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Deep Learning-Enabled Pixel-Super-Resolved Quantitative
Phase Microscopy from Single-Shot Aliased Intensity
Measurement

Jie Zhou, Yanbo Jin, Linpeng Lu, Shun Zhou, Habib Ullah, Jiasong Sun, Qian Chen,
Ran Ye,* Jiaji Li,* and Chao Zuo*

A new technique of deep learning-based pixel-super-resolved quantitative
phase microscopy (DL-SRQPI) is proposed, achieving rapid wide-field
high-resolution and high-throughput quantitative phase imaging (QPI) from
single-shot low-resolution intensity measurement. By training a neural
network with sufficiently paired low-resolution intensity and high-resolution
phase data, the network is empowered with the capability to robustly
reconstruct high-quality phase information from a single frame of an aliased
intensity image. As a graphics processing units-accelerated computational
method with minimal data requirement, DL-SRQPI is well-suited for live-cell
imaging and accomplishes high-throughput long-term dynamic phase
reconstruction. The effectiveness and feasibility of DL-SRQPI have been
significantly demonstrated by comparing it with other traditional and
learning-based phase retrieval methods. The proposed method has been
successfully implemented into the quantitative phase reconstruction of
biological samples under bright-field microscopes, overcoming pixel aliasing
and improving the spatial-bandwidth product significantly. The generalization
ability of DL-SRQPI is illustrated by phase reconstruction of Henrietta Lacks
cells at various defocus distances and illumination patterns, and its
high-throughput anti-aliased phase imaging performance is further
experimentally validated. Given its capability of achieving pixel super-resolved
QPI from single-shot intensity measurement over conventional bright-field
microscope hardware, the proposed approach is expected to be widely
adopted in life science and biomedical workflows.
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1. Introduction

Optical microscopy has undergone con-
tinuous development since its inven-
tion in the 17th century and has grad-
ually become an essential tool for vi-
sualizing cellular and subcellular fea-
tures of biological samples, driven by
the increasing demand for biomedical
research.[1] However, generating suffi-
cient contrast in most biological samples
is challenging due to their low absorp-
tion or weak-scattering characteristic.[1,2]

To obtain their precise and detailed phase
information, extensive research has been
conducted for decades. Fluorescence mi-
croscopy is one of the most far-reaching
developments for weak absorption object
visualization. It labels the specimen with
fluorescent molecules to provide targeted
morphological and biochemical informa-
tion. With the emergence of new fluo-
rescent molecular probes and novel opti-
cal imaging techniques, advanced super-
resolution fluorescence microscopy fur-
ther enables super-resolution subcellu-
lar detail observation at the nano-scale
well beyond the diffraction limit, such
as structured illumination microscopy
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(SIM),[3] stimulated emission depletion microscopy (STED),[4,5]

photo-activated localization microscopy (PALM), and stochastic
optical reconstruction microscopy (STORM).[6] However, the uti-
lization of exogenous agents may introduce photo-toxicity and
photo-bleaching issues, which hinder the long-term imaging of
living cells. Furthermore, the use of fluorescent dyes and pro-
teins as bio-markers inevitably limits certain non-fluorescent ap-
plications where biological samples cannot be easily tagged with
fluorescent markers.[7,8]

In recent years, the technique of computational microscopy,
including interferometric[9–11] and non-interferometric[12–14]

manners for both quantitative phase imaging (QPI)[15–19] and 3D
refractive index (3D RI),[20,21] has been proved to be an invaluable
tool regarding its distinctive capability to quantify the phase delay
of unlabeled biological specimens in a non-destructive way. As
two representative QPI approaches, transport of intensity equa-
tion (TIE)[22] and Fourier ptychographic microscopy (FPM)[23]

have gained wide attention in the application of biomedicine.
With a simple optical implementation of an off-the-shelf bright-
field microscope, the phase distribution of specimen can be
simply reconstructed by TIE using intensity measurements at
multiple axially displaced planes. Nevertheless, the achievable
imaging resolution of TIE is restricted to the incoherent diffrac-
tion limit under partially coherent illumination, and the spatial
bandwidth product (SBP) of TIE is fundamentally restrained
by the optical system, resulting in a trade-off between imaging
resolution and field-of-view (FOV).[24,25] FPM is a recently devel-
oped computational imaging technique that could circumvent
the imaging resolution-FOV trade-off and improve the through-
put of the imaging system.[23,26] FPM maintains high imaging
resolution and wide FOV simultaneously by stitching together
a series of variously illuminated low-resolution but large-FOV
intensity images in Fourier space. However, FPM requires a
large amount of data redundancy, which leads to a cumbersome
data acquisition process. Additionally, the iterative strategy used
by FPM limits its recovery efficiency, preventing its application
in high-speed cell imaging.
On the other hand, high-throughput QPI faces another ma-

jor obstacle posed by pixel-aliasing.[27] In optical systems, de-
tectors are used to collect intensity information and are typi-
cally designed with large pixel sizes to accommodate high photo-
sensitivity and large FOVs for high-throughput imaging. How-
ever, large pixel sizesmay lead to inadequate sampling or digitiza-
tion of the transmitted intensity, resulting in low pixel resolution
and even leading to the infamous pixel-aliasing/undersampling
problem. Although deploying magnification camera adapters or
using image sensors with smaller pixel sizes could mitigate the
pixel-aliasing problem, it comes at the cost of the FOV. There-
fore, this trade-off between pixel resolution and FOV leads to
sub-optimal use of SBP of the imaging system. Several QPI
techniques with anti-aliased ability have been proposed. For in-
stance, the pixel-aliasing in differential phase contrast (DPC)
could be alleviated by the iterative de-multiplexing algorithm.
However, its efficacy is still restrained by the elaborate illumina-
tion scheme, the requirement of multiple intensity images and
the iterative strategy.
Benefiting from the accelerating development in computer sci-

ence and technology, coupled with exponential growth in pro-
cessing power, the past few years have witnessed rapid progress

in deep learning, where high-dimensional representations can
be learned directly from captured data based on neural net-
works. With its unique data-driven methodology, deep learn-
ing has solved many tasks in computer vision and computer-
aided diagnosis with unprecedented performance.[28] In the
field of computational microscopy, deep learning has led to
rapid growth in algorithms and methods for solving various ill-
posed inverse problems, transcending the limitations of tradi-
tional microscopy.[29] For example, deep learning enables super-
resolution imaging and reveals microscopic biological details
with higher precision.[30] It has also been proved that a con-
ventional microscope aided by deep learning could even enable
the observation of nano-scale subcellular details well beyond
the diffraction limit, reaching the image resolution of STED.[31]

Deep learning also realizes cross-modality imaging of biomedi-
cal samples, such as the digital staining technique that accom-
modates the generation of quantitative phase images for virtual
histological staining, therefore circumventing the procedure of
laborious and time-consuming sample staining.[32] Thanks to
its powerful non-linear ability, deep learning has also been uti-
lized to enhance the phase information acquisition capability of
conventional computational imaging techniques by construct-
ing precise mapping relationships between intensity and phase
distributions. With a well-trained neural network, FPM can re-
duce the number of required intensity images from hundreds to
five, eliminating the tedious image acquisition process and time-
consuming iterations, while maintaining the quality of the re-
constructed phase images.[29,33] However, these methods still re-
quire multiple input images for phase recovery. The end-to-end
capability of deep learning implies that the data redundancy re-
quirement for phase retrieval can be further minimized to sin-
gle frame. Based on Gerchberg and Saxton (GS)’s iterative phase
retrieval algorithm, a deep neural network has successfully ob-
tained accurate amplitude and phase information from a single
coaxial hologram amidst the interference of twin images and ob-
ject artifacts.[34] Another deep learning-assisted method achieves
TIE-based phase retrieval from a single intensity image.[35] Nev-
ertheless, though the data efficiency has been improved, the im-
age resolution is still limited, and phase recovery for a large pop-
ulation of cells remains to be investigated. Besides, the prob-
lem of pixel-aliasing requires further exploration. Consequently,
high-throughput quantitative phase imagingwith both wide FOV
and pixel super-resolution from single-frame intensity image in
bright-field optical implementation has not been proposed yet.
In this work, we present a novel quantitative phase imag-

ing technique, termed deep learning-based single-frame super-
resolution quantitative phase imaging (DL-SRQPI). Our method
combines deep learning with quantitative phase imaging and
achieves high-throughput, high-accuracy phase retrieval in a
computational manner without any additional hardware design.
After proper training, a neural network identifies the mapping
relationship between low-resolution intensity image and high-
resolution phase image, with which DL-SRQPI alleviates the
pixel-aliasing problem and improves the space-bandwidth prod-
uct since the inherent large FOV of the low-resolution intensity
image is exploited. DL-SRQPI maximizes the data efficiency by
reducing the intensity image redundancy requirement to only
one frame, and the phase reconstruction speed is greatly ac-
celerated by utilizing the graphics processing unit (GPU). The
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Figure 1. Illustration of the trade-off between field of view and resolution, and comparison of TIE and DL-SRQPI phase retrieval methods. a) Comparison
of resolution and field of view of human blood smear microscopic images under 10× and 60× objectives. b) Standard TIE phase retrieval workflow using
an axial defocus intensity image stack as input to solve the TIE equation and obtain phase images. c) DL-SRQPI phase retrieval workflow using a
single-frame defocused intensity image as input of a well-trained neural network, and outputs a super-resolved phase image.

effectiveness and feasibility of DL-SRQPI has been illustrated by
the comparison with other traditional or network-aided phase re-
trieval methods, and the robustness of DL-SRQPI is also proved
by the phase reconstruction of intensity images at various de-
focus distances and illumination conditions. To demonstrate its
strong capability, we use DL-SRQPI to rapidly convert hundreds
of frames of 512 × 512 pixels simulated intensity images into
the corresponding 2048 × 2048 pixels phase images with high
accuracy. We further validate the capability of DL-SRQPI with ex-
perimentally acquired intensity images. For a 647 × 490 pixels
intensity image obtained by an off-the-shelf bright-field optical
microscope, DL-SRQPI precisely retrieves its phase result at a
resolution of 2588 × 1960 pixels while maintaining the original
FOV, revealing abundant subcellular details that are once embed-
ded in the aliased pixels.With the large-SBP phase reconstruction
capability of DL-SRQPI, we provide long-term high-throughput
time-lapse videos of Henrietta Lacks (HeLa) cells undergoing di-
vision. These superior performances indicate that the proposed
DL-SRQPI is a promising tool for achieving high-throughput dy-
namic quantitative phase imaging of biological cells.

2. Principle and Methods

2.1. High-Throughput QPI via Single-Shot Intensity
Measurement

High-throughput microscopy permits access to high-throughput
quantitative analysis for multiple events in a large population
of cells.[36,37] However, the achievable SBP of conventional mi-
croscopy is fundamentally limited by the optical system, leading
to an inevitable trade-off between FOV and imaging resolution.
This limitation can be intuitively illustrated by Figure 1a. A com-
mercial objective lens with low magnitude (UPlanSApo 10×, 0.4
NA, Olympus) allows the observation of tens of thousands of red
blood cells across the FOV of ≈2.25 mm2, but the spatial resolu-
tion is insufficient to distinguish detailed structures. In contrast,
an alternative objective lens with higher magnitude (UPlanSApo
60×, 1.35 NA, Olympus) enables analysis for high-resolution cel-
lular structures and details, such as the sharp boundaries of red

blood cells and the white blood cells’ internal particles. How-
ever, compared with the large FOV of the 10× objective lens, the
achievable FOV of the 60× objective lens shrinks to ≈0.06 mm2,
where only hundreds of cells could be observed. Hence, it is dif-
ficult to take into account large FOV and high resolution simul-
taneously in conventional microscopic imaging systems.[38]

To decouple FOV and resolution from each other in a mi-
croscope, considerable research has been conducted, such as
imaging stitching,[39] synthetic aperture microscopy,[10,40] lens-
less on-chip microscopy,[41–43] and FPM,[23,26,44–46] achieving
high-throughput microscopic imaging with spatial-domain or
frequency-domain methods. Image stitching is a simple and
widely used approach that mitigates the trade-off between FOV
and resolution by scanning the field with a high numerical aper-
ture (NA) objective lens and then stitching the high-resolution
segments in the spatial domain. However, the cost of an image
stitching system is usually expensive due to the pricey high-NA
objective lens and the high-precision electric scanners used. Be-
sides, the necessary mechanical scanning, refocusing, and regis-
tration procedures also induce extra computation, resulting in a
restriction of space-bandwidth-time production. In contrast, as
mentioned above, FPM is a novel QPI technique that uses a
low-NA objective lens to take advantage of its innate large FOV
and stitches together images in the frequency domain. By vary-
ing the illumination angle, FPM shifts different high spatial fre-
quency components of the object spectrum into the passband of
the low-NA objective lens, and realizes high-throughput phase
imaging using a low-cost system. Nevertheless, the basic strat-
egy of the above-mentioned techniques is to trade numerous data
measurements for high system throughput. This data reliance
often requires sophisticated optical setups or elaborate illumina-
tion schemes, leading to time-consuming data acquisition and
severe storage burden problems. On the other side, TIE is a well-
established deterministic QPI approach that simply utilizes in-
tensity measurements at multiple axially displaced planes to ob-
tain the axial intensity derivative and reconstruct the quantitative
phase (Figure 1b).[22] Thanks to its Köhler illumination compat-
ibility within an off-the-shelf bright-field microscope, TIE elim-
inates the need for elaborate illumination schemes and optical
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setups. Additionally, TIE recovers phase in a non-iterative man-
ner with a requirement of only a few intensity measurements,
which improves the data efficiency, reduces the storage bur-
den and brings higher imaging speed. Nevertheless, despite its
high efficiency, the throughput of phase reconstruction is still
fundamentally constrained by the optical system, since TIE is
always limited by BF illumination, and the maximum attain-
able imaging resolution is restrained to the incoherent diffrac-
tion limit when matched annular illumination is used.[24,25,47]

Consequently, a computational QPI technique for wide-field
high-resolution and high-throughput phase reconstruction from
single-shot intensity measurement is yet to be developed.
The proposed DL-SRQPI has the ability to retrieve high-

resolution phase images from low-resolution intensity image us-
ing a well-trained neural network (Figure 1c). Thanks to the
unique end-to-end mapping mechanism and powerful high-
dimensional feature extraction capability of deep learning, DL-
SRQPI minimizes the data acquisition requirement to a sin-
gle intensity measurement. With the help of GPU, this hy-
brid approach of deep learning and QPI addresses the above-
mentioned data reliance limitation, improving the data efficiency
and speeding up the phase imaging simultaneously. Meanwhile,
DL-SRQPI provides a significant improvement in SBP and re-
alizes high-throughput QPI by enhancing the image resolution
without sacrificing the FOV, alleviating the resolution-FOV trade-
off in a computational manner. Besides, DL-SRQPI allows for
simple and straightforward implementation on a conventional
bright-field microscope at a low cost, giving the possibility for its
wide application.

2.2. Image Preprocessing and Dataset Construction

As an approach based on the end-to-end supervised-learning
strategy, DL-SRQPI gains its capability from the training datasets
consisting of well-paired low-resolution (LR) intensities and
high-resolution (HR) phases.[28] We constructed simulated and
experimental datasets separately to train DL-SRQPI progres-
sively.
In the simulated dataset, we used numerical propagation

methods, including angular spectral propagation and Abbe su-
perposition, to accurately and efficiently generate low-resolution
intensity images at different defocus distances and illumination
patterns from ground truth high-resolution phases. The prop-
agated complex field utilizing the angular spectrum method,
which models the propagation of a wave field by using an ana-
lytic formula, can be calculated by Equation (1)

U(x, z) = ℱ−1
{
Û(ux, uy, 0) exp

[
j2𝜋
𝜆
z
√
1 − (𝜆ux)2 − (𝜆uy)2

]}

(1)

where x represents the 2D spatial coordinate (x, y) in the real
space, the scalar coherent field U(x, 0) (assuming z = 0) is de-
composed into the coherent superposition of the angular spec-
trum (plane wave) components Û(ux, uy, 0) = ℱ{U(x, 0)}, and

exp[j 2𝜋
𝜆
z
√
1 − (𝜆ux)2 − (𝜆uy)2] is a phase delay factor, which is

also known as the angular spectrum transfer function. Then, the

intensity I(x) at propagation distance z can be calculated by mul-
tiplying the complex field U(x, z) and its conjugate U∗(x, z).[48,49]

For the generation of intensities of partially coherent field,
we utilized Abbe’s superposition method, which describes the
formation model of intensity images under different illumina-
tion conditions. The Abbe’s method could be described by Equa-
tion (2)

I(x) = ∫ S(u)Iu(x)du (2)

where S(u) is the Fourier transform of the source intensity distri-
bution, Iu(x) is the coherent partial image arising from the point
of the incoherent source. Equation (2) implies that a partially co-
herent intensity image can be represented as an incoherent su-
perposition of all intensities Iu(x) generated by all light source
points at the condenser aperture plane.[49] By this means, we can
generate intensity images under various illumination conditions.
The simulated datasets consist of FPM phase images as la-

bels and their calculated LR intensity images as inputs. The la-
bel phase images are from our previously published paper.[50]

The accurately matched intensity images were generated from
the ground truth phase images by the above-mentioned numer-
ical propagation methods. With the angular spectrum method,
we digitally back-propagated a ground truth phase image to 13
intensity images at various defocus distances, within a range of
z = (+1 μm, +13 μm) with △z = 1 μm increments. With the
Abbe’s superposition method, we also generated defocused in-
tensity images (z = +4 μm) under different coherent parameters
within a range of S = [0, 0.4] with S = 0.l increments. These gen-
erated intensity images were then corrupted by Gaussian noise
with a standard deviation of 0.01 to simulate the noise effect. Sub-
sequently, we downsampled the intensity images to simulate the
increase of pixel size and introduce the artificial pixel aliasing.[27]

After the operation of 4× pixel binning, the pixel resolution of the
intensity images was reduced from 2048 × 2048 pixels to 512 ×
512 pixels, while the FOV remained unchanged. So far, we had
obtained 17 LR intensity images on 13 defocus distances and four
coherent parameters. With these images, we constructed 17 sim-
ulated datasets, each comprising the original phase image and
one intensity image on a specific defocus distance and a coher-
ence parameter generated from the phase. To reduce the mem-
ory demand of the computer and speed up the process of network
training, we divided the full-field LR intensity images and the cor-
responding HR phase images into paired image patches, and the
patches without valid information were excluded via edge detec-
tion algorithm. For each simulated dataset, the full-field inten-
sity image and phase image were segmented into 64 × 64 pixels
and 256 × 256 pixels image patches, respectively. With further
augmentation by mirroring and rotation, each dataset eventually
contains 1480 LR intensity and HR phase image pairs. Out of
these images, 1300 pairs were randomly selected to be used as
the training dataset, while 80 pairs were used as the validation
dataset for validating the network performance and selecting the
optimal model, and the remaining 100 pairs formed the testing
dataset to blindly quantify the average performance of the final
network. To ensure fairness across networks, though an individ-
ual dataset was randomly divided, the division of each dataset was
identical.
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The experimental dataset consists of real experimental inten-
sity images, which are from our previous work.[51] The differ-
ences in exposure time during intensity image acquisition and
the inhomogeneous light absorption of sample areas resulted in
non-uniformfield brightness, which had a negative impact on the
accuracy of phase retrieval. This influence of spatial variability of

the light intensity can be corrected with the algorithm Cij = Rij
S

R
,

where C is the corrected image, R is the original image, R is the
average gray level of the image R, S is the average gray level of all
270 intensity images, and the subscripts i and j indicate that the
correction is performed on the ith and jth pixel of the image. The
phase images can be recovered by TIE, which is given by Equa-
tion (3)

−k
𝜕I(x)
𝜕z

= ∇ ⋅ [I(x)∇𝜙(x)] (3)

where ∇ denotes the 2D gradient operator with respect to x and
y, and k = 2𝜋∕𝜆 is the wave number. Then the phase 𝜙(x) can
be extracted by solving the equation. The left hand of TIE is the
spatial derivative of intensity at the in-focus plane along the z-
axis.[52] The right hand of TIE is a second-order elliptic partial
differential equation, andwe treat it as a Poisson equation, ideally,
which can be easily solved with fast-Fourier transform (FFT).[53]

We corrected the field brightness of the experimentally ac-
quired 135 intensity image stacks and then reconstructed their
corresponding phase images via TIE. To introduce noticeable
pixel aliasing effect, we downsampled the resolution of the in-
tensity images from 2588 × 1960 pixels to 647 × 490 pixels by
performing 4× pixel binning. This can be regarded as an 4× en-
largement of the pixel size, resulting in a significant loss of de-
tailed information. The TIE-retrieved phase images and the low-
resolution intensity images were used as input and labels for the
experimental dataset. Same as the simulated datasets, we con-
structed the experimental dataset by extracting paired 128 × 128
pixels and 512 × 512 pixels image patches from a pair of exper-
imentally captured full-field LR intensity image and its HR TIE
phase image, and augmented the dataset to 433 pairs by rotating
and mirroring. 400 pairs were randomly selected as the training
dataset, eight pairs were selected as the validation dataset, and
the remaining 25 pairs as the testing dataset.

2.3. Network Architecture and Training

DL-SRQPI adopts U-Net (Figure 2a) as the neural network to
achieve high-speed high-throughput QPI. U-net is a remarkable
CNN-based network with excellent performance in biomedical
image processing.[35,54,55] In DL-SRQPI, U-Net transforms previ-
ously fuzzy inferior intensity images with pixel aliasing to clear,
superior, alias-free phase images. As shown in Figure 2a, the
network consists of an interpolation operation at the input, an
encoder branch for feature extraction, and a decoder branch for
feature reconstruction, with skip connections combining the fea-
tures from two branches. The interpolation operation is per-
formed to align the resolution of the intensity image and the
phase image, so that the network can identify the complex map-
ping relationship of super-resolution phase retrieval. The en-

coder branch consists of four identical downsampling modules,
each including a 2 × 2 max pooling layer and two convolutional
layers with a 3 × 3 kernel and stride of 2. The skip connection
path connects the extracted features of each stage of the encoder
branch to the corresponding feature layer of the decoder branch.
The decoder branch consists of four identical upsampling mod-
ules, each consisting of an upsampling convolutional layer con-
catenating with the corresponding feature map in the encoder
branch by skip connection, and two convolutional layers with
a 3 × 3 kernel. All convolutional layers are followed by a batch
normalization module (BN) and a rectified linear unit (ReLU) to
achieve faster training and enhance the nonlinear ability. Dur-
ing training (Figure 2b), the mean-square-error (MSE) between
the output phase image and the label phase image was calcu-
lated as the loss function, and was back-propagated to the net-
work for optimization. For an image with a size ofM × N pixels,
this loss function over a mini-batch at size of K is calculated by
Equation (4)

Loss(Θ) = 1
K

K∑
k=1

1
M × N

M∑
m=1

N∑
n=1

‖YΘ
m,n,k − YGT

m,n,k‖2 (4)

where k is the kth image patch among the mini-batch, YΘ
m,n,k de-

notes the mth and nth pixel of network output phase image, and
YGT
m,n,k denotes the mth and nth pixel of the training labels (i.e.,

ground truth). The network’s parameter space (e.g., kernels, bi-
ases, and weights) is defined by Θ and its output is given by
YΘ = F(Xinput;Θ), where F defines the deep neural network’s op-
eration on the network input intensity Xinput. The adaptive mo-
ment estimation (ADAM) optimization algorithmwith a learning
rate of 0.01 is utilized tominimize theMSE and tune the network
parameters. After sufficient training, the network has established
themapping relationship between the LR intensity image and the
HR phase image. It is worth mentioning that due to the transla-
tion invariance of the convolutional neural network, the network
can output full-field phase images from full-field intensity im-
ages, despite only patches being used during training. The met-
ric used to measure the accuracy of phase retrieval is given by the
structural similarity index (SSIM), which comprehensively eval-
uates luminance (l(x, y)), contrast (c(x, y)), and image structure
(s(x, y)), to quantify the similarity of the ideal phase and the re-
trieved phase. It can be calculated by Equation (5)

SSIM(x, y) = [l(x, y)]𝛼 ⋅ [c(x, y)]𝛽 ⋅ [s(x, y)]𝛾 (5)

where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

l(x, y) =
2𝜇x𝜇y + c1
𝜇2
x + 𝜇2

y + c1

c(x, y) =
2𝜎x𝜎y + c2
𝜎2x + 𝜎2y + c2

s(x, y) =
𝜎x,y + c3
𝜎x𝜎y + c3

(6)
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Figure 2. Network architecture and schematics of network training and testing. a) The U-Net structure is depicted, where each block represents a multi-
channel feature map. The number of channels is indicated at the bottom of each block, while the size is denoted in the lower left corner. b) The network
training workflow involves utilizing low-resolution intensity image patches as inputs and corresponding high-resolution phase image patches as training
labels. The network optimizes its parameters by minimizing the loss function (MSE) between the network outputs and the training labels. c) During
network testing, a full-FOV low-resolution intensity image is presented as the input, and the well-trained network generates a full-FOV high-resolution
phase image as the output.

where 𝜇x, 𝜇y, 𝜎x, 𝜎y, and 𝜎xy are the local means, standard de-
viations, and mutual covariances of the images x and y. When
𝛼 = 𝛽 = 𝛾 = 1 and c3 = c2∕2, the SSIM index simplifies to

SSIM(x, y) =
(2𝜇x𝜇y + c1)(2𝜎x,y + c2)

(𝜇2
x + 𝜇2

y + c1)(𝜎2x + 𝜎2y + c2)
(7)

The SSIM index varies between 0 and 1, where 1 can be achieved
if predicted and ground truth images are identical to each other.
The fixed network gains the capability to blindly output full-
field high-resolution phase images at a high reconstruction speed
(Figure 2c), providing a great enhancement of space-bandwidth-
time product for the QPI system.

3. Results

3.1. Benchmarking of DL-SRQPI

To illustrate the applicability of our proposed method, we com-
pared DL-SRQPI with two traditional TIE-based methods (FFT-
TIE,[22] iterative DCT[56]) and a classic super-resolution neural

network SRCNN.[57] The full-field FPM phase image was used as
the ground truth (Figure 3a), with high quality and abundant de-
tail information. As mentioned in Section 2.2, the LR defocused
intensity image used for phase reconstruction was generated fol-
lowing the forward model consisting of angular propagation and
pixel binning (Figure 3b), and was corrupted by Gaussian noise
to simulate the noise effect with a standard deviation of 0.01.
To make a fair comparison between SRCNN and U-Net, both

networks are fully trainedwith the same dataset and loss function
(MSELoss). In Figure 3c, we showhow theMSE values of two net-
works decrease. SRCNN has a low initial loss value of ≈400, but
it decreases slowly and converges to ≈250 after 2000 epochs of
training. In contrast, though the initial loss value of U-Net is as
high as ≈6500, the loss function sharply decreases to less than
200 within 15 epochs, and eventually converges to ≈4, exhibiting
much stronger mapping ability. More intuitively, the outputs of
two networks during the training process are shown in Figure 3d.
During training of SRCNN, the output images show little im-
provement. The poor response at low-spatial frequencies leads to
severe noise and artifacts in the output, resulting in difficulty dis-
tinguishing the cell boundary and inner structure. On the other
hand, as U-Net training proceeds and the loss function steadily

Laser Photonics Rev. 2024, 18, 2300488 © 2023 Wiley-VCH GmbH2300488 (6 of 16)
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decreases, the precise phase gradually emerges from the dark
background. The phase reconstruction of DL-SRQPI achieves an
SSIM index of 0.96 with respect to the ground truth, indicating
its high precision. In the output of DL-SRQPI, the optically thick
nucleus, the cell membrane, and some cytoplasmic organelles
are shown with high contrast and clarity. Compared with other
methods, the high-quality reconstructions of DL-SRQPI exhibit
abundant subcellular features in high resolution, unraveling the
aliased pixels in the input images.
In Figure 3e, we compare the phase retrieval of these meth-

ods for two HeLa cells. After 4× pixel binning, the intensity im-
ages become fuzzy and inferior. Due to its low contrast, the in-
tensity images cannot provide much cellular information, and
are further exacerbated by the severe pixel aliasing problem. The
high frequency detail is almost completely lost in the under-
resolved intensity image, preventing the observation of detailed
subcellular structures and making phase retrieval very challeng-
ing. Since the FFT-TIE and Iter-DCT methods do not possess
super-resolution capability, their retrieved phases are blurry and
the detailed information is still buried in oversized pixels. Only
optically thick cellular structures in the phase results can be vi-
sualized, such as the nucleus, while the high-frequency details
are completely lost. In Figure 3e, we demonstrate the line pro-
files across the nucleus and the cell membrane of each output.
The line profiles of FFT-TIE and Iter-DCT only show the general
trend of phase changes and are unable to present the detailed
phase variation of the internal cellular structures. This result re-
veals the gap in resolution between TIE-based and deep learning
methods. Notably, two intensity images at different defocus dis-
tances are required by FFT-TIE and Iter-DCT due to their data
redundancy requirement, while the deep learning methods only
require a single frame of intensity image as input for its end-to-
end mechanism.

3.2. Generalization Capability Analysis for Axial Defocusing and
Illumination Condition

Axial intensity derivative estimation is a key issue in TIE-based
QPI methods. TIE requires multiple defocused intensity mea-
surements to achieve phase retrieval. The defocus distance has
to be large enough to ensure an adequate SNR,[49] but too large
a defocus distance tends to introduce phase blurring effect. This
noise-resolution trade-off requires a strict and precise choice of
defocus distance for TIE-based phase retrieval. Therefore, DL-
SRQPI is expected to possess the capability to recover high-
quality phase robustly from a single frame of intensity image at
a random defocus distance. To initially analyze the generaliza-
tion capability of DL-SRQPI for axial defocusing, we used the 13
datasets that contain variously defocused intensity images (z =
[+1 μm, +13 μm],△z = 1 μm) to train 13 U-Net networks inde-
pendently, which arementioned in Section 2.2. Following the for-

ward model in Figure 4a, after adequate training, we blindly fed
13 sets of testing intensity images at different defocus distances
into each network, each testing dataset containing 100 identically
defocused LR intensity images. Note that the image pairs used
in the training and test datasets are completely different. All 13
networks responded rapidly to each set of testing images, and
the HR phase outputs are shown in Figure 4b. The line profiles
show the phase variation along the same region. Notably, with the
decrease of testing defocus distance, the phase results become
dimmer; while the testing defocus distance becomes higher, the
phase results become brighter and even get overexposed. This
can be regarded as proof that the neural network has mastered
the mapping relationship between intensity and phase: accord-
ing to Equation (3), too large an estimate of the defocus distance
z results in low phase values of the reconstruction result. To quan-
tify the accuracy and the quality of the phase reconstructions, the
average SSIM index for the outputs of each testing dataset was
evaluated with respect to the ground truth, and the SSIM indexes
are shown in Figure 4c. When the defocus distance of the testing
images matches the training images, the phase results are of the
highest quality with the average SSIM index reaching nearly 0.96.
As the testing defocus distance differs from the training defocus
distance, the accuracy and the SSIM indexes of the phase results
drop slowly. Figure 4 illustrates that though each network was
trained with intensity images at one particular defocus distance,
DL-SRQPI still has the ability to reconstruct HR phase images
from intensity images at a range of defocus distances with a neg-
ligible drop in reconstruction quality.
To maximize the generalization capability of DL-SRQPI for ax-

ial defocusing, we used 13 sets of intensity images at various de-
focus distances to construct a training dataset, each containing
100 identically defocused intensity images. After proper training,
DL-SRQPI adapts the variation in defocus distance. We blindly
tested the network with the above testing dataset and calculated
the average SSIM indexes of the phase outputs from each set of
intensities at a certain defocus distance. All these average indexes
are higher than 0.9, and the overall average SSIM index reaches
nearly 0.95, representing the network is adaptive to axial defocus-
ing. So far, we have demonstrated that DL-SRQPI is robust to the
variation of defocus distance, and the proposed defocus adaptive
DL-SRQPI could further enhance the generalization ability on
axial defocusing.
The spatial coherence of the illumination is also an essential

factor for phase retrieval. It can be quantified by a normalized
factor S = NAcond∕NAobj (so-called coherent parameter), where
NAcond is the numerical aperture of the condenser lens andNAobj
is the numerical aperture of the objective lens. Similar to the
noise-resolution trade-off in the choice of defocus distance, the
spatial coherence also brings a compromise between the contrast
and the resolution of phase recovery. Reducing NAcond can effec-
tively improve the phase contrast, but at the same time reduce the
imaging resolution of the system. The generalization capability

Figure 3. Methods comparison and training visualization. a) The full-FOV high-resolution ground truth phase image of HeLa cells in vitro, along with the
phase of a ROI (region of interest) and its intensity image obtained through numerical propagation. b) The defocused low-resolution intensity images
of cell A and cell B were generated by numerical propagation from their high-resolution phase images and subsequently downsampling them through a
4× pixel binning. c) The plot of the Mean Squared Error loss function for SRCNN and U-Net. d) Phase reconstruction images and corresponding loss
function values from the outputs of SRCNN and U-Net at different epochs during network training. e) Phase reconstruction results of FFT-TIE, Iter-DCT,
SRCNN, and U-Net using the low-resolution intensity images of cell A and cell B as inputs, along with the line profiles of the cells.

Laser Photonics Rev. 2024, 18, 2300488 © 2023 Wiley-VCH GmbH2300488 (8 of 16)
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Figure 4. Analysis of axial defocusing generalization capability. a) The forward model of DL-SRQPI for intensity images with different defocus distances.
Each neural network is trained with intensity images at a specific defocus distance and tested blindly with intensity images at different defocus distances.
b) The phase reconstructions of testing defocused intensity images (z=+3/+6/+9 μm), output by three well-trained networks trained on intensity images
at defocus distances of z = +3/+6/+9 μm), along with their SSIM indexes compared to the ground truth phase image, and their line profiles showing the
subcellular features. c1) The average SSIM index curves depicting the similarity between the phase images obtained from intensity images at different
defocus distances (z = +1 to +13 μm) and the ground truth phase, using the defocus adaptive network and three networks trained on three sets of
defocused intensity images (z = +3/+6/+9 μm). c2) The boxplot of the SSIM index of the phase images obtained from the defocus adaptive network
using 13 groups of testing datasets, and the ground truth phase images.
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of DL-SRQPI on coherent parameters has been verified. We used
the five datasets mentioned in Section 2.2 to train five U-Net net-
works independently, each containing intensity images at a cer-
tain parameter (S = [0, 0.4],△S = 0.1). After training, each well-
trained network was blindly tested with five sets of testing images
at different coherent parameters, each set containing 100 LR in-
tensity images (Figure 5a). Note that the image pairs used in the
training and test datasets are completely different. The results
are shown in Figure 5b and the average SSIM indexes of each
set of outputs were evaluated with respect to the ground truth
(Figure 5c). The phase results and the line profiles in Figure 5b
show that when the coherent parameter of the testing intensity
images matches the coherent parameter of the training inten-
sity images, the quality of the phase results reaches the highest,
with an average SSIM index of 0.95, which shows the high sim-
ilarity between ground truth and network output images. As the
coherent parameter of the testing image gets lower, the phase
imaging contrast reduces, bringing a blurry effect on the internal
structures and edges of cells, causing a significant loss of high-
frequency detail information. With the increase of testing coher-
ent parameter, the phase imaging contrast becomes excessively
high, resulting in a sharpening-like effect in the phase recon-
struction, which added difficulty to the cell morphology analysis.
The box plot of the SSIM indices for each set of outputs from the
S = 0.4 trained network shows a small variance in the accuracy
of the outputs, indicating the stability of the DL-SRQPI. By far,
the robustness of the phase retrieval framework of DL-SRQPI is
critically estimated through the above testing experiments.

3.3. Quantitative and Generalizable Characterization of
DL-SRQPI

We conducted an experiment to demonstrate the quantitative
property of DL-SRQPI using a microlens array as the test sub-
ject. For the establishment of the ground truth high-resolution
phase image, the TIE algorithm was utilized to reconstruct the
accurate phase image of the microlens array. Subsequently, we
performed 4× pixel binning on the original defocused intensity
image to generate a low-resolution intensity image. This process
enlarged the pixel size to 8.8 μm and decreased the pixel reso-
lution of the defocused intensity image from 1280 × 960 pixels
to 320 × 240 pixels. With the LR defocused intensity image and
ground truth HR phase image, we created a dataset comprising
high-resolution phase and low-resolution intensity image pairs
of the microlens array using the same method described in Sec-
tion 2.2. We trained a U-Net network and blindly fed it with a
new defocused low-resolution intensity image of the microlens
(Figure 6 a2). The network rapidly generated a high-resolution
phase reconstruction (Figure 6 a3), and the heights of the mi-
crolens were deduced from the output phase image (Figure 6 a4).
In Figure 6 a5, we compare the line profiles of the DL-SRQPI out-
put phase, the ground truth high-resolution phase, and the low-
resolution phase for a single lens. It is evident that the three pro-
files almost completely overlap. As seen in the zoomed area, the
discrete pixels of LR phase exhibit a noticeable stair-step pattern
due to the pixel binning, indicating a large pixel size and a low
resolution. Conversely, the DL-SRQPI achieves a high resolution
comparable to the ground truth HR phase. Figure 6 a6 presents

the difference between the ground truth phase and the output
phase of DL-SRQPI. The difference between the output phase
and the ground truth phase is only 1 to 2 gray levels, which is
equivalent to 0 to 0.2 μm in height, showing the high accuracy of
DL-SRQPI. These results confirm the precise quantitative char-
acteristics of DL-SRQPI.
To further demonstrate the generalizability of DL-SRQPI, we

utilized experimentally acquired differently defocused intensity
images of HeLa cells. Following the same method described in
Section 2.2, we constructed three experimental datasets for HeLa
cells, each consisting of HR phase images and LR intensity im-
ages captured at different defocus distances (z = +3/+6/+9 μm).
Subsequently, we trained three separate U-Net networks using
these datasets. Figure 6 b1–b3 displays three LR intensity images
of a single HeLa cell captured at the corresponding defocus dis-
tances of z = +3/+6/+9 μm. These LR intensity images were in-
put into their respective networks, which rapidly generated four-
fold pixel super-resolved phase images (Figure 6 b4–b6). Impor-
tantly, the output phase images obtained from the LR intensity
images at different defocus distances all exhibited high SSIM val-
ues when compared to the ground truth (Figure 6 b7). This exper-
imental evidence clearly demonstrates the strong generalization
capability of DL-SRQPI.

3.4. Evaluation on the Simulation Dataset Using DL-SRQPI

We verified the feasibility of DL-SRQPI to achieve rapid high-
throughput single-shot QPI using the simulation dataset of in
vitroHeLa cells. Figure 7 shows the full FOV phase prediction for
the simulated dataset of HeLa cells in vitro. The simulated input
LR intensity image has a wide FOV of ≈1.77 mm2, matching the
FOV size of the objective lens with 10×magnification. The input
intensity image has a resolution of 512 × 512-pixel with an effec-
tive pixel size of 2.6 μm. The high-throughput phase reconstruc-
tion is displayed in Figure 7a, which shows that our DL-SRQPI
is able to achieve a four fold enhancement in the pixel resolu-
tion from 512 × 512 pixels to 2048 × 2048 pixels while maintain-
ing the large FOV size of ≈1.77 mm2, as the effective pixel size
improves to 0.65 μm. The comparison between LR intensity and
the predicted HR phase of two ROIs is shown in Figure 7a. Com-
pared to the low-contrast aliased intensities, the recovered phases
display improved overall contrast of cell organelles and highlight
high-spatial-frequency subcellular details.
Additionally, thanks to the non-invasive and nontoxic prop-

erties of DL-SRQPI, it can also serve as a practical tool for vi-
sualizing the morphological dynamics of living HeLa cells. We
used DL-SRQPI to reconstruct phase imaging videos with large
SBP (Videos S1 and S2, Supporting Information). As shown in
Figure 7b, cells A and B are enlarged to present different typical
mitosis phases and the morphological evolution of cells during
the mitotic cycle. The subcellular features of both cells, such as
cytoplasmic vesicles and pseudopodium, and their sub-pixel or-
ganellemotions, such as plasmidmigration, are demonstrated in
the video. Since each HR phase image was reconstructed within
only 0.3 s, which can be further accelerated with higher perfor-
mance hardware, all the retracting, extending, reorganizing, mi-
grating, and maturing processes of cells could be recovered ac-
curately avoiding motion blur, which lays the foundation for the

Laser Photonics Rev. 2024, 18, 2300488 © 2023 Wiley-VCH GmbH2300488 (10 of 16)
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Figure 5. Analysis of generalization capability for illumination condition. a) The forward model of DL-SRQPI for intensity images with various coherent
parameters. Each network is trained with intensity images at a specific coherent parameter and tested blindly with intensity images at different coherent
parameters. b) The phase reconstructions of testing intensity images (S = 0/0.3/0.4), output by three well-trained networks trained on intensity images
at illumination condition of S = 0/0.3/0.4, along with their SSIM indexes compared to the ground truth phase image, and their line profiles showing the
subcellular features. c1) The average SSIM index curves depicting the similarity between the phase images obtained from intensity images at different
coherent parameter (S = 0/0.3/0.4) and the ground truth phase, using three networks trained on three sets of intensity images at the same coherent
parameter. c2) The boxplot of the SSIM index of the phase images obtained from the well-trained network (S = 0.4) using five groups of testing datasets,
and the ground truth phase images.
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Figure 6. Validation of quantitative and generalization capabilities of experimental data based on a microlens array and a defocused HeLa cell. a1) The
low-resolution phase image of the microlens array retrieved from low-resolution intensity images via TIE. a2) The low-resolution defocused intensity
image of the microlens array. a3) The high-resolution phase reconstruction result output by DL-SRQPI. a4) The 3D topography of the microlens array. a5)
Comparison of DL-SRQPI output, ground truth HR phase and LR phases. a6) The error of DL-SRQPI output, that is, the difference between ground truth
phase and DL-SRQPI output phase. b1–b3) The input defocused LR intensity images of a HeLa cell (z=+3/+6/+9 μm]). b4–b6) DL-SRQPI reconstructed
HR phase images from intensity images of (b1–b3). b7) The ground truth HR phase image of the HeLa cell.

practical application of DL-SRQPI in the fields of cytomorphol-
ogy, cytokinetics, and cytogenetics.

3.5. Experimental Phase Imaging of HeLa Cells In Vitro Using
DL-SRQPI

After validating the feasibility and the generalization capability
of DL-SRQPI on simulated data, we further demonstrate the
full-field high-resolution phase recovery from experimentally ac-
quired intensity images of HeLa cells in vitro using DL-SRQPI.
The HeLa cell image used to test the network was acquired at
different culturing time point from the HeLa cell image used to
construct the training dataset. As mentioned in Section 2.2, the
ground truth phase images were retrieved based on TIE using the
experimentally acquired high-resolution intensity images, and

the low-resolution intensity images were used as inputs of DL-
SRQPI and TIE. As can be seen in Figure 8a,b, the low-resolution
intensity images suffer from severe pixel aliasing problem, where
the high-frequency components almost completely disappear in
the extremely low contrast and oversized pixels. With the low-
resolution intensity image stack as input, TIE could only provide
phase image with the same low resolution (Figure 8c), creating
a great obstacle to the observation of the internal structure of
cells. In contrast, DL-SRQPI has a minimum requirement and
possesses pixel super-resolution capability. With a single frame
of low-resolution intensity as the only input, DL-SRQPI rapidly
generates the high-resolution phase image with pixel resolution
of 2588 × 1960 pixels (Figure 8d) in 0.2 s, achieving fourfold pixel
super-resolution. As shown in three enlarged ROIs in Figure 8e,
DL-SRQPI enables the precise observation of plentiful subcel-
lular features of HeLa cells, such as nucleus with large phase,
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Figure 7. Time-lapse full-FOV high-resolution phase reconstruction of unstained HeLa cells undergoing division using DL-SRQPI. a) The full-FOV
high-resolution phase reconstruction of the low-resolution intensity image by DL-SRQPI, and the comparison of low-resolution intensity images and
high-resolution phase images of two ROIs. b) Sample frames of the DL-SRQPI reconstructed video (Video S2, Supporting Information) for cells A and B
across 5 h, showing their different stages of cell division. c) The timeline of cell division of cells A and B within 5 h judging from DL-SRQPI reconstructed
video. Different colors corresponding to (b) represent different cell division stages.
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Figure 8. The experimental result of DL-SRQPI to reconstruct the full-FOV high-resolution phase image of unstained HeLa cells. a) The full-FOV low-
resolution defocused intensity images, and the low-resolution phase image reconstructed by TIE. b) The low-resolution defocused intensity images
of three ROIs. c) The low-resolution phase images of three ROIs reconstructed by TIE. d) The full-FOV high-resolution phase image reconstructed by
DL-SRQPI from a single frame of low-resolution intensity image. e) The high-resolution phase images of the three ROIs reconstruted by DL-SRQPI. f)
The ground truth phase images of the three ROIs.

mitochondria in transport, and cytoplasm in high contrast. The
accuracy of the DL-SRQPI can be quantified by the SSIM index.
The SSIM index of the full-field output phase reaches 0.9948, and
the SSIM indexes of ROI 1, ROI 2, and ROI 3 are 0.9933, 0.9898,
and 0.9920, which show extremely high similarity between the
network outputs and the ground truth phases (Figure 8f). Com-
pared with the TIE method that requires two intensity images
at different defocus distances, the network reduces the demand
for intensity images to only one, lightening the data burden as
well as avoiding the phase error caused by the inaccurate estima-
tion of axial intensity derivative. DL-SRQPI improves the reso-
lution without sacrificing FOV, enhancing the throughput of the
system effectively. Video S3, Supporting Information, shows the
experimental time-lapse full-field phase reconstruction results of
DL-SRQPI. These experimental results validate the efficacy and
promptness of the DL-SRQPI utilization within a bright-field op-
tical microscopy system.

4. Conclusion

In this study, we have introduced DL-SRQPI, a novel deep
learning-based technique for quantitative phase microscopy with
pixel super-resolution capability. DL-SRQPI enables full-FOV
high-resolution phase imaging of unlabeled specimens using
only a single frame of low-resolution intensity image as input, as
validated by experimental data. The robust generalization capa-
bility of DL-SRQPI has been demonstrated using datasets of sim-
ulated and experimental intensity images with varying defocus
distances and coherent parameters, which highlights the versatil-

ity and adaptability of our approach in handling different imaging
conditions. The quantitative property of DL-SRQPI has also been
validated by amicrolens array. Furthermore, our method exhibits
notable advantages in terms of fast speed and high-throughput,
as evidenced by successful phase reconstruction of unstained bi-
ological cells and dynamic phase observation ofHeLa cells. These
results demonstrate the feasibility of DL-SRQPI for video-rate liv-
ing cell phase imaging, opening up new possibilities for real-
time cellular dynamics analysis. Importantly, DL-SRQPI signif-
icantly reduces the need for intensity data redundancy compared
to conventional QPI approaches, thereby mitigating the trade-
off between FOV and resolution. This advancement enhances
the SBP of fundamental bright-field system equipment, facilitat-
ingmore efficient and cost-effective imaging capabilities. Overall,
DL-SRQPI showcases its potential as a powerful QPI technique
with wide-ranging applications in high-throughput microscopy.
It holds promise for various fields such as drug discovery, cellu-
lar phenotype characterization, and the identification of disease
mechanisms.[58] Future investigationswill delve into understand-
ing the dependencies of DL-SRQPI on specific cell types and cul-
ture conditions, as well as addressing the impact of various ex-
perimental configurations on phase retrieval.

5. Experimental Section
Sample Preparation: To prepare biological material, the HeLa cells

were cultivated in a glass bottom Petri dish (35 mm, MatTek) with
L-glutamine Dulbecco’s modified Eagles medium (Gibco, American)
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supplemented with 10% Nu-serum (Corning, American), 10% fetal calf
serum (Gibco, Australia), and 1% vitamin mix (100×) (Lonza, Cologne,
Germany). The cells were cultured in a stage-mounted climate chamber
(Tokai Hit INUF-IX3W, Japan) for stabilization of temperature at 37 ◦C and
CO2 gas at 5%. The medium was changed every other day and cells were
passed with trypsin upon reaching 80% confluency. In preparation for cell
division imaging, cells were washed once with phosphate-buffered saline
and detached with either accutase or trypsin.

Experimental Configuration: For experimental measurements of HeLa
cells, the intensity images used for TIE phase retrieval were obtained with
an optical system equipped with an inverted microscope (IX71, Olympus,
Japan), utilizing a halogen white-light source with a green interference fil-
ter (central wavelength 𝜆 = 550 nm, 45-nm bandwidth) for illumination.
The microscope was equipped with a 5-megapixel charge-coupled device
(CCD) camera (UC50, Olympus, Germany) with a pixel resolution of 2588
× 1960 and a pixel pitch of 3.4 μm. Themicroscope also included an electri-
cally tunable lens (EL-C-10-30-VISLD, Optotune AG, Switzerland) module
that was synchronized with the camera at different focal distances along
the z-axis and controlled by software via a standard USB cable. The image
stack was acquired via plan semiapochromat objective (LUCPlanFLN 40×,
Olympus, Half magnification, NA 0.6) in an 8-bit grayscale range.

The microlens array (SUSS MicroOptics pitch 240ROC 297 μm) was
imaged using an inverted bright-field microscope (Olympus IX71 ), and
in-focus and out-of-focus intensity images were captured by axially trans-
lating the camera. The camera used here had a pixel size of 2.2 μm (The
Imaging Source DMK 72BUC02, 1280 × 960 resolution), and the illumina-
tion was set to a central wavelength of 550 nm.

Implementation Details: The deep neural network was implemented
using Pytorch 1.10.2 based on Python 3.9.7. The network training and test-
ing were performed on a workstation with Intel(R) Core (TM) i9-10900K
CPU (3.70 GHz) and 32 GB of RAM, running a Windows 10 operating sys-
tem (Microsoft) using NVIDIA GeForce RTX 3090 GPU. With a batch size
of eight, the training process of each dataset took≈1 h for 200 epochs. The
network took≈0.3 s to reconstruct a full-field 2048× 2048 pixels phase im-
age from the 512 × 512 pixels simulated intensity image, and took ≈0.2 s
to reconstruct a full-field 2588 × 1960 pixels phase image from the 647 ×
490 pixels experimentally acquired intensity image.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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