
1ScIentIfIc RepoRtS | 7: 11777  | DOI:10.1038/s41598-017-11715-x

www.nature.com/scientificreports

Adaptive pixel-super-resolved 
lensfree in-line digital holography 
for wide-field on-chip microscopy
Jialin Zhang  1,2,3, Jiasong Sun1,2,3, Qian Chen1,2, Jiaji Li  1,2,3 & Chao Zuo  1,2,3

High-resolution wide field-of-view (FOV) microscopic imaging plays an essential role in various fields of 
biomedicine, engineering, and physical sciences. As an alternative to conventional lens-based scanning 
techniques, lensfree holography provides a new way to effectively bypass the intrinsical trade-off 
between the spatial resolution and FOV of conventional microscopes. Unfortunately, due to the limited 
sensor pixel-size, unpredictable disturbance during image acquisition, and sub-optimum solution 
to the phase retrieval problem, typical lensfree microscopes only produce compromised imaging 
quality in terms of lateral resolution and signal-to-noise ratio (SNR). Here, we propose an adaptive 
pixel-super-resolved lensfree imaging (APLI) method which can solve, or at least partially alleviate 
these limitations. Our approach addresses the pixel aliasing problem by Z-scanning only, without 
resorting to subpixel shifting or beam-angle manipulation. Automatic positional error correction 
algorithm and adaptive relaxation strategy are introduced to enhance the robustness and SNR of 
reconstruction significantly. Based on APLI, we perform full-FOV reconstruction of a USAF resolution 
target (~29.85 mm2) and achieve half-pitch lateral resolution of 770 nm, surpassing 2.17 times of the 
theoretical Nyquist–Shannon sampling resolution limit imposed by the sensor pixel-size (1.67µm). 
Full-FOV imaging result of a typical dicot root is also provided to demonstrate its promising potential 
applications in biologic imaging.

High-resolution wide-field optical imaging is an essential tool in various biomedical applications1,2 including cell 
cycle assay, digital pathology, and high-throughput biologic screening. The growing need in digitalizing the bio-
logical slides has facilitated the development of whole slide imaging (WSI) systems. Nevertheless, these systems 
are built based on a conventional microscope, which suffer from the inherent trade-off between the field-of-view 
(FOV) and imaging resolution. To get an image with both high resolution and large FOV, mechanical scan-
ning and stitching is required to expand the limited FOV of a conventional high magnification objective3, which 
not only complicate the imaging procedure, but also significantly increase the overall cost of these systems. The 
recently developed computational microscopy techniques provide new opportunities to create high-resolution 
wide-field images without any scanning and stitching, such as synthetic aperture microscopy4–7, Fourier ptych-
ography microscopy (FPM)8–10, and lensfree super-resolution holography11–13. Among these approaches, the 
lensfree super-resolution holography has unique advantages of achieving a large effective numerical aperture 
(NA) approaching to unity across the native FOV of the imaging sensor, without requiring any lenses and other 
intermediate optical components. This further allows to significantly simplify the imaging setup and meanwhile 
effectively circumvent the optical aberrations and chromaticity12 that are inherent in conventional lens-based 
imaging systems. Besides, the whole system can be built in a miniaturized and cost-effective format, providing a 
potential solution for reducing health care costs for point-of-care diagnostics in resource-limited environments.

In recent years, numerous lensfree image systems have been proposed, and there is a clear trend towards 
adopting a so-called unit-magnification configuration, where the samples are placed as close as possible to the 
imaging sensor. Compared to the conventional in-line holographic setups14–18, the unit-magnification configu-
ration can not only reduce the demand on the coherence of the illumination source but also have a significantly 
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larger FOV which equals to the active area of the sensor chip. However, these lensfree holographic microscopes 
generally suffer from low imaging resolution which is far from enough to meet the demand of recent biomedical 
research, particularly with respect to the visualization of cellular or subcellular details of biological structures and 
processes. According to Nyquist-Shannon sampling theorem19, the resolution of the holographic reconstruction 
is fundamentally limited to the sampling resolution of the imaging devices. In other words, the physical pixel-size 
will be the main limiting factor of these lensfree imaging systems. Because of the spatial aliasing/undersampling, 
the imaging sensor will fail to record holographic oscillation corresponding to high spatial frequency information 
of the specimen. Using a sensor with smaller pixel-size can directly alleviate the aliasing problem, unless pixel 
design exhibits severe angular distortions creating aberrations for oblique rays20. Nevertheless, the physical reduc-
tion of pixel-size will sacrifice signal-to-noise ratio (SNR) due to the reduction of the external quantum efficiency 
on a smaller light sensing area21. Moreover, a smaller pixel-size is a major development trend of the commercial 
sensor chips, but the pixel-size of the available sensor still cannot satisfy the rapidly growing demands in lens-
free in-line holographic microscopes due to the obstacles of the technology of semiconductor manufacturing. 
Pixel super-resolution is another way to address this problem in which a smaller effective pixel-size is synthe-
sized from a series of subpixel shifted low resolution images through specific computational algorithms13,22. To 
achieve such subpixel image shifts, either the illumination source or samples need to be precisely displaced, which 
in turn require extra controllable mechanical device with very high precision and repeatability11,23,24. Recently, 
wavelength scanning is proposed to effectively avoid mechanical subpixel displacement and requires significantly 
fewer measurements without sacrificing performance25. However, it needs extra wavelength calibration and dis-
persion compensation, and simultaneously increases the cost of the whole system due to the wavelength-tunable 
light source. These pixel super-resolution methods in lensfree in-line holographic systems are usually associ-
ated with phase retrieval methods to reconstruct the objects on the focus plane, such as the objective-support 
based single intensity measurement26,27, the Gerchberg-Saxton algorithm23, the synthetic aperture method22,25, 
the transport of intensity equation (TIE)28–30. Moreover, these super-resolution reconstruction methods perform 
pixel super-resolution and phase retrieval in a sequential manner, and consequently considerable quantities of 
data need to be collected.

Recently, a new computational method termed propagation phasor approach has been proposed by Luo et al., 
which combines phase retrieval and pixel super-resolution into a unified mathematical framework31. It has been 
found that besides phase recovery, the diversity of the sample-to-sensor distance also provides additional infor-
mation to overcome spatial aliasing problem31,32. This propagation phasor framework can deliver super-resolved 
reconstructions with significantly reduced number of raw measurements. However, it still needs the theoretical 
imaging model to match the actual imaging process perfectly, which is difficult to achieve in actual operation. 
Moreover, the lateral drift of the specimen with respect to the imaging sensor over the course of the axial scanning 
can severely deteriorate the reconstruction quality. As such kind of drift can barely be fully avoided experimen-
tally, it is desirable to determine the true positions of the sample from the raw data computationally. Though the 
knowledge of translation positions can be estimated through registration before reconstruction, such one-time 
calibration has only limited success due to the registration error resulting from the disturbance of the noise and 
inherent twin image. On the other hand, the stability and convergence of the reconstruction process may be 
significantly affected by the non-negligible noise present in the image. Once the captured intensity images are 
inconsistent with each other due to the noise and model mismatch, successive iterative reconstruction process 
may become oscillatory and frequently cannot converge to a reasonable solution.

In this paper, we propose a method called adaptive pixel-super-resolved lensfree imaging (APLI), in which 
adaptive relaxed iterative phase retrieval is used to both achieve super-resolution reconstruction and overcome 
above-mentioned limitations simultaneously. Furthermore, different from the traditional reconstruction method 
based on multi-height intensity measurements23,33, the presented method has taken pixel binning process into 
account and pixel super-resolution reconstruction is achievable only based on a stack of out-of-focus images 
during the iterative process in the spatial domain. During the reconstruction process, to find optimum solution to 
the phase retrieval problem and effectively reduce impact of unpredictable disturbance, APLI first introduces the 
adaptive relaxation factor strategy and the automatic lateral positional error correction. This improves the stabil-
ity and robustness of the reconstruction towards noise as well as retains rapid convergence speed. We demonstrate 
the success of our approach by reconstructing the USAF resolution target and the stained biological paraffin 
section of typical dicot root across the FOV of ~29.85 mm2 with only ten intensity images. Based on the ALPI, we 
achieve half-pitch lateral resolution of 770 nm, surpassing 2.17 times of the theoretical Nyquist-Shannon sam-
pling resolution limit imposed by the sensor pixel-size (1.67 μm). We believe the proposed method will offer a 
way to exploit the full resolution potential of lensfree microscopy, and fewer raw holograms will make the method 
to be a very attractive and promising technique for various biomedical applications.

Materials and Methods
Experimental Setup. Figure 1(a) depicts the configuration of the lensfree imaging setup. The coherent or 
partially coherent light irradiates the specimen, and then the scattered light and the transmitted light co-prop-
agate in the same direction, finally forming interference fringes on the imaging device. In order to make the 
emitted light impinging on the object plane to be considered as a plane wave, the distance between the source 
and samples should be by far larger than that between the sensor and samples. Furthermore, the length scale of 
the distance between samples and the imaging device typically is on the order of submillimeter34, and finally this 
structure can achieve the whole active area of the imaging sensor as the FOV and reduce the unacceptable reso-
lution loss of the reconstructed images while the magnification (F) approaches unit [see Fig. 1(a), Z2 >> Z1 and 
F = (Z1 + Z2)/Z2 ≈ 1]. Based on this, the scale of the FOV will be directly restricted by the number of pixels and 
the pixel-size of the imaging device, and at the meantime the latter will be the main limiting factor of improve-
ment of the spatial resolution. Unfortunately, during the process of Z-scanning which is implemented to achieve 
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super-resolution, whether electric or manual adjustment of the sample-to-sensor distance will result in the tiny 
lateral positional error inevitably and the co-propagated light beam carrying the error will be sampled by the 
imaging device. As shown in Fig. 1(b), the tiny error will result in the subpixel shift among the intensity images 
on the different planes.

As depicted in Fig. 1(a), our lensfree in-line digital holographic imaging system mainly contains three parts: 
a single mode fiber-coupled light source (LP660-SF20, Thorlabs, the United States), a monochrome imaging 
device (DMM 27UJ003-ML, the imaging source, Germany), and thin specimen placed above the imaging device. 
In our experimental system, the optical fiber is put at ~20 cm over the samples. At the meantime, the imag-
ing sensor is placed ~400–900 μm away from the sample which is attached to a piezo-driven positioning stage 
(MAX301, Thorlabs, the United States). The stage holds the specimen with the self-designed 3D-printed support 
and can move vertically to change the distance between the sample and the image sensor. The camera in our 
lensfree in-line digital holographic imaging system has 1.67 μm pixel-size and 10.7 megapixels, and it is used for 
the acquisition of ten holograms with different sample-to-sensor distances Z1. Theoretically, the FOV can reach 
~29.85 mm2 and simultaneously the resolution is up to 2.5 fold of camera resolution. Finally, the spatial resolution 
of the experimental results is enhanced to the 2.17 times of the theoretical Nyquist-Shannon sampling resolution 
and the space-bandwidth product (Megapixel) is increased from 10.7 to 50.34.

Sample preparation. A standard 2′′ × 2′′ positive 1951 USAF resolution test target (Edmund Scientific 
Corporation, Barrington, New Jersey, USA) is used to quantitatively demonstrate resolution improvement. 
Besides the resolution target, the typical dicot root (Carolina Biological Supply Company, Burlington, North 
Carolina, USA) stained with fast green and the counterstain safranin is a representative sample for the study of the 
internal structure of plants, and applied to demonstrate universality of the proposed method.

Adaptive pixel-super-resolved lensfree imaging (APLI). In order to recover a super-resolution image 
of the complex object field based on a series of the out-of-focus low-resolution holograms in the spatial domain, 
the overview flowchart of our method is shown in Fig. 2 which is mainly composed of the following three stages.

Stage 1: Generation of an initial guess. A stack of the holograms (e.g, the pixel dimension of the hologram is 
m × n) is captured on different sample-to-sensor planes and the first plane should get as close as possible to the 
sensor. After capturing the raw images, up-sampling will be carried to all holograms with the nearest neighbor 
interpolation which coincides with the imaging theory of cameras, and all the up-sampling images [e.g, the pixel 
dimension of the hologram is M × N with the interpolation weight k (M × N = km × kn)] will back-propagate to 
the object plane with the auto-focusing algorithm35,36. All the up-sampling intensity images are superimposed 
together to acquire a good initial guess which will be used as the input of Stage 2.

Although the single back-propagated up-sampling hologram can be regarded as the initial guess, simply sum-
ming up all back-propagated up-sampling holograms can significantly suppress the twin image noise, aliasing sig-
nals and up-sampling related artifacts31,32. Furthermore, with the same set of raw data, this initialization method 
can have resolution improvement of the initial guess compared to the previous initialization method14 and then 
have faster convergent rate in the Stage 2.

Stage 2: Iterative multi-height images reconstruction. The whole iteration process is a procedure for phase 
retrieval, and it is essentially a process of solving the inverse problem which is very common in the computational 
imaging. To solve this problem, we need to build a precise forward model and reconstruct the super-resolution 
intensity images and the phase map from the captured discretized intensity images. The above-mentioned 

Figure 1. (a) The schematic diagram of the experimental configure. The inset within (a) shows the multiple 
intensity measurements on different sample-to-sensor planes. (b) Subpixel shifts among captured images on 
multi-height planes.
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initialization is input into the precise forward model to obtain the estimated captured images. If the estimated 
captured images cannot match the corresponding captured images, the iterative loop in the model will continue. 
The loop will terminate until the estimated captured images can accord with the actual captured images, and the 
current assumptions will be regarded as the actual super-resolution intensity and phase images.

Thus, the following two key elements must be taken seriously to make the model to be consistent with actual 
physical process. Firstly, in order to obtain the precise imaging model, the limited sensor pixel-size and the unpre-
dictable disturbance during image acquisition should be taken into account. The pixel binning as the process of 
recording the image is a down-sampling procedure which can be regarded as the spatial averaging. On the other 
hand, to acquire the diffraction patterns on the distinct planes, the longitudinal shift of the samples is inevitable 
which will lead to the accidental lateral displacement. Hence, the lateral positional error must be absorbed in the 
model. (More details are given in the Section Automatic lateral positional error correction). Secondly, the stabil-
ity and the robustness of the solution to the phase retrieval problem must be improved, and the algorithm should 
be able to converge to a desired optimal solution that can be considered as the optimization of phase recovery 
based on multi-height measurements. Solving the optimization problem is deemed to make the current estimate 
close fit the input actual captured images as a whole, and the quantification is given by the real-space error as 
described in the following equation

∑ε |= − | I g (1)i i i
2

where .  is the Euclidean norm, Ii  is the amplitude of ith captured image, ||gi  is the current down-sampling 
estimated amplitude corresponding to the ith measurement, which is the output after consideration of system 
uncertainties. The solution process is an incremental gradient optimization process, which unfortunately will 
provide a relatively correct solution in early iterations, but then overshoot. This problem is often attributed to the 
non-convex nature of phase retrieval, but we find the reason for this is more closely related to the choice of the 
relaxation factor based on the analysis of the similar problem in pre-work37, and the relaxation factor needs to be 
gradually diminishing for convergence even in the convex case. Thus, the adaptive relaxation factor should be 
introduced into the model to achieve the improvement in the stability and robustness of the reconstruction 
towards noise. (Details can be referred to the Section Adaptive relaxation factor).

The step of updating amplitude is crucial and depends on a correction coefficient matrix. This matrix is 
determined by the product of the adaptive relaxation factor α and the proportional relation matrix between the 
up-sampling captured images and the prior estimated intensity images. The specific process can be seen in Fig. 3 
and described as the following three steps.

Step 1, the (i-1)th estimated complex amplitude −Oi
j

1 is forth-propagated to the next height (Oi
j) and then the ith 

captured images are up-sampled (j represents the current index of the iteration cycle and i represents the index of 
the out-of-focus plane.). Next, the estimated intensity image | |Oi

j 2 is registered with the up-sampling captured 
images Iupsample, and the positional error is represented by (xshift, yshift). Then we shift | |Oi

j 2 in place by the amount of 
(−xshift, −yshift) and the original estimated intensity image is substituted by the refined intensity termed | |O _i ref

j 2 
(the amplitude can be denoted as A).

Step 2, we implement down-sampling to the refined estimated super-resolution intensity images | |O _i ref
j 2 with 

the point spread function (PSF) of the low-resolution sensor as shown in the upper portion of Fig. 3. PSF is 

Figure 2. The overview flowchart of adaptive pixel-super-resolved lensfree imaging (APLI). Stage 1: generation 
of an initial guess. Stage 2: iterative image reconstruction. Stage 3: super-resolution reconstruction of the object.
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usually modeled as a spatial averaging operator = = … −∑LRPixel h k( 0, 1 , 1)a

k
2h

2
38, where ah is the gray value 

of the super-resolution intensity images, k is a down-sampling factor.
Step 3, after down-sampling, the estimated low-resolution intensity image has the same dimension with the 

original captured image on the corresponding ith sensor-to-sample plane. Then we up-sample the estimated 
low-resolution intensity image and the corresponding captured image (the amplitude can be referred as the 
matrix B and C respectively.) with the nearest neighbor interpolation. To acquire the correction coefficient 
matrix, we multiply the adaptive relaxation factor α with proportional value between the matrix C and B, and the 
expression α α− × + × ×A A(1 ) C

B
 will be regarded as the updated ith estimated amplitude. The relaxation 

factor α in above expression is a diminishing value differing from the traditional fixed value ~0.5, and the guided 
filter is taken into account to further eliminate the influence of noise as well. At last, the complex amplitude con-
taining the new updated estimated amplitude and the previous unchanged phase is forth-propagated to the next 
height using the Angular Spectrum Method39.

The process of the Step 1–Step 3 is repeated until all the sample-to-sensor distances are gone through. That is 
to say, all the raw measurements are used for once, and it will be considered as one iteration cycle.

Stage 3: Reconstruction on the object plane. After some iterations, we will achieve the complex amplitude on the 
plane closest to the imaging device and then back-propagate the complex amplitude to the object plane as shown 
in Fig. 2.

Physical modeling of the pixel binning. Blurring may be caused by an optical system (inherent noise of 
the camera, diffraction limit, etc.), and the PSF of the imaging device. The former can be modeled as linear space 
invariant while the the latter is considered as linear space variant38. It is difficult to obtain the exact information 
about the linear space invariant, so it is usually compensated by the specific algorithms or avoided as much as 
possible. Besides the linear space invariant, in the process of image reconstruction, the PSF of the imaging device 
(which can also be regarded as the finiteness of the physical pixel-size) is an important factor for blur, which 
should be incorporated into the reconstruction procedure. As a complementary interpretation, there is a natu-
ral loss of spatial resolution caused by the insufficient sensor density and noise that occurs within the sensor or 
during transmission. As shown in Fig. 4(b), the spectrum loss will be more serious while the decimation factor 
increases. Figure 4(b) indicates again that the pixel-size is the main limiting factor of the systems which will 
determine whether it can directly record the high frequency fringes corresponding to the super-resolution of the 
samples.

In traditional multi-height reconstruction method23,33, many efforts are made to implement subpixel shift to 
achieve the super-resolution, but the pixel binning is not taken into account, which does not accord with actual phys-
ical process. Thus, involving the process of recording digital images in the reconstruction procedure has drawn atten-
tion, and the enhancement in resolution has been validated31. The process of recording digital images is a 
down-sampling process which is usually modeled as a spatial averaging operator [ = = … −∑LRPixel h k( 0, 1 1)a

k
2h

2  
where ah is the gray value of the super-resolution intensity images, k is a decimation factor] as shown in Fig. 4(a). In 
the iterative process of the reconstruction, we convolve the estimated intensity of the field | |Oi

j 2 with the PSF of the 
image sensor38, and then it has the same dimension as the raw measurement.

Figure 3. The flow diagram of one iteration cycle. A, B and C represent the matrix of the ith estimated 
amplitude, ith up-sampling estimated amplitude, and ith up-sampling amplitude of the captured image, 
respectively.
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Automatic lateral positional error correction. In many lensfree systems, the different sample-to-sensor 
distances are provided by the mechanical movement, so the mechanical lateral error will be generated as shown 
in Fig. 1(b). In order to eliminate the unavoidable error at subpixel-scale, the traditional method is registering 
images before reconstruction23,24 called beforehand lateral positional error correction (BLPEC). However, in the 
actual imaging process, the light illuminates the specimen which has tiny lateral movement because the position-
ing stage will lead into the lateral mechanical error while it moves longitudinally, and then forth-propagates to 
the imaging plane carrying the information of the object. Thus, the lateral positional error appears before camera 
sampling and the captured images carry the error signals. Based on this, the BLPEC can only correct the lateral 
positional error cursorily, and the accuracy of the correction will decrease due to existence of the artifacts and 
aliasing. Additionally, this method has incapacity to rectify registration error in the later process which will affect 
the final quality of reconstruction.

In order to solve the problems existing in traditional BLPEC, we introduce automatic lateral positional error 
correction (ALPEC) into our method. The crux of solving the general problem of subpixel image registration is 
computing the cross correlation between the image to register and a reference image by means of a fast Fourier 
transform (FFT), and locating its peak40. The cross correlation of the captured image f(x, y) and its corresponding 
estimated image g(x, y) is defined by:

∑

∑ π

= − −

=











+










⁎

⁎

r x y f x y g x x y y

F u v G u v i
ux

M

vy

N

( , ) ( , ) ( , )

( , ) ( , ) exp 2
(2)

fg shift shift
x y

shift shift

u v

shift shift

,

,

where M and N are the image dimensions, (*) represents complex conjugation, F and G denote the discrete 
Fourier transform of the f and g respectively. The expression of F(u, v) is π= ∑ 


− + 

( )F u v i( , ) exp 2x y
f x y

MN
ux
M

vy
N,

( , )  
and there is a similar expression for G(u, v). It is important to determine accurately the peak of the 
cross-correlation function rfg(xshift, yshift), and relax the limitation on computational speed and memory caused by 
the FFT. Thus, the refined initial estimate method40,41 is used, which uses aid by the existence of analytic expres-
sions for the derivatives of rfg(xshift, yshift) with respect to xshift and yshift, and the algorithm iteratively searches for the 
image displacement (xshift, yshift) that maximizes rfg(xshift, yshift). At last, it can achieve registration precision to within 
an arbitrary fraction of a pixel at a fast rate.

Adaptive relaxation factor. In most cases, the propagation phasor approach31 is an effective solution 
to the pixellation problem and it gives a unified mathematical framework combining phase retrieval and pixel 

Figure 4. (a) The PSF of the low-resolution sensor. (b) The spatial resolution loss after camera sampling.
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super-resolution. Nevertheless, in practical operation, the stability and reconstruction quality of the method may 
be significantly degraded due to the existence of nonnegligible noise during the sampling process. This problem is 
often attributed to the non-convex nature of phase retrieval and the ill-condition process of the super-resolution 
reconstruction. Although numerous super-resolution algorithms have been proposed in the literature11,23,25,42–44, 
the super-resolution image reconstruction remains extremely ill-posed43,44. Moreover, the noise effect will accu-
mulate as the iterations augment.

The choice of the relaxation factor can suppress noise to a certain extent, typically the relaxation factor α = 0.5 
in traditional phase retrieval methods. The relaxation factor will be utilized to update amplitude, and the cor-
rected super-resolution intensity images substitutes for the earlier estimated super-resolution intensity images 
incompletely. In other words, the corrected super-resolution intensity images will occupy a part in the new 
updated estimated intensity (as shown in Fig. 3), which have a close relationship with the captured intensity 
images containing noise. So the new updated estimated intensity images suffer from the noise because the cap-
tured intensity images impose ill-condition restrictions with the fixed relaxation factor.

The stability and reconstruction quality may be significantly degraded when non-negligible noise is present in 
the captured images, and the same problem is encountered in FPM. We find that the reason for the phenomenon 
in this field is the non-convex nature of phase retrieval and more closely related to the choice of the step-size, so 
the adaptive step-size strategy is introduced to successfully solve this problem37. Considering that the problems 
of the iterative method in lensfree imaging are also attributed to the non-convex nature of phase retrieval, instead 
of the traditional fixed relaxation factor, the adaptive relaxation factor which diminishes to an infinitely small 
value will be used to improve the performance of the incremental solutions. So the critical issue in practical appli-
cation will be how to determine a suitable relaxation factor sequence αiter to get close to a solution within fewer 
iterations. The αiter must satisfy the two conditions that are shrinking the relaxation factor to zero and making the 
diminishing speed not be too fast. Because if the relaxation factor shrinks too fast, the estimated object field may 
converge to a point that is not a minimum especially when the initial point is sufficiently far from the optimum. 
So the relaxation factor should not be reduce too fast and then the algorithm can travel infinitely far. Thus, in this 
paper, we give an alteration of the relaxation factor when the global error ε(Oite−1) and ε(Oiter) obtained in consec-
utive cycles satisfies the following criterion:

α α
α ε ε ε η

=




 − <

−

− −
otherwise

O O O/2 [ ( ) ( )]/ ( ) (3)
iter

iter

iter iter iter iter

1

1 1

where ‘iter’ is the index of the iteration cycle, ‘η’ is a small constant which should be much less than 1. The global 
error ε(Oiter) is determined by ε = ∑ − | |O I g( )iter

i i i
2, where .  is the Euclidean norm. The captured and the 

estimated down-sampling images are raster-scanned into vectors = ×II { }i i
m n and gi = {gi}m×n (with m × n pixels). 

= ⊗g O PSFi i
iter  is spatial averaging operation, and Oi

iter is an M × N matrix (the estimated intensity of the field) 
while PSF is determined by the intrinsic property of the camera. Here we should know that the |gi| considers the 

Figure 5. The impact of the noise on the reconstruction results and the noise-restraining with different 
relaxation factors in iterative process. (a) The super-resolution image needed to recover in theory, (b) the 
low-resolution image captured by the camera on the object plane theoretically, (c,d) the images captured 
by the camera on the planes of distinct sample-to-sensor distances with noise and not respectively, (e,f) the 
reconstructed super-resolution images using a fixed relaxation factor (α = 0.5) under the noise-free and noisy 
circumstances separately, (g,h) the reconstructed super-resolution images using the adaptive relaxation factor 
under the noise-free and noisy circumstances separately.
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system uncertainties such as the lateral positional error. Finally, the algorithm will converge to the stationary 
point when the relaxation factor reach a pre-specified minimum.

Discussion and Results
The comparison between the adaptive and fixed factor. Figure 5 shows the influence of the noise on 
the system and emphasizes the important role played by the relaxation factor in iterative process. A theoretical 
super-resolution image needed to reconstruct is shown in Fig. 5(a), and Fig. 5(b) shows the low-resolution image 
captured by the camera on object plane in theory. Figures 5(d) and (c) describe a set of emulational images cap-
tured by the camera on the planes of distinct sample-to-sensor distances with Gaussian noise and not respectively. 
Figures 5(e) and (f) depict the reconstructed super-resolution images using the fixed relaxation factor ~0.5 under 
the noise-free and noisy circumstances separately. The two yellow curves in the sub-graphs of red region convey 
the information that if we update the earlier estimated super-resolution intensity images using a fixed relaxation 
factor (α = 0.5) as the new estimated amplitude in the above-mentioned Section APLI, the reconstructed result 
under the noisy condition [Fig. 5(f)] is much worse in respect of the resolution and background after the same 
iterations compared to the result without noise [Fig. 5(e)]. To demonstrate that an adaptive relaxation factor can 
effectively solve the problem having a close relationship with the over-amplification noise, we test our method 
under the noise-free and noisy circumstances separately. The results can tell apart the densest line and give rela-
tively clean background under the two different conditions as shown in Figs. 5(g) and (h) respectively.

Furthermore, the quantitative comparison of reconstruction accuracy versus intensity noise among using 
the adaptive and fixed relaxation factors (α = 0.5,0.01), as well as the rate of convergence is shown in Fig. 6. 
Figure 6(c) depicts the reconstructed results corresponding to iterations labelled in Fig. 6(b) under the condition 
of the adaptive and fixed relaxation factors respectively. Figure 6(a) shows the curves of the intensity error follow-
ing the iterations increasing with different relaxation factors and Fig. 6(b) shows the local enlarged drawing of 
Fig. 6(a) (shaded region). Among the curves, the purple bight represents that using the perfect initial guess and a 
very small fixed relaxation factor ~0.01, the intensity error still accumulates as the iterations increase. This offers 

Figure 6. The quantitative comparison of reconstruction accuracy versus intensity noise among using the 
adaptive and fixed relaxation factors, as well as the rate of convergence. (a) The curves of the intensity error 
follow the iterations increasing with different relaxation factors. For clarity, the gray-boxed region in (a) is 
further enlarged in (b). (c) The reconstructed results corresponding to different iterations labelled in (b) under 
the condition of the adaptive and fixed relaxation factors respectively.
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an explanation for the following phenomenon that with the fixed relaxation factors, the reconstruction error will 
have convergent tendency at the outset and then get worse after reaching their respective minima which can be 
obviously seen in the green curve of Fig. 6(a). The same goes for the small relaxation factor corresponding to the 
red curve, but it is not obvious to observe the the turning point of the curve (the red curve reaches the minimum 
in the about 700 iterations and then overshoots), because the speed of convergence is extremely slow and the 
curve rises at a glacial pace after reaching the minimum. The iteration should be suspended when the curves 
reach their respective minima due to the overshooting of the curve in the later period. The cause of the overshoot-
ing is that even if the reconstruction converges to a true value, the captured images still provide the ill intensity 
constraints as before. Non-convergence is a disadvantage for the iterative methods, and suspending the iteration 
when reaching the minimum will result in loss of image details or taking a long time. Comparing the orange 
curve with the green one or the red one, we can find that using adaptive relaxation factor can obtain the converged 
reconstruction and effectively prevent the overshooting. Meanwhile the introduction of the adaptive relaxation 
factor into our method can retain the relatively fast initial convergence speed and it is seen that this method 
decreases more rapidly than fixed relaxation factor methods (α = 0.01) and converges in the early 20 iterations.

Although the adaptive relaxation factor has the anti-noise capability to a certain extent, the noise will cause the 
estimated intensity image to have no tendency to be consistent one with another on the next plane and the recon-
structed image to deviate from the theoretically calculated values. To avoid the over-amplification of noise we take 
into account nonlinear denoising algorithm termed guided filter45. It is essentially equivalent to add the relevant 
transcendental knowledge that objects are piecewise smooth. The introduction of the guided filter will further 
restrain the noise and the smooth regions of the reconstruction results will tend to the ideal value. However, the 
reconstruction results are slightly flawed at edge, because the guide filter cannot distinguish whether it is noise 
or jump edges of the object and preserves the edges during the reconstruction process. The combination of the 
adaptive relaxation factor and the guided filter can effectively suppress the noise and achieve better reconstruction 
results corresponding to the blue curve. From these results, we can safely conclude that the adaptive relaxation 
factor method outperforms the fixed relaxation factor methods, with both faster convergence rate and lower 
mis-adjustment error simultaneously achieved.

The comparison between BLPEC and ALPEC. Figure 7 shows that the mechanical lateral positional 
error has great effect on the reconstruction results and lateral positional error correction significantly improves 
reconstruction performance. The theoretical super-resolution image needed to reconstruct is shown in Fig. 5(a). 
Figures 7(a)–(h) all have lateral positional error. Figures 7(a)–(d) and Figs. 7(e)–(h) are in clean and noisy envi-
ronments respectively. To further describe that ALPEC can be widely used in the cases of either the fixed or adap-
tive relaxation factor, the simulation analysis is conducted as shown in Fig. 7. Comparing Figs. 7(a) and (b) with 
Figs. 7(c) and (d), we can deduce that in the absence of noise the residual tiny lateral positional error can cause 
serious deviation to the reconstructed results and ALPEC is extremely effective to correct positional error under 
the condition of either fixed or adaptive relaxation factor. To achieve more intuitive comparison between whether 
introducing ALPEC or not, under noisy conditions the reconstructed results are shown in Figs. 7(e)–(h). From 
above-mentioned comparative simulation, we can find that the remanent lateral positional error brings disastrous 
distortions to the reconstructed results. Using APLI (with ALPEC), the effect of the lateral positional error and 
noise will be effectively removed without any prior knowledge.

Figure 7. The effect of mechanical lateral positional error on the reconstruction results and great improvement 
in reconstructed results based on ALPEC.
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As shown in the preceding graphs (Figs. 5–7), simulation studies are conducted under the following 
conditions:

 (1) The down-sampling by a factor of four is implemented which can also be regarded as the spatial averaging 
operating weight of the sensor (the average value of sixteen pixels in the super-resolution image is equiva-
lent to the value of the corresponding pixel in the low-resolution image). The actual physical phenomena 
and process is that the super-resolution image propagates in the free space, and then the two-dimensional 
continuous intensity distribution of the hologram (diffraction patterns) is discretized into a matrix through 
the two-dimensional convolution of the hologram and a pixel unit in an imaging array, which results in the 
low-resolution image.

 (2) In each group of simulations, variable-controlling approach (for instance, the number of iteration remains 
unchanged) is used to make the conclusion more convincing.

 (3) In every simulation, at least 32 raw low-resolution images (the number of pixels is m × n) are utilized to 
reconstruct super-resolution images [the number of pixels is M × N (M = k × m, N = k × n, k = 4)]. These 
captured diffraction patterns are enforced as object constraints, gradually converging to the missing 
two-dimensional phase information46 and the corresponding super-resolution amplitude. For a complex 
intensity object function, to obtain the super-resolution intensity, the recovery problem becomes undeter-
mined by a factor of 2 since there are 2 × M × N pixels defining the object function (M × N pixels for the 
real part and M × N pixels for the imaginary part), whereas there are only m × n pixels in the measurement 
matrix47,48. In order to solve this underdetermined problem, more information about the object func-
tion needs to be acquired and incorporated as a constraint on the solution space, so at least 2 × k × k raw 
low-resolution images are needed in theory47.

The experimental results of the USAF resolution test target. A standard 1951 USAF resolution test 
target as the experimental samples is utilized to prove that our method has the universality and stability during 
the actual measurements. In order to test our method, we acquire 10 raw holograms at different sample-to-sensor 
distances (~547–577 μm) with the standard 1951 USAF resolution test target and each raw hologram is digitized 
by the imaging device with 1.67 μm pixel-size. Figure 8(a) shows a full FOV (~29.85 mm2) low-resolution holo-
gram which is captured by the camera directly. The inset shows local enlarged drawing of the dashed rectangular 
area in Fig. 8(a) which corresponds to the full FOV of 10X objective lens. Due to the relatively large pixel-size 
resulting in down-sampling, our method is applied to diminish the effective pixel-size namely improving the res-
olution. During the process of reconstruction (the image-processing steps are depicted in the Section APLI), the 
raw holograms are used as the intensity constraints and the recovered super-resolution intensity image is shown 
in Figs. 8(b) and (c). In Fig. 8(c), we can deduce that the smallest resolved half-pitch can reach 0.77 μm, which 

Figure 8. The experimental results of the standard 1951 USAF resolution test target. (a) The full FOV low-
resolution hologram. (b) The reconstructed intensity image based on our method. The FOV of (b) corresponds 
to the red dashed box in (a) (the full FOV of 10X objective lens). (c) The enlarged region corresponding to 
the red boxed area in (b). (d) The reconstructed intensity image based on the conventional multi-height 
reconstruction method23,33. (e) The localized image directly captured with a 10X objective lens (Olympus, 
UPlanApo 10X, NA = 0.4) in 8-bit grayscale range.
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exceeds the double resolution of the result [see Fig. 8(d)] based on the conventional multi-height reconstruction 
method23,33 using the same raw images. It is important to emphasize that results shown in Figs. 8(b) and (c)  
only utilize ten raw images which are obtained without wavelength scanning, subpixel lateral displacement and 
illumination angles scanning. In other word, we only move the sample along the Z-axis. For comparison, the 
sample digitalized with the 10X objective lens (NA = 0.4) is shown in Fig. 8(e). The theoretical imaging resolu-
tion of 10X objective lens (NA = 0.4) can reach λ/NA = 1.58 μm (λ = 0.632 μm, NA = 0.4). Although there is a 
non-negligible phenomenon that the imaging results with a 10X objective and Kohler illumination (condenser 
aperture wide open) outperforms the proposed method, the space-bandwidth product of the reported method 
has been increased by nearly 100 fold. Furthermore, the whole system requires no lenses, which provides the 
possibility of miniaturization and low cost.

In Supplementary Video 1, we show a zooming video of the full-FOV reconstructed images of a USAF target 
with our method and the traditional method23,33 (with BLPEC) respectively. To process the data in parallel, the 
large format raw image (3872 × 2764 raw pixels) is divided into 35 portions (700 × 700 raw pixels) for computa-
tion. Here, the blocks at the end of each row or each column do not have the same pixels as others and the adja-
cent portions have 200 pixels overlap with each other. For the reconstructed image (2800 × 2800 pixels), we cut 
away 200 pixels at the edge and the adjacent portions introduce a certain degree of redundancy (400 pixels) into 
our stitching. Thus, no observable boundary is present in the stitched region and the blending comes at a small 
computational cost of redundantly processing the overlapping regions twice.

Figure 9 describes additional experimental work to address the significance of ALPEC, and intuitively shows 
the comparison between reconstructed results based on the adaptive and the fixed relaxation factor. Figure 9(a) 
presents the FOV of the USAF resolution target recorded by the camera directly. Figures 9(a1) and (a2) show the 
local enlarge enlargements of the rectangular areas in Fig. 9(a) and the respective reconstruction results are shown 
in Figs. 9(b1)–(c6). To illustrate great effects of ALPEC on experimental results, we have carried out two groups 
of experiments with the adaptive and the fixed relaxation factor respectively. Figures 9(b1) and (c1) show the 
reconstructed results of enlargements of two different small segments in Fig. 9(a) based on the single raw image, 
and as shown in them, the reconstructed results are blurry. Figures 9(b2) and (c2) show the reconstructed results 
without positional error correction. From Fig. 9(b2) we can deduce that the tiny lateral positional error has little 
effect on low frequency of the reconstructed results, but exerts a tremendous influence on high frequency which 
corresponds to the super-resolution [Fig. 9(c2)]. The same data set is employed to recover the super-resolution 

Figure 9. The effect of ALPEC on reconstructed results, as well as the comparison between reconstructed 
results based on the adaptive and fixed relaxation factor. (a) The raw image directly captured by the 
experimental system. The reconstructed results (b1)–(c1) based on the single raw image, (b2)–(c2) without 
positional error correction, (b3)–(c3) with adaptive factor and BLPEC, (b4)–(c4) with adaptive factor and 
ALPEC, (b5)–(c5) with fixed factor α = 0.5 and BLPEC, (b6)–(c6) with fixed factor α = 0.5 and ALPEC. (b1)–
(b6) and (c1)–(c6) correspond to the enlargements (a1) and (a2) respectively.
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image for each segment using our adaptive method with BLPEC and ALPEC respectively. In addition, the same 
iterations are conducted in two reconstruction methods, the only difference between the methods utilized in this 
paper is that the latter involves ALPEC while the former puts into effect positional error correction in advance. 
Figures 9(b3) and (c3) present the recovered super-resolution intensity images with BLPEC corresponding to the 
same segment of Figs. 9(b1) and (c1) respectively. It can be seen that the silhouette of lines in Fig. 9(b3) is unsharp 
but recognizable because the corrected images using BLPEC have removed the relatively large lateral positional 
error, but still remain tiny the positional misalignment. Even worse, due to the remnant lateral positional error, 
the higher frequency of the object is still unable to recover as shown in Fig. 9(c3), although the resolution of the 
reconstructed results has been improved compared to Fig. 9(c2). With the help of ALPEC, high-quality recovered 
intensity distributions are obtained, as shown in Figs. 9(b4) and (c4). The blur in Figs. 9(b3) and (c3) is eliminated 
completely and the clarity of image is increased, meanwhile better outlines are given in Figs. 9(b4) and (c4). 
Similarly, with the fixed relaxation factor (α = 0.5), the reconstructed results are shown in Figs. 9(b5) and (c5) as 
well as Figs. 9(b6) and (c6) using the BLPEC and ALPEC separately. We can also come to the same conclusion that 
the ALPEC can bring benefits to improve the resolution with the adaptive relaxation or fixed factor.

In order to experimentally illustrate that the adaptive relaxation factor can improve the stability and robust-
ness of the reconstruction towards noise, the comparison between the adaptive relaxation and the fixed factor 
based reconstructed results is also shown in Fig. 9. Figures 9(b6) and (c6) show the reconstructed results with 
fixed relaxation factor (α = 0.5) and ALPEC, while the reconstructed results using our adaptive relaxation-factor 
method and ALPEC are shown in Figs. 9(b4) and (c4). It is obvious that using the adaptive relaxation-factor 
method can suppress the over-amplification noise without extra auxiliary information.

Imaging of the typical dicot root. Another experiment was demonstrated that our method can also be 
used for the dense sample such as plant slice, which can be seen in Fig. 10. Figure 10(a) shows the full FOV of the 

Figure 10. The experimental results of a typical dicot root. (a) The full FOV low-resolution hologram. (b) The 
reconstructed intensity image based on the traditional method23,33 (α = 0.5, BLPEC). (c) The reconstructed 
intensity image based on our method. (d) The full FOV intensity image with 10X objective. (b1) and (c1) The 
enlargements of the red dashed boxed areas in (b) and (c) respectively. (d1) The full FOV intensity image 
with 60X objective corresponding to the red dashed boxed areas in (d). (b2, c2, d2) The line profiles along the 
respective arrow.
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typical dicot root (~29.85 mm2), and the whole sample can be captured which is challenging for the traditional 
high-magnification lens microscope. From upper left enlarged region of the orange dashed box in raw full FOV 
low-resolution hologram [see the inset of Fig. 10(a)], we can find that the details in the typical dicot root are 
hard to be observed because they are submerged in the diffraction fringes. Figures 10(b) and (c) show the recon-
structed intensity images based on the traditional method23,33 (α = 0.5, BLPEC) and our method respectively. 
The selected area [Fig. 10(c)] occupy only 1% of the FOV of Fig. 10(a), which corresponds to the whole FOV 
with the 10X objective as shown in Fig. 10(d). From Fig. 10(c), it is easy to distinguish endodermis, pericycle, 
primary phloem, primary xylem, and parenchyma cell, which are extremely important for botanical studies. To 
observe the details inside the amyloplasts, we further select a small area in Fig. 10(c) which is the full FOV with 
60X objective [Fig. 10(d1)] and we can find that the unit magnification lensfree systems greatly expand the FOV. 
Figures 10(b1) and (c1) are the local enlarge enlargements of the rectangular areas in Figs. 10(b) and (c) sepa-
rately. As shown in the enlargements [Fig. 10(c1)], the grains in amyloplasts are distinguishable and the sharp 
improvements are noticed in the image contrast compared to the results shown in Fig. 10(b1). Figures 10(b2)–(d2)  
show the line profiles along the respective arrow, and two particles in the middle cortex are easily to distinguish 
which is impossible in the traditional method. However, there are many horizontal and perpendicular lines in the 
enlargements [Fig. 10(c1)], and blur is obvious in Fig. 10(c2). The reasons are mainly that guide filter is sensitive 
to the smooth background, but this experimental sample is not piecewise smooth and the guided filter brings the 
aberration to the reconstructed results. Furthermore, the test object has a certain thickness and the diffraction 
patterns of the non-target objects in the vertical direction of objects on focal plane will influence imaging recon-
structed results. In Supplementary Video 2, we show a zooming video of the full-FOV reconstruction result of a 
typical dicot root with our method and the traditional method23,33 (α = 0.5, BLPEC) respectively.

Conclusion
In this work, a method termed as APLI is proposed to mitigate the artifacts and simultaneously obtain 
super-resolution images only with Z-scanning. According to the method more than double pixel resolution of 
camera is successfully achieved, and there is no extra embedding medium between the object and sensor, like the 
refractive index matching oil. Here we emphasize that this super-resolution technique does not require lateral 
displacements, wavelength changing, and illumination angles scanning. Throughout the experiment, an imaging 
sensor with pixel-count of 10.7 million and pixel-size of 1.67 μm provides a large FOV (~29.85 mm2), and the 
samples are moved vertically to generate ten out-of-focus undersampling intensity images with artifacts. Instead 
of the traditional fixed-step, an adaptive relaxation factor strategy has been firstly introduced into our method 
to suppress the over-amplification noise and retain the convergence speed under noisy conditions. Furthermore, 
we introduce an ALPEC method into our method which tallies with actual physical process, and it can avoid the 
misalignment effectively and improve the reconstruction stability. APLI offers a way to exploit the resolution 
potential of lensfree microscopy and achieves smallest resolved half-pitch of 770 nm, surpassing 2.17 times of the 
theoretical Nyquist-Shannon sampling resolution limit.

We believe that our method will broadly benefit the lensfree imaging microscope and acquire higher resolu-
tion with the same amount of data comparing to the traditional reconstruction methods. In addition, our method 
can vastly not only remove the adverse impact of alteration in multiple systematic parameters on the recon-
structed results, but also reduce the complexity of the actual operation. The results of the resolution target and 
botanical samples demonstrate that the proposed reconstructed method can offer a new way to make the lensfree 
microscope to be a competitive and promising tool for the medical care in remote areas in future.

However, some issues still deserve further consideration. Although the number of the captured images may 
influence the reconstructed results, the artifacts cannot be removed completely due to the trade-off between the 
resolution and the artifacts. Specifically, if we need to weaken the influence of the artifacts, the sample-to-sensor 
distance must be increased, but at the meantime the long-distance will result in failure of acquisition of the 
high-frequency patterns because many patterns become denser suffering from more severe pixel aliasing 
or exceed the sensor area limits. On the other hand, in the actual situation, the resolution cannot be further 
improved while the number of raw images increases. We consider the reason for this phenomenon is that during 
the whole process, the longitudinal error is not taken seriously. In future work, we will make effort to correct the 
tiny longitudinal error automatically.
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