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Note S1 Forward propagation model and reconstruction algorithm in traditional FZA-based 
lensless imaging  
In the traditional Fresnel zone aperture (FZA) based lensless imaging system, the object 𝑜𝑜(𝑥𝑥, 𝑦𝑦) is 
illuminated by incoherent light. Each object point 𝑝𝑝𝑥𝑥,𝑦𝑦 is projected onto the sensor plane with a 
distinct pattern 𝑡𝑡(𝑥𝑥, 𝑦𝑦), which corresponds to the magnification of the mask. Specifically, when 
the mask employed is the FZA, it can be expressed as:  

𝑡𝑡(𝑥𝑥, 𝑦𝑦) = 1
2

{1 + cos [𝛽𝛽(𝑥𝑥2 + 𝑦𝑦2) + 𝜙𝜙]}, (S1) 

or 
𝑡𝑡(𝑟𝑟) = 1

2
[1 + cos(𝛽𝛽𝑟𝑟2 + 𝜙𝜙)]. (S2) 

Here, β and ϕ denote the coefficient and phase of the FZA, respectively, which are used to control 
the specific shape of the FZA. (𝑥𝑥,𝑦𝑦)  are Cartesian spatial coordinates, and (𝑟𝑟, θ)  are the 
corresponding polar spatial coordinates. Considering the circular symmetry of FZA, the angular 
coordinates θ  are omitted. Taking linear magnification 𝑚𝑚  into account, the value of β  is 
determined as β = β𝑚𝑚/𝑚𝑚2 , where β𝑚𝑚  is the FZA parameter designed on the mask. 𝑧𝑧1  and 𝑧𝑧2 
denote the distances of object-mask and mask-sensor, respectively, from which the magnification 
𝑚𝑚 = 1 + 𝑧𝑧2/𝑧𝑧1 can be obtained. The image 𝑔𝑔(𝑥𝑥, 𝑦𝑦) acquired by the sensor is a linear summation 
of the pattern for each object point 𝑝𝑝𝑜𝑜, which can be written as: 

𝑔𝑔(𝑥𝑥, 𝑦𝑦) = ∑ 𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜⊂𝑜𝑜(𝑥𝑥,𝑦𝑦) 𝑡𝑡(𝑥𝑥,𝑦𝑦) = 𝑜𝑜(𝑥𝑥, 𝑦𝑦) ⊗ 𝑡𝑡(𝑥𝑥, 𝑦𝑦). (S3) 

In fact, in an incoherently illuminated scene, the reflectance and distance of different objects are 
encoded as the amplitude and phase of the equivalent wavefront in the coherent case. To 
reconstruct the equivalent complex amplitude, we utilize a four-step phase-shift sequence 
{0,π/2,π, 3π/2} to change the phase of the FZA successively. Through the encoding process, we 
acquire the complex amplitude 𝑔𝑔comp(𝑥𝑥,𝑦𝑦) of the object 𝑜𝑜(𝑥𝑥,𝑦𝑦): 

𝑔𝑔comp 
(𝑥𝑥, 𝑦𝑦) = ∑ 𝑔𝑔𝑖𝑖(𝑥𝑥,𝑦𝑦)𝑒𝑒−𝑗𝑗ϕ𝑖𝑖 = 𝑜𝑜(𝑥𝑥,𝑦𝑦) ⊗ exp[𝑗𝑗𝛽𝛽(𝑥𝑥2 + 𝑦𝑦2)] = 𝑜𝑜(𝑥𝑥, 𝑦𝑦) ⊗ℎ(𝑥𝑥,𝑦𝑦)3

𝑖𝑖=0 , (S4) 

where 𝑔𝑔𝑖𝑖(𝑥𝑥, 𝑦𝑦)  represents the captured image after modifying the phase ϕ𝑖𝑖  of the FZA, and 
ℎ(𝑥𝑥,𝑦𝑦) is the equivalent complex point spread function. The elaboration of Eq. (S4) shows that 
we can achieve the incoherent-coherent equivalence process by encoding the intensity information 
of each incoherent point source as the coherent spherical wave with the same phase and different 
propagation distances. Once the complex amplitude 𝑔𝑔comp (𝑥𝑥,𝑦𝑦)  is obtained, the amplitude 
information at different depths can be reconstructed by the virtual FZA method (47). The virtual 
FZA can be represented as: 

ℎ𝑣𝑣(𝑥𝑥, 𝑦𝑦) = exp[𝑗𝑗β𝑣𝑣(𝑥𝑥2 + 𝑦𝑦2)], (S5) 

where β𝑣𝑣 = β𝑚𝑚/(1 + 𝑧𝑧2/𝑧𝑧1′)2  is the parameter of the virtual FZA, and 𝑧𝑧1′  denotes the 
reconstruction depth. By observing Eq. (S4), the amplitude information can be acquired by 
performing the deconvolution operation in the frequency domain, which can be calculated as 
follows: 

𝐺𝐺(𝑢𝑢, 𝑣𝑣) = ℱ{𝑔𝑔comp 
(𝑥𝑥,𝑦𝑦)} = ℱ{𝑜𝑜(𝑥𝑥,𝑦𝑦)}ℱ {exp[𝑗𝑗𝛽𝛽(𝑥𝑥2 + 𝑦𝑦2)]}, (S6) 



𝐺𝐺′(𝑢𝑢, 𝑣𝑣) = 𝐺𝐺(𝑢𝑢, 𝑣𝑣) ⋅ ℱ{ℎ𝑣𝑣(𝑥𝑥,𝑦𝑦)}∗ = ℱ{𝑜𝑜(𝑥𝑥, 𝑦𝑦)}, (S7) 

𝐼𝐼comp
(𝑥𝑥,𝑦𝑦) = ℱ−1{𝐺𝐺′(𝑢𝑢, 𝑣𝑣)} = ℱ−1{ℱ{𝑜𝑜(𝑥𝑥, 𝑦𝑦)}} = 𝑜𝑜(𝑥𝑥,𝑦𝑦). (S8) 

Here, ∗  indicates conjugate operation, ℱ{⋅}  and ℱ−1{⋅}  denote Fourier transform and inverse 
Fourier transform, respectively. (𝑢𝑢, 𝑣𝑣) are the frequency domain coordinates corresponding to 
(𝑥𝑥,𝑦𝑦) . 𝐼𝐼comp  is the complex amplitude at the distance 𝑧𝑧1′ , at which distance objects will be 
reconstructed in sharp detail, while those far away will be blurred. By varying the value of 𝑧𝑧1′ , we 
can reconstruct scene information at different depths. 

Note S2 Comprehensive forward model of LIP considering the characteristics of the 
programmable FZA  
In order to achieve high-quality lensless imaging with the integrated LIP module, a more detailed 
forward model considering the characteristics of the programmable FZA needs to be conducted. 
The first step is to reconsider the characteristics of the FZA patterns. To reconstruct the complex 
amplitude without twin image, a four-step phase-shift sequence {0,𝜋𝜋/2,𝜋𝜋, 3𝜋𝜋/2} is utilized to 
change the phase of the FZA successively, resulting in the equivalent complex amplitude 𝐻𝐻 and 
equivalent transfer function 𝑇𝑇FZA , as shown in Fig. S1A. It shows that we can achieve the 
incoherent-coherent equivalence process by encoding the intensity information of each incoherent 
point source as the coherent spherical wave with the same phase and different propagation 
distances. Furthermore, as we perform spatial shifting on the FZA within the fixed aperture, the 
density of FZA fringes also changes. After four-step phase shifting, the equivalent phase of the 
FZA pattern similarly experiences a shift. It can be seen that the offset α of the original FZA in 
the spatial domain after the four-step phase shifting is equivalent to the phase shift of 𝐻𝐻, while in 
the frequency domain corresponds to the translation of 𝑇𝑇FZA. The ratio of the spatial and frequency 
domain offsets is −β/π. 

Then, the frequency response characteristics of the programmable mask also impact the imaging 
process. The arrangement of pixels in a typical commercial liquid crystal display (LCD), as 
illustrated in Fig. S1B, reveals that the actual display area does not reach 100% due to the presence 
of driving circuits. Notably, as the pixel precision of the LCD increases, the augmentation of the 
fill factor faces heightened challenges. This, in turn, introduces additional influencing factors into 
our lensless imaging process, including the discrete sampling of patterns and pixel diffraction. 
Under the discrete pixel sampling of the LCD, the transfer function 𝑇𝑇(𝑢𝑢, 𝑣𝑣), induced by the pattern 
𝑡𝑡(𝑥𝑥, 𝑦𝑦) displayed on the programmable mask, periodically replicates in the frequency domain with 
intervals of [1/Δ𝑥𝑥, 1/Δ𝑦𝑦]. When 𝑇𝑇(𝑢𝑢, 𝑣𝑣) is a band-limited function, and each replicated spectrum 
remains non-overlapping, accurate extraction of the complete spectrum can be achieved through 
band-pass filtering. This characteristic enables the precise restoration of the ideal transfer function 
𝑇𝑇(𝑢𝑢, 𝑣𝑣) . However, when considering the pixel size of LCD, the transfer function of the 
programmable mask 𝑇𝑇𝑠𝑠(𝑢𝑢, 𝑣𝑣), is constrained by a two-dimensional sinc function. As shown in the 
bottom of Fig. S1B, its primary spectral energy is confined within the first-order zero points, 
namely within (2/𝑎𝑎 × 2/𝑏𝑏), while the spectrum beyond this range is predominantly suppressed 
and challenging to recover during the actual imaging process. In other words, the fundamental 
limitation to the resolution of lensless imaging based on the programmable mask stems from the 
pixel size rather than the pixel pitch. 



Finally, by combining the forward models of the FZA pattern and the programmable masks, we 
can derive the frequency response characteristics of the lensless imaging system based on the 
programmable FZA, as shown in Fig. S1C. It can be observed that the equivalent transfer function 
𝑇𝑇FZA of the FZA, periodically replicates in the frequency spectrum with intervals of [1/Δ𝑥𝑥, 1/Δ𝑦𝑦]. 
As the FZA parameter 𝛽𝛽 increases, each replicated spectrum also enlarges until they overlap with 
each other. In the spatial domain, this manifests as the periodic replication of the point spread 
function (PSF) and the mutual overlap in the reconstructed image. This aliasing problem was not 
mentioned in previous works using spatial light modulators (SLMs), mainly because 
programmable masks were not well modeled and exploited for their frequency response properties. 

However, it is important to note that despite overlap, this does not imply the absence of high-
frequency information within the central transfer function. When we further reduce the pixel size 
of the mask, the cutoff range of the two-dimensional sinc’s zero points 2/𝑎𝑎 × 2/𝑏𝑏 will expand. 
This is counter-intuitive, as we typically tend to equate pixel pitch with pixel size or solely consider 
pixel pitch, presuming that reducing pixel pitch is the only method to enhance resolution by 
recovering high-frequency information before aliasing. 

Note S3 Offset-FZA parallel merging method based on Fourier ptychography  
Traditional Fourier ptychography (FP) is a widely employed technique in microscopic imaging 
(62, 65 and 66), wherein multiple low-resolution images are synthesized from various illumination 
angles to translate the object’s spectrum within the aperture. FP allows for phase recovery, high-
resolution reconstruction and correction of phase aberrations. Drawing from this concept, we 
devised a process to achieve offset-FZA parallel merging in the programmable FZA-based lensless 
imaging system, as illustrated in Fig. S2. In addition, we utilized the concept of a difference map 
(70-73), in ptychography and process multiple algorithmic steps (Step 2, 4 and 5) in parallel to 
increase processing speed. The detailed algorithm flow is outlined below. 

Step 1: Images capture under optimal parameter matching. The images 𝑔𝑔𝑖𝑖,𝑗𝑗(𝑥𝑥,𝑦𝑦) are acquired 
under Mask𝑖𝑖,𝑗𝑗 with different phase 𝜙𝜙 = {0,𝜋𝜋/2,𝜋𝜋, 3𝜋𝜋/2} and the optimal parameter 𝛽𝛽𝑚𝑚 and 𝑅𝑅𝑚𝑚, 
where 𝑖𝑖, 𝑗𝑗 is the offset of the mask relative to the central aperture. 

Step 2: Parallel reconstruction with four-step phase shifting. Four measurements of each sub-
aperture are utilized to reconstruct the complex amplitude 𝑔𝑔comp 𝑖𝑖,𝑗𝑗 with the four-step phase-shift 
algorithm demonstrated in Note S1. Meanwhile, according to the spectral range and spectral offset 
given in the main text, a frequency domain mask 𝑃𝑃𝑖𝑖,𝑗𝑗 centred at 𝑓𝑓step and with 𝑓𝑓diam as the diameter 
can be obtained to perform spectrum constraints on the sub-aperture reconstruction results. The 
decoupling of information between each sub-aperture enables parallel reconstruction of intensity 
information. 

𝐼𝐼𝑖𝑖,𝑗𝑗 = �ℱ−1{𝑃𝑃𝑖𝑖,𝑗𝑗 ⋅ ℱ{𝑔𝑔comp 𝑖𝑖,𝑗𝑗}}�2. (S9) 

Step 3: Initial spectrum guess. The Fourier transform of the central aperture intensity 𝐼𝐼0,0 and the 
extracted reconstructed spectrum range 𝑃𝑃init are used to obtain the initialized target spectrum 𝑈𝑈0. 



𝑈𝑈0 = 𝑃𝑃init ⋅ ℱ{𝐼𝐼0,0}. (S10) 

Step 4: Sub-spectrum extraction in parallel. Based on the spectral range and spectral offset 
given in the main text, the spectrum 𝑈𝑈𝑖𝑖,𝑗𝑗𝑒𝑒  corresponding to the reconstruction result under the sub-
aperture is extracted from 𝑈𝑈0  by Mask𝑖𝑖,𝑗𝑗  in parallel, and the complex amplitude 𝑢𝑢𝑖𝑖,𝑗𝑗𝑒𝑒  at this 
position can be obtained by inverse Fourier transform. 

𝑈𝑈𝑖𝑖,𝑗𝑗𝑒𝑒 = 𝑈𝑈0 ⋅Mask𝑖𝑖,𝑗𝑗 , (S11) 

𝑢𝑢𝑖𝑖,𝑗𝑗𝑒𝑒 = ℱ−1{𝑈𝑈𝑖𝑖,𝑗𝑗𝑒𝑒 }. (S12) 

Step 5: Spatial intensity constraints in parallel. Using the intensity information 𝐼𝐼𝑖𝑖,𝑗𝑗𝑐𝑐  
reconstructed from the practical data captured at this offset, the intensity component 𝐼𝐼𝑖𝑖,𝑗𝑗𝑒𝑒  of the 

extracted sub-aperture corresponding to the complex amplitude 𝑢𝑢𝑖𝑖,𝑗𝑗𝑒𝑒
′  is updated with the 

following equation in parallel: 

𝑢𝑢𝑖𝑖,𝑗𝑗𝑒𝑒
′ = 𝑢𝑢𝑖𝑖,𝑗𝑗𝑒𝑒 �𝐼𝐼𝑖𝑖,𝑗𝑗𝑐𝑐 /𝐼𝐼𝑖𝑖,𝑗𝑗𝑒𝑒 . (S13) 

Step 6: Spectrum global update. The spectrum of all sub-apertures 𝑢𝑢𝑖𝑖,𝑗𝑗𝑒𝑒  is weighted and merged, 
and the spectrum results 𝑈𝑈𝑘𝑘 of 𝑘𝑘th round are updated in step size α: 

𝑈𝑈sum
𝑒𝑒 = ∑ ℱ�𝑢𝑢𝑖𝑖,𝑗𝑗𝑒𝑒

′�𝑃𝑃𝑖𝑖,𝑗𝑗(𝑢𝑢, 𝑣𝑣)𝑖𝑖,𝑗𝑗 , (S14) 

𝑃𝑃sum = ∑ 𝑃𝑃𝑖𝑖,𝑗𝑗(𝑢𝑢, 𝑣𝑣)𝑖𝑖,𝑗𝑗 , (S15) 

𝑈𝑈𝑘𝑘 = (1 − α)𝑈𝑈𝑘𝑘−1 + α 𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒

Psum+δ
,  𝑘𝑘 = 1, … ,𝑛𝑛, (S16) 

where δ  represents the regularization parameter. 𝑈𝑈sum
𝑒𝑒  is the summation of the sub-aperture 

spectrum, and 𝑃𝑃sum is the summation of frequency-domain masks 𝑃𝑃𝑖𝑖,𝑗𝑗, respectively. 

Step 7 & 8: Convergence criterion. Repeat Steps 4 to 6 until the complex amplitude converges 
or the update rate is less than the set threshold to obtain the optimal solution 𝑈𝑈OPM for the offset-
FZA parallel merging complex amplitude reconstruction 𝐼𝐼OPM and ϕOPM. 

Note S4 Simulations under different pixel sizes and 𝛃𝛃 
The presence of aliasing does not necessarily result in the complete loss of high-frequency 
information, which should be duly noted. For an imaging system, as long as it can respond to 
incoming high-frequency information, the information aliased within the cutoff frequency has the 
potential for complete recovery. Based on the analysis of the programmable FZA imaging system’s 
response, the true limiting factor for its upper-frequency response is the pixel size rather than the 
pixel pitch. 

Simultaneously, for most programmable masks, their fill factors do not reach 100%, implying that 
the cutoff frequency caused by the pixel size mentioned earlier will generally be higher than the 



replication frequency brought about by the pixel pitch. Therefore, even with aliasing present, high-
frequency information can still be reconstructed. As illustrated in Fig. S3A, we simulated the 
reconstruction results under a 5× aliasing scenario. It is noticeable that with an increase in 𝛽𝛽, 
aliasing artifact occurs both in the frequency domain and spatial domain of the reconstruction 
results. However, if we maintain a constant pixel pitch and only decrease the pixel size, the central 
spectrum range limited by the zero points of the two-dimensional sinc function is further extended. 
From the perspective of the PSF, as shown in Fig. S3B, under the same 𝛽𝛽  parameter, the 
reconstruction results with smaller pixel sizes correspond to narrower PSFs, indicating that despite 
aliasing, the enhancement of high-frequency details is still achieved. 

Note S5 Reconstruction through optimal parameter matching and offset-FZA parallel 
merging  
To achieve aliasing-free, high-quality lensless reconstruction based on programmable FZA, we 
have applied optimal parameter matching and the offset principle of FZA to the process of offset-
FZA parallel merging reconstruction. As depicted in Fig. S4A, we conducted simulations to 
validate the previously introduced optimal parameter matching, comparing the impacts of optimal 
𝛽𝛽, smaller 𝛽𝛽, and larger 𝛽𝛽 on the outcome of offset-FZA parallel merging reconstruction.  

It is evident that a smaller 𝛽𝛽  results in sub-optimal utilization of spectral space, leading to 
decreased reconstruction efficiency. Meanwhile, the lower overlap rate makes it challenging to 
meet the requirements of spectrum synthesis. Conversely, a larger 𝛽𝛽 introduces aliasing in the 
information from each aperture, restricting the quality of offset-FZA parallel merging 
reconstruction. Under our proposed optimal sampling criterion, both the central aperture and the 
surrounding apertures are unaffected by the periodically replicated spectrum, ensuring high-quality 
reconstruction in each sub-aperture. This is pivotal for achieving aliasing-free, high-quality 
frequency domain synthesis. Additionally, maximizing spectrum utilization aids in both collection 
efficiency and aperture overlap rate, enabling us to achieve high-quality reconstruction with a 
relatively small number of apertures during frequency domain synthesis. 

In Fig. S4B, we compared the PSF before and after spectrum synthesis under different 𝛽𝛽 values. 
It is observable that the PSF synthesized with a smaller 𝛽𝛽 exhibits significant sidelobe peaks. 
Inversely, both optimal 𝛽𝛽 and larger 𝛽𝛽 avoid this issue due to a higher overlap rate. However, the 
PSF synthesized with a larger 𝛽𝛽, while having a similar Full Width at Half Maximum (FWHM) to 
our chosen optimal 𝛽𝛽, demonstrates a slow decay in the sidelobes at the bottom, which has some 
impact on the reconstruction quality. 

Note S6 Image SNR evaluation method without the reference image 
The signal-to-noise ratio (SNR) is defined as the ratio of the signal strength to the noise level. In 
the era of digital imaging, every photo we captured is obtained through a light-sensitive element, 
resulting in inherent noise within our images. Consequently, when calculating the SNR for an 
image, it is essential to separate and analyze these signal and noise elements individually. 
Traditionally, this can be achieved by obtaining a reference image as ground truth and another 



image specifically for SNR calculation purposes. The computation method for determining SNR 
can be described as follows: 

1) Subtract the reconstructed image 𝐴𝐴 to be computed from the original image 𝐵𝐵 to  an image
𝐶𝐶 (𝐴𝐴 = 𝐵𝐵 + 𝐶𝐶); 

2) Consider 𝐵𝐵 as the signal part of 𝐴𝐴 and 𝐶𝐶 as the noise part of 𝐴𝐴;
3) Calculate the variance of 𝐵𝐵 and 𝐶𝐶 respectively;
4) Calculate the ratio of the two items above to get the value of SNR.
5) Logarithmize the value of SNR to get the value of SNR in dB.

For the calculation of SNR of the reconstructed image without reference image, it is necessary to 
separate the signal and noise in the image, namely the foreground and background. In general, the 
foreground is the signal and the background is the noise. Therefore, we can select a reconstructed 
image with clear black and white as the evaluation basis of SNR (for example, USAF resolution 
target), select the white area as the superposition area of signal and noise (𝐴𝐴), and the black area 
as the noise area (𝐶𝐶), and then calculate the SNR using the above method. It is worth noting that, 
because the white area and the black area are not completely overlapped in space, the SNR 
calculated by this method is not an absolute value, and is only applicable to the SNR comparison 
of different methods in the same scene. 

Note S7 Considerations for raw data during the measurement process 
The sensor’s measurements are the only indirect raw data we can obtain, so it is necessary to 
discuss the specific conditions encountered during data collection. Thus, we analyze the data from 
the perspectives of sensor measurement overflow and the characteristics of color and spatial 
information. 

1) Sensor Measurement Overflow: In our explanation of the OPM method, we noted that each
pattern’s sampling must be considered when configuring lensless imaging system parameters (Fig. 
S7A). When system parameters are configured according to the optimal parameter matching 
method we proposed (Fig. S7B), all patterns can be fully sampled, meaning each point-source 
response is completely recorded, without loss of frequencies, which is a factor essential for high-
quality reconstruction. However, if the relationship between aperture size and sensor size does not 
satisfy our parameter selection criteria, some patterns will not be fully sampled, resulting in 
frequency losses in edge information and causing ringing artifacts (Fig. S7C). Additionally, if the 
aperture size is reduced to allow complete sampling of the patterns, FZA parameter selection 
becomes a further consideration. If the β parameter of the FZA is too small, it limits the use of the 
LCD screen’s frequency response, resulting in a loss of imaging resolution (Fig. S7D). Conversely, 
when FZA parameters are too large, the inherent physical properties of the LCD screen limit 
imaging quality, leading to reduced SNR (Fig. S7E). Consequently, our proposed OPM method 
allows optimal determination of aperture size and FZA parameters based on the physical 
parameters of the LCD screen and sensor, enabling higher-quality lensless reconstructions.. 

2) Characteristics of Color and Spatial Information: In our experiments, we used a color
sensor as the key component for measuring the encoded images, which necessarily entails 



balancing color and spatial information (Fig. S7F). When using a grayscale sensor to measure and 
reconstruct an object, each pixel only captures the variation in spatial light intensity, so 
reconstruction can be carried out directly according to the proposed OPM method without 
considering color information, as illustrated in Fig. S7 (G and H). In contrast, when imaging color 
objects, it is necessary to demosaic and separate the collected raw images into RGB channels, 
apply the OPM method to each channel, and finally combine the three reconstructed channels into 
a color image, as shown in Fig. S7 (I and J). During the process, the use of an R-G-G-B Bayer 
filter reduces the sensor’s native spatial resolution, but the color and spatial information has 
minimal impact on reconstruction due to two primary factors: first, current demosaicing algorithms 
for color sensors are very mature, and the test shows that the built-in algorithm of an industrial 
camera is sufficient for our experimental needs (59); second, the analysis of the imaging system’s 
resolution shows that, due to the significantly larger pixel size of the LCD screen compared to that 
of the sensor, no pixel aliasing occurs with the current experimental parameters. 

In conclusion, the proposed OPM method addresses the two specific conditions encountered 
during sensor measurement, providing a solid foundation for subsequent high-quality lensless 
reconstructions. 

Note S8 Transmission rate of the programmable LCD 
Due to the inherent polarization characteristics of commercial LCDs, the optical efficiency utilized 
by our LIP module is limited. Testing shows that the LCD used has a transmission rate of 40% at 
550 nm. This issue is common to all spatial light modulator devices based on polarization 
modulation. However, our method mitigates this limitation by exploiting complementary 
information across multi-frame measurements, achieving high-quality reconstructions even under 
constrained sensor SNR conditions. Fig. S8 shows the PSNR reconstruction curves for different 
noise levels, indicating that even with increased noise variance, our method achieves stable and 
robust PSNR performance in both static and dynamic modes. This suggests that despite the reduced 
optical flux, our OPM method still delivers satisfactory reconstruction quality. In future work, we 
plan to explore modulators with higher transmittance to further unlock the potential of the LIP 
module. 

Note S9 Comparison of LIP with state-of-the-art lensless imaging methods 
To further demonstrate the robustness of our LIP method compared to the traditional single-shot 
lensless imaging methods, we chose 10 high-quality, intricate-colored objects from the DIV2K 
dataset (74) and conducted simulations with different zero mean Gaussian noise levels (variances 
σ = 1e-7, 1e-6, and 1e-5), as shown in Fig. S10. Each mask’s forward imaging process can be 
modeled as an optimization problem. Therefore, when solving the inverse problem for each mask, 
we used Two-Step Iterative Shrinkage/Thresholding (TwIST) (19, 23) as the optimization method 
and total variation (TV) regularization as the prior constraint. For the traditional static-modulation 
reconstruction method, the optimal regularization parameter τ is actually dependent on the 
optimization algorithm, the scene, and the noise level, which is impractical to always guarantee 



the selection of the optimal parameter τ. In the simulation, we set the regularization parameter τ to 
0.006 to ensure that each algorithm gives a practical performance, and the parameter also provides 
reliable measurement data. 

We first selected Object 1 as the simulation target for our method in dynamic mode (N = 4) 
and traditional static-modulation methods. The reconstruction results are shown in Fig. S10A. For 
a fair comparison, we simulated the reconstruction results of the traditional methods for single-
frame (N = 1) and averaged multi-frame average (N = 4) measurements. At the same noise level, 
our method significantly outperforms the traditional single-frame (N = 1) reconstruction method 
regarding imaging quality, color crosstalk, and noise suppression. Regarding multi-frame (N = 4) 
results, as the noise variance σ increases, the inflexibility of traditional static-modulation methods 
becomes apparent, making it difficult to counteract the effects of noise simply by averaging 
multiple frames. In contrast, leveraging the complementary nature of different masks in the 
programmable FZA, our method shows excellent noise resistance, with no significant decline in 
reconstruction quality across three different noise levels. Next, we selected Object 2 as the 
simulation target for our method in static mode (N = 16) and traditional static-modulation methods. 
The reconstruction results are shown in Fig. S10B. Compared to the dynamic mode, reconstruction 
artifacts in the static mode are greatly suppressed, and the overall imaging quality significantly 
improves. However, traditional static-mask methods with N = 16 measurements remain highly 
sensitive to noise, consistent with the conclusions in Fig. S10A. Fig. S10C and Fig. S10D show 
the PSNR comparison curves of dynamic/static mode and traditional static-mask lensless imaging 
(N = 4 / N = 16) under different noise variances. When the noise variance σ is 1e-5, our method in 
the dynamic mode achieves a PSNR of 13.74 dB higher than the best reconstruction result of the 
Contour mask with the traditional method and 9.80 dB higher in the static mode. The above 
simulation results indicate that our method can utilize the complementary information between 
different patterns modulated by the programmable mask, achieving higher quality and better 
robustness to noise than traditional static-modulation methods, even with the same number of 
measurements. 

Then, compared to the traditional multi-shot lensless imaging methods, our FZA-based lensless 
imaging approach offers distinct advantages. While recent studies have explored dynamic masks, 
such as random mask array (44) and translated separable mask (36), to broaden imaging functions 
and enhance quality, these methods inevitably face several challenges during measurement and 
reconstruction: 

1) Requirement for High-Precision Calibration: For non-analytical multi-shot masks,
ensuring alignment between the designed and manufactured patterns often proves challenging, 
necessitating precise calibration before the experiment. Furthermore, recalibration becomes 
unavoidable if external factors like prolonged vibration or structural aging alter the mask-to-sensor 
distance. As the number of masks increases, so too do the complexity and data volume for 
calibration, thereby reducing reconstruction efficiency. 

2) Uncertainty in Mask Frequency Response: Ideally, multi-shot methods should employ
well-designed masks that remain orthogonal in the transform domain to maximize imaging 
efficiency and quality. However, many existing methods, such as (44), adopt random multi-mask 
lensless imaging systems, resulting in limited interpretability and orthogonality among masks in 



the frequency domain. The lack of orthogonality leads to overlapping information and reduced 
acquisition efficiency. 

3) Requirement for Prior Knowledge about the Target Object: Traditional multi-shot
lensless imaging methods model the optimization problem similarly to single-shot approaches, 
with the additional data fidelity term to strengthen constraints. A classical approach to addressing 
this ill-posed inverse problem is to impose certain prior assumptions on the solution, reformulating 
the original ill-posed problem as a well-posed optimization problem to facilitate regularization. To 
ensure convergence, it is often necessary to apply regularization priors to the target object. For 
instance, TV regularization assumes that the object is block-smooth, introducing sparse priors in 
the gradient domain (19). However, this assumption lacks universal applicability and robustness 
for arbitrary objects, and performance may degrade for complex objects that do not exhibit block-
smooth characteristics. 

In contrast, our programmable FZA-based lensless imaging system leverages the unique properties 
of the FZA to address these challenges:  

1) Analytical Form of the FZA: Since the FZA serves as a diffraction-interference element,
the captured pattern images align with holographic interference patterns in an analytical form, thus 
eliminating the need for precise PSF calibration. 

2) Frequency Domain Orthogonality of Offset FZA: Fourier domain analysis of the FZA
after a four-step phase shifting reveals that its spectrum is confined to a limited range, unlike other 
masks that distribute across the entire frequency domain, as illustrated in Fig. S9. By shifting the 
FZA, its frequency range can be adjusted accordingly, allowing precise control over the mask’s 
frequency response range. The feature allows for the possibility of spectral synthesis. When 
appropriate parameters are selected, the frequency ranges of the shifted and unshifted FZAs remain 
non-overlapping in the dynamic mode, demonstrating that FZA can achieve frequency domain 
orthogonality, which is critical for maximizing acquisition efficiency. 

3) Phase Retrieval Property of FZA: As previously mentioned, the FZA pattern resembles the
point-source interference pattern seen in incoherent self-interference holography, such as FINCH 
(48). The similarity suggests that once the phase of the captured image is retrieved, refocusing at 
various depths becomes possible. More importantly, once the phase is retrieved, we can apply 
coherent optical system theory to analyze what is otherwise an incoherent lensless imaging system. 
By leveraging the frequency offset characteristic introduced by the offset FZA, we can integrate 
the imaging process with ptychograghy imaging, achieving a high-resolution, high-SNR quasi-
coherent lensless reconstruction through frequency domain synthesis of offset FZA sub-apertures. 

Finally, we qualitatively compare lensless imaging approaches that include static masks, dynamic 
mask-based lensless imaging, LIP in dynamic mode, and LIP in static mode across six aspects 
(resolution, imaging speed, field of view (FoV), cost-effectiveness, calibration robustness, and 
flexibility) in Fig. S12, to illustrate the advantage of our method:  

1) Resolution and Imaging Speed: Static mask-based lensless imaging typically requires
incorporating regularization priors to solve this ill-posed optimization problem. As a result, when 
noise increases or the model mismatches, high-frequency information of the object buried in noise 



cannot be effectively retrieved, making it difficult to achieve high-resolution, high-SNR 
reconstructions from single-shot measurement. In contrast, dynamic mask-based methods and our 
LIP can extract complementary frequency information from multiple modulated measurements, 
improving reconstruction quality. In static mode, LIP can precisely extract and synthesize 
information at different frequencies, supported by an accurate forward model of the programmable 
mask and FZA, achieving high-resolution, high-SNR reconstructions with adjustable imaging 
speed and quality. 

2) FoV, Cost-effectiveness, and Calibration Robustness: The primary limiting factor stems
from the characteristics of the mask. Static masks, whether lithographic masks (separable mask, 
contour mask) or random masks (diffusers, scotch tapes, blood cell slides), can offer large FoV 
and acceptable cost but require precise PSF calibration (for different depths and mask distributions) 
before use. Dynamic masks, on the other hand, typically use scientific-grade spatial light 
modulators (SLMs), which have limited FoVs and higher costs and also require precise calibration 
of non-analytical masks. However, in our LIP module, we leverage a commercial large-FoV LCD 
(±40°), produced at scale, to keep costs controlled. By combining the discrete FZA forward model 
with the OPM algorithm, we achieve precise scene reconstructions without the need for calibration. 

3) Flexibility: Traditional static mask-based lensless imaging is application-specific, requiring
new mask designs for different scenarios. Conversely, dynamic mask-based systems allow for easy 
adaptation of the mask pattern according to the application needs. By modulating across the time 
domain, dynamic masks can capture multiple encoded measurements at different time points, thus 
increasing the dimensionality of the information. This enables the system to simultaneously obtain 
images under various masks, effectively improving spatial, spectral, or depth resolution and 
facilitating multi-functional and adaptive imaging within one system. 

Note S10 The connection between FZA and incoherent self-interference holography 
The FZA pattern essentially corresponds to the point-source interference pattern observed in 
incoherent self-interference holography (48). In a typical incoherent self-interference digital 
holographic system based on a Michelson interferometer, the two wavefronts that interfere in the 
sensor plane can be written as 𝑢𝑢1 and 𝑢𝑢2. Here, 𝑢𝑢1 represents the plane wave of the unaltered 
object, while 𝑢𝑢2  is a spherical wave formed by reflection through a concave mirror. These 
wavefronts can be mathematically described as follows: 

𝑢𝑢1 = exp(𝑗𝑗𝑘𝑘𝑧𝑧), (S17) 

𝑢𝑢2 = exp(𝑗𝑗𝑘𝑘𝑧𝑧) exp[𝑗𝑗 𝑘𝑘
2𝑧𝑧

(𝑥𝑥2 + 𝑦𝑦2)], (S18) 

where 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆 is the wave number, and (𝑥𝑥,𝑦𝑦, 𝑧𝑧) represents the spatial coordinate. Ignoring the 
constant phase factor exp(𝑗𝑗𝑘𝑘𝑧𝑧) in both wavefronts, the resulting intensity pattern produced by 
their interference on the sensor can be expressed as: 

𝐼𝐼inf = |𝑢𝑢1 + 𝑢𝑢2|2 = 〈𝑢𝑢1〉2+〈𝑢𝑢2〉2 + 2〈𝑢𝑢1,𝑢𝑢2〉 = 𝐼𝐼1 + 𝐼𝐼2 + cos � 𝑘𝑘
2𝑧𝑧
𝑟𝑟2� . (S19) 



Comparing 𝐼𝐼inf with the numerical form of the FZA 𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹,  

𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹 = 1
2

[1 + cos(𝛽𝛽𝑟𝑟2 + 𝜙𝜙)]. (S20) 

It can be observed that the expression for the FZA pattern, 𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹, aligns with the interference pattern 
𝐼𝐼inf of incoherent self-interference digital holography, both taking the form of a quadratic cosine 
function, as shown in Fig. S13. By adjusting the parameter β, FZA patterns can be accurately 
generated at any desired depth. The distinctive properties of the FZA provide a robust theoretical 
foundation for lensless imaging under incoherent illumination, drawing parallels to incoherent 
self-interference holography. This enables depth refocusing by employing a four-step phase-shift 
method to capture depth-related phase information from the measurement image. Moreover, the 
depth-dependent characteristic of FZA-based lensless imaging eliminates the traditional need for 
precise PSF calibration at each depth, significantly simplifying the imaging process. 

Compared to the strong connection between FZA-based lensless imaging and holography, 
traditional lensless imaging simply models the imaging process as a convolution of the object 
intensity with a designed mask pattern, requiring deconvolution of the measurements to solve the 
inverse problem. This imaging and solution model relies more on complex mathematical 
optimization, overlooking the support provided by the actual physical imaging process, thus 
necessitating extensive PSF calibration to bridge this gap. 

On the other hand, the formation of the FZA pattern can also be understood from the perspective 
of the beam-split interference theory of FZA. By expressing 𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹 in its exponential form, we can 
derive: 

𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹 = 1
2

[1 + cos(𝛽𝛽0𝑟𝑟2 + 𝜙𝜙𝑖𝑖)]

         = 1
2
�1 + 1

2
exp(𝑗𝑗𝛽𝛽0𝑟𝑟2 + 𝜙𝜙𝑖𝑖) + 1

2
exp(−𝑗𝑗𝛽𝛽0𝑟𝑟2 − 𝜙𝜙𝑖𝑖)�

         = 1
2

+ 1
4

exp(𝑗𝑗𝛽𝛽0𝑟𝑟2 + 𝜙𝜙𝑖𝑖) + 1
4

exp(−𝑗𝑗𝛽𝛽0𝑟𝑟2 − 𝜙𝜙𝑖𝑖) .

 (S21) 

When parallel light is incident on the FZA, it can be divided into three beams: The first term is the 
DC component, with an intensity equal to half of the incident light; the second term is the divergent 
light, with an intensity equal to one-quarter of the incident light and a phase in the form of a 
positive quadratic term; the third term is the convergent light, with an intensity equal to one-quarter 
of the incident light and a phase in the form of a negative quadratic term. Ignoring the effect of the 
quadratic phase, the interference intensity of the three beams is: 

When parallel light is incident on the FZA, it splits into three distinct beams: 

1) The DC component, with an intensity equal to half of the incident light.

2) The divergent beam, with an intensity equal to one-quarter of the incident light and a phase
characterized by a positive quadratic term.  

3) The convergent beam, with an intensity equal to one-quarter of the incident light and a phase
characterized by a negative quadratic term.  



By ignoring the constant and the effect of the quadratic phase term, the interference intensity of 
these three beams can be expressed as: 

𝐼𝐼tri = 1
2

cos (𝛽𝛽0𝑟𝑟2 + 𝜙𝜙𝑖𝑖) + 1
8

cos (2𝛽𝛽0𝑟𝑟2 + 2𝜙𝜙𝑖𝑖). (S22) 

From the above equation, it can be concluded that using the FZA to encode parallel light generates 
ring-shaped interference fringes in the light field. This pattern is consistent with the interference 
pattern produced by a point source and a plane wave under coherent illumination in digital 
holography. This observation suggests that the FZA has the capability to encode incoherent light 
fields into mixed coherent light fields, thus providing a theoretical foundation for the subsequent 
reconstruction of incoherent light fields. 

When we apply the four-step phase-shifting technique from traditional holography to the above 
equation, we obtain: 

𝐼𝐼tri1 = 1
2

cos(𝛽𝛽0𝑟𝑟2) + 1
8

cos(2𝛽𝛽0𝑟𝑟2) ,

𝐼𝐼tri2 = −1
2

sin(𝛽𝛽0𝑟𝑟2) − 1
8

cos(2𝛽𝛽0𝑟𝑟2) ,

𝐼𝐼tri3 = −1
2

cos(𝛽𝛽0𝑟𝑟2) + 1
8

cos(2𝛽𝛽0𝑟𝑟2) ,

𝐼𝐼tri4 = 1
2

sin(𝛽𝛽0𝑟𝑟2) − 1
8

cos(2𝛽𝛽0𝑟𝑟2) .

(S23) 

Then, we can obtain the complex amplitude 𝐼𝐼comp under incoherent holography as follows: 

𝐼𝐼comp = [𝐼𝐼tri1 − 𝐼𝐼tri3] + 𝑗𝑗[𝐼𝐼tri2 − 𝐼𝐼tri4]
  = cos(𝛽𝛽0𝑟𝑟2) + 𝑗𝑗sin(𝛽𝛽0𝑟𝑟2)

= exp(𝑗𝑗𝛽𝛽0𝑟𝑟2).    

  
(S24) 

From the above equation, it can be concluded that applying the theory of three-beam interference 
from the FZA to explain the forward model of lensless imaging based on FZA, as discussed in 
previous chapters, yields consistent results. This consistency highlights the shared underlying 
principles between FZA-based lensless imaging and incoherent self-interference holography, 
while also emphasizing the differences from traditional lensless imaging methods that rely on fixed 
masks and numerical optimization reconstruction. 

More importantly, once the phase information is retrieved, the incoherent lensless imaging system 
can be analyzed using the principles of coherent optical imaging systems. By integrating the 
proposed OPM method, we achieve calibration-free, high-resolution, and high-SNR quasi-
coherent lensless reconstructions through the frequency domain synthesis of different offset FZA 
sub-apertures. 



Fig. S1 The forward model of the lensless imaging system with programmable FZA. 
The spatial and frequency domain characteristics of (A) FZA pattern, (B) programmable mask and 
(C) programmable FZA.



Fig. S2 The algorithm flow of the offset-FZA parallel merging method of LIP. 



Fig. S3 Reconstruction results at different pixel sizes and 𝜷𝜷. 
(A) Reconstruction results at different LCD pixel sizes with 𝛽𝛽=40, 80, and 120 rad/mm2; (B)
Comparison of PSF profiles reconstructed at different LCD pixel sizes with 𝛽𝛽 =40, 80, and 120
rad/mm2.



Fig. S4 Offset-FZA parallel merging reconstruction using the optimal parameter matching 
(with the USAF resolution target as the object). 
(A) Reconstruction results of center aperture, offset aperture, and proposed method for 𝛽𝛽 = 20,
41.25, and 60 rad/mm2; (B) PSF comparison of center aperture with reconstruction from the
proposed method for 𝛽𝛽 = 20, 41.25, and 60 rad/mm2.



Fig. S5 Numerical simulations on various complex objects. 
(A) Ground truth of Object “loong” ~ “temple.” Reconstruction results of (B) traditional method
with optimal 𝛽𝛽, (C) traditional method with equivalent 𝛽𝛽, and (D) our method with optimal 𝛽𝛽 for
Object “loong” ~ “temple.” Photo credit: Xu Zhang.



Fig. S6 Reconstruction results of a dynamic scene experiment. 
(A) Captured and reconstructed dynamic results for a total of 64 frames, with the scene containing
a playing card and a hand; (B) Refocusing results for Frame 29th at -0.300 m, -0.334 m, and -0.339
m, respectively; (C) Dynamic reconstruction of the hand, where the refocusing position varies near
and far.



Fig. S7 Considerations for raw data during the measurement process. 
(A) The impact of sensor measurement overflow on measurement and reconstruction. (B)
Reconstruction results with all parameters optimally matched. (C) Reconstruction result with
incomplete pattern sampling by the sensor. (D) Reconstruction results with an appropriate aperture
size and a smaller β parameter. (E) Reconstruction results with an appropriate aperture size and a
larger β parameter. (F) The impact of color and spatial information characteristics on measurement
and reconstruction. (G-H) Raw data captured and reconstructed with a grayscale sensor. (I-J) Raw
data captured with a color sensor and reconstructed by channel separation.



Fig. S8 Quantitative comparison of LIP in (A) dynamic mode and (B) static mode under noise 
variance σ  = 1e-9 ~ 1e-2. 



Fig. S9 Comparison of the FZA-based lensless imaging method and traditional static-mask 
lensless imaging methods (separable mask, diffuser, random binary, and contour) regarding 
PSF pattern and frequency response. 
(A) The mask patterns corresponding to different masks, where the FZA-based methods include
four distinct PSF patterns for four-step phase shifting, and the OPM-based FZA method achieves
synthesis by combining sub-apertures with different offsets. (B) The normalized logarithmic
frequency response curves for each mask, with all mask sizes standardized to 512×512 pixels. Due
to the symmetry of the frequency spectrum, only the positive fx axis range [0, 256] is displayed
for comparison.



Fig. S10 Comparison of the proposed method and traditional static-mask lensless imaging 
methods (separable mask, contour, diffuser, and random binary) in numerical simulations 
of complex colored scenes. 
(A) Comparison of reconstruction results of Object 1 between the dynamic mode (N = 4) and
traditional static-mask lensless imaging (N = 1 / N = 4), with added zero-mean Gaussian noise



under variance σ = 1e-7, 1e-6, and 1e-5. (B) Comparison of reconstruction results of Object 2 
between the static mode (N = 16) and traditional static-mask lensless imaging (N = 1 / N = 16), 
with added zero-mean Gaussian noise under variance σ = 1e-7, 1e-6, and 1e-5. (C) PSNR 
comparison curves of the dynamic mode (N = 4) and traditional static-mask lensless imaging with 
a 4-frame average under different noise variances (N = 4). (D) PSNR comparison curves of the 
static mode (N = 16) and traditional static-mask lensless imaging with a 16-frame average under 
different noise variances (N = 16). Photo credit: PxHere, Pixnio. 



Fig. S11 Comparison of the FZA-based lensless imaging method and multi-shot lensless 
imaging methods (translated separable mask and random binary array) regarding mask, 
frequency response, and reconstruction. 
The mask patterns and corresponding frequency response of (A) translated separable mask, (B) 
random binary array, (C) FZA without OPM, and (D) FZA with OPM, where the FZA-based 
methods include four distinct masks for four-step phase shifting, and the OPM-based FZA method 
achieves synthesis by combining sub-apertures with different offsets. All mask sizes are 
standardized to 512×512 pixels. Due to the symmetry of the frequency spectrum, only the positive 
fx axis range [0, 256] is displayed for comparison. (E) Reconstruction results of different multi-
shot methods, each method carried out 16 measurements, and added zero-mean Gaussian noise 
with variance of 1e-9 to each measurement to simulate the real measurement scene. Photo credit: 
DAVID ILIFF. 



Fig. S12 Qualitative comparison of (A) static mask-based lensless imaging, (B) dynamic 
mask-based lensless imaging, (C) LIP in dynamic mode, and (D) LIP in static mode across 
six aspects, including “Resolution,” “Imaging speed,” “FoV,” “Cost-effectiveness,” 
“Calibration robustness,” and “Flexibility.” 



Fig. S13 The connection between incoherent self-interference holography and FZA-based 
lensless imaging.  
(A) The principle of incoherent self-interference holography: The interference intensity pattern is
derived from the self-interference between the plane wave and the spherical wave of the object.
(B) The principle of FZA-based lensless imaging: The encoded pattern is formed by the projection
of a point source through the FZA.



Movie S1. 
Forward model of programmable FZA-based lensless imaging system. 

Movie S2. 
Optimal parameter matching and offset-FZA parallel merging for lensless imaging with 
programmable FZA. 

Movie S3. 
Dynamic scene experiment of LIP. 

Movie S4. 
Hand gesture interaction with LIP module. 


