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Stereo Digital Image Correlation (Stereo-DIC) has become a mainstream optical metrology technique for 
quantitatively analyzing full-field 3D shape, displacement, or deformation of materials and structures. Whether 
it is to measure 3D profile or deformation, stereo matching is essential for Stereo-DIC to reconstruct 3D point 
clouds from stereo images. Traditional feature-based (e.g., SIFT) methods provide initial 2D displacements 
for stereo matching with the aid of extracting massive features, but at the cost of expensive computational 
overhead. In addition, these methods preclude precise measurement of objects with steep and ridged surfaces or 
undergoing large rotation and/or deformation due to low feature matching accuracy of complex regions caused 
by perspective differences. In this paper, we propose a fast and robust stereo matching method using semi-

global matching with geometric constraints (GC-SGM) for initializing and accelerating Stereo-DIC computation. 
For GC-SGM, an optimized semi-global matching (SGM) algorithm based on GPU acceleration is first utilized 
to quickly estimate dense and reliable disparity maps between the rectified stereo images. The global pixel-

wise 2D correspondence between raw stereo images can be established inversely using epipolar constraints 
and 1D disparity information, and then converted to accurate and initial second-order deformation parameters 
for 2D-DIC-based sub-pixel refinement by least-squares-based surface fitting. Experimental results prove that 
the proposed GC-SGM enhances the matching correctness and robustness for complex objects while improving 
the processing speed on GPU by 3∼10 times compared with SIFT-based methods, enabling high-precision and 
computationally efficient 3D shape and deformation measurement.
1. Introduction

Stereo Digital Image Correlation (Stereo-DIC), as a non-contact and 
full-field 3D shape and deformation measurement technique based on 
the principles of DIC and stereo vision, has been successfully applied to 
various areas, such as materials science, biomechanics, and aerospace 
engineering [1,2]. Image correlation is pivotal to Stereo-DIC and it can 
be divided into two categories: temporal matching and stereo match-

ing. Temporal matching, which can be seen as subset matching based 
on 2D-DIC, is to track the 2D displacement of points of interest (POIs) 
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on an image sequence continuously acquired by one camera. 2D-DIC, 
as a local iterative optimization technique, requires an accurate initial 
guess of the deformation or displacement of valid points to initialize the 
iterative calculation [2]. In the common instance of temporal matching, 
the 2D displacement of POIs is first initialized by different methods in-

cluding fast-Fourier transform (FFT) [3], genetic algorithms [4], and 
scale-invariant feature transform (SIFT) [5,6], and further refined using 
2D-DIC with classic NR algorithms [7] or inverse-compositional Gauss–

Newton (IC-GN) algorithms [8,9]. FFT methods are computationally ef-

ficient and enable global sub-pixel displacement estimation by detecting 
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peaks in complex spectra by fast Fourier transform [10]. But it suffers 
from the accuracy and robustness of peak-finding algorithms, result-

ing in the degradation of reconstruction quality for objects with com-

plex surfaces. In contrast, SIFT is quite robust to ambient illumination 
and varying surface properties, enabling it to achieve higher-accuracy 
keypoint matching with the aid of extracting massive scale-invariant 
features, but its feature extraction and matching are computationally 
expensive, which limits the applications of the SIFT-aided DIC. Yang 
et al. [11] developed a SIFT-aided path-independent DIC method to es-

timate the initial guess of all valid points by introducing the parallel 
computing on the graphics processing unit (GPU) or multi-core CPU, 
achieving real-time processing with high resolution and accuracy for 
temporal matching based on 2D-DIC.

Different from temporal matching, in stereo matching, the 2D cor-

respondence between stereo images captured by left and right cameras 
is established and converted into 3D shape information of the tested 
object after stereo calibration. However, for initial 2D displacement es-

timation, traditional feature-based (e.g., SIFT) methods preclude precise 
measurement of objects with steep and ridged surfaces or undergoing 
large rotation and/or deformation due to low feature matching accuracy 
of complex regions caused by perspective differences. Lin et al. [12]

presented an epipolar constraint-aided 2D correspondence searching 
method to cope well with objects with relatively steep slopes. How-

ever, the running time of this method on GPU was increased by nearly 
2.35 times compared with SIFT feature-aided approaches. In addition, it 
is worth noting that the perspective differences between stereo cameras 
make the first-order shape function commonly used in temporal match-

ing no longer applicable, and a more complex second-order shape func-

tion is used for 2D-DIC-based sub-pixel refinement in stereo matching 
[13]. Therefore, compared with temporal matching, stereo matching is 
a more challenging and computationally complex part of Stereo-DIC, 
and its measurement accuracy and computational efficiency need to be 
improved urgently [14].

On the basis of 3D shape measurement using stereo matching, there 
are generally three matching strategies in Stereo-DIC to realize 3D 
deformation measurement for quantitatively analyzing the 3D displace-

ment field of point clouds at different times or states. As shown in Figs. 1

(a)-(c), the commonality of the three strategies is that temporal match-

ing is exploited to process the left image sequence for tracking the same 
subsets at the initial state and other states, and stereo matching is per-

formed on left and right reference images for obtaining initial 3D point 
clouds of objects. In addition, in the first strategy, temporal matching 
processes the right reference image and others on the right image se-

quence. The second strategy is that the left reference image is matched 
to all frames in the right image sequence. For the last strategy, stereo 
matching is implemented on left and right images collected at the same 
time in the whole deformed process. Since stereo matching is more com-

putationally complex than temporal matching, the first strategy that 
only needs to perform stereo matching once is often preferred. It can 
be found that stereo matching is frequently used in the third matching 
strategy. However, this strategy not only suffers from expensive compu-

tational costs from stereo matching, but also requires the interpolation 
of left images (with complex calculation and non-negligible interpola-

tion error) at each state [2], which is not recommended in Stereo-DIC.

In this paper, the main contribution is to renovate the third matching 
strategy with poor performance. By introducing the adaptive subset off-

set scheme [15], a stereo matching method using semi-global matching 
with geometric constraints (GC-SGM) is proposed to markedly improve 
the computational efficiency and accuracy in Stereo-DIC, outputting 
comparable measurement results to the first matching strategy. For 
GC-SGM, benefiting from the shared memory mechanism and multiple 
stream operations on the CUDA environment, an optimized semi-global 
matching (SGM) algorithm based on GPU acceleration is first utilized 
to realize fast and global disparity estimation for the rectified stereo 
image. Further, the obtained disparity information is combined with 
2

epipolar constraints to inversely achieve initial 2D displacement match-
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ing between raw stereo images. For the second-order shape function 
involved in stereo matching, initial deformation parameters of each 
point are calculated using least-squares-based surface fitting, and then 
refined to enhance the accuracy of 2D displacement measurement us-

ing 2D-DIC based on IC-GN. Experiments proved that the proposed 
GC-SGM enhances the matching correctness and robustness while im-

proving the processing speed on GPU by 3∼10 times compared with 
SIFT-based methods, achieving fast and accurate 3D profile and de-

formation measurements for objects with steep and ridged surfaces or 
undergoing large rotation and/or deformation.

2. Principle

As shown in Fig. 1 (d), the proposed GC-SGM consists of four steps 
to initialize second-order deformation parameters and accelerate the 
computation of stereo matching in Stereo-DIC. For stereo image pairs {
𝐼𝐿, 𝐼𝑅

}
captured at the same moment, epipolar rectification is first 

executed to align the epipolar lines of left and right images, simplify-

ing the two-dimensional search problem to a one-dimensional matching 
problem. The rectified images 

{
𝐼𝑅𝑒𝑐𝑡
𝐿

, 𝐼𝑅𝑒𝑐𝑡
𝑅

}
are processed to obtain 

the 1D disparity map 𝐷𝑅𝑒𝑐𝑡 using an optimized semi-global matching 
(SGM) method by parallel calculation on GPU according to our pre-

vious work [16]. Based on stereo calibration parameters and epipolar 
constraints, for any point 𝐩 =

[
𝑥𝐿, 𝑦𝐿

]⊤
on left image 𝐼𝐿, initial 2D dis-

placement of the corresponding point 𝐪 =
[
𝑥𝑅, 𝑦𝑅

]⊤
on right image 𝐼𝑅

can be determined using 𝐷𝑅𝑒𝑐𝑡, and converted to second-order defor-

mation parameters for stereo matching using surface fitting and subset 
matching based on 2D-DIC.

2.1. Optimized semi-global matching (SGM) based on GPU acceleration

Stereo-DIC and stereo vision are both mainstream optical metrology 
[17–19] and computational imaging [20–22] techniques for measuring 
the 3D profile of the tested scenes. Different from subset matching com-

monly used in Stereo-DIC, stereo matching, as the core technology in 
stereo vision, is based on local matching methods, semi-global matching 
(SGM) methods, or global matching methods, which are implemented 
to build the global 1D correspondence of rectified stereo images and 
obtain dense disparity maps. There is generally a four-step pipeline 
for stereo matching, including matching cost calculation, cost aggre-

gation, disparity computation, and disparity refinement. Due to the 
limited computing resource early, some GPU-accelerated local matching 
methods were proposed to enhance the matching accuracy and running 
speed using cost calculation methods based on different similarity es-

timation criteria or multi-scale matching windows [23–25]. However, 
in the well-known stereo vision dataset Middlebury, the matching accu-

racy of these methods is lower than that of global stereo matching meth-

ods, which can achieve accurate pixel-level stereo matching through a 
global energy function at the cost of higher computational complex-

ity [26]. By inheriting the advantages of the above two methods, SGM 
methods have the same algorithmic complexity as local methods by 
accumulating one-dimensional cost aggregation results from all direc-

tions, striking a good balance in stereo matching accuracy and compu-

tational efficiency [27,28].

Here, by artificially manufacturing or projecting speckle patterns 
onto the surface of the measured objects to enhance their features, we 
proposed an optimized SGM algorithm based on GPU acceleration to 
overcome streak artifacts in stereo matching, achieving efficient, dense, 
and accurate matching results in Fig. 1 (d). Specifically, for matching 
cost calculation, the local feature vectors of rectified speckle images are 
extracted by census transform:

C(𝑥, 𝑦) =
𝑅

⊗
𝑖=-𝑅

𝑅

⊗
𝑗=-𝑅

𝑇 (𝐼(𝑥+ 𝑖, 𝑦+ 𝑗), 𝐼(𝑥, 𝑦)), (1){
0, 𝑎 ≤ 𝑏,
𝑇 (𝑎, 𝑏) =
1, 𝑎 > 𝑏,

(2)
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Fig. 1. Diagrams of different matching strategies for 3D deformation measurement and the proposed stereo matching method using semi-global matching with 
geometric constraints (GC-SGM). (a)-(c) Three different matching strategies, (d) An overview of the proposed GC-SGM.
where C(𝑥, 𝑦) is the feature vector of the central pixel (𝑥, 𝑦), ⊗ repre-

sents a bit-wise concatenation operator, and 𝑅 is the radius of the local 
matching window. Since the census transform based on block match-

ing is a pixel-independent algorithm, the feature vectors of all pixels in 
stereo rectified images 

{
𝐼𝑅𝑒𝑐𝑡
𝐿

, 𝐼𝑅𝑒𝑐𝑡
𝑅

}
can be calculated simultaneously 

by multiple CUDA streams and the shared memory mechanism [16].

Based on the disparity range [𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥] determined by the calibra-

tion parameters and measurement range of our Stereo-DIC system, the 
matching cost Cost(𝑥, 𝑦, 𝑑) can be obtained to estimate the similarity be-

tween each pixel in the left image and all candidates of the right image 
by calculating the Hamming distance of their feature vectors, which is 
defined as:

Cost(𝑥, 𝑦, 𝑑) = BC(CL(𝑥, 𝑦)⊕𝐶𝑅(𝑥− 𝑑, 𝑦)), (3)

where ⊕ is a XOR operation, and BC(∙) is used to count the number 
of ‘1’ in XOR results. Since the cost calculation using the Hamming 
distance is a row-independent algorithm, the initial matching cost of 
each row in the left rectified image can be calculated simultaneously 
benefiting from the shared memory mechanism. Due to the high overlap 
between candidate disparity ranges corresponding to adjacent pixels, 
the feature vectors of each row are stored in a segmented manner, and 
the matching costs of 𝐷𝑚𝑎𝑥 −𝐷𝑚𝑖𝑛 + 1 pixels are computed at the same 
time.

And then, the matching cost Cost(𝑥, 𝑦, 𝑑) can be further optimized 
using cost aggregation or cost filtering. In our method, the SGM-based 
cost aggregation approximates the global solution by aggregating 1D 
matching costs along 4 independent paths. The aggregated cost 𝐿𝑖(p, 𝑑)
of the pixel p = [𝑥, 𝑦]𝑇 at disparity 𝑑 along a path r𝑖 = (𝑟𝑥, 𝑟𝑦) is defined 
recursively as:

𝐿𝑖(p, 𝑑) = Cost(p, 𝑑) + min

⎧⎪⎪⎨⎪⎪⎩
𝐿𝑖(p− r𝑖, 𝑑)
𝐿𝑖(p− r𝑖, 𝑑 − 1) + 𝑃1
𝐿𝑖(p− r𝑖, 𝑑 + 1) + 𝑃1
min
𝑘

𝐿𝑖(p− r𝑖, 𝑘) + 𝑃2

(4)

−min𝐿 (p− r , 𝑘),
3

𝑘
𝑖 𝑖
𝑆(p, 𝑑) = 1
4

4∑
𝑖=1

𝐿𝑖(p, 𝑑), (5)

where 𝑆(p, 𝑑) represents the aggregated cost. 𝑃1 is a constant penalty, 
and 𝑃2 is a penalty that varies with the intensity gradient:

𝑃1 ≤ 𝑃2 =
𝑃3|||𝐼(𝐩) − 𝐼
(
𝐩− 𝐫𝑖

)||| ≤ 𝑃3, (6)

where 𝑃3 is another constant penalty. It is worth noting that the penalty 
parameters of SGM affect the final stereo matching results. After an ex-

haustive empirical search, it is found that the parameters 𝑃1 and 𝑃3
are closely related to the window radius 𝑅 used in census transform. In 
order to enhance the accuracy of speckle matching, the preset thresh-

olds of the parameters 𝑃1 and 𝑃3 are set as (2𝑅 + 1)2 and (4𝑅 + 2)2
based on the matching quality metric. Since the cost aggregation is a 
row-independent or column-independent algorithm, all four aggregated 
costs 𝐿𝑖(p, 𝑑) along different independent paths can be calculated simul-

taneously. Further, considering that the cost aggregation is performed 
sequentially along the row or column, the aggregated cost of the current 
pixel is only related to that of the previous pixel and can be calculated 
simultaneously for all candidate disparities.

Finally, the initial integer-pixel disparity map can be selected as the 
index of the minimum cost in S(𝑥, 𝑦, 𝑑) through Winner Take All (WTA):

𝐷(𝑥, 𝑦) = argmin
𝑑

S(𝑥, 𝑦, 𝑑). (7)

Further, the sub-pixel disparity estimation is implemented by fitting a 
parabola using neighboring costs:

𝐷sub =𝐷 − S(𝐷 + 1) − S(𝐷 − 1)
2S(𝐷 + 1) + 2S(𝐷 − 1) − 4S(𝐷)

. (8)

It is worth noting that the disparity computation and sub-pixel dispar-

ity estimation are pixel-independent algorithms, which are only related 
to the aggregated cost of the current pixel. Then some simple post-

processing operations are adopted to obtain accurate and dense dis-

parity maps. The left-right consistency check (L-R Check) is applied to 
identify invalid pixels in the disparity map, including occluded, mis-
matched, and background areas. The 4-connected-based image segmen-
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tation algorithm is used for noise peak removal in the disparity map. 
The mismatched points in the disparity map are interpolated by choos-

ing the second-lowest disparity value from the 8 neighbor points.

2.2. Initializing and accelerating Stereo-DIC computation using GC-SGM

After the 1D correspondence between the rectified stereo image is 
established using the optimized SGM based on GPU acceleration, the 
initial 2D displacement between raw stereo images can be found based 
on stereo calibration parameters and epipolar constraints. Using the in-

trinsic matrix 𝐀𝐿 and the distortion coefficients 𝐤𝑐
𝐿

of the left camera, 
as shown in Fig. 1 (d), the point 𝐩 located in the camera imaging plane 
𝐼𝐿 is mapped to the normalized plane, and further projected to the cor-

responding point 𝐩𝑅𝑒𝑐𝑡 on the rectified left image 𝐼𝑅𝑒𝑐𝑡
𝐿

by combining 
rectified intrinsic parameters 𝐀𝑅𝑒𝑐𝑡

𝐿
and the rotation matrix 𝐑𝐿 when 

performing the rectification of the left camera:

𝐿𝑈𝑇 (𝐩)→ 𝐩𝑅𝑒𝑐𝑡 ⇔ 𝐩𝑅𝑒𝑐𝑡 =𝐀𝑅𝑒𝑐𝑡
𝐿

𝐑−1
𝐿

𝐹−1
𝑘

(𝐤𝑐
𝐿
,𝐀−1

𝐿
𝐩), (9)

where 𝐹−1
𝑘

(∙) represents the function of distortion removal. Eq. (9) de-

scribes the pixel-wise correspondence between the left image 𝐼𝐿 and 
the rectified left image 𝐼𝑅𝑒𝑐𝑡

𝐿
. Since these parameters used in Eq. (9) are 

known and fixed after stereo calibration, a lookup table mapping from 
𝐩 to 𝐩𝑅𝑒𝑐𝑡 can be created to calculate the sub-pixel coordinates of 𝐩𝑅𝑒𝑐𝑡

directly. Then, the corresponding point 𝐪𝑅𝑒𝑐𝑡 on the rectified right im-

age 𝐼𝑅𝑒𝑐𝑡
𝑅

can be determined using the 1D disparity map 𝐷𝑅𝑒𝑐𝑡 based on 
bicubic interpolation:

𝐩𝑅𝑒𝑐𝑡 − 𝑑 → 𝐪𝑅𝑒𝑐𝑡 ⇔ 𝐪𝑅𝑒𝑐𝑡 = 𝐩𝑅𝑒𝑐𝑡 −𝐷𝑅𝑒𝑐𝑡(𝐩𝑅𝑒𝑐𝑡). (10)

Contrary to the lookup table mapping from 𝐩 to 𝐩𝑅𝑒𝑐𝑡, the point 𝐪 on 
right image 𝐼𝑅 can be converted from 𝐪𝑅𝑒𝑐𝑡 according to the parameters 
of right camera:

𝑅𝐸(𝐪𝑅𝑒𝑐𝑡)→ 𝐪⇔ 𝐪 =𝐀𝑅𝐹𝑘

[
𝐤𝑐
𝑅
,𝐑𝑅(𝐀𝑅𝑒𝑐𝑡

𝑅
)−1𝐪𝑅𝑒𝑐𝑡

]
. (11)

It is worth noting that Eq. (11) is a pixel-independent algorithm, which 
is applicable for parallel acceleration. Here, the corresponding point 
𝐪 of right target image 𝐼𝑅 can be determined for any point 𝐩 on left 
reference image 𝐼𝐿, thus achieving accurate and efficient initial dis-

placement estimation for stereo matching:

𝐩− 𝐪→ (𝑢, 𝑣)⇔

{
𝑢 = 𝑥𝐿 − 𝑥𝑅

𝑣 = 𝑦𝐿 − 𝑦𝑅

. (12)

For 2D-DIC-based sub-pixel refinement, the initial deformation pa-

rameters of the point 𝐩 will be estimated using least-squares-based 
surface fitting. In Stereo-DIC, the second-order shape function 𝐖(𝜉; 𝐓)
is introduced to describe a perspective transformation between the left 
reference subset centered on the point 𝐩 and the right target subset cen-

tered on the point 𝐪 [13] as:∑
𝜉

(𝐩+ 𝜉) =
∑
𝜉

(𝐪+𝐖(𝜉;𝐓)), (13)

𝐖(𝜉;𝐓) =
[
𝑥+ 𝑢+ 𝑢𝑥𝑥+ 𝑢𝑦𝑦+ 𝑢𝑥𝑦𝑥𝑦+

𝑢𝑥𝑥

2 𝑥2 + 𝑢𝑦𝑦

2 𝑦2

𝑦+ 𝑣+ 𝑣𝑥𝑥+ 𝑣𝑦𝑦+ 𝑣𝑥𝑦𝑥𝑦+
𝑣𝑥𝑥

2 𝑥2 + 𝑣𝑦𝑦

2 𝑦2

]
, (14)

where 𝜉 = [𝑥, 𝑦]𝑇 denotes the local coordinate in the subset, and 𝐓 repre-

sents the deformation parameters, i.e., [𝑢, 𝑢𝑥, 𝑢𝑦, 𝑢𝑥𝑥, 𝑢𝑦𝑦, 𝑢𝑥𝑦, 𝑣, 𝑣𝑥, 𝑣𝑦, 𝑣𝑥𝑥,
𝑣𝑦𝑦, 𝑣𝑥𝑦]𝑇 . Using 2D matching results obtained according to Eq. (12), 
Eq. (13) can be rewritten based on the surface fitting:

𝑆2
𝑥
=
∑
𝜉

(𝑎1𝑥2 + 𝑎2𝑦
2 + 𝑎3𝑥𝑦+ 𝑎4𝑥+ 𝑎5𝑦+ 𝑎6 − 𝑢)2, (15)

𝑆2
𝑦
=
∑
𝜉

(𝑏1𝑥2 + 𝑏2𝑦
2 + 𝑏3𝑥𝑦+ 𝑏4𝑥+ 𝑏5𝑦+ 𝑏6 − 𝑣)2, (16)

where (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6) and (𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6) are set as (𝑢𝑥𝑥∕2, 𝑢𝑦𝑦∕2,
4

𝑢𝑥𝑦, 𝑢𝑥, 𝑢𝑦, 𝑢) and (𝑣𝑥𝑥∕2, 𝑣𝑦𝑦∕2, 𝑣𝑥𝑦, 𝑣𝑥, 𝑣𝑦, 𝑣). Solving Eq. (15) and Eq. (16)
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Table 1

Performance analysis results of Stereo-DIC using the SIFT-based method and 
GC-SGM.

Method Computation time (ms) Cmra

Initial estimation Sub-pixel refinement

SIFT 1411.60±17.31 1691.48±30.73 83.67%
GC-SGM 134.41±8.52 1710.64±34.35 92.36%

a Cmr = Correct matching rate (ZNCC ≥ 0.9).

is a least-squares minimization problem for obtaining initial deforma-

tion parameters. In addition, to further speed up the initial estima-

tion, it is optional to estimate only 6 parameters without considering 
the second-order coefficients. Finally, sub-pixel optimization in stereo 
matching is performed using the GPU-accelerated 2D-DIC algorithm 
[12].

3. Experiments

To systematically evaluate the effectiveness of the proposed GC-

SGM, several experiments were conducted, including high-resolution 
3D reconstruction of complex samples on the well-known 3D-DIC chal-

lenge dataset, 3D shape and deformation measurement on the built 
Stereo-DIC system. All tests were run on a desktop computer equipped 
with an AMD Ryzen 7 3700X CPU (8 cores, 16 threads) and an NVIDIA 
GeForce RTX3090 graphics card (10496 CUDA cores, 24 GB VRAM).

3.1. High-resolution 3D reconstruction on 3D-DIC challenge dataset

First, a 3D reconstruction experiment using Stereo-DIC was carried 
out to reveal the actual performance of GC-SGM in terms of the match-

ing speed and accuracy, and the SIFT-based method [11] was imple-

mented for comparison. As known to all, measuring objects with ridged 
and complex surfaces is a challenging task for Stereo-DIC. To verify the 
reliability of different methods for initial estimation in stereo match-

ing, Stereo Sample 1 of the 3D-DIC dataset was measured, including 
two semi-cylindrical reliefs, two triangular prisms, and a square stage. 
Fig. 2 (a) shows the left image (2448 × 2048 pixels) of Stereo Sample 1 
for 3D shape measurement, where the region of interest (ROI) was ar-

tificially set to 1561 × 1561 pixels with 1-pixel intervals. To maximize 
the matching performance, the subset size of 2D-DIC was determined as 
19 × 19 pixels after an exhaustive empirical search. Figs. 2 (b)-(j) show 
the matching results combining the 2D-DIC algorithm with the SIFT-

based method or GC-SGM, and the quantitative analysis results can be 
found in Table 1.

For initial 2D displacement estimation using the SIFT-based method, 
a large number of SIFT features were first extracted from left and right 
images, which are robust to deformation, distortion, and illumination 
changes. By calculating the Euclidean distance between SIFT descrip-

tors, the features of the left image were paired with those of the right 
image. For each POI within the ROI, its initial deformation parameters 
were calculated using nearby feature pairs based on affine transforma-

tion [5]. Considering that rich features extracted from high-resolution 
speckle images are one of the main reasons affecting the running speed 
of SIFT-based methods [11], in this experiment, only 40,000 features 
were reserved to reach the balance between the matching efficiency and 
the correct matching rate. As shown in Figs. 2 (b)-(c), the SIFT-based 
method can cope well with flat regions, but is unable to achieve reliable 
initial 2D displacement estimation for slopes of triangular prisms and 
edges of cylinders, resulting in the valid points of the matching results 
being reduced from 1561 × 1561 pixels to 2,099,062 pixels (86.14%). 
After 2D-DIC-based sub-pixel refinement, high-quality matching points 
with ZNCC greater than 0.9 in the final u-/v-displacement results only 
account for 83.67% of all valid points in Table 1. The main reason for 

this result may be that the feature pairs to be matched in complex 
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Fig. 2. Comparison of stereo matching results using different methods. (a) Left image of Stereo Sample 1 on 3D-DIC challenge dataset, (b)-(c) The initial u-/v-

displacement results using SIFT-based method, (d)-(e) The refined u-/v-displacement results using 2D-DIC with SIFT-based method, (f) The 1D matching results 
using the GPU-accelerated SGM algorithm, (g)-(h) The initial u-/v-displacement results using the GPU-accelerated SGM algorithm with epipolar constraints, (i)-(j) 
The refined u-/v-displacements using 2D-DIC with GC-SGM, (k)-(l) 3D reconstruction results using SIFT-based method or GC-SGM.
surfaces have obvious location differences caused by perspective dif-

ferences, which makes impossible the accurate initial estimation based 
on affine transformation. On the contrary, in the proposed GC-SGM, 
the GPU-accelerated SGM algorithm is utilized to achieve robust 1D 
matching of rectified stereo images via smoothing the disparity map, 
providing a dense 2D displacement result with 2,392,601 valid points 
(98.19%) as shown in Fig. 2 (g)-(h). Sub-pixel refinement using 2D-DIC 
with IC-GN was performed to further improve the correct matching rate 
to 92.36% in Figs. 2 (i)-(j). Based on stereo calibration parameters, 3D 
measurement results using different methods are presented in Figs. 2

(k)-(l), which confirm the superior performance of GC-SGM for high-

quality and efficient 3D modeling of complex shapes.

For the computation time of different methods presented in Ta-

ble 1, it can be found that SIFT still takes 1411.60±17.31 ms on Nvidia 
RTX3090 by parallel acceleration, due to the expensive computation 
involved in SIFT features extraction and matching. Benefiting from the 
optimized SGM based on GPU acceleration, robust and dense 1D match-

ing takes about 120 ms for high-resolution images (2448 × 2048 pixels) 
with a disparity range of 160 pixels. Based on the 1D disparity map 
and stereo calibration parameters, geometric constraints and surface 
fitting are utilized to achieve pixel-independent 2D displacement esti-

mation. The runtime of the whole initial estimation process requires 
only 134.41±8.52 ms, which is almost 10 times faster than SFIT-based 
methods [11]. In addition, GC-SGM needs to process more valid points 
in the 2D-DIC-based sub-pixel refinement stage in Fig. 2 (g)-(h). Since 
the initial matching accuracy of GC-SGM is higher than that of the 
SIFT-based method, especially in complex areas, so our method takes 
slightly more time to implement sub-pixel refinement than the SIFT-

based method in Table 1. These experimental results demonstrate that 
our method achieves more accurate and computationally efficient 3D 
5

shape measurement based on Stereo-DIC.
Fig. 3. Photographs of the built Stereo-DIC system including two CMOS cameras 
and a DLP projector.

3.2. 3D shape and deformation measurement on the built Stereo-DIC 
system

In order to verify the applicability of the proposed GC-SGM for 3D 
shape and deformation measurement, we built a common Stereo-DIC 
system with a wide baseline as shown in Fig. 3, which consists of two 
monochrome cameras (acA640-750um, Basler) with a resolution of 640 
× 480 pixels and a DLP projector (LightCrafter 4500Pro, Texas Instru-

ments). The projector projects the speckle pattern with a fixed spatial 
distribution onto the tested objects to ensure the global uniqueness of 
the entire measurement space and assist in establishing accurate corre-

spondence between stereo images, enabling 3D shape measurement of 
texture-free surfaces [29]. To demonstrate the robustness of GC-SGM 
for measuring multiple objects with complex shapes, some different ob-

jects were measured in Figs. 4(a)–(c) including a hexagonal pyramid, 
a parallelepiped, and a regular icosahedron, and the corresponding 3D 
measurement results are presented to illustrate the reliability of our 
method as shown in Figs. 4(g)–(i). We additionally provide precision 

analysis results for 3D shape measurement of different objects. For the 
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Fig. 4. 3D shape measurement of different objects. (a)-(i) The hexagonal 
pyramid, parallelepiped, and regular icosahedron, and the corresponding left 
speckle images and 3D reconstruction results.

Fig. 5. Quantitative accuracy analysis for 3D shape measurement of different 
objects. (a)-(c) The error distributions of the hexagonal pyramid, parallelepiped, 
and regular icosahedron, (d)-(f) The corresponding histograms of (a)-(c).

highlighted regions of 3D shape measurement results in Figs. 4(g)–(i), 
the error distributions of the hexagonal pyramid, parallelepiped, and 
regular icosahedron are obtained by plane fitting as shown in Figs. 5

(a)-(c), where major measured errors are less than 200 μm with the 
RMS of 71.563 μm, 67.525 μm, and 57.712 μm in Figs. 5 (d)-(f). Quan-

titative analysis results for 3D shape measurement of different objects 
show that the proposed GC-SGM achieves accurate and robust 3D shape 
measurement for objects with complex surfaces, geometric steeps, and 
sharp edges.

Besides, in order to quantitatively evaluate the reliability of our 
method, the matching results of different measured objects were an-

alyzed and shown in Table 2. The number of points is counted as the 
sum of all valid points from the main camera. To realize the reliabil-

ity analysis of the matching results, the SIFT-based method and the 
proposed GC-SGM were performed as two separate groups. The correct 
matching rate represents the ratio of points with ZNCC greater than 
0.9, and the time means the total running time of initial estimation and 
sub-pixel refinement. It can be found from these comparison results in 
Table 2 that GC-SGM realizes fast and robust 3D shape measurement 
with a high correctness ratio and high completeness for edge regions 
and abrupt depth discontinuities of complex objects. In addition, as the 
number of points increases from 60,068 POIs to 112,986 POIs, the com-

putational time of SIFT improves significantly from 11.23 ms to 17.95 
ms. Since the optimized SGM algorithm used in GC-SGM can quickly 
6

provide global matching results, the running time is still maintained 
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Table 2

Performance analysis results of several objects using SIFT-based method and 
GC-SGM.

Object Nopa Method Cmrb Time (ms)

Hexagonal pyramid 78651
SIFT 95.38% 13.04+28.63

GC-SGM 97.10% 4.96+29.01

Parallelepiped 112986
SIFT 94.04% 17.95+41.21

GC-SGM 96.74% 5.14+42.14

Regular icosahedron 60068
SIFT 92.93% 11.23+22.35

GC-SGM 95.58% 4.84+23.58

a Nop = Number of points.
b Cmr = Correct matching rate (ZNCC ≥ 0.9).

Fig. 6. 3D deformation results of the plastic plate. (a)-(c) Left and right im-

ages and the corresponding color-coded 3D shape reconstructions at different 
times, (d)-(f) U-/V-/W-displacement fields of 3D point clouds before and after 
deformation.

at about 5 ms for measuring these challenging shapes, demonstrating 
the reliability and efficiency of our method for 3D shape measurement 
based on Stereo-DIC.

Last, to further demonstrate the advantages of GC-SGM, our sys-

tem was applied to fast 3D deformation measurement of the plastic 
plate as shown in Fig. 6 and Visualization 1. During the whole dynamic 
measurement, the plastic plate was subjected to external pressure from 
the left, and its shape gradually changed from flat to curved. For fast 
and accurate 3D deformation measurement, the matching window sizes 
of census transform and 2D-DIC are set as 5 × 5 pixels and 19 × 19 
pixels, and the pixel spacing is 1 pixel. At the initial state, 3D shape 
measurement based on stereo matching was performed on the left and 
right images to obtain initial 3D point clouds as shown in Figs. 6(a)-(b). 
For subsequent deformation states, the SIFT-based method and GC-SGM 
are sequentially implemented for temporal matching and stereo match-

ing. It is worth noting that the matched points of the deformed left 
image output by temporal matching are always at sub-pixel locations, 
as reference points for stereo matching. To circumvent the additional 
systematic errors caused by intensity interpolation, we referred to the 
adaptive subset offset scheme [15]. By transforming the subset in the 
reference image to the nearest integer position, this scheme not only 
retrenched the computational cost of subpixel interpolation, but also 
eliminated periodic systematic errors. Experiments prove that our sys-

tem presents the 3D deformation measurement process of the plastic 
plate in quasi-real time (8.81 FPS) for calculating 120,701 POIs, which 
takes about 18.02+46.43 ms for temporal matching and 5.34+43.75 
ms for stereo matching at each deformation state. These experimen-
tal results demonstrate that our method has finished renovating the 
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third matching strategy with poor performance, enabling accurate and 
computationally efficient 3D deformation measurement for objects un-

dergoing large displacement or deformation.

4. Conclusions and discussion

In this work, we presented a reliable and efficient stereo matching 
method based on GC-SGM for initializing and accelerating Stereo-DIC 
computation, endowing the capability to overcome the limited match-

ing efficiency and the reconstruction quality deterioration of complex 
profiles or large deformation in Stereo-DIC. An optimized semi-global 
matching (SGM) algorithm based on GPU acceleration is first presented 
to quickly establish global and dense 1D correspondence between recti-

fied stereo images, which can be converted to initial 2D displacements 
between raw stereo images using epipolar constraints. For the second-

order shape function involved in stereo matching, initial deformation 
parameters of each point are calculated using least-squares-based sur-

face fitting, and then refined to enhance the accuracy of 3D shape and 
deformation measurement using 2D-DIC based on IC-GN. The effective-

ness of GC-SGM has been verified by several experiments for measuring 
various types of objects. 3D reconstruction results of Stereo Sample 
1 on 3D-DIC challenge dataset confirmed that GC-SGM can achieve 
high-precision and high-resolution 3D shape measurement for complex 
objects with steep and ridged surfaces, enhancing the matching cor-

rectness by about 10% while improving the processing speed on GPU 
by almost 10 times compared with SIFT-based methods. Based on the 
built Stereo-DIC system, 3D shape measurement results proved again 
that our method can achieve fast and robust 3D shape measurement 
with higher completeness for multiple objects including a hexagonal 
pyramid, a parallelepiped, and a regular icosahedron. Different from 
SIFT-based methods, the computational time of initial estimation based 
on GC-SGM is only related to the image resolution and is not affected 
by the number of points to be calculated, demonstrating the lower algo-

rithmic complexity of our method for 3D shape measurement. Finally, 
dynamic measurement results of the plastic plate revealed the applica-

bility of GC-SGM for accurate 3D deformation measurement with high 
quality in quasi-real time.

It should be discussed here that GC-SGM proposed in this paper can 
achieve more accurate and fast 3D measurement compared with SIFT-

based methods, but it cannot meet the requirements of high-precision 
and high-resolution 3D measurement for complex structural parts in 
industrial scenarios. 2D-DIC-based sub-pixel optimization methods gen-

erally exploit larger matching windows to maintain the convergence 
stability and measurement robustness, but at the cost of the spatial res-

olution. In addition, how to select the appropriate matching window for 
Stereo-DIC is our primary focus. It is obvious that the smaller window 
can speed up the calculation efficiency but provides coarse correlation 
results. On the contrary, the bigger window outputs reliable correspond-

ing points at the expense of the computational cost. Based on the above 
analysis, we will explore other methods to improve the matching accu-

racy and spatial resolution of Stereo-DIC.

CRediT authorship contribution statement

Wei Yin: Conceptualization, Methodology, Software, Visualization, 
Writing – original draft. Yifan Ji: Software, Data analysis. Juntong 
Chen: Data curation, Validation. Rui Li: Software, Data analysis. Shijie 
Feng: Writing – review & editing. Qian Chen: Formal analysis, Writing 
– review & editing, Funding acquisition. Bing Pan: Writing – review & 
editing. Zhenyu Jiang: Writing – review & editing. Chao Zuo: Formal 
analysis, Writing – review & editing, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
7

the work reported in this paper.
Optics and Lasers in Engineering 172 (2024) 107879

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by National Key Research and Develop-

ment Program of China (2022YFB2804603, 2022YFB2804604), Na-

tional Natural Science Foundation of China (62075096, 62205147, 
U21B2033), China Postdoctoral Science Foundation (2023T160318, 
2022M711630, 2022M721619), Jiangsu Funding Program for Excellent 
Postdoctoral Talent (2022ZB254), The Leading Technology of Jiangsu 
Basic Research Plan (BK20192003), The “333 Engineering” Research 
Project of Jiangsu Province (BRA2016407), The Jiangsu Provincial 
“One belt and one road” innovation cooperation project (BZ2020007), 
Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging 
& Intelligent Sense (JSGP202105), Fundamental Research Funds for 
the Central Universities (30922010405, 30921011208, 30920032101, 
30919011222), and National Major Scientific Instrument Development 
Project (62227818).

Appendix A. Supplementary material

Supplementary material related to this article can be found online 
at https://doi .org /10 .1016 /j .optlaseng .2023 .107879.

References

[1] Sutton M, Hild F. Recent advances and perspectives in digital image correlation. Exp 
Mech 2015;55:1–8.

[2] Pan B. Digital image correlation for surface deformation measurement: historical 
developments, recent advances and future goals. Meas Sci Technol 2018;29:082001.

[3] Chen D, Chiang F-P, Tan Y, Don H. Digital speckle-displacement measurement using 
a complex spectrum method. Appl Opt 1993;32:1839–49.

[4] Zhao J, Zeng P, Lei L, Ma Y. Initial guess by improved population-based intelli-

gent algorithms for large inter-frame deformation measurement using digital image 
correlation. Opt Lasers Eng 2012;50:473–90.

[5] Zhou Y, Pan B, Chen YQ. Large deformation measurement using digital image cor-

relation: a fully automated approach. Appl Opt 2012;51:7674–83.

[6] Wang Z, Vo M, Kieu H, Pan T. Automated fast initial guess in digital image correla-

tion. Strain 2014;50:28–36.

[7] Bruck H, McNeill S, Sutton MA, Peters W. Digital image correlation using Newton-

Raphson method of partial differential correction. Exp Mech 1989;29:261–7.

[8] Pan B, Li K, Tong W. Fast, robust and accurate digital image correlation calculation 
without redundant computations. Exp Mech 2013;53:1277–89.

[9] Shao X, Dai X, He X. Noise robustness and parallel computation of the inverse com-

positional Gauss–Newton algorithm in digital image correlation. Opt Lasers Eng 
2015;71:9–19.

[10] Jiang Z, Kemao Q, Miao H, Yang J, Tang L. Path-independent digital image correla-

tion with high accuracy, speed and robustness. Opt Lasers Eng 2015;65:93–102.

[11] Yang J, Huang J, Jiang Z, Dong S, Tang L, Liu Y, et al. Sift-aided path-

independent digital image correlation accelerated by parallel computing. Opt Lasers 
Eng 2020;127:105964.

[12] Lin A, Li R, Jiang Z, Dong S, Liu Y, Liu Z, et al. Path independent stereo dig-

ital image correlation with high speed and analysis resolution. Opt Lasers Eng 
2022;149:106812.

[13] Gao Y, Cheng T, Su Y, Xu X, Zhang Y, Zhang Q. High-efficiency and high-

accuracy digital image correlation for three-dimensional measurement. Opt Lasers 
Eng 2015;65:73–80.

[14] Shao X, Dai X, Chen Z, He X. Real-time 3d digital image correlation method and its 
application in human pulse monitoring. Appl Opt 2016;55:696–704.

[15] Zhou Y, Sun C, Chen J. Adaptive subset offset for systematic error reduction in 
incremental digital image correlation. Opt Lasers Eng 2014;55:5–11.

[16] Yin W, Cao L, Zhao H, Hu Y, Feng S, Zhang X, et al. Real-time and accurate monoc-

ular 3d sensor using the reference plane calibration and an optimized sgm based on 
opencl acceleration. Opt Lasers Eng 2023;165:107536.

[17] Rishikesh K, Pramod R. Optical measurement techniques-A push for digitization. 
Opt Lasers Eng 2016;87:1–17.

[18] Zuo C, Qian J, Feng S, Yin W, et al. Deep learning in optical metrology: a review. 
Light: Sci Appl 2022;11:39.

[19] Yin W, Che Y, Li X, Li M, et al. Physics-informed deep learning for fringe pattern 
analysis. Opto-Electron Adv 2024;7:230034.

[20] Chang X, Bian L, Zhang J. Large-scale phase retrieval. eLight 2021;1:4.

[21] Luo Y, Zhao Y, Li J, et al. Computational imaging without a computer: seeing 

through random diffusers at the speed of light. eLight 2022;2:4.

https://doi.org/10.1016/j.optlaseng.2023.107879
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibEB808D7B31CB9F38F9C49B2B1E1EE664s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibEB808D7B31CB9F38F9C49B2B1E1EE664s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib72C66ACCCB53FF33F3BA61A02701B8BDs1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib72C66ACCCB53FF33F3BA61A02701B8BDs1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibB9170409E57ED877BB99E3AD62DE8D72s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibB9170409E57ED877BB99E3AD62DE8D72s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib2318101D3206E4C05C85631FE685D4B8s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib2318101D3206E4C05C85631FE685D4B8s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib2318101D3206E4C05C85631FE685D4B8s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibFB57AFFF047FE5CFE17EF5B0B20A0746s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibFB57AFFF047FE5CFE17EF5B0B20A0746s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib4ACE3B1434EB2DC06B6A7874E502C52Es1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib4ACE3B1434EB2DC06B6A7874E502C52Es1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib439646CDBCFC4181B864D80695A5AC50s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib439646CDBCFC4181B864D80695A5AC50s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib867CB1BCE075D75181A9931B8F41027As1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib867CB1BCE075D75181A9931B8F41027As1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibD7D48CE13D51FF1EDF972A1958744566s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibD7D48CE13D51FF1EDF972A1958744566s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibD7D48CE13D51FF1EDF972A1958744566s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib97CEB105A6D28C3BBF5AF8792525E874s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib97CEB105A6D28C3BBF5AF8792525E874s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib1A41748C7631092648FB2C5653E08B02s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib1A41748C7631092648FB2C5653E08B02s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib1A41748C7631092648FB2C5653E08B02s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibE748250F25E257DE9A8E0B8830E6CB4Ds1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibE748250F25E257DE9A8E0B8830E6CB4Ds1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibE748250F25E257DE9A8E0B8830E6CB4Ds1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib74C5289D3734A23BFBEBC7D95488A014s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib74C5289D3734A23BFBEBC7D95488A014s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib74C5289D3734A23BFBEBC7D95488A014s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibFB140593C4551E775838926C541D11A0s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibFB140593C4551E775838926C541D11A0s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibED3B5D1926C10405470A57A3A49C1F48s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibED3B5D1926C10405470A57A3A49C1F48s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib4E92E15B087AFAED333EE2D19C475DF1s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib4E92E15B087AFAED333EE2D19C475DF1s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib4E92E15B087AFAED333EE2D19C475DF1s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibE5C3A7221111D14153BAC6EB4DED85D8s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibE5C3A7221111D14153BAC6EB4DED85D8s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib6FE4CFF7C5E59380E186E9CB07600BC9s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib6FE4CFF7C5E59380E186E9CB07600BC9s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib9D8D47511DF70D087D72DE0547FC3977s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib9D8D47511DF70D087D72DE0547FC3977s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibB2C659DE803B4616AB5D4A62D1F9535Es1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib9A879EA4AB0F78BA3E8BD9E2D213983Es1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib9A879EA4AB0F78BA3E8BD9E2D213983Es1


Optics and Lasers in Engineering 172 (2024) 107879W. Yin, Y. Ji, J. Chen et al.

[22] Qian J, Cao Y, Bi Y, et al. Structured illumination microscopy based on principal 
component analysis. eLight 2023;3:4.

[23] Wang L, Gong M, Gong M, Yang R. How far can we go with local optimization in 
real-time stereo matching. In: Third international symposium on 3D data processing, 
visualization, and transmission. IEEE; 2006. p. 129–36.

[24] Gallup D, Frahm J-M, Mordohai P, Yang Q, Pollefeys M. Real-time plane-sweeping 
stereo with multiple sweeping directions. In: 2007 IEEE conference on computer 
vision and pattern recognition. IEEE; 2007. p. 1–8.

[25] Woetzel J, Koch R. Real-time multi-stereo depth estimation on gpu with approxima-

tive discontinuity handling. In: 1st European conference on visual media production; 
2004.

[26] Sun J, Zheng N-N, Shum H-Y. Stereo matching using belief propagation. IEEE Trans 
Pattern Anal Mach Intell 2003;25:787–800.

[27] Hirschmüller H. Stereo processing by semiglobal matching and mutual information. 
IEEE Trans Pattern Anal Mach Intell 2007;30:328–41.

[28] Hirschmüller H, Scharstein D. Evaluation of stereo matching costs on images with 
radiometric differences. IEEE Trans Pattern Anal Mach Intell 2008;31:1582–99.

[29] Yin W, Hu Y, Feng S, Huang L, Kemao Q, Chen Q, et al. Single-shot 3d shape 
measurement using an end-to-end stereo matching network for speckle projection 
profilometry. Opt Express 2021;29:13388–407.
8

http://refhub.elsevier.com/S0143-8166(23)00408-6/bibF3C87C2F7EABB5F05E22C59340A96B5Es1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibF3C87C2F7EABB5F05E22C59340A96B5Es1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibC870E8A14F06F16C6643AE347EBF8925s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibC870E8A14F06F16C6643AE347EBF8925s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibC870E8A14F06F16C6643AE347EBF8925s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibC6D007F21BCDCD29754401425B3212ECs1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibC6D007F21BCDCD29754401425B3212ECs1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibC6D007F21BCDCD29754401425B3212ECs1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib5F37D199635257380596729357B465CFs1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib5F37D199635257380596729357B465CFs1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib5F37D199635257380596729357B465CFs1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib605914DD97FDCFD5B925B750CFD2C144s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib605914DD97FDCFD5B925B750CFD2C144s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib88DB81418FCC2FBE22DC9D168BFD58F2s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bib88DB81418FCC2FBE22DC9D168BFD58F2s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibCF849779FFD29C662FBFF39383EE61CEs1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibCF849779FFD29C662FBFF39383EE61CEs1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibB8325D2910EC74D528AC5CE8D0B36240s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibB8325D2910EC74D528AC5CE8D0B36240s1
http://refhub.elsevier.com/S0143-8166(23)00408-6/bibB8325D2910EC74D528AC5CE8D0B36240s1

	Initializing and accelerating Stereo-DIC computation using semi-global matching with geometric constraints
	1 Introduction
	2 Principle
	2.1 Optimized semi-global matching (SGM) based on GPU acceleration
	2.2 Initializing and accelerating Stereo-DIC computation using GC-SGM

	3 Experiments
	3.1 High-resolution 3D reconstruction on 3D-DIC challenge dataset
	3.2 3D shape and deformation measurement on the built Stereo-DIC system

	4 Conclusions and discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References


