matching (tracking or registration) to extract full-
field displacement and strain distributions (Fig. 1i).
Unlike 2D-DIC that is limited to in-plane
deformation measurement of nominal planar
objects, 3D-DIC, also known as stereo-DIC,
allows for the measurement of 3D displacements
(both in-plane and out-of-plane) for both planar
and curved surfaces104,105. 3D-DIC is inspired by
binocular stereovision or stereophotogrammetry
in the computer vision community, which
recovers the 3D coordinates by finding pixel
correspondence (i.e., disparity) of unique features
that exist in two or more images of the object
taken from different points of view106,107.
Nevertheless, unlike DIC, in which the
displacement vector can be along both x and y
directions, in stereophotogrammetry, after
epipolar rectification, disparities between the
images are along the x direction only108.

Image processing in optical metrology
The elementary task of digital image processing in

optical metrology can be defined as the conversion of
the captured raw intensity image(s) into the desired
object quantities taking into account the physical model
of the intensity distribution describing the image for-
mation process. In most cases, image processing in
optical metrology is not a one-step procedure, and a
logical hierarchy of image processing steps should be
accomplished. As illustrated in Fig. 2, the image-
processing hierarchy typically encompasses three main
steps, pre-processing, analysis, and postprocessing, each
of which includes a series of mapping functions that are
cascaded to form a pipeline structure. For each opera-
tion, the corresponding f is an operator that transforms

Image(s) 

I’I Φ

I ’=fpre(I)= fL(…(f2(f1(I)))
Φ=fanal (I’)= fM (…(fL+2(fL+1 (I’))) q=fpost (Φ)= fN(fN-1(…(fM+1 (Φ)))

Desired object
quantities

Information bearing
parameter(s)

0

50 40

20

0

50

–50

–40 –20
20 40

0

0

Processed image(s)

f1

f2

…

fL

fL+1

fM

fM+1

…

fN-1

fN

fL+2

…

q=(x, y, z)

Fig. 2 Image-processing pipeline of typical optical metrology methods. The pipeline of a typical optical metrology method (e.g., FPP)
encompasses a sequence of distinct operations (algorithms) to process and analyze the image data, which can be further categorized into three main
steps: pre-processing (e.g., denoising, image enhancement), analysis (e.g., phase demodulation, phase unwrapping), and postprocessing (e.g., phase-
depth mapping)
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Fig. 3 Hierarchy and typical algorithms of image processing in optical metrology. Image processing in optical metrology is not a one-step
procedure. Depending on the purpose of the evaluation, a logical hierarchy of processing steps should be implemented before the desired
information can be extracted from the image. In general, the image processing architecture in optical metrology consists of three main steps: pre-
processing, analysis, and post-processing.
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the image-like input into an output of corresponding
(possibly resampled) spatial dimensions. Figure 3 shows
the big picture of the image-processing hierarchy with
various types of algorithms distributed in different lay-
ers. Next, we will zoom in one level deeper on each of
the hierarchical steps.

Pre-processing
The purpose of pre-processing is to assess the quality of

the image data and improve the data quality by suppres-
sing or minimizing unwanted disturbances (noise, alias-
ing, geometric distortions, etc.) before being fed to the
following image analysis stage. It takes place at the lowest
level (so-called iconic level) of image processing —the
input and output of the corresponding mapping function
(s) are both intensity images, i.e., fanal : I ! I 0. Repre-
sentative image pre-processing algorithms in optical
metrology includes but not limited to:

● Denoising: In optical metrology, noise in captured
raw intensity data has several sources that are related
to the electronic noise of photodetectors and the
coherent noise (so-called speckle). Typical numerical
approaches to noise reduction include median filter109,
spin filter110, anisotropic diffusion111, coherence
diffusion112, Wavelet113, windowed Fourier transform
(WFT)114,115, block matching 3D (BM3D)116, etc. For
more detailed information and comparisons of these
algorithms, the reader may refer to the reviews by
Kulkarnia and Rastogi117 and Bianco et al.118.

● Enhancement: Image enhancement is a crucial pre-
processing step in intensity-based fringe analysis
approaches, such as fringe tracking or skeletonizing.
Referring to the intensity model, the fringe pattern
may still be disturbed by locally varying background
and intensity modulation after denoising. Several
algorithms have been developed for fringe pattern
enhancement, e.g., adaptive filter119, bidimensional
empirical mode decomposition120,121, and dual-tree
complex wavelet transform122.

● Color channel separation: Because a Bayer color
sensor-camera captures three monochromatic (red,
green, and blue) images at once, color multiplexing
techniques are often employed in optical metrology
to speed up the image acquisition process123–127.
However, the separation of three color channels is
not so straightforward due to the coupling and
imbalance among the three color channels. Many
cross-talk-matrix-based color channel calibration
and leakage correction algorithms have been
proposed to minimize such side effects128–130.

● Image registration and rectification: Image
registration and rectification are aimed at aligning
two or more images of the same object to a reference
or correcting image distortion due to lens aberration.

In stereophotogrammetry, epipolar (stereo)
rectification determines a reprojection of each
image plane so that pairs of conjugate epipolar
lines in both images become collinear and parallel to
one of the image axes108.

● Interpolation: Image interpolation algorithms, such
as the nearest neighbor, bilinear, bicubic109, and
nonlinear regression131 are necessary when the
measured intensity image is sampled at an
insufficient dense grid. In DIC, to reconstruct
displacements with subpixel accuracy, the
correlation criterion must be evaluated at non-
integer-pixel locations132–134. Therefore, image
interpolation is also a key algorithm for DIC to
infer subpixel gray values and gray-value gradients in
many subpixel displacement registration algorithms,
e.g., the Newton–Raphson method133–135.

● Extrapolation: Image extrapolation, especially fringe
extrapolation is often employed in Fourier transform
(FT) fringe analysis methods to minimize the
boundary artifacts induced by spectrum leakage.
Schemes for the extrapolation of the fringe pattern
beyond the borders have been reported, such as soft-
edged frequency filter136 and iterative FT137.

Analysis
Image analysis is the core component of the image-

processing architecture to extract the key information-
bearing parameter(s) reflecting the desired physical
quantity being measured from the input images. In phase
measurement techniques, image analysis refers to the
reconstruction of phase information from the fringe-like
modulated intensity distribution(s), i.e., fanal : I ! ϕ.

● Phase demodulation: The aim of phase
demodulation, or more specifically, fringe analysis,
is to obtain the wrapped phase map from the quasi-
periodic fringe patterns. Various techniques for
fringe analysis have been developed to meet
different requirements in diverse applications,
which can be broadly classified into two categories:

Spatial phase demodulation: Spatial phase-
demodulation methods are capable of estimating the
phase distribution through a single-fringe pattern.
FT138,139, WFT114,115,140, and wavelet transform
(WT)141 are classical methods for the spatial carrier
fringe analysis. For closed-fringe patterns without the
carrier, alternative methods, such as Hilbert spiral
transform142,143, regularized phase tracking (RPT)144,145

and frequency-guided sequential demodulation146,147,
can be applied provided that the cosinusoidal component
of the fringe pattern can be extracted by pre-processing
algorithms of denoising, background removal, and fringe
normalization. The interested reader may refer to the
book by Servin et al.148 for further details.
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Temporal phase demodulation: Temporal phase-
demodulation techniques detect the phase distribution
from the temporal variation of fringe signals, as typified
by heterodyne interferometry149 and phase-shifting
techniques150. Many phase-shifting algorithms have
originally been proposed for optical interferometry/
holography and later been adapted and extended to
fringe projection, for example, standard N-step phase-
shifting algorithm151, Hariharan 5-step algorithm21, 2+
1 algorithm152 etc. The interested reader may refer to the
chapter “Phase shifting interferometry”153 of the book
edited by Malacara4 and the review article by Zuo et al.32

for more details about phase-shifting techniques in the
contexts of optical interferometry and FPP, respectively.
● Phase unwrapping: No matter which phase-

demodulation technique is used, the retrieved
phase distribution is mathematically wrapped to
the principal value of the arctangent function
ranging between −π and π. The result is what is
known as a wrapped phase image, and phase
unwrapping has to be performed to remove any
2π-phase discontinuities. Phase unwrapping
algorithms can be broadly classified into three
categories:

Spatial phase unwrapping: Spatial phase unwrapping
methods use only a single wrapped phase map to retrieve
the corresponding unwrapped phase distribution, and
the unwrapped phase of a given pixel is derived based on
the adjacent phase values. Representative methods
include Goldstein’s method154, reliability-guided
method155, Flynn’s method156, minimal Lp-norm
method157, and phase unwrapping max-flow/min-cut
(PUMA) method158. The interested reader may refer to
the book by Ghiglia et al. for more technical details.
There are also many reviews on the performance
comparisons of different unwrapping algorithms for
specific applications159–161. Limited by the assumption of
phase continuity, spatial phase unwrapping methods
cannot fundamentally address the inherent fringe order
ambiguity problem when the phase difference between
neighboring pixels is greater than π.
Temporal phase unwrapping: To remove the phase
ambiguity, temporal phase unwrapping methods gen-
erally generate different or synthetic wavelengths by
adjusting flexible system parameters (wavelength, angu-
lar separation of light sources, spatial frequency,
orientation of the projected fringe patterns) step by step,
so that the object can be covered by fringes with different
periods. Representative temporal phase unwrapping
algorithms include gray-code methods162,163, multi-
frequency (hierarchical) methods164–166, multi-
wavelength (heterodyne) methods167–169, and number-
theoretical methods170–173. For more detailed informa-
tion about these methods, the reader can refer to the

comparative review by Zuo et al.174 The advantage of
temporal phase unwrapping lies in that the unwrapping
is neighborhood-independent and proceeds along the
time axis on the pixel itself, enabling an absolute
evaluation of the mod-2π phase distribution.
Geometric phase unwrapping: Geometric phase
unwrapping approaches can solve the phase ambiguity
problem by exploiting the epipolar geometry of
projector–camera systems. If the measurement volume
can be predefined, depth constraints can be incorporated
to preclude some phase ambiguities corresponding to the
candidates falling out of the measurement range175–185.
Alternatively, an adaptive depth-constraint strategy can
provide pixel-wise depth constraint ranges according to
the shape of the measured object186. By introducing
more cameras, tighter geometry constraints can be
enforced so as to guarantee the unique correspondence
and improve the unwrapping reliability185,187.
In stereomatching techniques, image analysis refers to

determining (tracking or matching) the displacement
vector of each pixel point between a pair of acquired
images, i.e., fanal : ðIr; IdÞ ! ðDx;DyÞ. In the routine
implementation for DIC and stereophotogrammetry, a
region of interest (ROI) or subset in the image is specified
at first. The subset is further divided into an evenly spaced
virtual grid. The similarity is evaluated at each point of the
virtual grid in the reference image to obtain the dis-
placement between two subsets. A full-field displacement
map can be obtained by sliding the subset in the searching
area of the reference image and obtaining the displace-
ment at each location.

● Subset correlation: In DIC, to quantitatively
evaluate the similarity or difference between the
selected reference subset and the target subset,
several correlation criteria have been proposed,
such as cross-correlation (CC), the sum of absolute
difference (SAD), the sum of squared difference
(SSD), zero-mean normalized cross-correlation
criterion (ZNCC), zero-mean normalized sum of
squared difference (ZNSSD), and the parametric
sum of squared difference (PSSD)188–190. The
subsequent matching procedure is realized by
identifying the peak (or valley) position of the
correlation coefficient distribution based on certain
optimization algorithms. In stereophotogrammetry,
nonparametric costs rely on the local ordering (i.e.,
Rank191, Census192, and Ordinal measures193) of
intensity values, which are more frequently used due
to their robustness against radiometric changes and
outliers, especially near object boundaries192–194.

● Subpixel refinement: The subset correlation
methods mentioned above can only provide
integer-pixel displacements. To further improve the
measurement resolution and accuracy, many
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subpixel refinement methods were developed,
including intensity interpolation (i.e., the
coarse–fine search method)195,196, correlation
coefficient curve-fitting133,197, gradient-based
method198,199, Newton–Raphson (NR)
algorithm135,200,201, and inverse compositional
Gauss–Newton (IC-GN) algorithm202–204. Among
these algorithms, NR and IC-GN are most
commonly used for their high registration accuracy
and effectiveness in handling high-order surface
transformations. However, they suffer from
expensive computation cost stemming from their
iterative nonlinear optimization and repeated
subpixel interpolation. Therefore, accurate initial
guesses obtained by integer-pixel subset correlation
methods are critical to ensure the rapid
convergence205 and reduce the computational
cost206. In stereovision, the matching algorithms
can be classified as local207–209, semi-global210, and
global methods211. Local matching methods utilize
the intensity information of a local subset centered at
the pixel to be matched. Global matching methods
take the result obtained by local matching methods
as the initial value and then optimize the disparity by
minimizing a predefined global energy function.
Semi-global matching methods reduce the 2D global
energy minimization problem into a 1D one,
enabling faster and more efficient implementations
of stereomatching.

Postprocessing
In optical metrology, the main task of postprocessing is

to further refine the measured phase or retrieved dis-
placement field, and finally transform them into the
desired physical quantity of the measured object, i.e., the
corresponding operator fpost : ϕ=ðDx;DyÞ ! q, where q is
the desired sample quantity.

● Denoising: Instead of applying to raw fringe
patterns, image denoising can also be used as a
postprocessing algorithm to remove noise directly
from the retrieved phase distribution. Various phase
denoising algorithms have been proposed, such as
least-square (LS) fitting212, anisotropic average
filter213, WFT214, total variation215, and nonlocal
means filter216.

● Digital refocusing: The numerical reconstruction of
propagating wavefronts by diffraction is a unique
feature of digital holography. Since the hologram of
the object may not be recorded in the in-focus plane.
Numerical diffraction or backpropagation
algorithms (e.g., Fresnel diffraction and angular
spectrum methods) should be used to obtain a
focused image by performing a plane-by-plane
refocusing after the image acquisition217–219.

● Error compensation: There are various types of
phase errors associated with optical metrology
systems, such as phase-shifting error, intensity
nonlinearity, and motion-induced error, which
can be compensated with different types of
postprocessing algorithms60,220,221. In digital
holographic microscopy, the microscope objective
induces additional phase curvature on the measured
wavefront, which needs to be compensated in order
to recover the phase information induced by the
sample. Typical numerical phase-aberration
compensation methods include double exposure222,
2D spherical fitting223 Zernike polynomials fitting224,
Fourier spectrum filtering225, and principal
component analysis (PCA)226.

● Quantity transformation: The final step of
postprocessing and also the whole measurement
chain is to convert the phase or displacement field
into the desired sample quantity, such as height,
thickness, displacement, stress, strains, and 3D
coordinates, based on sample parameters (e.g.,
refractive index, relative stress constant) or
calibrated system parameters (e.g., sensitivity vector
and camera (intrinsic, extrinsic) parameters). The
optical setup should be carefully designed to
optimize the sensitivity with respect to the
measuring quantity in order to achieve a successful
and efficient measurement227,228.

Finally, it should be mentioned that since optical
metrology is a rapidly expanding field in both its scientific
foundations and technological developments, the image-
processing hierarchy used here cannot provide full cov-
erage of all relevant methods and technologies. For
example, phase retrieval and wave-field sensing technol-
ogies have shown great promise for inexpensive, vibra-
tion-tolerant, non-interferometric, optical metrology of
optical surfaces and systems66,67. These methods con-
stitute an important aspect of computational imaging as
they often involve solving ill-posed inverse problems.
There are also some optical metrology methods based on
solving constrained optimization problems with added
penalties and relaxations (e.g., RPT phase demodula-
tion144,145 and minimal Lp-norm phase unwrapping
methods157), which may make pre- and postprocessing
unnecessary. For a detailed discussion on this topic, please
refer to the subsection “Solving inverse optical metrology
problems: issues and challenges”.

Brief introduction to deep learning
Deep learning is a subset of machine learning, which is

defined as the use of specific algorithms that enable
machines to automatically learn patterns from large
amounts of historical data, and then utilize the uncovered
patterns to make predictions about the future or enable
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decision making under uncertain intelligently229,230. The
key specific algorithm used in machine learning is the
ANN, which exploits input data x 2 X � Rn to predict an
unknown output y 2 Y. The tasks accomplished by the
ANN can be broadly divided as classification tasks or
regression tasks, depending on whether y is a discrete
label or a continuous value. The objective of machine
learning is then to find a mapping function f : x ! y.
The choice of such functions is given by the neural net-
work models with additional parameters θ 2 Θ: i.e., ŷ ¼
f x; θð Þ � y. The goal of this section is to provide a brief
introduction to deep learning, as a preparation for the
introduction of its applications in optical metrology
later on.

Artificial neural network (ANN)
Inspired by the biological neural network (Fig. 4a),

ANNs are composed of interconnected computational
units called artificial neurons. As illustrated in Fig. 4b,
the simplest neural network following the above concept
is the perceptron, which consists of only one single
artificial neuron231. An artificial neuron takes a bias b
and weight vector w ¼ w1;w2; � � � ;wnð ÞT as parameters
θ ¼ b;w1;w2; � � � ;wnð ÞT to map the input x ¼
x1; x2; � � � ; xnð ÞT to the output fP xð Þ through a nonlinear
activation function σ as

fP xð Þ ¼ σ wTxþ b
� � ð3Þ

Typical choices for such activation functions are the
sign function σ xð Þ ¼ sgn xð Þ, sigmoid function σ xð Þ ¼

1
1þ e�x, hyperbolic tangent function σ xð Þ ¼ ex � e�x

ex þ e�x, and
rectified linear unit (ReLU) σ xð Þ ¼ max 0; xð Þ232. A single
perceptron can only model a linear function, but because
of the activation functions and in combination with other
neurons, the modeling capabilities will increase dramati-
cally. Arranged in a single layer, it has already been shown
that neural networks can approximate any continuous
function f(x) on a compact subset of Rn. A single-layer
network, also called single-layered perceptron (SLP), is
represented as a linear combination of M individual
neurons:

f1NN xð Þ ¼
XM
i¼1

viσ wT
i xþ bi

� � ð4Þ

where vi is the combination weight of the ith neuron. We
can further extend the mathematical specification of SLP
by stacking several single-layer networks into a multi-
layered perceptron (MLP)233. As the network goes deeper
(number of layers increase), the number of free para-
meters increases, as well as the capability of the network

to represent highly nonlinear functions234. We can
formalize this mathematically by stacking several single-
layer networks into a deep neural network (DNN) with N
layers, i.e.

fDNN xð Þ ¼ f1NN f1NN � � � f1NN xð Þð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N

¼ f1NN � f1NN � � � � f1NN xð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N

ð5Þ

where the circle ◦ is the symbol for the composition of
functions. The first layer is referred to as the input layer,
the last as the output layer, and the layers in between the
input and output are termed as hidden layers. We refer to
these using the term “deep”, when a neural network
contains many hidden layers, hence the term “deep
learning”.

Neural network training
Having gained basic insights into neural networks and

their basic topology, we still need to discuss how to train
the neural network, i.e., how its parameters θ are actually
determined. In this regard, we need to select the appro-
priate model topology for the problem to be solved and
specify the various parameters associated with the model
(known as “hyper-parameters”). In addition, we need to
define a function that assesses the quality of the network
parameter set θ, the so-called loss function L, which
quantifies the error between the predicted value ŷ ¼ fθ xð Þ
and the true observation y (label)235.
Depending on the type of task accomplished by the

network, the loss function can be divided into classification
loss and regression loss. Commonly used classification
loss functions include hinge loss (LHinge ¼Pn

i¼1 max½0; 1� sgnðyiÞŷi�) and cross-entropy loss LCE ¼
�Pn

i¼1 ½yi log ŷi þ ð1� yiÞ logð1� ŷiÞ�)236. Since the opti-
cal metrology tasks involved in this review mainly belong to
regression tasks, here we focus on the regression loss
functions. The mean absolute error (MAE) loss (LMAE ¼
1
n

Pn
i¼1 yi � ŷij j) and the mean squared error (MSE) loss

(LMSE ¼ 1
n

Pn
i¼1 ðyi � ŷiÞ2) are the two most commonly

used loss functions, which are also known as L1 loss and L2
loss, respectively. In image-processing tasks, MSE is usually
converted into a peak signal-to-noise ratio (PSNR) metric:

LPSNR ¼ 10 log10
MAX2

LMSE
, where MAX is the maximum pixel

intensity value within the dynamic range of the raw
image237. Other variants of L1 and L2 loss include RMSE,
Euclidean loss, smooth L1, etc.238. For natural images, the
structural similarity (SSIM) index is a representative image
fidelity measurement, which judges the structural similarity
of two images based on three metrics (luminance, contrast,
and structure): LSSIM ¼ lðy;byÞcðy;byÞsðy;byÞ239, where
lðy;byÞ, cðy;byÞ, and sðy;byÞ are the similarities of the local
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patch luminances, contrasts, and structures, respectively.
For more details about these loss functions, readers may
refer to the article by Wang and Bovik240. With the defined
loss function, the objective behind the training process of
ANNs can be formalized as an optimization problem241

bθ ¼ argmin
θ2Θ

Lðfθðx; yÞÞ ð6Þ

The learning schemes can be broadly classified into
three categories, supervised learning, semi-supervised
learning, and unsupervised learning36,242–244. Supervised
learning dominates the majority of practical applications,

in which a neural network model is optimized based on a
large amount dataset of labeled data pairs (x, y), and the
training process amounts to find the model parameters bθ
that best predict the data based on the loss function
L by; yð Þ. In unsupervised learning, training algorithms
process input data x without corresponding labels y, and
the underlying structure or distribution in the data has to
be modeled based on the input itself. Semi-supervised
learning sits in between both supervised and unsupervised
learning, where a large amount of input data x is available
and only some of the data is labeled. More detailed dis-
cussions about semi-supervised and unsupervised learn-
ing can be found in the “Future directions” section.
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From perceptron to deep learning
As summarized in Fig. 4, despite the overall upward

trend, a broader look at the history of deep learning
reveals three major waves of development. Concepts of
machine learning and deep learning commenced with the
research into the artificial neural network, which was
originated from the simplified mathematical model of
biological neurons established by McCulloch and Pitts in
1943245. In 1958, Rosenblatt231 proposed the idea of
perceptron, which was the first ANN that allows neurons
to learn. The emergence of perceptron marked the first
peak of neural network development. However, a single-
layer perceptron model can only solve linear classification
problems and cannot solve simple XOR and XNOR
problems246. These limitations caused a major dip in their
popularity and stagnated the development of neural net-
works for nearly two decades.
In 1986, Rumelhart et al.247 proposed the idea of a

backpropagation algorithm (BP) for MLP, which con-
stantly updates the network parameters to minimize the
network loss based on a chain rule method. It effectively
solves the problems of nonlinear classification and
learning, leading neural networks into a second develop-
ment phase of “shallow learning” and promoting a boom
of shallow learning. Inspired by the mammalian visual
cortex (stimulated in the restricted visual field)248, LeCun
et al.249 proposed the biologically inspired CNN model
based on the BP algorithm in 1989, establishing the
foundation of deep learning for modern computer vision.
During this wave of development, various models like
long short-term memory (LSTM) recurrent neural net-
work (RNN), distributed representation, and processing
were developed and continue to remain key components
of various advanced applications of deep learning to this
date. Adding more hidden layers to the network allows a
deep architecture to be built, which can accomplish more
complex mappings. However, training such a deep net-
work is not trivial because once the errors are back-
propagated to the first few layers, they become negligible
(so-called gradient vanishing), making the learning pro-
cess very slow or even fails250. Moreover, the limited
computational capacity of the available hardware at that
time could not support training large-scale neural net-
works. As a result, deep learning suffered a second major
roadblock.
In 2006, Hinton et al.251,252 proposed a Deep Belief

Network (DBN) (the composition of simple, unsupervised
networks such as Deep Boltzmann Machines (DBMs)253

(Fig. 4f) or Restricted Boltzmann Machines (RBMs)254

(Fig. 4e)) training approach based on the brain graphical
models, trying to overcome the gradient-vanishing pro-
blem. They gave the new name “deep learning” to mul-
tilayer neural network-related learning methods251,252.
This milestone revolutionized the approaching prospects

in machine learning, leading neural networks into the
third upsurge along with the development of computer
hardware performance, the development of GPU accel-
eration technology, and the availability of massive labeled
datasets.
In 2012, Krizhevsky et al.255 proposed a deep CNN

architecture — AlexNet, which won the 2012 ImageNet
competition, making CNN249,256 become the dominant
framework for deep learning after more than 20 years of
silence. Meanwhile, several new deep-learning network
architectures and training approaches (e.g., ReLU232

given by σðxÞ ¼ maxð0; xÞ, and Dropout257 that discards a
small but random portion of the neurons during each
iteration of training to prevent neurons from co-adapting
to the same features) were developed to further combat
the gradient vanishing and ensure faster convergence.
These factors have led to the explosive growth of deep
learning and its applications in image analysis and com-
puter vision-related problems. Different from CNN, RNN
is another popular type of DNN inspired by the brain’s
recurrent feedback system. It provides the network with
additional “memory” capabilities for previous data, where
the inputs of the hidden layer consist of not only the
current input but also the output from the previous step,
making it a framework specialized in processing
sequential data258–260 (Fig. 4d). CNNs and RNNs usually
operate on Euclidean data like images, videos, texts, etc.
With the diversification of data, some non-Euclidean
graph-structured data, such as 3D-point clouds and
biological networks, are also considered to be processed
by deep learning. Graph neural networks (GNNs), where
each node aggregates feature vectors of its neighbors to
compute its new feature vector (a recursive neighbor-
hood aggregation scheme), are effective graph repre-
sentation learning frameworks specifically for non-
Euclidean data261,262.
With the focus of more attention and efforts from both

academia and industry, different types of deep neural
networks have been continuously proposed in recent
years with exponential growth, such as VGGNet263 (VGG
means “Visual Geometry Group”), GoogLeNet264 (using
“GoogLe” instead of “Google” is a tribute to LeNet, one of
the earliest CNNs developed by LeCun256), R-CNN
(regions with CNN features)265, generative adversarial
network (GAN)266, etc. In 2015, the emergence of the
residual block (Fig. 4h), containing two convolutional
layers activated by ReLU that allow the information (from
the input or those learned in earlier layers) to penetrate
more into the deeper layers, significantly reduces the
vanishing gradient problem as the network gets deeper,
making it possible to train large-scale CNNs efficiently267.
In 2016, the Google-owned AI company DeepMind
shocked the world by beating Lee Se-dol with its AlphaGo
AI system, alerting the world to deep learning, a new
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breed of machine learning that promised to be smarter
and more creative than before268. For a more detailed
description of the history and development of deep
learning, readers can refer to the chronological review
article by Schmidhuber39.

Convolutional neural network (CNN)
In the subsection “Artificial neural network”, we talked

about the simplest DNN, so-called MLPs, which basically
consist of multiple layers of neurons, each fully connected
to those in the adjacent layers. Each neuron receives some
inputs, which are multiplied by their weights, with non-
linearity applied via activation functions. In this subsec-
tion, we will talk about CNNs, which are considered an
evolution of the MLP architecture that is developed to
process data in single or multiple arrays, and thus are
more appropriate to handle image-like input. Given the
prevalence of CNNs in image processing and analysis
tasks, here we briefly review some basic ideas and con-
cepts widely used in CNNs. For a comprehensive intro-
duction to CNN, we refer readers to the excellent book by
Goodfellow et al.36.
CNN follows the same pattern as MLP: artificial neu-

rons are stacked in hidden layers on top of each other;
parameters are learned during network training with
nonlinearity applied via activation functions; the loss
L by; yð Þ is calculated and back-propagated to update the
network parameters. The major difference between them
is that instead of regular fully connected layers, CNN uses
specialized convolution layers to model locality and
abstraction (Fig. 5b). At each layer, the input image x
(lexicographically ordered) is convolved with a set of
convolutional filters W (note here W represents block-
Toeplitz convolution matrix) and added biases b to gen-
erate a new image, which is subjected to an elementwise
nonlinear activation function σ (normally use ReLU
function σðxÞ ¼ maxð0; xÞ), and the same structure is
repeated for each convolution layer k:

xk ¼ σ Wk�1xk�1 þ bk�1
� � ð7Þ

The second key difference between CNNs and MLPs is
the typical incorporation of pooling layers in CNNs,
where pixel values of neighborhoods are aggregated by
applying a permutation invariant function, such as the
max or mean operation, to reduce the dimensionality of
the convolutional layers and allows significant features to
propagate downstream without being affected by neigh-
boring pixels (Fig. 5c). The major advantage of such an
architecture is that CNNs exploit spatial dependencies in
the image and only consider a local neighborhood for
each neuron, i.e., the network parameters are shared in
such a way that the network performs convolution

operations on images. In other words, the idea of a CNN
is to take advantage of a pyramid structure to first identify
features at the lowest level before passing these features to
the next layer, which, in turn, create features of a higher
level. Since the local statistics of images are invariant to
location, the model does not need to learn weights for the
same feature occurring at different positions in an image,
making the network equivariant with respect to transla-
tions of the input. It makes CNNs especially suitable for
processing images captured in optical metrology, e.g., a
fringe pattern consisting of sinusoidal signal repeated over
different image locations. In addition, it also drastically
reduces the number of parameters (i.e., the number of
weights no longer depends on the size of the input image)
that need to be learned.
Figure 5a shows a CNN architecture for the image-

classification task. Every layer of a CNN transforms the input
volume to an output volume of neuron activation, eventually
leading to the final fully connected layers, resulting in a
mapping of the input data to a 1D feature vector. A typical
CNN configuration consists of a sequence of convolution
and pooling layers. After passing through a few pairs of
convolutional and pooling layers, all the features of the image
have been extracted and arranged into a long tube. At the
end of the convolutional stream of the network, several fully
connected layers (i.e., regular neural network architecture,
MLP, that discussed in the previous subsection) are usually
added to fatten the features into a vector, with which tasks,
such as classifications, can be performed. Starting with
LeNet256, developed in 1998 for recognizing handwritten
characters with two convolutional layers, CNN architectures
have evolved since then to deeper CNNs like AlexNet264 (5
convolutional Layers) and VGGNet263 (19 convolutional
Layers) and beyond to more advanced and super-deep net-
works like GoogLeNet264 and ResNet267, respectively. These
CNNs have been extremely successful in computer vision
applications, such as object detection269, action recogni-
tion270, motion tracking271, and pose estimation272.

Fully convolutional network architectures for image
processing
Conventionally, CNNs have been used for solving classi-

fication problems. Due to the presence of a parameter-rich
fully connected layer at the end of the network, typical
CNNs throw away spatial information and produce non-
spatial outputs. However, for most image-processing tasks
that we encountered earlier in the Section “Image processing
in optical metrology”, the network must have a whole-
resolution output with the same or even larger size com-
pared with the input, which is commonly referred to as
dense prediction (contrary to the single target category per
image)273. Specifically, fully convolutional network archi-
tectures without fully connected layers should be used for
this purpose, which accepts input of any size, is trained with
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a regression loss, and produces an output of the corre-
sponding dimensions273,274. Here, we briefly review three
representative network architectures with such features.

● SRCNN: In conventional CNN, the downsampling
effect of pooling layers results in an output with a far
lower resolution than the input. Thus, a relatively
naive and straightforward solution is simply stacking
several convolutions layers while skipping pooling
layers to preserve the input dimensions. Dong
et al.275 firstly adopt this idea and propose SRCNN
for the image super-resolution task. SRCNN utilizes
traditional upsampling algorithms to obtain low-
resolution images and then refine them by learning
an end-to-end mapping from interpolated coarse
images to high-resolution images of the same
dimension but with more details, as illustrated in
Fig. 6a. Due to its simple ideal and implementation,
SRCNN has gradually become one of the most
popular frameworks in image super-resolution276

and been extended to many other tasks such as radar
image enhancing277, underwater image high
definition display278, and computed tomography279.
One major disadvantage of SRCNN is the cost of
time and space to keep the whole resolution through
the whole network, limiting SRCNN only practical
for relatively shallow network structures.

● FCN: The fully convolutional network (FCN)
proposed by Long et al.273 is a popular strategy and
baseline for semantic-segmentation tasks. FCN is

inspired by the fact that the fully connected layers in
classification CNN (Fig. 5) can also be viewed as
convolutions with kernels that cover their entire input
regions. As illustrated in Fig. 6b, FCN uses the existing
classification CNN as the encoder module of the
network and replace these fully connected layers into
1 × 1 convolution layers (also termed as deconvolution
layers) as the decoding module, enabling the CNN to
upsample the input feature maps and get pixel-wise
output. In FCN, skip connections combining (simply
adding) information in fine layers and coarse layers
enhances the localization capability of the network,
allowing for the reconstruction of accurate fine details
that respect global structure. FCN and its variants have
achieved great success in the application of dense pixel
prediction as required in many advanced computer
vision understanding tasks280.

● U-Net: Ronneberger et al.281 took the idea of FCN one
step further and proposed the U-Net architecture,
which replaces the one-step upsampling part with a
bunch of complimentary upsampling convolutions
layers, resulting in a quasi-symmetrical encoder-
decoder model architecture. As illustrated in Fig. 6c,
the basic structure of U-Net consists of a contractive
branch and an expansive branch, which enables
multiresolution analysis and general multiscale
image-to-image transforms. The contractive branch
(encoder) downsamples the image using conventional
strided convolution, producing a compressed feature
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Fig. 5 The typical CNN architecture for image-classification tasks. a The typical CNN architecture for image classification tasks consists of the
input layer, convolutional layers, fully connected layers, and output prediction. b Convolution operation. c Pooling operation

Zuo et al. Light: Science & Applications           (2022) 11:39 Page 15 of 54



representation of the input image. The expansive
branch (decoder), complimentary to the contractive
branch, uses upsampling methods like transpose
convolution to provide the processed result with the
same size as the input. In addition, U-Net features skip
connections that concatenate the matching resolution
levels of the contractive branch and the expansive
branch. Ronneberger’s U-Net is a breakthrough toward
automatic image segmentation and has been
successfully applied in many tasks that require
image-to-image transforms282.

Since the feature extraction is only performed in low-
dimensional space, the computation and spatial com-
plexity of the above encoder-decoder structured networks
(FCN and U-Net) can be much reduced. Therefore, the
encoder-decoder CNN structure has become the main-
stream for image segmentation and reconstruction283.
The encoder is usually a classic CNN (Alexnet, VGG,
Resnet, etc.) in which downsampling (pooling layers) is
adopted to reduce the input dimension so as to generate
low-resolution feature maps. The decoder tries to mirror
the encoder to upsample these feature representations

Fig. 6 Three typical CNN structures for image-processing tasks with pixel-level image output. a SRCNN. b FCN. c U-Net
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and restore the original size of the image. Thus, how to
perform upsampling is of great importance. Although
traditional upsampling methods, e.g., nearest neighbor,
bilinear, and bicubic interpolations, are easy to imple-
ment, deep-learning-based upsampling methods, e.g.,
unpooling284, transpose convolution273, subpixel con-
volution285, has gradually become a trend. All these
approaches can be combined with the model mentioned
above to prevent the decrease in resolution and obtain a
full-resolution image output.

● Unpooling upsampling: Unpooling upsampling
reverts maxpooling by remembering the location of
the maxima in the maxpooling layers and in the
unpooling layers copy the value to exactly this
location, as shown in Fig. 7a.

● Transposed convolution: The opposite of the
convolutional layers are the transposed convolution
layers (also misinterpreted as deconvolution
layers280), i.e., predicting the possible input based
on feature maps sized like convolution output.
Specifically, it increases the image resolution by
expanding the image by inserting zeros and
performing convolution, as shown in Fig. 7b.

● Sub pixel convolution: The subpixel layer performs
upsampling by generating a plurality of channels by
convolution and then reshaping them, as Fig. 7c
shows. Within this layer, a convolution is firstly
applied for producing outputs with M times
channels, where M is the scaling factor. After that,
the reshaping operation (a.k.a. shuffle) is performed
to produce outputs with size M times larger than
the original.

As discussed in the Section “Image processing in
optical metrology”, despite their diversity, the image-
processing algorithms used in optical metrology share
a common characteristic—they can be regarded as a
mapping operator that transforms the content of
arbitrary-sized inputs into pixel-level outputs, which

fits exactly with DNNs with a fully convolutional
architecture. In principle, any fully convolutional net-
work architectures presented here can be used for a
similar purpose. By applying different types of training
datasets, they can be trained for accomplishing differ-
ent types of image-processing tasks that we encoun-
tered in optical metrology. This provides an alternative
approach to process images such that the produced
results resemble or even outperform conventional
image-processing operators or their combinations.
There are also many other potential desirable factors
for such a substitution, e.g., accuracy, speed, generality,
and simplicity. All these factors were crucial to enable
the fast rise of deep learning in the field of optical
metrology.

Invoking deep learning in optical metrology:
principles and advantages
Let us return to optical metrology. It is essential that the

image formation is properly understood in order to
reconstruct the required geometrical or mechanical
quantities of the sample, as we discussed in Section “Image
formation in optical metrology”. In general, the relation
between the observed images I 2 Rm (frame-stacked lex-
icographically ordered with m × 1 in dimension) and the
desired sample parameter (or information-bearing para-
meter that clearly reflects the desired sample quantity, e.g.,
phase or displacement field) P 2 Rm (or Cn) can be
described as

I ¼ N A pð Þf g ð8Þ

where A is the (possibly nonlinear) forward measurement
operator mapping from the parameter space to the image
space, which is given by the physics laws governing the
formation of data; N represents the effect of noise (not
necessarily additive). This model seems general enough to
cover almost all image formation processes in optical
metrology. However, this does not mean that p can be
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directly obtained from I. More specifically, we have to
conclude in general from the effect (i.e., the intensity at
the pixel) to its cause (i.e., shape, displacement, deforma-
tion, or stress of the surface), suggesting that an inverse
problem has to be solved.

Solving inverse optical metrology problems: issues and
challenges
Given the forward model represented by Eq. (8), our

task is to find the parameters by an approximate inverse of
A (denoted as ~A�1) such that bp ¼ bR Ið Þ ¼ ~A�1 Ið Þ � p.
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Fig. 8 Inverse problems in computer vision and optical metrology. a In computer vision, such as image deblurring, the resulting inverse
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determined by multi-frequency phase-shifting and temporal phase unwrapping methods
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However, in real practice, there are many problems
involved in this process:

● Unknown or mismatched forward model. The
success of conventional optical metrology
approaches relies heavily on the precise pre-
knowledge about the forward model A, so they are
often regarded as model-driven or knowledge-driven
approaches. In practical applications, the forward
model A used is always an approximate description
of reality, and extending it might be challenging due
to a limited understanding of experimental
perturbations (noise, aberrations, vibration, motion,
nonlinearity, saturation, and temperature variations)
and non-cooperative surfaces (shiny, translucent,
coated, shielded, highly absorbent, and strong
scattering). These problems are either difficult to
model or result in a too complicated (even
intractable) model with a large number of
parameters.

● Error accumulation and suboptimal solution. As
described in the section “Image processing in optical
metrology”, “divide-and-conquer” is a common
practice for solving complex problems with a
sequence of cascaded image-processing algorithms
to obtain the desired object parameter. For example,
in FPP, the entire image-processing pipeline is
generally divided into several sub-steps, i.e.,
image pre-processing, phase demodulation, phase
unwrapping, and phase-to-height conversion.
Although each sub-problem or sub-step becomes
simpler and easier to handle, the disadvantages are
also apparent: error accumulation and suboptimal
solution, i.e., the aggregation of optimum solutions
to subproblems may not be equivalent to the global
optimum solution.

● Ill-posedness of the inverse problem. In many
computer vision and computational imaging tasks,
such as image deblurring24, sparse computed
tomography25, and imaging through scattering
media27, the difficulty in retrieving the desired
information p from the observation I arises from
the fact that the operator A is usually poorly
conditioned, and the resulting inverse problem is
ill-posed, as illustrated in Fig. 8a. Due to the similar
indirect measurement principle, there are also many
important inverse problems in optical metrology that
are ill-posed, among which the phase demodulation
from a single-fringe pattern and phase unwrapping
from single wrapped phase distributions are the best
known for specialists in optical metrology (Fig. 8b).
The simplified model for the intensity distribution of
fringe patterns (Eq. (1)) suggests that the observed
intensity I results from the integration of several
unknown components: the average intensity A(x, y),

the intensity modulation B(x, y), and the desired
phase function ϕ(x, y). Simply put, we do not have
enough information to solve the corresponding
inverse problem uniquely and stably.

In the fields of computer vision and computational
imaging, the classical approach in solving an ill-posed
inverse problem is to reformulate the ill-posed original
problem into a well-posed optimization problem by
imposing certain prior assumptions about the solution p
that helps in regularizing its retrieval:

bp¼ argmin
p

I�A pð Þk k22þγR pð Þ ð9Þ
where || ||2 indicates the Euclidean norm, R(p) is a
regularization penalty function that incorporates the
prior information about p, such as smoothness286, sparsity
in some basis287 or dictionary288. γ is a real positive
parameter (regularization parameter) that governs the
weight given to the regularization against the need to fit
the measurement and should be selected carefully to
make an admissible compromise between the prior
knowledge and data fidelity. Such an optimization
problem can be solved efficiently with a variety of
algorithms289,290 and provide theoretical guarantees on
the recoverability and stability of the approximate
solution to an inverse problem291.
Instead of regularizing the numerical solution, in optical

metrology, we prefer to reformulate the original ill-posed
problem into a well-posed and adequately stable one by
actively controlling the image acquisition process so as to
add systematically more knowledge about the object to be
investigated into the evaluation process31. Due to the fact
that the optical measurements are frequently carried out
in a highly controlled environment, such a solution is
often more practical and effective. As illustrated by
Fig. 8c, by acquiring additional multi-frequency phase-
shifted patterns, absolute phase retrieval becomes a well-
posed estimation or regression problem, and the simple
standard (unconstrainted, regularization-free) least-
square methods in regression analysis provides a stable,
precise, and efficient solution292,293:

bp¼ argmin
p

I�A pð Þk k22 ð10Þ

The situation may become very different when we step
out of the laboratory and into the complicated environ-
ment of the real world294. The active strategies mentioned
above often impose stringent requirements on the mea-
surement conditions and the object under test. For
instance, high-sensitivity interferometric measurement in
general needs a laboratory environment where the
thermal-mechanical settings are carefully controlled to
preserve beam path conditions and minimize external
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disturbances. Absolute 3D shape profilometry usually
requires multiple fringe pattern projections, which
requires that the measurement conditions remain invar-
iant while sequential measurements are performed.
However, harsh operating environments where the object
or the metrology system cannot be maintained in a
steady-state may make such active strategies a luxurious
or even unreasonable request. Under such conditions,
conventional optical metrology approaches will suffer
from severe physical and technical limitations, such
as a limited amount of data and uncertainties in the
forward model.
To address these challenges, researchers have made

great efforts to improve state-of-the-art methods from
different aspects over the past few decades. For example,
phase-shifting techniques were optimized from the per-
spective of signal processing to achieve high-precision
robust phase measurement and meanwhile minimize the
impact of experimental perturbations32,153. Single-shot
spatial phase-demodulation methods have been explicitly
formulated as a constrained optimization problem similar
to Eq. (9) with an extra regularization term enforcing a
priori knowledge about the recovered phase (spatially
smooth, limited spectral extension, piecewise constant,
etc.)140,148. Multi-frequency temporal phase unwrapping
techniques have been optimized by utilizing the inherent
information redundancy in the average intensity and the
intensity modulation of the fringe images, allowing for
absolute phase retrieval with the reduced number of
patterns32,295. Geometric constraints were introduced in
FPP to solve the phase ambiguity problem without addi-
tional image acquisition175,183. Despite these extensive
research efforts for decades, how to extract the absolute
(unambiguous) phase information, with the highest pos-
sible accuracy, from the minimum number (preferably
single shot) of fringe patterns remains one of the most
challenging open problems in optical metrology. Conse-
quently, we are looking forward to innovations and
breakthroughs in the principles and methods of optical
metrology, which are of significant importance for its
future development.

Solving inverse optical metrology problems via deep
learning
As a “data-driven” technology that has emerged in

recent years, deep learning has received increasing
attention in the field of optical metrology and made
fruitful achievements in very recent years. Different from
the conventional physical model and knowledge-driven
approaches that the objective function (Eqs. (9) and (10))
is built based on the image formation model A, in deep-
learning approaches, we create a set of true object para-
meters p and the corresponding raw measured data I, and
establish their mapping relation Rθ based on a deep

neural network with all network parameters θ learned
from the dataset by solving the following optimization
problem (Fig. 9):

cRθ ¼ argmin
Rθ ;θ2Θ

p�Rθ Ið Þk k22 þR θð Þ ð11Þ
with k k22 being the L2-norm error (loss) function once
again (different types of loss functions discussed in the
subsection “Neural network training” can be specified
depending on the type of training data) and R is a
regularizer of the parameters to avoid overfitting. A key
element in deep-learning approaches is to parameterizecRθ by parameters θ 2 Θ. The “learning” process refers to
finding an “optimal” set of network parameters from the
given training data by minimizing Eq. (11) over all
possible network parameters θ 2 Θ. And the “optimality”
is quantified through the loss function that measures the
quality of the learned Rθ . Different deep-learning
approaches can be thought of as different ways to
parameterize the reconstruction network Rθ. Different
from conventional approaches that solving the optimiza-
tion problem directly gives the final solution cRθ to the
inverse problem corresponding to a current given input,
in deep-learning-based approaches, the optimization
problem is phrased as to find a “reconstruction algorithm”cRθ satisfying the pseudo-inverse property bp ¼ cRθ Ið Þ ¼
~A�1 Ið Þ � p from the prepared (previous) dataset, which is
then used for the reconstruction of the future input.
Most of the deep-learning techniques currently used in

optical metrology belong to supervised learning, i.e., a
matched dataset of ground-truth parameters p and cor-
responding measurements I should be created to train the
network. Ideally, the dataset should be collected by phy-
sical experiments based on the same metrology system to
account for all experimental conditions (which are usually
difficult to be fully described by the forward image for-
mation model). The ground truth can be obtained by
measuring various samples that one is likely to encounter
by employing active strategies mentioned above, without
considering the ill-posedness of the real problem. To be
more precise, in deep-learning-based optical metrology
approaches, active strategies frequently used in conven-
tional optical metrology approaches are shifted from the
actual measurement stage to the preparation (network
training) stage. Although the situation faced during the
preparation stage may be different from that in the actual
measurement stage, the information obtained in the for-
mer can be transferred to the latter in many cases. What
we should do during the training stage is to reproduce the
sample (using representative test objects), the system
(using the same measurement system), and the error
sources (noise, vibration, background illumination) dur-
ing the measurement stage to ensure that the captured
input data is as close as possible to those in the real
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measurement. On the other hand, we should make the
remaining environmental variables as controllable as
possible so that more active strategies (sample manip-
ulation, illumination changing, multiple acquisitions) can
be involved in the training stage to derive the ground
truth corresponding to these captured data. Once the
network is trained, we can then strip out these ideal
environment variables and make the network run in a
realistic experimental condition.
For example, for an interferometric system working in a

harsh environment or a FPP system designed for mea-
suring dynamic objects, phase demodulation from a
single-fringe pattern is the most desirable choice. The
inherent ill-posedness of the problem makes it a very
good example for deep learning in this regard. In the
training stage, we reproduce all the experimental condi-
tions except that we employ the multi-frame phase-
shifting technique with large phase-shifting steps to
obtain the ground truth for the training samples. Once the
network is established, it can map from only one single-
fringe pattern to the desired phase distribution, and thus
can be used in harsh environments where the single-shot
phase-demodulation technique should be applied. Note

that in this example, all the training data is fully generated
by experiments, so the reconstruction algorithm (inverse
mapping) cRθ can be established without the knowledge of
the forward model A in principle. Even though, since we
have sufficient real-world training observations of the
form (p, I), it can be expected that those experimental
data can reflect the true A in a complete and realistic way.
It should be noted that there are also many cases that

the ground truth corresponding to the experimental data
is inaccessible. In such cases, the matched dataset can be
obtained by a “learning from simulation” scheme —
simulating the forward operator (with the knowledge of
the forward image formation model A) on ideal sample
parameters. However, due to the complexity of real
experimental conditions, we typically only know an
approximation of A. Subsequently, the inconsistency or
uncertainty in the forward operator A may lead to a
compromised performance in real experiments (see the
“Challenges” section for detailed discussions). On the
other hand, partial knowledge of the forward model A can
be leveraged and incorporated in the deep neural network
design to alleviate the “black box” nature of conventional
neural network architectures, which may reduce the
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amount of required training data and provide more
accurate and reliable network reconstruction (see the
“Future directions” section for more details).

Advantages of invoking deep learning in optical metrology
In light of the above discussions, we summarize the

potential advantages that can be gained by using a deep-
learning approach in optical metrology. Figure 10 shows
the advantages of deep-learning techniques compared to
traditional optical metrology algorithms by taking FPP as
an example. One may have noticed that FPP has appeared
a few times, and in fact, it will appear more times. The
reason is that FPP is currently one of the most promising
and well-researched areas at the intersection of deep
learning and optical metrology, offering a representative
and convincing example of the use of deep learning in
optical metrology.
(1) From “physics-model-driven” to “data-driven”

Deep learning subverts the conventional “physics-model-
driven” paradigm and opens up the “data-driven”
learning-based representation paradigm. The recon-
struction algorithm (inverse mapping) cRθ can be learned
from the experimental data without resorting to the pre-
knowledge of the forward model A. If the training data is
collected under an environment that reproduces the real
experimental conditions (including metrology system,
sample types, measurement environment, etc.), and the
amount (diversity) of data are sufficient, the trained modelcRθ should reflect the true A more precisely and com-
prehensively and is expected to produce better recon-
struction results than conventional physics-model-driven
or knowledge-driven approaches. The “data-driven”
learning-based paradigm eliminates the need to design
different processing flows for specific image-processing
algorithm based on experience and pre-knowledge. By
applying different types of training datasets, one specific
class of neural network can be trained to perform various
types of transformation for different tasks, significantly
improving the universality and reducing the complexity of
solving new problems.
(2) From “divide-and-conquer” to “end-to-end

learning” In contrast to the traditional optical metrology
approach that solves the sequence of tasks independently,
deep learning allows for an “end-to-end” learning struc-
ture, where the neural network can learn the direct
mapping relation between the raw image data and the
desired sample parameters in one step, i.e., bp ¼ cRθ Ið Þ, as
illustrated in Fig. 10b. Compared with the “divide-and-
conquer” scheme, the “end-to-end” learning allows to
jointly solve multiple tasks, with great potential to alle-
viate the total computational burden. Such an approach
has the advantage of synergy: it enables sharing infor-
mation (features) between parts of the network that per-
form different tasks, which is more likely to get better

overall performance compared to solving each task
independently.
(3) From “solving ill-posed inverse problems” to

“learning pseudo-inverse mapping” Deep learning uti-
lizes complex neural network structures and nonlinear
activation functions to extract high-dimensional features
of the sample data, remove irrelevant information, and
finally establish a nonlinear pseudo-inverse mapping
model that is sufficient to describe the entire measure-
ment process. The major reason for the success of deep
learning is the abundance of training data and the explicit
agnosticism from a priori knowledge of how such data are
generated. Instead of hand-crafting a regularization
function or specifying prior, deep learning can auto-
matically learn it from the example data. Consequently,
the learned prior R(θ) is tailored to the statistics of real
experimental data and, in principle, provides stronger and
more reasonable regularization to the inverse problem
pertaining to a specific metrology system. Consequently,
the obstacle of “solving nonlinear ill-posed inverse pro-
blems” can be bypassed, and the pseudo-inverse mapping
relation between the input and the desired output can be
established directly.

The use of deep learning in optical metrology
Deep-learning-enabled image processing in optical
metrology
Owing to the above-mentioned advantages, deep

learning has been gaining increasing attention in optical
metrology, demonstrating promising performance in
various optical metrology tasks and in many cases
exceeding that of classic techniques. In this section, we
review these existing researches leveraging deep learn-
ing in optical metrology according to an architecture
similar to that introduced in the section “Image pro-
cessing in optical metrology”, as summarized in Fig. 11.
The basic network types, loss functions, and data
acquisition methods of some representative examples
are listed in Table 1.
(1) Pre-processing: Many early works applying deep

learning to optical metrology focused on image pre-
processing tasks, such as denoising and
enhancement. This is mainly due to the fact that
the successful use cases of deep learning to such
pre-processing tasks can be easily found in the
computer vision community. Many image pre-
processing algorithms in optical metrology could
receive a performance upgrade by simply
reengineering these existing neural network
architectures for a similar kind of problem.

● Denoising: Yan et al.55 constructed a CNN
composed of 20 convolutional layers for fringe
denoising (Fig. 12a). Simulated fringe patterns with
artificial Gaussian noise were generated as the
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Fig. 11 Deep learning in optical metrology. Because of the significant changes that deep learning brings to the concept of optical metrology
technology, almost all elementary tasks of digital image processing in optical metrology have been reformed by deep learning
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Table 1 Basic network structures, loss functions, and data acquisition methods for deep-learning methods applied to
optical metrology tasks

Task Reference Network

structure

Training database Loss function

Pre-processing Denoising Yan et al.55 SRCNN Simulation MAE

Jeon et al.296 U-Net+ ResNet Simulation MAE

Hao et al.54 SRCNN+ ResNet Simulation Euclidean loss

Lin et al.297 SRCNN+ ResNet Simulation Euclidean loss

Color channel separation Qian et al.300 FCN+ ResNet Experiment MSE

Enhancement Shi et al.51 SRCNN Experiment MSE

Yu et al.303 FCN Experiment MSE

Analysis Phase demodulation Feng et al.50,304 FCN+ ResNet Experiment MSE

Yang et al.307 GAN Experiment GAN loss

Li et al.311 U-Net Experiment MSE

Zhang et al.315 GAN Simulation GAN loss

Phase unwrapping Wang et al.321 U-Net Simulation SSIM

Spoorthi et al.323 FCN Simulation MSE

Zhang et al.325 FCN+ U-Net Simulation Cross-entropy

Kando et al.326 U-Net Simulation RMSE

Yin et al.52 FCN+ ResNet Experiment MSE

Subset correlation Žbontar and LeCun334 CNN KITTI459, Middlebury460 Hinge loss

Luo et al.336 CNN KITTI459 Cross-entropy

Guo et al.344 FCN Scene Flow388, KITTI459 Smooth L1

Subpixel refinement Pang et al.347 FCN FlyingThings3D387, Middlebury460,

KITTI459
MAE

Hartmann et al.338 CNN+ ResNet Scene Flow388, KITTI459 Smooth L1

Denoising Montresor et al.362 SRCNN+ ResNet Simulation MSE

Yan et al.363 SRCNN+ ResNet Simulation MSE

Digital refocusing Ren et al.365 SRCNN+ ResNet Experiment MSE

Wang et al.309 U-Net Experiment MSE

Lee et al.370 CNN Simulation MSE

Shinmobaba et al.371 CNN Experiment MSE

Error compensation Nguyen et al.374 U-Net Experiment Cross-entropy

Aguénounon et al.377 U-Net Experiment Mse

Postprocessing Phase to height conversion Li et al.378 BP neural network Experiment –

End-to-end From fringe to 3D shape Nguyen et al.381 FCN, U-Net Experiment MSE

Van et al.382 SRCNN Simulation RMSE

Machineni et al.384 FCN+ ResNet Simulation Smooth L1

Zheng et al.385 U-Net Simulation RMSE

From stereo images to

disparity

Kendall et al.389 SRCNN+ ResNet Scene Flow, KITTI MSE

Chang et al.390 FCN+ ResNet Scene Flow, KITTI Smooth L1
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training dataset, and corresponding noise-free
versions were used as ground truth. Figure 12d, e
shows the denoising results of WFT114 and the
deep-learning-based method, showing that their
method was free of the boundary artifacts in WFT
and achieved comparable denoising performance in
the central region. Jeon et al.296 proposed a fast
speckle-noise reduction method based on U-Net,
which showed robust and excellent denoising
performance for digital holographic images. Hao
et al.54 constructed a fast and flexible denoising
convolutional neural network (FFDNet) for batch
denoising of ESPI fringe images. Lin et al.297

developed a denoising CNN (DnCNN) for
speckle-noise suppression of fringe patterns.
Reyes-Figueroa and Rivera298 proposed a fringe
pattern filtering and normalization technique based
on autoencoder299. The autoencoder was able to
fine-tune the U-Net network parameters and
reduce residual errors, thereby improving the
stability and repeatability of the neural network.
Since it is difficult to access noise-free ground-truth
images in real experimental conditions, the training
datasets of these deep-learning-based denoising
methods are all generated based on simulations.

● Color channel separation: Our group reported a
single-shot 3D shape measurement approach with
deep-learning-based color fringe projection
profilometry that can automatically eliminate
color cross-talk and channel imbalance300. As
shown in Fig. 13a, the network predicted the sine
and cosine terms related to high-quality cross-talk-
free phase information from the input 3-channel

fringe images of different wavelengths. In order to
get rid of color cross-talk and chromatic aberration,
the green monochromatic fringe patterns were
projected and only the green channel of the
captured patterns was used to generate labels.
Figure 13b–d shows 3D reconstruction results of
a David plaster model measured by the traditional
color-coded method301 and our method, showing
that the deep-learning-based method yielded more
accurate surface details. The quality of the 3D
reconstruction was comparable to the ground truth
(Fig. 13e) obtained by the non-composite
(monochromatic) multi-frequency phase-shifting
method174. The deep-learning-based method was
applied for dynamic 360° 3D digital modeling,
demonstrating its potential in rapid reverse
engineering and related industrial applications
(Fig. 13f–i).

● Enhancement: Shi et al.51 proposed a fringe-
enhancement method based on deep learning, and
the flowchart of which is given in Fig. 14a. The
captured fringe image and the corresponding
enhanced one obtained by the subtraction of two
fringe patterns with π relative phase shift were used
to establish the mapping between the raw fringe
and the desired enhanced versions. Figure 14b–d
shows the 3D reconstruction results of a moving
hand using the traditional FT method138 and the
deep-learning method, suggesting that the deep-
learning method outperformed FT in terms of detail
preservation and SNR. Goy et al.302 proved that
DNN could recover an image with decent quality
under low-photon conditions, and successfully
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b c d

0

40

0

5

–5
0

20
40

2

–2

20

A
dd

Gaussian noisesa

WFT

e

Fig. 12 Flowchart of deep-learning-based fringe pattern denoising and the denoising results of different methods. a The flowchart of deep-
learning-based fringe pattern denoising method: taking noisy fringe patterns as input to DCNN and predicting the denoised image directly. b The
noisy input pattern. c Ground truth. d The predicted result of deep learning. e The denoising result of WFT114. a–e Adapted with permission from
ref. 55, Copyright (2021), with permission from Elsevier
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applied their method to phase retrieval. Yu et al.303

proposed a fringe-enhancement method in which
the fringe modulation was improved by deep
learning, facilitating high-dynamic 3D shape
measurement without resorting to conventional
multi-exposure schemes.

(2) Analysis: Image analysis is the most critical step in
the image-processing architecture of optical
metrology. Consequently, most deep-learning
techniques applied to optical metrology are
proposed to accomplish the tasks associated with
image analysis. For phase measurement techniques,
deep learning is extensively explored for (both spatial
and temporal) phase demodulation and (spatial,
temporal, and geometric) phase unwrapping.

● Phase demodulation:
Spatial phase retrieval: To address the contradiction
between the measurement efficiency and accuracy of
traditional phase retrieval methods, our group, for the
first time, introduced deep learning to fringe pattern

analysis, substantially enhancing the phase-
demodulation accuracy from a single-fringe pattern50.
As illustrated in Fig. 15a, the background image A was
first predicted from the acquired fringe image I through
CNN1. Then CNN2 was employed to realize the
mapping from I and A to the numerator (sine) term M
and denominator (cosine) term D. Finally, the wrapped
phase information can be acquired by computing the
arctangent of M/D. Figure 15b compares the phases
retrieved by two representative traditional single-frame
phase retrieval methods (FT138, WFT114) and the deep-
learning method, revealing that our deep-learning-based
single-frame phase retrieval method achieved the highest
reconstruction quality, which almost visually reproduced
the ground-truth information obtained by the 12-step
phase-shifting method. We have incorporated the deep-
learning-based phase retrieval technique into the micro-
Fourier transform profilometry (μFTP) technique to
eliminate the need for additional uniform patterns,
doubling the measurement speed and achieving an
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unprecedented 3D imaging frame rate up to
20,000 Hz304. Figure 15c shows the 3D measurement
results of a rotating fan at different speeds (3000 and
5000 revolutions per minute (RPM)), suggesting that the

3D shape of fan blades can be intactly reconstructed
without any motion-induced artifacts visible. Qiao
et al.305 applied this deep-learning-based phase extrac-
tion technique for phase measuring deflectometry, and
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achieved single-shot high-accuracy 3D shape measure-
ment of specular surfaces. Some other network struc-
tures, such as structured light CNN (SL-CNN)306 and
deep convolutional GAN307 were also adopted for single-
frame phase retrieval. In addition, deep learning can also
be applied to Fourier transform profilometry for
automatic spectrum extraction by identifying the carrier
frequency components bearing the object information in
the Fourier domain, facilitating automatical spectrum
extraction, and achieving higher phase retrieval accuracy
without human intervention308. Wang et al.309 proposed
an automatical holographic reconstruction framework
(Y-Net) consisting of two symmetrical U-Nets, allowing
for simultaneous recovery of phase and intensity
information from a single off-axis digital hologram. They
also doubled the capability of Y-Net, extending it to the
reconstruction of dual-wavelength complex amplitudes,
while overcoming the spectral overlapping issue in
common-path dual-wavelength digital holography310.
Recently, our group used U-Net to realize aliasing-free
phase retrieval from a dual-frequency composite fringe
pattern311. Compared with the traditional Fourier trans-
form profilometry, the deep-learning-enabled approach
avoids the complexities associated with dual-frequency
spectra separation and extraction, allowing for higher-
quality single-shot absolute 3D shape reconstruction.
Temporal phase retrieval: Wang et al.312 introduced a
deep-learning scheme to the phase-shifting technique in
FPP. As shown in Fig. 16a, by introducing a fully
connected DNN, the link between three low- and unit-
frequency phase-shifting fringe patterns and high-quality

absolute phases calculated from high-frequency fringe
images were established, and thus, the 3D measurement
accuracy could be significantly enhanced. The three
unit-frequency phase-shifting patterns were encoded in
three monochrome channels of a color image and
projected by a 3LCD projector. The individual fringe
patterns were then decoded and projected by the
projector sequentially and rapidly313,314. Consequently,
the hardware system allowed for real-time 3D surface
imaging of multiple objects at a speed of 25.6 fps. Zhang
et al.315 developed a deep-phase-shift network (DPS-Net)
based on GAN, with which multi-step phase-shifting
interferograms with accurate arbitrary phase shifts for
calculating high-quality phase information were pre-
dicted from a single interferogram. Besides random
intensity noise, conventional phase-shifting algorithms
are also sensitive to other experimental imperfections,
such as phase-shifting error, illumination fluctuations,
intensity nonlinearity, lens defocusing, motion-induced
artifacts, and detector saturation. Deep learning also
provides a potential solution to eliminate or at least
partially alleviate the impact of these error sources on
phase measurement. For example, Li et al.316 proposed a
deep-learning-based phase-shifting interferometric phase
recovery approach. The constructed U-Net was capable
of predicting the accurate wrapped phase map from two
interferogram inputs with unknown phase shifts. Zhang
et al.317 applied CNN to extract a high-accuracy wrapped
phase map from conventional 3-step phase-shifting
fringe patterns. In the training stage, low-modulation
or saturated fringe patterns were used as the raw dataset,
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and the relation between these imperfect raw fringe and
high-quality error-free unwrapped phase (obtained by
12-step phase-shifting algorithms) were established
based on CNN. Consequently, the deep-learning-based
approach could accommodate both dark and reflective
surfaces, and the related phase errors (noise and
saturation) in the conventional three-step phase-shifting
method were significantly suppressed, making it a
promising approach for high-dynamic-range (HDR) 3D
measurement of surfaces with large reflectivity variations
(Fig. 16d–g). Wu et al.318 proposed a deep-learning-
based phase-shifting approach to overcome the phase
errors associated with intensity nonlinearity. Through a
well-trained FCN, the distortion-free high-quality phase
map could be reconstructed conveniently and efficiently
from the raw phase-shifting fringe patterns with a strong
gamma effect. Yang et al.319 constructed a three-to-three
deep-learning framework (Tree-Net) based on U-Net to
compensate for the nonlinear effect in the phase-shifting
images, which effectively and robustly reduced the phase
errors by about 90%. Recently, our group demonstrated
that the nonsinusoidal errors (e.g., residual high-order
harmonics in binary defocusing projection, intensity
saturation, gamma effect of projectors and cameras, and
their coupling) in phase-shifting profilometry could be
handled by an integrated deep-learning framework. A
well-trained U-Net could effectively suppress the phase
errors caused by different types of nonsinusoidal fringe
with only a minimum of three fringe patterns as input320.

● Phase unwrapping:
Spatial phase unwrapping: Wang et al.321 proposed a
one-step phase unwrapping approach based on deep

learning. Various ideal (noise-free) continuous phase
distributions and the corresponding wrapped phase
maps with different types of noises (Gaussian, salt and
pepper, or multiplicative noises) were simulated and
used as the training dataset for a CNN based on U-Net.
Upon completion of the training, the absolute phases can
be predicted directly from a noisy wrapped phase map, as
illustrated in Fig. 17a. Figure 17b–f shows the compar-
isons of phase unwrapping results obtained by the
traditional least-square (LS) method322 and deep-
learning-based method, demonstrating that deep learn-
ing can directly fulfill the complicated nonlinear phase
unwrapping task in one step with improved anti-noise
and anti-aliasing ability. Spoorthi et al.323 developed a
CNN-based phase unwrapping framework-PhaseNet.
The fringe order (2π integer phase jumps) used for
phase unwrapping can be obtained pixel by pixel through
a semantic segmentation-based deep-learning framework
of the encoder-decoder structure. Recently, they devel-
oped an enhanced phase unwrapping framework—
PhaseNet 2.0, which could directly map a noisy wrapped
phase to a denoised absolute one324. Zhang et al.325

transferred the task of phase unwrapping to a multi-class
classification problem and generated fringe orders by
feeding the wrapped phase into a convolutional segmen-
tation network. Zhang et al.53 proposed a deep-learning-
based approach for rapid 2D phase unwrapping, which
demonstrated good denoising and unwrapping perfor-
mance and outperformed the conventional path-
dependent and path-independent methods. Kando
et al.326 applied U-Net to achieve absolute phase
prediction from a single interferogram, and the quality
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Fig. 17 Flowchart of the one-step deep-learning-based phase unwrapping approach and the unwrapping results of different methods.
a The flowchart of the one-step deep-learning-based phase unwrapping approach: the absolute phase can be predicted directly from a noisy
wrapped phase based on the trained CNN. b The wrapped phase map of living mouse osteoblast. c Unwrapped phase of (b) obtained by deep
learning. d Phase errors of (c). e Unwrapped phase of (b) obtained by the conventional LS method322. f Phase errors of (e). a–f Adapted with
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of the recovered phase was superior to that obtained by
the conventional FT method, especially for closed-fringe
patterns. Li et al.327 proposed a deep-learning-based
phase unwrapping strategy for closed fringe patterns.
They compared four different network structures for
phase unwrapping and found that the improved FCN
architecture performed the best in terms of accuracy and
speed. However, it should be mentioned that, similar to
the case of fringe denoising, true absolute phase maps
corresponding to the real experimentally obtained
wrapped phase maps are generally quite hard to obtain
in many interferometric techniques (which requires
sophisticated multi-wavelength illuminations and het-
erodyne operations). Therefore, the training datasets
used in the above-mentioned deep-learning-based spatial
phase unwrapping methods are generated based on
numerical simulation instead of real experiments. More-
over, since only one single wrapped phase map is used as
input, the above-mentioned deep-learning-based spatial
phase unwrapping methods still suffers from the 2π
ambiguity problem inherent in traditional phase mea-
surement techniques.
Temporal phase unwrapping: Our group developed a
deep-learning-based temporal phase unwrapping frame-
work, as illustrated in Fig. 18a52. The inputs of the
network are a single-period (wrap-free) phase map and a
high-frequency wrapped phase map, from which the
constructed CNN could directly predict the fringe orders
corresponding to the high-frequency phase to be
unwrapped. Figure 18b–e gives the comparison between
the traditional multi-frequency temporal phase unwrap-
ping (MF-TPU) method174 and the deep-learning-based

approach for the 3D reconstructions obtained by
unwrapping the wrapped phase maps using the (1–32)
and (1–64) frequency combination of fringe patterns,
respectively. In comparison with MF-TPU, the deep-
learning-assisted method produced phase unwrapping
results with higher accuracy and robustness even in the
case of different types of error sources (low SNR,
intensity nonlinearity, and object motion). Liu et al.328

further improved this approach by using a lightweight
classification CNN to extract the fringe orders from a
pair of low-high-frequency phase maps, which saved a
large amount of training time and made it possible to
deploy the network on mobile devices. Li et al.329

proposed a deep-learning-based dual-wavelength phase
unwrapping approach in which only a single-wavelength
interferogram was used to predict another interferogram
recorded at a different wavelength with a conditional
GAN (CGAN). Though their approach still suffered
from the phase ambiguity problem when measuring
discontinuous surface or isolated objects, it provided an
effective and potential solution to phase unwrapping and
extended the measurement range of single-wavelength
interferometry and holography techniques. Yao et al.
designed FCNs by incorporating residual layers to
predict the fringe orders of wrapped phases from only
two330 or even single331 Gray-code image(s), significantly
reducing the required images compared with the
conventional Gray-code technique.
Geometric phase unwrapping: Our group proposed a
deep-learning-assisted geometric phase unwrapping
approach for single-shot 3D surface measurement332.
The flowchart of this approach is shown in Fig. 19a.
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Fig. 18 Flowchart of deep-learning-assisted temporal phase unwrapping method and the 3D reconstructions of different phase
unwrapping approaches. a The flowchart of deep-learning-based temporal phase unwrapping. b The 3D reconstruction obtained from phase
unwrapping of (1+ 32)-frequency combination by MF-TPU164. c The 3D reconstruction obtained from phase unwrapping of (1+ 32)-frequency
combination by the deep-learning-based method. d The 3D reconstruction obtained from phase unwrapping of (1+ 64)-frequency combination by
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permission from Springer Nature: Scientific Reports52, Copyright (2021)

Zuo et al. Light: Science & Applications           (2022) 11:39 Page 31 of 54



Two CNNs (CNN1 and CNN2) were constructed for
phase retrieval and phase unwrapping, respectively.
Based on a stereo camera system, dual-view single-shot
fringe patterns, as well as the reference plane images,
were fed into CNN2 to determine the fringe orders.
With the predicted wrapped phases and fringe orders,
the absolute phase map can be recovered. Figure 19b–e
is the comparison of 3D reconstructions obtained
through different conventional geometric phase
unwrapping methods175,179,186 and the deep-learning-
based method, demonstrating that the deep-learning-
based method can robustly unwrap the wrapped phases
of dense fringe patterns within a larger measurement
volume under the premise of single-frame projection. It
should be mentioned that it is indeed a straightforward
idea to establish the relationship between the fringe
pattern to the corresponding absolute phase directly.
However, since the rationality of the deep-learning-
based approach is largely dependent on the input data,

when the input fringe itself is ambiguous, the network
can never always produce reliable phase unwrapped
results. For example, in Yu’s work333, when there exist
large depth discontinuities and isolated objects, even
with the assistance of deep learning, one fringe image is
insufficient to eliminate the 2π phase ambiguity.

In DIC and stereophotogrammetry, image analysis aims to
determine the displacement vector of each pixel point
between a pair of acquired images. Recently, deep learning
has also been extensively applied to stereomatching in
order to achieve improved performance compared with
traditional subset correlation and subpixel refinement
methods.
Subset Correlation: Zbontar and LeCun334 presented a
deep-learning-based approach for estimating the dis-
parity map from a rectified stereo image pair. A siamese-
structured CNN was reconstructed to address the
matching cost computation problem through learning
the similarity measure from small image patches.
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The output of CNN was utilized for initializing the
stereomatching cost, followed by some postprocessing
processes, as shown in Fig. 20a. Figure 20d–h is the
disparity images obtained from the traditional Census
transform method335 and the deep-learning-based
method, from which we can see that the deep-
learning-based approach achieved a lower error rate
and better prediction result. Luo et al.336 exploited a
siamese CNN connected by point product layer to speed
up the calculation of matching score and obtained
improved matching performance. Recently, our group
improved Luo’s network by introducing additional
residual blocks and convolutional layers to the head of
the neural network and replacing the original inner
product with the fully connected layers with shared
weights337. The improved network can extract a more
accurate initial absolute disparity map from speckle
image blocks after epipolar correction, and showed
better matching capability than Luo’s network. Hart-
mann et al.338 constructed a CNN with five siamese
branches to learn a matching function, which could
directly predict a scalar similarity score from multiple
image patches. It should be noted that the siamese CNN
is one of the most widely used network structures in
stereovision applications, which has been frequently
employed and continuously improved for subset correla-
tion tasks339–343. On a different note, Guo et al.344

improved the 3D-stacked hourglass network to obtain
the cost volume by group-wise correlation and then
realized stereomatching. Besides conventional supervised
learning approaches, unsupervised learning was also
introduced to subset correlation. Zhou et al.345 proposed
an unsupervised deep-learning framework for learning
the stereomatching cost, using a left-right consistency
check to guide the training process to converge to a
stable state. Kim et al.346 constructed a semi-supervised
network to estimate stereo confidence. First, the
matching probability was calculated according to
the matching cost with residual networks. Then, the
confidence measure was estimated based on a unified
deep network. Finally, the confidence feature of the
disparity map is extracted by synthesizing the results
obtained by the two networks.
Subpixel refinement: Pang et al.347 proposed a cascade
(two-stage) CNN architecture for subpixel stereomatch-
ing. Figure 21a shows the flowchart of their method. In
the first stage, the disparity image with more details was
obtained from the input stereo images through Dis-
pFulNet (“Ful” means full resolution) equipped with
extra upsampling modules. Then the initialized disparity
was rectified and the residual signals across multiple
scales were generated through the hourglass structure
DispResNet (“Res” means residual) in the second stage.
According to the combination of the outputs from the
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methods. a The flowchart of deep-learning-based method for extracting depth information: two network architectures (one tuned for speed, the
other for accuracy) are trained to learn the matching cost computation. The output of CNN is applied to initialize the stereomatching cost, followed
by a series of postprocessing processes. b, c The input stereo images. d Ground truth. e, g The disparity estimation results using Census335 and CNN.
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two stages, the final disparity with subpixel accuracy can
be obtained. Figure 21d–g shows the predicted disparity
images and error distributions of the input stereo image
pairs (Fig. 21b) obtained by DispFulNet and DispResNet.
It can be seen from the experimental results that after
the second stage of optimization, the quality of the
disparity was significantly improved. Based on different
considerations, a large variety of network structures were
proposed for subpixel refinement, e.g., StereoNet348,
LGC-Net349, DeepMVS350,351, StereoDRNet352, Deep-
Pruner353, LAF-Net354, 3D CNN355, MADNet356,
Unos357, left-right comparative recurrent model358,
CNN-based disparity map optimization359, deep-
learning-based fringe-image-assisted stereomatching
method360, and UltraStereo361.
(3) Postprocessing: Deep-learning techniques also

play an important role in the final postprocessing
stage of the image-processing architecture of
optical metrology. Examples of applying deep
learning for postprocessing are very diverse,
including further optimization of the
measurement results (e.g., phase denoising, error
compensation, and refocusing) and converting the
measured intermediate variable to the desired
physical quantity (e.g., system calibration and
phase-to-height mapping in FPP).

● Denoising: Montrésor et al.362 proposed to use
DnCNN for phase denoising. As illustrated in
Fig. 22a, the sine and cosine components of the
noisy phase map were fed into a DnCNN to produce
the corresponding denoised version, and the resultant
phase information was calculated by the arctangent

function. The phase was then fed back into and
refined by DnCNN again, and this process was
repeated several times to achieve a better denoising
performance. In order to generate more realistic
training datasets via simulation, the additive
amplitude-dependent speckle noise was carefully
modeled by taking its non-Gaussian statistics, non-
stationary properties, and a correlation length into
account. Figure 22b–e shows the comparison of the
denoising results obtained by WFT114 and the deep-
learning methods, suggesting that DnCNN yielded
comparable standard deviation but lower peak-to-
valley phase error than WFT. Yan et al.363 proposed
a CNN-based wrapped phase denoising method. By
filtering the original numerator and denominator of
the arctangent function, phase denoising results can
be achieved without tuning any parameters. They
also presented a deep-learning-based phase
denoising technique for digital holographic speckle
pattern interferometry364. Their approach could
obtain an enhanced wrapped phase map by
significantly suppressing the speckle noise, and
outperformed traditional phase denoising methods
when processing phases with steep spatial gradients.

● Digital refocusing: Ren et al.365 proposed the
holographic reconstruction network (HRNet) to
deal with the holographic reconstruction problem,
which could perform automatic digital refocusing
without employing any prior knowledge. Figure 23a
gives the schematic of their deep-learning workflow,
where a hologram input (the first block) was fed into
HRNet, and then the reconstructed image (the third
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block) corresponding to the specific input was
directly predicted. A typical lens-free Mach-
Zehnder interferometer was constructed to acquire
training input images, and traditional convolution
method366, PCA aberration compensation226,
manual artifacts removal, and phase unwrapping367

were successively employed to obtain the
corresponding label images. Figure 23b–f shows
the results of refocusing and hologram

reconstruction with different methods, proving
that the predicted images by HRNet were
precisely in-focus and noise-free, whereas there are
significant noises and artifacts in the reconstruction
results obtained by traditional convolution and
angular spectrum method368. Alternatively, the
autofocusing problem in DH could be recast as a
regression problem, with the focal distance being a
continuous response corresponding to a digital
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hologram. Ren et al.369 constructed a CNN to
achieve nonparametric autofocusing for digital
holography, which could accurately predict the
focal distance without knowing the physical
parameters of the optical imaging system. Lee
et al.370 constructed a CNN-based estimator
combined with Discrete Fourier Transform (DFT)
to realize the automatic focusing of off-axis digital
holography. Their method can automatically
determine the object-to-image distance rapidly and
effectively, and a sharp in-focus image of the object
can be reconstructed accurately. Shimobaba et al.371

used the regression-based CNN for holographic
reconstruction, which could directly predict the
sample depth position with millimeter accuracy
from the power spectrum of the hologram.
Jaferzadeh et al.372 proposed a regression-layer-
toped CNN to determine the optimal focus
position for numerical reconstruction of micro-
sized objects, which can be extended to the study
of biological samples such as cancer cells. Pitkäaho
et al.373 constructed a CNN based on AlexNet and

VGG16 to learn the defocus distances from a large
number of holograms. The well-trained network can
determine the high-accuracy in-focus position of a
new hologram without resorting to conventional
numerical propagation algorithms.

● Error compensation: Nguyen et al.374 proposed a
phase-aberration compensation framework
combining CNN and Zernike polynomial fitting, as
illustrated in Fig. 24a. The unwrapped phase
aberration map of the hologram was fed into a
CNN with the U-Net structure to detect the
background regions, which were then sent into
the Zernike polynomial fitting375 to determine the
conjugated phase aberration. For training data
collection/preparation, the PCA method226 was
used for training data collection/preparation.
Figure 24b–e gives the phase aberration
compensation results of PCA and the deep-
learning method, showing that the phase
aberrations were completely eliminated by using
the deep-learning technique, while they were still
visible in the phase results obtained by the PCA
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method. In addition, the deep-learning-based
technique was fully automatic, and the robustness
and accuracy were shown to be superior to PCA. Lv
et al.376 used DNN to compensate projector
distortion-induced measurement errors in a FPP
system. By learning the mapping between the 3D
coordinates of the object and their corresponding
distortion-induced error distribution, the distortion
errors of the original test 3D data can be accurately
predicted. Aguenounon et al.377 leveraged a DNN
with a double U-Net structure to provide the single
snapshot of optical properties imaging with the
additional function of real-time profile correction.
The real-time visualization of the resulting profile-
corrected optical property (absorption and reduced
scattering) map has the potential to be deployed to
guide surgeons.

● Quantity transformation: Li et al.378 proposed an
accurate phase-height mapping approach for fringe
projection based on a “shallow” (3-layer) BP neural
network. The flowchart of their method is shown in
Fig. 25a, where the camera image coordinates
(Xci, Yci) and their corresponding horizontal ones
Xpi of the projector image were fed into the network
to predict the desired 3D information (Xi, Yi, Zi). To
obtain the training data, a standard calibration board
with circle marks fixed on a high-precision
displacement stage was captured at different
Z-direction positions. With the captured images,
the marks’ centers coordinates (Xci, Yci)with subpixel

accuracy were extracted with the conventional circle
center detection algorithm379, and the horizontal
coordinates Xpi of the corresponding projector
image for each mark center were calculated
through the absolute phase value. Figure 25b
shows the 3D reconstruction result of a standard
stair sample predicted by the neural network.
Figure 25c and d shows the error distributions of
the measurement results obtained by traditional
phase-height conversion method380 and neural
network, showing that the learning-based method
was insensitive to the fringe intensity nonlinearity
and could recover the 3D shape of a workpiece with
high accuracy.

End-to-end learning in optical metrology
As mentioned earlier, “divide and conquer” is a core

idea of solving complex optical metrology problems by
breaking the whole image-processing pipeline into several
modules or sub-steps. On a different note, deep learning
enables direct mapping between the original input and the
desired output, and the whole process can be trained as a
whole, in an end-to-end fashion. Although somewhat
brute-force, such a straightforward treatment has been
extensively used in deep learning, and gradually intro-
duced to many subfields of optical metrology, e.g., FPP
and DIC.

● From fringe to 3D shape: In FPP, the imaging
processing pipeline generally consists of pre-
processing, phase demodulation, phase unwrapping,
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and phase-to-height conversion. Deep learning
provides a viable and efficient way to reconsider
the whole problem from a holistic perspective, taking
human intervention out of the loop and solving the
“fringe to 3D shape” problem in a purely data-driven
manner. Based on this idea, Nguyen et al.381

proposed an end-to-end neural network to directly
perform the mapping from a fringe pattern to its
corresponding 3D shape, the flowchart of which is
shown in Fig. 26a. Three different deep CNNs,
including FCN, autoencoder299, and U-Net, were

trained based on the datasets obtained by the
conventional multi-frequency phase-shifting
profilometry method. Figure 26b, c gives an input
and its corresponding ground-truth 3D shape.
Figure 26c shows the best 3D reconstruction
results predicted by the three networks with the
depth measurement accuracy of 2mm. Van et al.382

presented an SRCNN-based DNN to directly extract
absolute height information from a single-fringe
image. Through simulated fringe and depth image
pairs, the trained network was able to obtain
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high-accuracy full-field depth information from a
single-fringe pattern. Recently, they compared the
effect of different loss functions (MAE, MSE, and
SSIM) on a modified U-Net for mapping a fringe
image to the corresponding depth, and designed
a new mixed gradient loss function that yielded
higher-quality 3D reconstructions than conventional
ones383. Machineni et al.384 constructed a CNN with
multiresolution similarity assessment to directly
reconstruct the object’s shape from the
corresponding deformed fringe image. Their
proposed method can achieve promising results
under various challenging conditions such as low
SNR, low fringe density, and high dynamic range.
Zheng et al.385 utilized the calibration matrix from a
real-world FPP system to construct its “digital twin”,
which provided abundant simulation data (fringe
pattern and corresponding depth map) required for
the model training. The trained U-Net can then be
employed to the real-world FPP system to extract
the 3D geometry encoded in the fringe pattern in one
step. Similarly, Wang et al.386 constructed a virtual
FPP system for the training dataset generation. A
modified loss function based on SSIM index was
employed, providing improved performance in terms
of measurement accuracy and detail preservation.

● From stereo images to disparity: Deep learning
can also be applied to DIC and
stereophotogrammetry to bypass all intermediate
image-processing steps in the pipeline for
displacement and 3D reconstruction. Mayer
et al.387 presented end-to-end networks for the
estimation of disparity (DispNet) and optical flow
(FlowNet). In DispNet, a 1D correlation was
proposed along the disparity line corresponding to
the stereo cost volume. In addition, they also offered
a large synthetic dataset, Scene Flow388, for training
large-scale stereomatching networks. Kendall
et al.389 established an end-to-end Geometry and
Context Network (GC-Net) mapping from a
rectified pair of stereo images to disparity maps
with subpixel accuracy (Fig. 27a). Stereo images
were fed into the network to directly output
disparity images of two perspectives. Figure 27b–d
shows the test results on Scene Flow, where Fig. 27b
is the left input, Fig. 27c is the disparity predicted by
deep learning, and Fig. 27d is the ground truth.
Experimental results show that the end-to-end
learning method produced high-resolution
disparity images and could tolerate large
occlusions. Chang et al.390 developed a pyramid
stereomatching network (PSMNet) to enhance the
matching accuracy by using the 3D CNN-based
spatial pyramid pooling and multiple hourglass

networks. Zhang et al.391 proposed a cost
aggregation network incorporating the local guided
filter and semi-global-matching-based cost
aggregation, achieving higher matching quality as
well as better network generalization. Recently, our
group proposed an end-to-end speckle correlation
strategy for 3D shape measurement, where a
multiscale residual subnetwork was utilized to
obtain feature maps of stereo speckle images, and
the 4D cost volume at one-fourth of the original392.
Besides, a saliency detection network was integrated
to generate a pixel-wise mask to exclude the
shadow-noised regions. Nguyen et al.393 used three
U-Net-based networks to convert a single speckle
image into its corresponding 3D information. It
should be mentioned that stereophotogrammetry is
a representative field that deep learning has been
extensively applied. Many other end-to-end deep-
learning structures directly mapping stereo images
to disparity have been proposed, such as hybrid
CNN-CRF models394, Demon (CNN-based)395,
MVSNet (CNN-based)396, CNN-based disparity
estimation through feature constancy397,
Segstereo398, EdgeStereo399, stereomatching with
explicit cost aggregation architecture400,
HyperDepth401, practical deep stereo (PDS)402,
RNN-based stereomatching403,404, and
unsupervised learning405–409. For DIC, Boukhtache
et al.410 presented an enhanced FlowNet (so-called
StrainNet) to predict displacement and strain fields
from pairs of deformed and reference images of a
flat speckled surface. Their experimental results
demonstrated the feasibility of the deep-learning
approach for accurate pixel-wise subpixel
measurement over full displacement fields. Min
et al.411 proposed a 3D CNN-based strain
measurement method, which allowed simultaneous
characterization in spatial and temporal domains
from the surface images obtained during a tensile
test of BeCu thin film. Rezaie et al.412 compared the
performance of conventional DIC method and their
deep-learning method based on U-Net for detecting
cracks on stone masonry wall images, showing that
the learning-based method could detect most visible
cracks and better preserve the crack geometry.

It should be mentioned that, not just limited to phase
or correlation measurement techniques, deep learning
has also been widely adopted in many other fields of
optical metrology. However, due to space limitations, it
is not possible to describe or discuss all of them.
Examples include but are not limited to the time of flight
(ToF)413–418, photometric stereo419–425, wavefront sen-
sing426–429, aberrations characterization430, and fiber
optic imaging431–435, etc.

Zuo et al. Light: Science & Applications           (2022) 11:39 Page 39 of 54



After reviewing hundreds of recent works leveraging
deep learning for different optical metrology tasks, read-
ers may still be interested to know to apply these new
data-driven approaches to their own problems or pro-
jects. To help the reader, we present a step-by-step guide
to applying deep learning to optical metrology in the
Supplementary Information, taking phase demodulation
from a single-fringe pattern as an example. We explain
how to build a DNN with fully convolutional network
architectures and train it with the experimentally col-
lected training dataset. We also distribute the source code
and the corresponding datasets for this example. Based on
this example, we demonstrate that a well-trained DNN
can accomplish the phase-demodulation task in an
accurate and efficient manner, using only a single-fringe
pattern as input. Thus, it is capable of combining the
single-frame strength of the spatial phase demodulation
methods with the high-measurement accuracy of the
temporal phase-demodulation methods. The interested
reader may refer to the Supplementary Information for
the step-by-step tutorial.

Deep learning in optical metrology: challenges
Our review in the last section shows that the deep-

learning solutions in optical metrology are straightfor-
ward, but have led to improved performance compared
with the state-of-the-art. In this session, we will shift our
attention to reveal some challenges of the use of deep
learning in optical metrology, which require further
attention and careful consideration:

● High cost of collecting and labeling experimental
training data: Most of the deep-learning
techniques reviewed belong to supervised
learning, which requires a large amount of
labeled data to train the network. To account for
real experimental conditions, deep-learning
approaches can benefit from large amounts of
experimental training data. Since these data serve
as ground truth with sufficiently high accuracy,
they are usually expensive to collect436. In
addition, since the optical metrology system is
highly customized, training data collected by one
system may not be suitable for another system of
the same type. This may explain why there were
far fewer publicly available datasets in the field of
optical metrology (especially compared with the
computer vision community). Without such
public benchmark datasets, it is difficult to make
a fair and standardized comparison between
different algorithms. Although some emerging
machine learning approaches, such as transfer
learning437, few-shot learning438, unsupervised
learning244, and weak-supervised learning439),
can decrease the reliance on the amount of data

to some extent, their performance is not
comparable to that of supervised learning with
large data numbers so far.

● Ground truth inaccessible for experimental
data: In many areas of optical metrology, e.g.,
fringe or phase denoising, it is infeasible or even
impossible to get the actual ground truth of the
experimental data. As discussed in previous
sections, generating a training dataset by
simulating the forward image formation process
can bypass this difficulty362,385, often at the price of
compromised actual performance when the
knowledge of the forward image formation model
A is imprecise or simulated dataset fails to reflect
the real experimental system realistically and
comprehensively. An alternative approach to this
issue is to create a “quasi-experimental” dataset by
collecting experimental raw data and then using
the conventional state-of-the-art solutions to
get the corresponding labels308–310. Essentially,
the network is trained to “duplicate” the
approximate inverse operator ~A�1 corresponding
to the conventional algorithm that is used to
generate the labels. After training, the network is
able to emulate the conventional reconstruction
algorithm cRθ Ið Þ � ~A�1 Ið Þ, but the improvement in
performance over conventional approaches
becomes an unreasonable expectation.

● Empiricism in network design and training: So
far, there is no standard paradigm for selecting
appropriate DNN architectures because it requires
a comprehensive understanding of the topology,
training methods, and other parameters. In
practice, we usually determine our network
structure by evaluating different available
candidate models, or comparing similar task-
specific models by training them with different
hyperparameters settings (network layers, neural
units, and activation functions) on a specific
validation dataset440. However, the overwhelming
number of deep-learning models often limits one
to evaluating only a few of the most trustworthy
models, which may lead to suboptimal results.
Therefore, one should learn how to quickly and
efficiently narrow down the range of available
models to find those most likely to be best
performing on a specific type of problem. In
addition, training a DNN is generally laborious
and time-consuming, and becomes even worse
with repetitive adjustments in the network
architecture or hyperparameters to prevent
overfitting and convergence issues.

● Lack of generalization ability after specific
sample training: The generalization ability of
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deep-learning approaches is closely related to the
size and diversity of training samples. Generally,
deep-learning architectures used in optical
metrology are highly specialized to a specific
domain, and they should be implemented with
extreme care and caution when solving issues that
do not pertain to the same domain. Thus, we
cannot ignore the risk that when a never-before-
experienced input differs even slightly from what
they encountered at the training stage, the mappingcRθ established by deep networks may quickly stop
making sense441. This is quite different from the
traditional optical metrology solutions in which
the reliability of the reconstruction can be secured
for diverse types of samples as long as
“the forward model A is accurate” and “the
corresponding reconstruction algorithm ~A�1 is
effective”.

● “Deep learning in computer vision” ≠ “Deep
learning in optical metrology”: Deep learning is
essentially the process of using computers to help
us find the underlying patterns within the training
dataset. Since the information cannot be “born out
of nothing”, DNNs cannot always produce a
provably correct solution. Compared with many
computer vision tasks, optical metrology concerns
more on accuracy, reliability, repeatability, and
traceability442. For example, surface defect
inspection is an indispensable quality-control
procedure in manufacturing processes443. When
using deep learning for optical metrological
inspection, one may face the risk that a defect in
an industrial component is “smoothed out” and
undetected by an overfitted DNN in the inspection
stage, which will make the entire production run
defective. Since the success of deep learning
depends on the “common” features learned and
extracted from the training samples, which may
lead to unsatisfactory results when facing “rare
samples”.

● “Deep learning” lacks the ability of “deep
understanding”: The “black box” nature of
DNNs, which is arguably one of their most well-
known disadvantages, prevents us from knowing
how the neural network generates expected results
from specific inputs by learning a large amount of
training data. For example, when we send a fringe
pattern into a neural network, and it outputs a poor
phase image, it is not easy to comprehend what
makes it arrive at such a prediction. Interpretability
is critical in optical metrology because it ensures
the traceability of the mistake. Consequently, most
researchers in optical metrology community use
deep-learning approaches in a pragmatic fashion

without the possibility to explain why it provides
good results or without the ability to explain the
logical bases and apply modifications in the case of
underperformance.

Deep learning in optical metrology: future
directions
Although the above challenges have not been adequately

addressed, optical metrology is now surfing the wave of
deep learning, following a trend similarly being experi-
enced in many other fields. This field is still young, but is
expected to play an increasingly prominent role in the
future development of optical metrology, especially with
the evolution of computer science and AI technology.

● Hybrid, composite, and automated learning: It
must be admitted that at this stage, deep-learning
methods for optical metrology are still limited to
some elementary techniques. There is further
untapped potential as a number of latest
innovations in deep learning can be directly
introduced into the context of optical metrology.
(1) Hybrid learning methods, such as semi-
supervised242, unsupervised244, and self-supervised
learning444, are capable of extracting valuable
insights from unlabeled data, which is extremely
attractive as the availability of ground-truth or
labeled data in optical metrology is very limited.
For example, GANs utilize two networks in a
competitive manner, generator and discriminator,
to deceive each other during the training process to
generate the final prediction without specific
labels266. In stereovision, the network models
trained by unsupervised methods have been shown
to produce better disparity prediction results in real
scenes345. (2) Composite learning approaches
attempt to combine different models pretrained on
a similar task to produce a composite model with
improved performance437 or search for the optimal
network architecture in the reinforcement learning
environment for a certain dataset445. They are
premised on the idea that a singular model, even
very large, cannot outperform a compositional
model with several small models/components, each
being delegated to specialize in part of the task. As
optical metrology tasks are getting more and more
complicated, composite learning can deconstruct
one huge task into several simpler, or single-function
components and make them work together, or
against each other, producing a more compressive
and powerful model. (3) Automated machine
learning (AutoML) approaches, such as Google
AutoML446 and Azure AutoML447, is developed to
execute tedious modeling tasks that once performed
by professional scientists440,448. It burns through an
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enormous number of models and the associated
hyperparameters on the raw input data to decide
what model is best applied to it. Consequently,
AutoML is expected to permit even “citizen” AI
scientists with their background in optical metrology
to make streamlined use cases by only utilizing their
domain expertise, offering practitioners a
competitive advantage with minimum investments.

● Physics-informed deep learning: Unlike traditional
physics-model-based optical metrology methods for
which the domain knowledge is carefully engineered
into solutions, most of the current deep-learning-
based optical metrology methods do not benefit so
much from such prior knowledge but rather learn
the solution from scratch by making use of massive
training data. In contrast, if the physics laws
governing the image formation (the knowledge
about the forward image formation model A) are
known—even partially, they should be naturally
incorporated into the DNN model so that the
training data and network parameters are not
wasted on “learning the physics”. For example, in
fringe analysis, inspired by the conventional phase-
shifting techniques, Feng et al.50 proposed to learn
the sine and cosine components of the fringe
pattern, based on which the wrapped phase can be
calculated by the arctangent function (Fig. 28c, d).

This method shows a significant gain in performance
than directly using an end-to-end network
structure50 (Fig. 28a, b). Goy et al.302 suggested a
method for low-photon count phase retrieval where
the noisy input image was converted into an
approximant. As the approximant obtained by
prior knowledge is much closer to the final
prediction than the raw low-photon image, the
phase reconstruction accuracy by using deep
learning can be improved significantly. Wang
et al.449 incorporated the diffraction model of
numerical propagation into a DNN for phase
retrieval. By minimizing the difference between the
actual input image and the predicted input image,
DNN learns how to reconstruct the phase that best
matches the measurements without any ground-
truth data.

● Interpretable deep learning: As we have already
highlighted in the previous sections, most
researchers in optical metrology use deep-learning
approaches intuitively without the possibility to
explain why it produces such “good” results. This
can be very problematic in high-stakes settings such
as industrial inspection, quality control, and medical
diagnose where the decisions of algorithms must be
explainable, or where accountability is required.
Academics in deep learning are acutely aware of
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this interpretability problem, and there have been
several developments in recent years for visualizing
the features and representations they have learned by
DNNs284. On the other hand, often applied to high-
risk scenarios, optical metrology is among the most
significant deep-learning challenges—we are dealing
with unknown, uncertain, ambiguous, incomplete,
noisy, inaccurate, and missing datasets in high-
dimensional spaces. The unexplainability and
incomprehensibility of deep learning also imply the
predictions are at risk of failure. Figure 29 illustrates
one such example, where a well-trained deep-
learning model for stereophase unwrapping fails
when there exists depth ambiguity in a certain
perspective332. Therefore, explainability will become
a key strength in deep-learning techniques to
interpret and explain models, which would
significantly expand the usefulness of deep-learning
methods in optical metrology.

● Uncertainty quantification: Characterizing
uncertainty in deep-learning solutions can help
make better decisions and take precautions against
erroneous predictions, which is essential for many
optical metrology tasks450. However, most deep-
learning methods reviewed in this work cannot
provide uncertainty estimates. In recent years,
Bayesian deep learning has emerged as a unified
probabilistic framework that tightly integrates deep

learning with Bayesian models451. By using a GAN
training framework to estimate a posterior
distribution of images fitting a given measurement
dataset (or estimation statistics derived from the
posterior), Bayesian convolutional neural networks
(BNNs) can quantify the reliability of predictions
through two predictive uncertainties, including
model uncertainty and data uncertainty, akin to
epistemic and revelation uncertainty in Bayesian
analysis, respectively452. It is expected to be adopted
in optical metrology applications, e.g., fringe pattern
analysis, to give pixel-wise variance estimates and
data uncertainty evaluation (Fig. 30)453. The latter
further allows assessment of the randomness of
predictions stemming from data imperfections,
including noise, incompleteness of the training data,
and other experimental perturbations. Incorporating
similar uncertainty quantification into other deep-
learning-based optical metrology methods, especially
when the ground truth is unavailable, is an
interesting direction for future research.

● Guiding the metrology system design: Most of the
current work using deep learning in optical
metrology only considers how to reconstruct the
measured data as a postprocessing algorithm
while ignoring the way how the image data should
be formed. However, an important feature of optical
metrology methods is their active nature, especially
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with respect to the way of manipulating the
illumination. For example, in FPP, the structure of
the illumination is modulated systematically
throughout the object surface to deliver high
accuracy and robustness in establishing the
triangulation. The design of the illumination coding
strategy is curial to improving the measurement
accuracy removing the ambiguity of the depth
reconstruction with a minimum number of image
acquisitions. However, this problem has long been
tackled using heuristics like composite coding,
frequency multiplexing, and color multiplexing,
which does not guarantee optimality (in terms of
facilitating the recovery of desired information).
Deep learning provides a mechanism to optimize
the system design in a more principled way. By
integrating the image formation model (with
trainable parameters controlling the image
acquisition) into the reconstruction network, the
system design and the reconstruction algorithm (i.e.,
both A and the corresponding cRθ) can be jointly
optimized with the training data454. It allows us to
determine which type of system design can yield the
best results for a particular deep-learning-driven task.
Such an idea has been successfully demonstrated in
designing optimal illumination patterns for
computational microscopes455–457. We hope that
this “joint optimization” network can effectively
bridge the gap between how images should be
acquired and how these images should be post-
processed by deep learning, and can be widely
adopted in designing the optical metrology systems,
such as the fringe pattern design in FPP (Fig. 31), and
the speckle pattern design in DIC, etc.

● Both “deep” and “in-depth”: Should we use deep
learning or traditional optical metrology algorithms?

It is a tough question to answer because it depends
heavily on the problem to be solved. Considering the
“no free lunch theorem”, the selection between deep-
learning and traditional algorithms should be
considered rationally. For several problems where
traditional methods based on physics models, if
implemented properly, can deliver straightforward
and more than satisfying solutions, there is no need
to use deep learning. However, sometimes this kind
of “unnecessary” may not be recognized easily. While
being functionally effective, we should keep in mind
that “how best deep learning can do” generally
depends on “how reliable the training data we can
provide.” For example, though the popular “learning
from simulation” scheme used in optical metrology
eliminates the dependence on huge labeled
experimental data, the inconsistency between the
image formation model and actual experimental
condition leads to additional challenges of “domain
adaptation”. Therefore, our personal view is that deep
learning does not (at least at the current stage) make
our research easier. On the contrary, it raises the
threshold for optical metrology research because it
requires researchers not only need to use and
understand deep learning deeply but also need to
take “in-depth” research in traditional algorithms so
as to make an impartial and objective assessment
between deep learning and traditional optical
metrology algorithms (Fig. 32).

Conclusions
A brief summary of this review indicates that there has

been significant interest in the advancement of optical
metrology technologies using deep-learning archi-
tectures. The rapid development of deep-learning tech-
nology has led to a paradigm shift from physics- and
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knowledge-based modeling to data-driven learning for
solving a wide range of optical metrology tasks. In gen-
eral, deep learning is particularly advantageous for many
problems in optical metrology whose physical models are
complicated and acquired information is limited, e.g., in
harsh environments and many challenging applications.

Strong empirical and experimental evidence suggests that
using problem-specific deep-learning models outper-
forms conventional knowledge or physical model-based
approaches.
Despite the promising—in many cases pretty impressive

—results that have been reported in the literature,
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potential problems and challenges remain. For model
training, we need to acquire large amounts of experi-
mental data with labels, which, even if available, is
laborious and requires professional experts. We have been
looking for the theoretical groundwork that would clearly
explain the mechanisms and ways to the optimal selection
of network structure and training algorithm for a specific
task, or to profoundly comprehend why a particular net-
work structure or algorithm is effective in a given task or
not. Furthermore, deep-learning approaches have often
been regarded as “black boxes”, and in optical metrology,
accountability is essential and can cause severe con-
sequences. Combining Bayesian statistics with deep neu-
ron networks to obtain quantitative uncertainty estimates
allows us to assess when the network yields unreliable
predictions. A synergy of the physics-based models that
describe the a priori knowledge of the image formation
and data-driven models that learn a regularizer from the
experimental data can bring our domain expertise into
deep learning to provide more physically plausible solu-
tions to specific optical metrology problems. Leveraging
these emerging technologies in the application of deep-
learning methods to optical metrology could promote and
accelerate the recognition and acceptance of deep learn-
ing in more application areas. These are among the most
critical issues that will continue to attract the interest of
deep-learning research in the optical metrology commu-
nity in the years to come.
In summary, although for different optical metrology

tasks, deep-learning techniques can bring substantial
improvements compared to traditional methods, the field
is still at the early stage of development. Many researchers
are still skeptical and maintain a wait-and-see attitude
towards its applications involving industrial inspection
and medical care, etc. Shall we accept deep learning as the
key problem-solving tool? Or should we reject such a
black-box solution? These are controversial issues in the
optical metrology community today. Looking on the
bright side, it has promoted an exciting trend and fostered
expectations of the transformative potential it may bring
to the optical metrology society. However, we should not
overestimate the power of deep learning by considering it
as a silver bullet for every challenge encountered in the
future development of optical metrology. In practice, we
should assess whether the large amount of data and
computational resources required to use deep learning for
a particular task is worthwhile, especially when other
conventional algorithms may yield comparable perfor-
mance with lower complexity and higher interpretability.
We envisage that deep learning will not replace the role of
traditional technologies within the field of optical
metrology for the years to come, but will form a coop-
erative and complementary relationship, which may
eventually become a symbiotic relationship in the future.
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