
Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Qian et al. PhotoniX            (2025) 6:13  
https://doi.org/10.1186/s43074-025-00171-w

PhotoniX

Ensemble deep learning‑enabled 
single‑shot composite structured illumination 
microscopy (eDL‑cSIM)
Jiaming Qian1,2,3†, Chunyao Wang1,2,3†, Hongjun Wu1,2,3*, Qian Chen3* and Chao Zuo1,2,3*    

Abstract 

Structured illumination microscopy (SIM) has emerged as a powerful super-resolution 
technique for studying protein dynamics in live cells thanks to its wide-field imag-
ing mode and high photon efficiency. However, conventional SIM requires at least 
nine raw images to achieve super-resolution reconstruction, which limits its imaging 
speed and increases susceptibility to rapid sample dynamics. Moreover, the reliance 
of SIM on illumination parameters and algorithmic post-processing renders it vulner-
able to reconstruction artifacts, especially at low signal-to-noise ratios. In this work, 
we propose a single-shot composite structured illumination microscopy method 
using ensemble deep learning (eDL-cSIM). Without modifying the original SIM setup, 
eDL-cSIM employs only one composite structured illumination pattern generated 
by 6-beam interferometry. The resultant composite-coded raw image, which contains 
multiplexed high-frequency spectral information beyond the diffraction limit, is fur-
ther processed using ensemble deep learning to predict a high-quality, artifact-free 
super-resolved image. Experimental results demonstrate that eDL-cSIM integrates 
the advantages of various state-of-the-art neural networks, enabling robust super-
resolution image predictions across different specimen types or structures of interest, 
and outperforms classical physics-driven methods in terms of imaging speed, recon-
struction quality and environmental robustness, while avoiding intricate and special-
ized algorithmic procedures. These collective advantages make eDL-cSIM a promising 
tool for fast and robust live-cell super-resolution microscopy with significantly reduced 
phototoxicity and photobleaching.
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Introduction
Over the past few decades, fluorescence super-resolution imaging techniques that 
break the Abbe diffraction limit, such as stochastic optical reconstruction microscopy 
(STORM) [1], photoactivated localization microscopy (PALM) [2], structured illumi-
nation microscopy (SIM) [3], and stimulated emission depletion microscopy (STED) 
[4], have become important research tools in the field of life sciences, enabling human 
beings to observe fine subcellular structures at the nanoscale or even the single-mol-
ecule level [5]. Among various super-resolution techniques, SIM, a wide-field method 
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capable of doubling the lateral resolution, has attracted widespread attention in dynamic 
super-resolution imaging of live cells thanks to its advantages of full-field imaging, high 
photon efficiency, and compatibility with regular fluorescent dyes [6–13].

Typically, SIM utilizes grating-structured illuminations to modulate the high-fre-
quency information of the sample beyond the diffraction limit into the support domain 
within the cutoff frequency of the system, thereby achieving super-resolution [14, 15]. 
In order to recover the high-frequency information, at least three phase-shifting images 
at three distinct orientations ( ≥ 9 frames) need to be acquired for demodulating and 
expanding the lateral full-field Fourier-domain sub-apertures [16, 17]. Despite the faster 
imaging speed compared to STED, STORM, etc., the multi-frame nature still causes 
SIM to suffer from decreased temporal resolution and increased photodamage, which 
exacerbates its susceptibility to specimen motion and subcellular organelle dynam-
ics, making it less conducive to rapid, long-term live-cell imaging [18, 19]. In addition, 
high-quality SIM super-resolution reconstruction usually requires precision knowledge 
of the experimental illumination parameters, the estimation of which is computation-
ally cumbersome and time-consuming, and minor parameter errors may lead to severe 
reconstruction artifacts [20–25]. At low signal-to-noise ratios (SNRs), noise will make 
the SIM reconstructions more vulnerable to artifacts that affect quantization and fidel-
ity [26, 27]. In order to maximize imaging speed and minimize photodamage for rapid 
live-cell imaging, researchers tend to compress the photon dose required for reconstruc-
tion by shortening the exposure time and decreasing the excitation power, but at the 
cost of dramatically deteriorating SNRs. Although numerous improved reconstruction 
approaches, e.g., total variation-based SIM (TV-SIM) [28], Hessian-SIM [26], high-fidel-
ity SIM (Hifi-SIM) [29], Sparse-SIM [27], flexible SIM (FlexSIM) [30], principal compo-
nent analysis-based SIM (PCA-SIM) [31], have been proposed to mitigate noise-induced 
artifacts, they are not always effective for artifacts arising from all possible factors and 
somewhat increase the algorithm complexity, with more parameter settings affecting the 
generalizability of SIM. Furthermore, these methods cannot fundamentally address the 
motion susceptibility issue caused by the multi-frame nature of SIM, as they still need 
to acquire a series of illumination patterns for each reconstructed high-resolution SIM 
image. Reducing the number of raw patterns required for reconstruction is a more effec-
tive and direct scheme to improve photon efficiency [32, 33]. However, the reconstruc-
tion quality of existing frame-reduced algorithms is inferior to that of regular 9-frame 
reconstructions in practical imaging experiments due to their reliance on strict optical 
setups or complex noise models [34–37].

Recently, deep learning has brought about significant breakthroughs in SIM, indicat-
ing the great potential to revolutionize its future development [32, 38–47]. It has been 
proven that the application of deep learning can reduce the number of raw images while 
retrieving super-resolution information, thereby increasing the speed of SIM [32, 38] 
and even enabling single-shot SIM reconstruction [46, 48, 49]. However, since a single 
image in conventional illumination mode contains super-resolved information at only 
one orientation, the quality of network prediction using it as input is compromised 
[48, 49]. To modulate isotropic super-resolution information in a single illumination, 
some researchers leveraged multiple side-branching galvanometer sets to direct three 
shunted beams and generate interferometric lattice illumination, on the basis of which 
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deep learning-enabled single-frame SIM was realized [46]. However, both imaging sta-
bility and resolution are compromised due to the increased complexity of the imaging 
equipment (particularly the need for additional reflective mirror sets driven by piezo 
stages to introduce phase shifts for generating conventional illumination patterns) and 
the lower frequency of the illumination pattern generated by three-beam interference 
compared to that in conventional illumination mode (see Supplementary Note S1 for 
detailed analysis).

In this work, we propose a single-shot composite structured illumination microscopy 
method enabled by ensemble deep learning (eDL-cSIM). eDL-cSIM adopts a compos-
ite structured illumination instead of the conventional means, which encodes the lateral 
full-field high-frequency spectrum information with only a single modulation to break 
through the diffraction limit, increasing the imaging speed by 9 times without compli-
cating the optical setup. Furthermore, different from conventional reliance on a single 
deep neural network (DNN) with limited learning attributes, we introduce ensemble 
learning [50–52] into SIM reconstruction to achieve superior performance over several 
state-of-the-art DNNs through an adaptive ensemble model based on the Transformer 
architecture across different specimen types or structures of interest. Experiments dem-
onstrate that eDL-cSIM achieves faster imaging speed, higher reconstruction quality 
and better noise immunity compared to physics-driven methods at only one-ninth of 
the conventional photon dose, making it a promising imaging tool for fast, long-duration 
observation of live subcellular structures.

Principle of eDL‑cSIM
Composite structured illumination for single‑shot isotropic lateral spectrum modulation

In the classical SIM optical setup, the illumination field is generated by the interference 
of ± 1-order diffraction light from a collimated laser irradiated on a spatial light modu-
lator (SLM) displaying the dense grating pattern. Since a single illumination can only 
modulate the sample spectrum distributed in the direction orthogonal to the fringe ori-
entation, at least three illumination fields with orientation angles rotated by 120° from 
each other are required to implement isotropic lateral super-resolution. Figures  1a 
and b illustrate the well-designed mask used to filter the ± 1-order diffraction light, in 
which diffraction light of various orientations passes through the mask at different time 
points, respectively. In order to maximize the modulation efficiency, the illuminations 
in the temporal domain can be compressed into the spatial domain, i.e., generating dif-
fraction light of different orientations at the same time point by 6-beam interference 
instead of the regular two-beam interference [Fig. 1c and d]. Accordingly, the classical 
grating structured illumination is replaced with a composite structured illumination, 
which superimposes standard grating patterns of three orientations, thus realizing sin-
gle-shot full-field spectrum modulation without modifying the optical setup, as shown 
in Fig. 1e and f. Figure 1g illustrates the customized SIM setup based on a commercial 
inverted fluorescence microscope (IX73, Olympus, Japan) using the above-mentioned 
composite structured illumination strategy. In the illumination path, three laser beams 
of different wavelengths (405 nm, 488 nm and 561 nm) were coupled through a series of 
dichroic mirrors and subsequently expanded and collimated. The composite excitation 
pattern was then generated by a ferroelectric liquid crystal SLM (QXGA- 3DM, Fourth 
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Dimension Displays, UK) with a high frame rate. In the imaging path, a high numerical 
aperture (NA) objective and an sCMOS camera (PCO Edge 5.5, PCO, Germany) with 
60% peak quantum efficiency were used to detect the emitted fluorescence. The display 
of SLM was triggered by the sCMOS exposure to ensure timing synchronization. More 
information on the customized SIM setup is provided in Methods and Supplementary 
Figs. S1-S3.

High‑quality super‑resolution reconstruction based on ensemble learning

Although we have achieved single-shot isotropic spectrum modulation, the inverse prob-
lem of super-resolution reconstruction is severely ill-posed due to the fact that, in addi-
tion to the desired six spectrum orders carrying the highest illumination frequencies, 
there are other spectrum components generated by the interference of diffracted light 
from different orientations, as shown in Supplementary Fig. S2. Unlike conventional 
reconstruction methods that reformulate a well-posed regression task at the expense of 
increasing the number of raw images (see Supplementary Note S2 for more details), we 
apply deep learning to bypass the obstacle of solving the ill-posed inverse problem and 
directly establish the pseudo-inverse mapping relation between the composite-coded 
raw image and the high-quality super-resolution image (see Supplementary Note S3 for 

Fig. 1  Composite structured illumination for single-shot isotropic lateral spectrum modulation. a The 
well-designed mask used to filter the ± 1 diffraction light. b The classical structured illumination based 
on two-beam interference, which requires the use of at least three illuminations to modulate the full-field 
spectrum information. c The composite structured illumination based on 6-beam interference, which 
modulates the full-field spectrum information using only one illumination. d 6-beam interference on the 
sample surface. e The composite illumination pattern that superimposes standard grating patterns of three 
orientations. f The spectrum image of (e). g The customized SIM setup based on a commercial inverted 
fluorescence microscope using composite structured illumination
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more details). More specifically, an adaptive ensemble neural network with the Trans-
former architecture as the main module is designed to integrate the features extracted by 
three state-of-the-art base convolutional neural networks (CNNs), thus achieving better 
reconstruction performance than any individual base CNN. Moreover, this combination 
leverages the advantages of CNN and the Transformer architecture, allowing the model 
to accommodate both global information and local features. Figure 2 illustrates the over-
all network architecture of eDL-cSIM.

First, we employ U-Net [53, 54], which combines a simple and efficient network 
structure with excellent performance, as Base Network 1. U-Net can learn multi-
scale features and map them at the pixel level through hierarchical cross-connections 
in the spatial domain, making it applicable to various biomedical visual tasks [55–
61]. In addition, the encoder-decoder structure ensures that shallow feature infor-
mation can be well preserved. Based on the above characteristics, we utilize U-Net 
to learn diffraction-limited wide-field information from a composite-coded raw 
illumination image, and set its architecture to five groups of encoders and decod-
ers with residual connections established, as shown in Fig. 2a1. Next, two additional 
base networks are applied to recover the high-frequency information of the sample 

Fig. 2  The overall network architecture of eDL-cSIM. a Architectures of the base networks. Base Network 1 
is a U-Net (a1), which is used to learn the wide-field information from a composite-coded raw input. Base 
Network 2 is a recursive residual network (a2), which is used to establish the mapping relationship between a 
single-frame input and the super-resolution image from the real-space domain. Base Network 3 is a DNN with 
a Fourier channel attention mechanism of amplitude and phase dual branches (a3), which is used to recover 
the high-frequency information from the Fourier domain. b Architecture of the ensemble network, which is 
used to integrate the output information of the three base networks, thus achieving better reconstruction 
performance. Fimag and Freal represent the imaginary and real parts of the input spectrum respectively, ‘CAB’ 
means ‘Channel Attention Block’, ‘SW-MSA’ means ‘Shifted Window Multihead Self Attention’, ‘W-MSA’ means 
‘Window Multihead Self Attention’, ‘LN’ means ‘LayerNorm’, and ‘MLP’ is ‘Multilayer Perceptron’
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from the real-space domain and the Fourier domain, respectively. For Base Network 
2, we adopt a recursive residual network [62] to establish the mapping relationship 
between the composite-coded input and the super-resolution image [Fig. 2a2]. The 
recursive residual network consists of residual blocks primarily composed of con-
volutional layers, including local residual links and global recursive residual links. 
Local residual links enable information retention and gradient alleviation, while 
global recursive residual links connect each residual block directly to the input with-
out increasing network complexity, thereby predicting high-frequency information 
from the composite-coded input more effectively in the real-space domain. Further-
more, considering that the high-frequency components to be recovered are more 
easily distinguishable in the Fourier domain, we construct Base Network 3 through a 
Fourier channel attention mechanism with amplitude and phase dual branches [63] 
[Fig. 2a3]. Such network architecture can leverage the spectrum differences among 
various features to learn precise representations of the high-frequency information 
in biological structures, offering more reliable guarantees for high-quality super-
resolution reconstruction. More implementation details on the base networks are 
provided in Supplementary Notes S4.1-S4.3 and Figs. S4-S6.

To adaptively integrate and model long-range dependencies from information 
extracted by the base networks, we employ Vision Transformer (VIT) as the primary 
module to construct the ensemble network, as illustrated in Fig. 2b. By dividing the 
input into multiple sub-windows and computing the multi-head attention mecha-
nism, VIT can process different aspects of input sequences in parallel to provide 
multiple representation subspaces for attention layers, thus enabling the network 
to efficiently capture global information and long-distance dependencies in images 
and improve the accuracy of feature extraction. To fully utilize the interactive infor-
mation between different windows, we adopt the N-Gram context method to parti-
tion the windows and compute the sliding window attention mechanism with Swin 
Transformer, which treats adjacent local windows as a set of uni-grams [64]. Conse-
quently, the image embedding operation is redefined, i.e., adopting a group convolu-
tion with a stride of M and groups of C/2 to embed the input into a C/2×Wh×Ww 
dimension (where C represents the number of channels, M is the window size, and 
Wh and Ww represent the width and height of the window). In each N-Gram unit, 
there are M2 pixels. The sliding window attention mechanism is implemented using 
the sliding operation in convolution, with padding applied to the image edges, thus 
achieving bidirectional window-self-attention (WSA). The WSA weights are shared 
across all directions. After computing the forward and backward WSA, the bidirec-
tional WSA results are concatenated and a 1 × 1 convolution is used to generate the 
N-gram context. In a single Transformer block, residual connections are employed, 
and patch merging is performed before the next stage. Between two stages, max-
pooling is used to halve the resolution of the feature map and expand the number of 
channels, aiding the network in learning meaningful representations. Finally, a 3 × 3 
convolution is applied to learn the representation within each channel space to out-
put the desired image. Supplementary Note S4.4 anf Figs. S7 and S8 provide more 
implementation details about the ensemble network.
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Network lightweighting to reduce the training and predicting time

Since we utilize multiple base networks and an ensemble network, the training and pre-
dicting time will increase dramatically compared to using only a single DNN. To address 
this issue, network lightweighting is performed to achieve more efficient data training 
and prediction. First, to reduce the memory consumption of the base networks in the 
graphics processing unit (GPU), partial convolution (PConv) is used as the basic convo-
lutional block to replace the convolutional layers in the base networks [65]. Compared 
to the conventional convolution operation, PConv features advantages of high computa-
tional efficiency and fewer model parameters, while ensuring effective extraction of spa-
tial features. More technical details about PConv are provided in Supplementary Note 
S5 and Fig. S9. For the ensemble network, unlike the symmetric encoder-decoder struc-
ture of Swin-Unet [66], we merge the outputs of each stage in the encoder through patch 
expansion, utilizing PixelShuffle [67] and concatenation to skip-connect information 
from each stage of the encoder, as can be seen in Fig. 2b. This operation concentrates 
multi-scale information delivery to the decoder and significantly enhances network 
efficiency.

Results
Experiments to demonstrate superior super‑resolution reconstruction performance 

over individual base networks through ensemble learning

To test the performance of ensemble learning, we used a composite-coded raw image 
of cellular mitochondria that did not appear in the training set as input to the base 
networks and the ensemble network, respectively. The test object was a fixed sam-
ple of bovine pulmonary artery endothelial (BPAE) cells with DAPI-labeled nucleus, 
Alexa FluorTM 568-labeled actin and MitoTrackerTM Green FM-labeled mitochondria. 
The prediction results of different neural networks are illustrated in Fig. 3, from which 
it can be seen that Base Network 1 removes the honeycomb-shaped illumination field 
in the input and achieves the recovery of the low-frequency component of the sample, 
i.e., the wide-field image [Fig.  3a and b, and Supplementary Fig. S11]. Distinctly, Base 
Networks 2 and 3 obtain super-resolution images from the real-space domain and the 
Fourier domain, respectively [Fig. 3c and d]. However, although DNNs focusing on high-
frequency information allow for resolution improvements, the imaging quality of a sin-
gle neural network remains to be enhanced compared to the ground truth (obtained by 
PCA-SIM [31] from nine conventional illumination patterns) since the composite-coded 
input overlaps numerous spectrum components, making the super-resolution recon-
struction task highly ill-posed. In contrast, after integrating the features extracted by 
different base networks, a high-fidelity super-resolution image can be derived, with a 
quality almost comparable to that of the ground truth [Fig. 3e and f ]. Furthermore, we 
find that for regions with low SNRs, such as where the cell nucleus is located, the results 
reconstructed by the physics-driven method suffer from artifacts interfering with the 
fidelity due to the influence of the out-of-focus background, whereas eDL-cSIM achieves 
artifact-free super-resolution reconstruction, as shown by the magnified mitochondrial 
details from the white-boxed regions in Fig. 3e and f. Further analysis of the fluorescence 
intensities along the blue line from Fig. 3e in different results indicates that eDL-cSIM 
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implements the resolution improvement comparable to the ground truth without pro-
ducing the artifacts pointed out by the yellowish arrows [Fig. 3g].

Regarding the time consumption of network training, the total training time for one 
epoch of multiple networks is about 223.63 s, which is ∼ 19.32% less than that (275.93 
s) without network lightweighting, and only 23.68% more than that (180.00 s) of using 
a single neural network (the ensemble network) [Fig. 3h]. As shown in Fig. 3i, the loss 
curves of Base Networks 1, 2, 3 and the ensemble network converged after about 70, 150, 
160 and 240 epochs, respectively. For prediction, the efficiency improvement is more 
significant, with time consumption before and after network lightweighting being 4.95 
s and 2.54 s, respectively, the latter even 63.08% less than that (4.02 s) of using a single 
network [Fig. 3h].

In order to further validate that the reconstruction performance improvement 
is mainly contributed by ensemble learning, Supplementary Fig. S12 provides a 

Fig. 3  Prediction results of the base networks and the ensemble network for mitochondria of a fixed BPAE 
cell samples with DAPI-labeled nucleus, Alexa FluorTM 568-labeled actin and MitoTrackerTM Green FM-labeled 
mitochondria. a Comparison of the composite-coded raw image and the wide-field image. The raw SIM 
images (with the resolution of 512 × 512) were captured through a 100× objective (UPlanSApo 100×/1.40 
Oil, Olympus, Japan). b-d Prediction results of Base Networks 1–3 using the composite-coded raw image 
as input, where Base Network 1 outputs the wide-field image, and Base Networks 2 and 3 output the 
super-resolution image from the real-space domain and the Fourier domain, separately. e Prediction result 
of the ensemble network that integrates features focused on by different base networks. f Ground truth 
obtained from nine raw images in conventional illumination mode by PCA-SIM [31]. g Intensity profiles of the 
results of different networks along the light blue line in e (normalized to maximum). h Training and prediction 
time for one epoch of different base networks and the ensemble network before and after lightweighting. 
i Loss convergence curves for different base networks and the ensemble network. j The ablation study to 
evaluate the contribution of the sub-networks to the final result. ‘Net.’ means ‘Network’, ‘w’ and ‘w/o’ mean 
‘with’ and ‘without’, and ‘Tra.’ and ‘Pre.’ mean ‘Training’ and ‘Prediction’. Experiments were repeated ten times 
independently with similar results. Colored arrows point to regions where result differences are distinct. 
Scale bars: 5 µ m (full-field-of-view images in a-e); 1.5 µ m (magnified results for the rectangles in a-e); 0.5 µ m 
(magnified results for the squares in e and f)
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comparison of the super-resolution prediction results using the single ensemble net-
work and using the multi-network ensemble strategy, indicating that ensemble learning 
is more conducive to superior reconstruction quality. In addition, we conducted an abla-
tion study to evaluate the contribution of the sub-networks to the final result. As shown 
in Fig. 3j, the learning performance of each base network alone as well as removing any 
base network in the ensemble learning strategy was tested using three metrics: structural 
similarity coefficient (SSIM), peak signal-to-noise ratio (PSNR), and learned perceptual 
image patch similarity (LPIPS). The results indicate that Base Networks 2 and 3 focusing 
on high-frequency information contribute significantly more than that centered on low-
frequency information, but the lack of any sub-network affects the final reconstruction 
performance, demonstrating that the ensemble learning strategy can achieve superior 
reconstruction quality than any individual sub-network.

Comparative experiments to demonstrate the high reconstruction quality, high 

generalization and well environment robustness of eDL‑cSIM

To further validate the advancement of eDL-cSIM, we compared it with two other state-
of-the-art DNNs for SIM reconstruction, i.e., Amplitude-Phase Channel Attention Net-
work (APCAN) [63] and Fourier Enhanced and Shifting Tiered Network (FESTN) [46], 
where FESTN is a deep learning method for single-frame SIM. Both networks used 
for comparison were trained with the composite-code illumination image and the cor-
responding super-resolution image as input and output. The prediction results of the 
BPAE cells obtained by these three methods are shown in Fig. 4. Since the severe spec-
trum overlapping of the input image poses great challenges to the performance of deep 
learning, the reconstruction quality of FESTN is relatively compromised, with the pre-
dicted results of both mitochondria and actin displaying no significant super-resolution 
effects [Fig.  4b3 and c3]. Although APCAN obtains resolution-enhanced reconstruc-
tions of mitochondria, its fidelity is affected by the spectrum overlapping and its results 
for actin remain compromised [Fig. 4b4 and c4]. In contrast, eDL-cSIM recovers higher-
quality super-resolution images, especially in the results of actin, where fine structures 
that other DNNs cannot distinguish are well resolved [Fig. 4b5 and c5]. Figure 4d pro-
vides the SSIM between the results obtained by different methods and the ground truth, 
indicating that eDL-cSIM outperforms APCAN and FESTN in terms of reconstruction 
fidelity. We display the fluorescence intensity profiles of the results obtained by differ-
ent methods and calculate the full width at half maximum (FWHM) for selected fine 
structures, as shown in Fig.  4e. It can be seen that eDL-cSIM achieves a resolution 
comparable to the ground truth, with FWHM of the selected mitochondrial structure 
being 115.62 nm and 116.24 nm, and FWHM of the actin structure being 117.27 nm and 
114.56 nm, respectively. Supplementary Figs. S13-S15 present more comparative experi-
mental results on subcellular organelles of BPAE cells, further verifying the advantages 
of eDL-cSIM in reconstruction quality and fidelity. We then tested the structures not 
covered in the training set using APCAN, FESTN, and eDL-cSIM. The super-resolution 
results of the different networks on the microtubules of CV- 1 in Origin Simian- 7 (COS- 
7) cells and the autofluorescent ascaris sample are illustrated in Fig. 5, from which it can 
be seen that eDL-cSIM still yields the best reconstruction quality and fidelity among the 
three methods. Supplementary Figs. S16-S18 provide more comparative experimental 
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results for different samples, such as actin and microtubules in COS- 7 cells (Supple-
mentary Fig. S16), microtubules and nucleus in buffalo green monkey kidney cells (BSC- 
1) (Supplementary Fig. S17), a stratified squamous epithelium sample [Supplementary 
Figs. S18(a) and S18(b)], a cross section of dicot stem [Supplementary Fig. S18(c)], a 
human blood smear [Supplementary Fig. S18(d)], microspore mother cells in diplotene 
of lily [Supplementary Fig. S18(e)] and a stem cross-section of small-leaved linden [Sup-
plementary Fig. S18(f )]. All these experiments demonstrate that eDL-cSIM can achieve 
higher-quality super-resolution predictions than other state-of-the-art DNNs from only 
a single-frame composite-coded image, while possessing well generalization.

Next, we tested the performance of eDL-cSIM in complex imaging environments. 
We gradually reduced the excitation power from the rated value (55 mW) to 25% of the 
original (with a corresponding reduction in the average photon count of the raw images 
from 252 to 60) and sequentially captured nine raw images of BPAE mitochondria in 
regular illumination mode and one image in composite illumination mode. PCA-SIM 
and eDL-cSIM were applied to obtain super-resolution images under regular and com-
posite illumination modes, respectively. As shown in Supplementary Fig. S19, the results 

Fig. 4  Comparison of the multi-color super-resolution experimental results on a fixed BPAE cell sample. 
a Comparison of the composite illumination input, wide-field image and the super-resolution image 
obtained by eDL-cSIM. The raw SIM images with the resolution of 1024 × 1024 were captured through a 100× 
objective (UPlanXApo 100×/1.45 Oil, Olympus, Japan). For easy distinguishing, we show the mitochondria, 
actin and nucleus of the BPAE cell in red, green and blue, respectively. b Magnified wide-field image, 
composite illumination image and super-resolution images of mitochondria from the white-boxed regions 
in (a) obtained by different methods (FESTN [46], APCAN [63], eDL-cSIM and PCA-SIM [31]). c Magnified 
wide-field image, composite illumination image and super-resolution images of actin from the yellow 
boxed regions in (a) obtained by different methods. d SSIM between super-resolution results obtained by 
different methods and ground truth for the regions in (b) and (c). e Intensity profiles of the results obtained 
by different methods along the light blue line in (b) and (c) (normalized to maximum). ‘WF’ means ‘Wide-field’. 
Experiments were repeated ten times independently with similar results. Colored arrows point to regions 
where reconstruction differences are distinct. Scale bars: 5 µ m (a); 500 nm (b, c)
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of PCA-SIM appear increasingly serious reconstruction artifacts as SNR decreases, 
with the SSIM between the results in different noise environments and that at high SNR 
reducing from 0.77 to 0.47, whereas eDL-cSIM always maintains stable reconstruc-
tion quality, with the SSIM being above 0.85. Experimental results in Fig. 3e and f, and 
Supplementary Fig. S18 can also demonstrate that eDL-cSIM features excellent noise 
robustness, in which the results of PCA-SIM are interfered by ambient noise or out-
of-focus backgrounds, leading to reconstruction artifacts, while eDL-SIM suppresses 
these artifacts well and obtains higher quality super-resolution images. In addition to 

Fig. 5  Comparison of the super-resolution experimental results on COS- 7 microtubules labeled by BODIPYR 
FL goat anti-mouse IgG and an autofluorescent ascaris sample. a Comparison of the wide-field image and 
the super-resolution image of COS- 7 microtubules obtained by eDL-cSIM. The raw SIM images with the 
resolution of 1024 × 1024 were captured through a 100× objective (UPlanXApo 100×/1.45 Oil, Olympus, 
Japan). b Magnified wide-field image, composite illumination image and super-resolution images from the 
yellow-boxed regions in (a) obtained by different methods (FESTN [46], APCAN [63], eDL-cSIM and PCA-SIM 
[31]). c Magnified wide-field image, composite illumination image and super-resolution images from the 
white-boxed regions in (a) obtained by different methods. d Intensity profiles of the results obtained by 
different methods along the yellow and blue lines in (b) and (c) (normalized to maximum). e SSIM and 
PSNR between super-resolution results obtained by different methods and ground truth shown in (a)-(c). 
f Comparison of the wide-field image and the super-resolution image of the ascaris sample obtained by 
eDL-cSIM. The raw SIM images with the resolution of 1024 × 1024 were captured through the same 100× , 
1.45 NA objective. g Magnified wide-field image, composite illumination image and super-resolution 
images from the yellow-boxed regions in (f) obtained by different methods. h Magnified wide-field image, 
composite illumination image and super-resolution images from the white-boxed regions in (f) obtained 
by different methods. i Intensity profiles of the results obtained by different methods along the yellow 
and blue lines in (g) and (h) (normalized to maximum). j SSIM and PSNR between super-resolution results 
obtained by different methods and ground truth shown in (f)-(h). ‘GT’ means ‘Ground truth’. Experiments were 
repeated ten times independently with similar results. Colored arrows point to regions where reconstruction 
differences are distinct. Scale bars: 5 µ m (a, f); 1 µ m (b); 200 nm (c); 0.5 µ m (g, h)
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environmental noise, out-of-focus is also a key factor affecting the reconstruction qual-
ity. We sampled the same region of BPAE mitochondria at intervals over a long period of 
time without interfering with the imaging setup. Due to perturbations in the surround-
ing environment, the focal plane changed over time, making the image blurred and com-
promising the reconstruction quality of PCA-SIM (Supplementary Fig. S20). In contrast, 
eDL-cSIM is relatively less sensitive to out-of-focus, maintaining its SSIM above 0.75 in 
the case of defocusing where the resultant SSIM of PCA-SIM has dropped to 0.51. The 
excellent performance of eDL-cSIM under out-of-focus conditions can also be proven 
in the experiments on thick samples as shown in Supplementary Fig. S17. The above 
performance enhancement of eDL-cSIM at low SNRs is actually achieved by bypassing 
the spectrum separation and reorganization in conventional reconstruction algorithms 
(which are prone to artifacts due to the carrying of various errors into the high-fre-
quency regions [29]) to directly establish a pseudo-mapping between low-quality inputs 
and high-resolution outputs. In addition, unlike the conventional step-by-step proce-
dure prone to error accumulation, deep learning is more conducive to achieving better 
global performance by synthesizing various spatio-temporal information [68]. The sin-
gle-shot property and high reconstruction quality also result in less photodamage with 
eDL-cSIM. To verify this aspect, we compare the reconstruction performance of PCA-
SIM and eDL-cSIM under the same illumination dose. As shown in Supplementary Fig. 
S21, when the total exposure time of capturing 9 images in conventional illumination 
mode is the same as that in composite illumination mode, the SNR of the conventionally 
illuminated image suffers from a significant degradation to the extent that substantial 
artifacts occur in its reconstructed image. However, eDL-cSIM maintains high recon-
struction quality, whereas the conventional 9-frame reconstruction method requires at 
least nine times the illumination dose to achieve the same quality. All these experimental 
results demonstrate that eDL-SIM is capable of robustly obtaining high-quality, artifact-
free super-resolution results from only a single-frame composite-coded input in com-
plex, low SNR environments.

Dynamic super‑resolution imaging of live cells based on eDL‑cSIM

The lower phototoxicity, photobleaching and faster imaging speed resulting from the 
single-shot feature, as well as the high reconstruction quality and well noise robust-
ness enabled by ensemble learning make eDL-cSIM highly suitable for super-resolution 
observation of live cells. To demonstrate the potential for live-cell imaging, we imaged 
the mitochondria of live COS- 7 cells labeled with MitoTrackerTM Green FM using eDL-
cSIM and reconstructed some interesting mitochondrial dynamic events. As can be seen 
in Fig.  6a and b, a clustered annular mitochondrion (pointed to by the yellow arrow) 
tried to fuse with a long mitochondrion (pointed to by the blue arrow) below, which was 
deformed at the point of fusion due to being dragged (24.09 s ∼ 33.96 s). Meanwhile, 
the annular mitochondrion also emitted a mitochondrial tubule to fuse with another 
long mitochondrion composed of multiple small ones at the lower left (pointed to by 
the green arrow). In almost the same time interval (24.09 s ∼ 30.69 s), mitochondrial 
fission occurred on another annular mitochondrion (pointed to by the green and yel-
low arrows) in the region below, but one of the fissioned sites rapidly fused with the two 
mitochondria on the right (pointed to by the green arrow), as shown in Fig. 6. Figure 6d-f 
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illustrate similar mitochondrial dynamic events, where the mitochondrial fission and 
fusion occurred in the regions indicated by the blue and yellow arrows, respectively. 
Supplementary Movie S1 provides the complete super-resolution results of the COS- 7 
mitochondria, as well as the input composite-coded images for comparison. These mito-
chondria constantly underwent a dynamic balance of fusion and division, the dysregula-
tion of which is associated with a range of human diseases, including neurodegenerative 
diseases, diabetes, tumors and so on [69]. Therefore, the study of these mitochondrial 
dynamic events mentioned above is of positive significance for the diagnosis, progno-
sis, and development of individualized therapeutic means for related diseases. In addi-
tion, as seen in Supplementary Movie S1, although the region of interest was constantly 
changed and the focus was frequently adjusted, eDL-cSIM always provides reliable and 
robust reconstruction, verifying that it can be applied to high-quality, long-duration 
dynamic super-resolution imaging of live cells in complex environments.

Discussion and conclusion
We have presented a single-shot composite structured illumination microscopy 
approach enabled by ensemble learning (eDL-cSIM). eDL-cSIM achieves single-shot lat-
erally isotropic spectrum modulation via an efficient six-beam interferometric compos-
ite structured illumination strategy without modifying the SIM optical setup. Ensemble 
learning is utilized to solve the ill-posed inverse problem of super-resolution reconstruc-
tion by integrating the base networks focusing on features of different frequency compo-
nents in different domains, rather than conventional deep learning approaches relying 

Fig. 6  Dynamic super-resolution images of mitochondria of live COS- 7 cells labeled by MitoTrackerTM Green 
FM at different time points. a, d Comparison of input composite illumination images and super-resolution 
images obtained by eDL-cSIM. The raw images with the resolution of 512 × 512 were captured through a 
60× objective (UPlanXApo 60×/1.42 Oil, Olympus, Japan). b, e Magnified super-resolution images from the 
white-boxed regions in (a) and (d) at different time points. c, f Magnified super-resolution images from the 
yellow-boxed regions in (a) and (d) at different time points. Colored arrows point to regions where dynamics 
are distinct. Scale bars: 3 µ m (a, d); 1.5 µ m (b, c, e); 1 µ m (f)
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only on individual neural networks. Experimental results demonstrate that eDL-cSIM 
enables higher-quality super-resolution image reconstruction in low SNR environments 
compared to state-of-the-art data- and physics-driven methods at 9 times the imaging 
speed of conventional illumination modes. Faster imaging speed, less photodamage, 
higher reconstruction quality and better noise immunity make eDL-cSIM an efficient 
and robust imaging tool to study the dynamics of nanoscale fine structures in living cells.

We also demonstrate that eDL-cSIM exhibits well generalization to various samples 
[Figs.  5, 6, S16-S18] and imaging environments [Figs. S19-S21] that are not covered 
by the training data. This is primarily attributed to the prior knowledge learned from 
the training data, including the abstract representation of the physical characteristic 
of extrapolating high-frequency signals (which is independent of specific samples and 
further enhanced by the ensemble learning strategy) [50–52] and the generalized high-
dimensional features statistically extracted from the sample structural information [39, 
70]. To practice eDL-cSIM on other SIM microscopes or samples of completely diverse 
types, re-preparing the dataset according to our proposed framework is recommended, 
since, for supervised learning, the dataset is a crucial factor that affects the actual per-
formance of the model. Notably, the proposed composite illumination strategy requires 
no modifications to the original SIM setup, allowing dataset preparation to be easily 
generalized to other SIM microscopes. Further employing transfer learning [71] or data 
augmentation [72], which is implemented by fine-tuning an already trained model or 
increasing the diversity of the training set, can somewhat reduce the reliance on new 
datasets. This will be a primary focus for future work.

Regarding the 6-beam composite illumination modulation, in addition to the spectral 
components contributing to the highest resolution enhancement, other components 
with smaller wavelet vectors impose severe spectral aliasing, making the inverse recon-
struction problem even more ill-posed. In fact, these spectral components can assist in 
compensating for the missing-cone effect in the three-dimensional (3D) optical transfer 
function (OTF) of the system, thus improving the axial resolution and optical sectioning 
capability. In the future, we will consider utilizing the super-resolution images demodu-
lated from the composite illumination images as the ground-truth data of the training 
set for single-shot super-resolution and optical sectioning.

Despite the impressive results achieved by eDL-cSIM, caution should still be exer-
cised for the essentially ill-posed inverse problem of SIM reconstruction, where network 
prediction is theoretically impossible to obtain the full ground-truth details. To further 
ensure the fidelity and unambiguity of the prediction results, future efforts can focus on 
enhancing network architecture, e.g., embedding physical models in the neural network 
to improve the network performance [47]. In addition, although we have improved the 
time consumption for network training and prediction by network lightweighting, espe-
cially the prediction time is reduced by about 1.95 times, which is even 63.08% lower 
than that using a single network, the network runtime still needs to be improved for 
long-time continuous observation of live cells. In the future, we will further lighten the 
neural networks in terms of both volume and speed while maintaining the accuracy, and 
optimize the structure and number of base networks to avoid computational redun-
dancy due to performance conflicts, based on which the local deployment of pre-trained 
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models will be considered in order to achieve real-time, robust deep-learning-based sin-
gle-shot SIM super-resolution imaging.

Methods
SIM setup

Our customized SIM setup is shown in Supplementary Fig. S1. We couple three laser 
beams (Laser 1: OBIS LX405, Coherent, USA; Laser 2: OBIS LX561, Coherent, USA; 
and Laser 3: Sapphire 488LP- 200, Coherent, USA) with different wavelengths through 
a series of dichroic mirrors (DM1: ZT561 dcrb, Chroma, USA; and DM2: ZT488 dcrb, 
Chroma, USA) and plane mirrors (M1, M2: OMM1-A1, JCOPTiX, China), and then 
expand and collimate them through a spatial filter and an achromatic lens (L1: LSB08-
A 150 mm, Thorlabs, USA). The laser beam is then modulated to p-polarized light 
by a half-wave plate (HW1: GCL- 0604, Daheng Optics, China), passes through a 
polarizing beam splitter (PBS: PBS251, Thorlabs, USA) used to reduce laser loss, and 
is projected onto a ferroelectric liquid crystal spatial light modulator (SLM: QXGA- 
3DM, Fourth Dimension Displays, UK) displaying the standard or composite grat-
ing patterns. The generated diffracted light is modulated by another half-wave plate 
(HW2: GCL- 0604, Daheng Optics, China) into the s-polarized state and reflected 
by the PBS and an achromatic lens (L2: LSB08-A 250 mm, Thorlabs, USA). A well-
designed mask blocks the zero-order beam at the focusing plane of the diffracted 
light, allowing only the ± 1-order beams from three directions to pass through. 
Typically, a six-zoned half-wave plate (AHWP25-VIS-A- 6P-M, LBTEK, China) is 
employed to control the polarization directions of the diffracted beams parallel to the 
directions of the resulting interference fringes to maximize the depth of illumination 
modulation [73]. These beams are then focused onto the rear focal plane of the objec-
tive lens by a pair of lenses (L3: LSB08-A 200 mm, Thorlabs, USA; L4: LSB08-A 175 
mm, Thorlabs, USA), generating the interference patterns on the sample surface. The 
emitted fluorescence light is collected by the same objective lens, passes through the 
fluorescent interference filter block, and is finally captured by an sCMOS camera with 
a quantum efficiency of 60% (PCO Edge 5.5, PCO, Germany). In contrast to regular 
two-beam interferometry, we use an illumination strategy of six-beam interferome-
try, which does not require any modification of the optical setup, and can realize the 
modulation of the isotropic spectrum from only one illumination by simply replac-
ing the image displayed in SLM with a composite pattern superimposed on the grat-
ings in three orientations. Supplementary Fig. S2 illustrates the spectrum modulation 
in the case of six-beam interference. It can be seen that the interference of the six 
amplitude vectors in three directions will generate 19 spatial frequency components, 
among which the black components are generated by the interference of diffracted 
light with a direction difference of 180 degrees, the blue components are generated by 
the interference of diffracted light with a direction difference of 120 degrees, and the 
green components are generated by the interference of diffracted light with a direc-
tion difference of 60 degrees.
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Multi‑head attention mechanism calculation

The multi-head attention mechanism within a sub-window can be defined as:

where Attention, head and MultiHead represent the operation of calculating the self-
attention mechanism, single-head attention mechanism and multi-head attention 
mechanism respectively, the matrices Q, K, and V are derived by linearly transforming 
the feature matrix x through the weight matrices WQ , WK  , and WV  (Q=xWQ , K=xWK  , 
V=xWV  ), dk denotes the dimension of Q, K, and V, softmax is the normalized exponen-
tial function, WO denotes the weight matrix for linear transformation of the multi-head 
attention mechanism, and Concat represents the operation of concatenating headi(i=1...h) 
in dk dimensions.

Activation function and loss function

In eDL-cSIM, both the base networks and the ensemble network use the Gaussian Error 
Linear Unit (GELU) [74] as the global activation function to introduce nonlinear charac-
teristics, which can be described as follows:

where Tanh represents the hyperbolic tangent function.
Regarding the loss function, since the tasks vary between networks, we set different 

loss functions for the sub-network stage and the ensemble stage to optimize the network 
parameters. The loss function of the base networks is defined as a combination of mean 
square error (MSE) loss and SSIM loss:

where Y and Ŷ  represent the network output and the ground truth respectively, and α is 
used to adjust the weight between MSE loss and SSIM loss. For Base Network 1, which 
is tasked with extracting low-frequency components, α is set to 0.05 to enhance the abil-
ity of averaging local details and ensure pixel-level accuracy while balancing dynamic 
range. For Base Networks 2 and 3, α is set to 0.5 to enhance the structural similarity. 
The loss function of the ensemble network is defined as the combination of SSIM loss 
and perception loss (PLoss) [75], where PLoss compares Ŷ  with Y by extracting different 
depth feature maps using a pre-trained CNN, and ensures that both content and struc-
tural information are considered. In this case, we use a pre-trained VGG16 network and 
select features from the 4 th, 9 th, and 16 th layers [76]. Then PLoss is described as:

(1)Attention(Q,K ,V ) = softmax
QKT

dk
V

(2)headi = Attention
(

xW
Q
i , xWK

i , xWV
i

)

(3)MultiHead(headi(i=1...h)) = Concat(head1, ...headh)W
O

(4)GELU(x) = 0.5x

{

1+ Tanh

[

√

2

π

(

x + 0.447515x3
)

]}

(5)Lossbase(Y , Ŷ ) = MSE(Y , Ŷ )+ α[1− SSIM(Y , Ŷ )]
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where i represents the layer number, and CiHiWi denotes the size of the feature map 
at the i-th layer. The loss function of the ensemble network with PLoss considered is 
denoted as:

where the weight β is empirically set to 0.2.

Dataset collection and network training

Through the customized SIM setup, we collected 200 sets of data on mitochondria and 
actin in BPAE cells. Each dataset contains nine raw images captured in regular illumina-
tion mode and one image in composite illumination mode. Note that all mentioned neu-
ral networks were trained based on this dataset and all used test data are not included 
in the training set. To ensure the quality of the subsequent reconstruction, sufficient 
laser power and exposure time were provided to acquire a high imaging SNR, while the 
regions of interest where thin samples with relatively clear backgrounds were located 
were captured to avoid the emergence of out-of-focus artifacts. We utilized PCA-SIM 
[31], which enables high-precision illumination parameter estimation to ensure high-
quality reconstruction, to obtain the super-resolution image from nine regular illumi-
nation patterns (more technical details about PCA-SIM are provided in Supplementary 
Note S2). For Base Network 1, the composite illumination image and the wide-field 
image derived from multi-frame averaging of nine images of conventional illumination 
are used as an input-output (ground truth) pair. For Base Networks 2 and 3, the outputs 
are changed to the reconstructed super-resolution images. For the ensemble network, 
the inputs and outputs are the predictions of the three base networks and the recon-
structed super-resolution images, respectively. The resolutions of the raw image, the 
wide-field image and the super-resolution image are 512×512, 512×512 and 1024×1024, 
respectively. By random cropping, a total of 12, 800 sets of input images with 128×128 
resolution and ground truth with 256×256 resolution (or input images and ground truth 
both with 256×256 resolution) were obtained, and random horizontal/vertical flipping 
and random scaling were used to further enhance the dataset. Supplementary Fig. S10 
presents a set of raw acquisition data and the input-output pairs of different neural net-
works. When training the networks, the ratio of the training set to the validation set 
is 8 : 2. We used the Adam optimizer [77] (with learning rate α = 0.003, and attenua-
tion rates β 1 = 0.9, β 2 = 0.999) to update the network parameters and a dynamic learn-
ing rate adjustment strategy to make more refined adjustments to the model weights. 
Specifically, the initial learning rate was set to 0.05. From 0 to 60 epochs, the learning 
rate decayed by 0.5 times every 15 epochs. From 61 to 150 epochs, the learning rate 
decayed by 0.5 times every 30 epochs. From 150 to 300 epochs, if the validation loss did 
not decrease for 20 consecutive epochs, the learning rate decayed by 0.5 times. The con-
structed neural networks are computed based on the PyTorch platform (version 2.0.1, 

(6)Ploss =
∑

i

1

CiHiWi

∥

∥

∥
vggi(Y )− vggi(Ŷ )

∥

∥

∥

2

2

(7)Lossensemble(Y , Ŷ ) = [1− SSIM(Y , Ŷ )] + βPloss(Y , Ŷ )
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using Python 3.10.0) on a workstation with Intel Core i7 - 13700 KF CPU, 32GB RAM 
and NVIDIA GeForce RTX4090.

Sample preparation

The live COS- 7 cells were incubated in H-DMEM containing 10% fetal bovine serum 
and 1% penicillin-streptomycin under a humidified environment of 5% CO2 at 37 °C. 
COS- 7 cells were seeded at a density of 5 × 108 cells in the confocal dishes with three 
parallel samples, which were cultured overnight. MitoTrackerTM Green FM (Beyotime, 
China) were diluted to 200 nM in H-DMEM, which should be pre-warmed to 37 °C. 
They were washed with 0.5 mL Phosphate Buffered Saline (PBS) for 3 min. The prepared 
solution was incubated for 10 min at a dose of 0.5 mL/well under dark conditions. To 
remove interference from free dyes, all samples were washed with PBS 3 times.

Statistical analysis

Except for Fig. 6, all the experiment results showed the representative data from 10 rep-
resentative experiments. The SSIM, PSNR and LPIPS shown in Figs. 4 and 5, and Sup-
plementary Figs. S11-S13, S15 and S21 were presented as box plots (center line, average; 
limits, 75% and 25%; whiskers, maximum and minimum) in graphs. The intensity pro-
files in Figs. 3, 4 and 5, and Supplementary Figs. S11-S13 and S15-S17 are interpolated by 
linear interpolation in MATLAB.
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