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This paper introduces an active depth estimation method from defocus using a camera array. High-frequency
phase-shifted sinusoidal fringe patterns are projected onto the surface of the object, making low-texture areas of
the object surface easily distinguishable. Based on the light field measurement captured by a 5 × 5 camera array,
a synthetic aperture refocusing of the fringe images can be realized after the camera array is properly calibrated
and rectified. The fringe modulations at different depths are calculated based on the computationally refocused
images, which are used as depth cues to reconstruct the 3D shape of the measured object. We implemented some
experiments to verify the effectiveness of the proposed method. © 2018 Optical Society of America
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1. INTRODUCTION

Light field imaging is an emerging technology in computational
photography areas. While traditional photography simply cap-
tures a 2D projection of the 3D world, light field imaging can
record not only a spatial dimension, but also the angular di-
mension of rays impinging on the image sensor. This enables
images to be formed postcapture, where properties such as a
viewing perspective, the aperture size, and the focal plane
position are varied. The light field can be captured in various
ways, for example, camera arrays [1–5], micro-lens arrays
[6–8], programmable aperture [9–12], and attenuation mask
[13,14] techniques. Benefiting from light field imaging, several
interesting imaging modalities and applications have been dem-
onstrated, such as seeing through partly occluding environ-
ments [1,2], refocusing at any depth after capturing [8],
generalizing high-dynamic and high-resolution images [3,5],
creating a virtual high-speed camera [4], and estimating depth
information [15].

In contrast to traditional stereo matching, the baseline between
the adjacent views in the light field is typically narrow, which
makes it difficult to recover accurate disparity from two views
based on traditional stereo-matching methods. Therefore, instead
of stereo-matching methods, constraints and cues that take advan-
tage of all the views together are used to estimate the depth map

with improved accuracy from a light field image [16]. Most depth
estimation methods of light field imaging are based on this prin-
ciple, and one of the most important concepts in these methods is
the epipolar plane images (EPI), which was first proposed by
Bolles [17]. They stacked all the views from camera motion to
get the spatiotemporal solid of data, and then the 2D EPIs could
be sliced from this 3D solid of data. The matching points of the
object in different views form a straight line in the EPIs, and the
slope of the line reflects the depth of these matching points. Bolles
et al. extracted edges of featured lines in the EPIs to reconstruct
the 3D structure of the measured scene [17]. However, the em-
ployed basic line fitting is not robust enough for a dense
reconstruction. Based on this work, Criminisi et al. [18] attained
the goal of achieving a dense scene reconstruction by decompos-
ing the scene into EPI tubes, as well as analyzing and removing
specular highlights. This problem was also studied in Ref. [19],
where an energy minimization framework was introduced for a
light field. Using the same principle in Ref. [19], Jeon et al.
[20] realized the subpixel-level accuracy by combining a phase-
shift method. Recently, Wanner and Goldluecke [21] used a
structure tensor to compute the vertical and horizontal slopes
in EPIs, and they formulated the depth map estimation problem
as a global optimization approach that was subject to the epipolar
constraint. Lin et al. [22] made use of the geometric constraints of
3D lines to further improve the reconstruction quality.
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Most EPI-based algorithms need several pre-processing
steps and involve a global optimization to obtain sufficiently
smooth results. It is often challenging to scale such approaches
to a significantly high-resolution image due to a very high
computational cost of global optimization. The second diffi-
culty of approaches based on global optimization is how to
avoid error propagation. In addition, the EPI-based methods
are only robust in high-texture areas but fail in weak-texture
cases.

Besides the correspondence cue in EPIs, some other cues,
for example, the defocus cue [23–25] and the shading cue
[26,27], have also been applied for depth extraction. The depth
from defocus is the prominent one, benefitting from the prop-
erty of the light field. The light field image can be refocused on
any area by integrating the light field along an arbitrary angular
or performing an inverse fourier transform with the slice of 4D
fourier spectrum of the light field [28]. After refocusing at a
new depth, the light rays from any in-focus scene point will
be recorded in the same spatial location. We can refocus the
light field function at different depth candidates. The absolute
difference between the central view and its angular views
reflects the depth probability. Then, using the operator such
as the Laplacian operator, we can extract the defocus degree
of all candidates, and the depth can be derived from the posi-
tion of minimum defocus (maximum focus) degree.

However, out-of-focus regions, such as certain high-frequency
regions and bright lights, may yield higher contrast. The ambi-
guities in maximum focus degree may cause mistakes of depth
estimation. Another problem is how to select the size of analyzed
patch (or windowed operator) considering that the size of the
defocus blur is difficult to be qualified. In most cases, the defocus
cue is used as an additional cue to enhance the robustness of an
EPI-based method [25,27].

The purpose of this paper is to introduce a novel defocus-
based depth estimation method that uses active illumination.
The depth estimation combining active illumination is rarely re-
ferred in light field imaging, and the existing active-illumination-
based works tend to just mark the weak-texture areas with some
regular or irregular patterns to perform the same subsequent
algorithms as passive methods. In this work, the sinusoidal fringe
pattern is provided not only to project artificial textures onto the
surface of the object, but also to help decrease the computational
complexity. We analyze the relationship between the defocus
degree and the modulation of the sinusoidal fringe of the cap-
tured images. Compared with the available EPI-based and active
method, there are three main contributions in our work: (1) our
method is a pixel-wise method where we can concurrently detect
the defocus degree of each pixel. Thus, there is no error propa-
gation, and the most computational task can be dealt with
a graphics-processing unit. (2) Replacing the traditional defocus
cues with modulation, no window-based defocus operator is
required in our method so that we do not need to con-
sider the problem of the size of window operator and the sub-
sequent trade-off between the spatial resolution and the window
size. (3) The precision of displacement can be refined by
weighted average or the Gaussian curve fitting due to the regular
relationship between the modulation variance and the defocus
degree.

2. PRINCIPLE

The main principle is organized as follows. The three-step
stereo rectification is first presented in Section 2.A.1, followed
by the image rectification for a camera array in Section 2.A.2.
Based on the rectified images, the process of digital refocusing is
introduced in Section 2.B, and then in the same section,
we extract the defocus cues from these refocusing images at
different depths by detecting the maximum modulation of
phase-shifting fringes. The defocus cues are finally refined
by interpolation to improve the depth accuracy; this is depicted
in Section 2.C.

A. Rectification of Camera Array
The light field in our work is captured by a camera array
(Profusion 25 M). Considering the manufacturing error of
the camera array, an image rectification is inevitable before
the refocusing process. The rectification for the camera array
should simultaneously align the matching points from horizon-
tally and vertically distributed cameras to the same rows or col-
umns, which is an extended version from conventional stereo
rectification [29,30] where only the row or column alignment is
required. In this section, we first introduce the stereo rectifica-
tion and then apply the modified rectification to a camera array.

1. Three-Step Stereo Rectification
In a stereo system, an arbitrary point P � �X ,Y ,Z �T can be
mapped into the left and right camera coordinate systems
by the following equations:

Pl � RlP � T l , Pr � RrP � T r , (1)

where Rl , Rr , T l , and T r represent the rotation and translation
matrices from the world coordinate system to the left and right
camera coordinate systems, respectively. Point P is identified
in the left and right camera coordinate systems as Pl �
�X l ,Y l ,Z l �T and Pr � �X r ,Y r ,Z r �T , respectively. In this
paper, we use the subscript l and r to distinguish the variables
for the left camera and the right camera. The projections of Pl
and Pr in the 2D pixel coordinate systems are denoted as
pl � �ul , vl �T and pr � �ur , vr �T , and

ul � αl
X l

Z l
� ucl ,

vl � βl
Y l

Z l
� vcl ,

ur � αr
X r

Z r
� ucr ,

vr � βr
Y r

Z r
� vcr , (2)

where α and β are scale factors in the u and v axes, and �ucl , vcl �
and �ucr , vcr� are the coordinates of principle points. The
so-called stereo rectification suggests that we should have
vl � vr (for the horizontally distributed cameras) or ul � ur
(for the vertically distributed cameras). In this subsection, the
rectification for vl � vr is introduced. αl � αr � βl � βr , and
vcl � vcr can be obtained by replacing one of them with
another. However, Y l∕Z l and Y r∕Z r are variables, so to make
sure that an arbitrary point P meets vl � vr , we must have
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Y l∕Z l � Y r∕Z r . This is the most important process of
rectification.

As shown in Fig. 1(a), blue coordinate systems represent the
initial camera coordinate systems, where Ol andOr are the cen-
ters of lenses, and X lOlY l and X rOrY r are the planes of lenses.
The relative rotation Rlr and translation difference T lr between
the left and right camera coordinate systems satisfy the follow-
ing relationship:

Pr � Rlr�Pl − T lr�: (3)

Combining Eqs. (1) and (3), we can obtain Rlr � RrR−1
l , as

well as T lr � T l − R−1
l r T r . However, Pl � �X l ,Y l ,Z l �T and

Pr � �X r ,Y r ,Z r �T cannot be derived from pl � �ul , vl �T or
pr � �ur , vr �T separately, but only their normalized coordinates
P 0
l � �X l∕Z l , Y l∕Z l , 1�T and P 0

r � �X r∕Z r , Y r∕Zr , 1�T can
be obtained. The following rectification process can be further
divided into three steps. Let the right camera coordinate system
be the reference coordinate system. In the first step, the coor-
dinate system of the left camera should be rotated around Ol to
become parallel to that of the right camera. Then we update P 0

l
and T lr � �ΔX lr ,ΔY lr ,ΔZ lr �T by

P 0
l ⇐ RlrP 0

l ,

T lr ⇐ RlrT lr , (4)

where⇐ is an assignment operator. Here, only a translation T lr
still exists between the two camera coordinate systems. The sec-
ond step intends to eliminate the difference between Y l and Y r
by rotating the two camera coordinate systems around their Z l
and Z r axes with θZ , respectively. θZ can be derived from
tan θZ � ΔY lr∕ΔX lr , and its 3 × 3 rotation matrix is RY .
Then Eq. (4) is rewritten as

P 0
l ⇐ RZRlrP 0

l ,

P 0
r ⇐ RZP 0

r ,

T lr ⇐ RZRlrT lr : (5)

This step is shown in Fig. 1(b), and the result is shown in
Fig. 1(c), where we can easily find Y l � Y r . To make
Y l∕Z l � Y r∕Z r , we should further align Z l and Z r by rotat-
ing the two camera coordinate systems around their Y l and Y r
axes with θY in the third step, as shown in Fig. 1(c). Here,

tan θY � ΔZ lr∕ΔX lr , and its 3 × 3 rotation matrix is RY . P 0
l

and P 0
r are rewritten as

P 0
l ⇐ RY RZRlrP 0

l ,

P 0
r ⇐ RY RZP 0

r ,

T lr ⇐ RY RZRlrT lr : (6)

Figure 1(d) displays the result of the third step of rectification.
By dividing P 0

l and P 0
r by P 0

l �3� and P 0
r�3�, respectively,

Y l∕Z l � Y r∕Zr is established, so does vl � vr .

2. Rectification for a Camera Array
It should be noted that in the previous stereo rectification, the
rotation transforms are implemented on the two camera coor-
dinate systems. We can not directly apply this rectification to
the case of a camera array since, at most, four stereo rectification
processes, including both horizontal and vertical rectifications,
are required. The scheme to simultaneously rectify horizontally
and vertically distributed cameras is proposed in Ref. [31]. But
this scheme cannot be used directly when more than three cam-
eras are used. By calculating a common baseline of multiple
cameras, the rectification methods for N cameras are also avail-
able [32,33]. However, the N cameras in these methods must
be arranged in a line. Fortunately, the camera array used in this
paper has already been roughly rectified. This is a useful pre-
posing configuration. Let us return to Eq. (4). There exists only
a translation between the two cameras after rotating the left
camera coordinate system. All the points in these two coordi-
nate systems satisfy the following relationships:

X l − ΔX lr � X r ,

Y l − ΔY lr � Y r ,

Z l − ΔZ lr � Zr : (7)

The so-called rough rectification means that ΔY lr (ΔX lr ) and
ΔZ lr between the horizontally (vertically) distributed cameras
can be ignored when Z l is large enough. Keep in mind that
when we select the top right camera to be the referenced camera
(shown in Fig. 2), then the relationships between the camera
coordinate systems of this referenced camera and other horizon-
tal distributed cameras can be written as the following approxi-
mate formulas

X 1j − ΔX 1j � X 11,

Y 1j ≈ Y 1j − ΔY 1j � Y 11,

Z 1j ≈ Z 1j − ΔZ 1j � Z 11: (8)

The subscripts 1j and 11 denote the top row and top right of
the camera array shown in Fig. 2, respectively. Based on Eq. (8),
we have Y 1j∕Z 1j ≈ Y 11∕Z 11, which suggests the feasibility of
rectification just using Eq. (4). For the vertically distributed
cameras, we have similar formulas:

X i1 ≈ X i1 − ΔX i1 � X 11,

Y i1 − ΔY i1 � Y 11,

Z i1 ≈ Z i1 − ΔZ i1 � Z 11: (9)

X i1∕Z i1 ≈ X 11∕Z 11 can be easily derived from Eq. (9).
The general relationships between the referenced camera and
an arbitrary camera among the others can be formed as

(a)

(c) (d)

(b)

Fig. 1. Processes of stereo rectification. (a) The initial left and right
camera coordinate systems. (b) The two camera coordinate systems
after the left camera coordinate system being rotated by Rlr.
(c) The two camera coordinate systems after being rotated by Rlr,
as well as RZ . (d) The two camera coordinate systems after being
sequentially rotated by Rlr, RZ , and RY .
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X ij − ΔX 1j � X 11,

Y ij − ΔY i1 � Y 11,

Z ij ≈ Z ij − ΔZ ij � Z 11: (10)

Now it is verified that Eq. (4) is sufficient enough to rectify all
the cameras of a roughly rectified camera array. Combining
Eqs. (2) and (10), we have

Δuij � uij − u11 � α11
ΔX 1j

Z 11

,

Δvij � vij − v11 � α11
ΔY i1

Z 11

, (11)

where Δuij and Δvij represent the pixel translations between
matching points. Substituting i � 1 and j � 2 into Eq. (11),
we can obtain Δu12 � α11ΔX 12∕Z 11, and they can be trans-
formed into α11∕Z 11 � Δu12∕ΔX 12. Substituting them into
Eq. (11), we will get Eq. (12):

Δuij � Δu12
ΔX 1j

ΔX 12

,

Δvij � Δu12
ΔY i1

ΔX 12

: (12)

B. Depth Estimation from Defocus
For an arbitrary point in space, its light rays spread around and
can be captured from different views. One camera can only
gather the rays within a small range of angles due to its limited
lens size. If the point is located at the object plane, these rays
will converge at one point in the focal plane, and we can get an
enhanced image; otherwise, the rays will spread to a diffuse
spot, and a blurry image will be obtained. Since this imaging

process is not irreversible, only an intensity map is finally avail-
able for us. However, we need some other useful information,
such as the angle of the light rays, to derive the depth of this
space point. This useful information cannot be accessible by us-
ing one camera, but it can be obtained by using a camera array.
The camera array will capture light rays from a wider range of
angles, and more importantly, these light rays from different an-
gles are reserved in different images by the cameras with different
views. Using these images, we can realize digital refocusing, ex-
tract the angle information, and even estimate the depth map.
This method just supplies an easy way to search the correspond-
ing points or extract the angle information from these images.

Digital refocusing is realized by translating and adding the
images from different cameras. If we select camera (1, 1) in
Fig. 2 to be the referenced camera, the refocused image can
be formulated as

I�Δu12� �
X5
j�1

X5
i�1

I ij

�
u −

ΔX 1j

ΔX 12

Δu12, v −
ΔY i1

ΔX 12

Δu12
�
,

(13)

where ΔX 11 � 0 and ΔY 11 � 0, and I ij represents the recti-
fied images. Equation (11) gives the relationship between the
pixel translation Δu12 and the depth Z 11 as

Z 11 � α11
ΔX 12

Δu12
: (14)

Equations (13) and (14) suggest that for the given Δu12, the
point at the depth of Z 11 will be focused, while the points at
other depths will be out of focus. We record the defocus
(or focus) degree of each point of I�Δu12� for a series of
Δu12. Then, we detect the minimum (or maximum) value of
the defocus (or focus) degree of each point and finally derive the
depth from the minimum (or maximum) defocus cues.
However, the essential problem in this depth-estimation
method is how to accurately detect pixel-wise defocus cues,
especially the point located in a low-texture area.

Active illumination can help distinguish the defocus degree
at different translation Δu12, even for low-texture areas.
However, in the available depth estimation method, the illumi-
nated pattern is confined to paste textures on the object surface,
and the subsequent process still relies on a windowed analysis
rather than a pixel-based analysis. This paper introduces a pixel-
wise depth estimation method based on defocus cues by pro-
jecting sinusoidal pattern onto the objects. The three-step
phase-shifting sinusoidal patterns captured by the camera
can be formulated as

I1ij � A� B cos Φ,

I2ij � A� B cos�Φ� 2π∕3�,
I3ij � A� B cos�Φ� 4π∕3�, (15)

where I1ij, I 2ij, and I 3ij represent the image intensities, A is the
average intensity, B is the fringe contrast, and Φ the modulated
phase. Φ is a primary parameter to derive the accurate depth in
fringe-projection profilometry, but it is not suitable for impli-
cating a defocus degree due to its irregular ambiguities, as
shown in Fig. 3. Besides Φ, we can easily deduce modulation
information M by Eq. (16).

Fig. 2. Diagram of camera array used in our work where the num-
ber coordinates represent different cameras in the array. The red and
yellow dotted rectangles display the related positions of horizontally
distributed cameras and vertically distributed cameras, respectively.
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M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
3
m,n�1 �Im�Δu12�− In�Δu12��2

q
3

, m≠n: (16)

There is a regular relationship between the defocus degree and
modulation M [34]. The larger defocus degree corresponds to
the smaller M in a pre-defined interval, which can be easily
understood in the frequency domain. We make a simulation
to conveniently explain this phenomenon. In this simulation,
the sinusoidal wavelength is 19 pixels, and the refocused image
is a fused version of five sinusoidal images with different pixel
translations. The varying curve of modulationM of the left top
point in refocused image is shown in Fig. 4. The greatest focus
degree with Δu12 < 19 emerges at Δu12 � 0, where its modu-
lation M is the largest. However, due to the periodicity of
sinusoidal wave, there are some other maximum peaks of
modulation M when Δu12 is integral multiples of the fringe
period 19. This is an inherent problem of periodic textures.
A straightforward strategy to relieve this problem is to extend
the sinusoidal wavelength, as shown in Figs. 5(a) and 5(c). But
from Figs. 5(b) and 5(d), it can be found that if we add some
noise to the fringe patterns, this strategy will make the modu-
lation peaks become unconspicuous. The noise is inevitable in
the experiment so that simply extending the wavelength will
cause some errors in detecting the maximum M . There is a
trade-off between the quality and the ambiguity of the refo-
cused images. Considering the focus volume of the projector,

we restrict the scene to be measured at the depth range
Z 11 ∈ �Zmin,Zmax�, and then Δu12 should satisfy

α11
ΔX 12

Zmax

≤ Δu12 ≤ α11
ΔX 12

Zmin

: (17)

In this depth volume, the smallest wavelength is set to
α11ΔX 12

�
1

Zmin
− 1

Zmax

�
to eliminate the refocused ambiguity.

The optimal wavelength is selected around the small interval
of α11ΔX 12

�
1

Zmin
− 1

Zmax

�
. Taking the optimal wavelength, we

can easily detect the maximum focus degree and its correspond-
ing Δu12 of each point in the referenced image, and finally
estimate the depth from Eq. (14).

C. Interpolation of Displacement
It is suggested in Eq. (14) that the precision of estimated depth
Z 11 depends on the precision of translation Δu12. Supposing
Δs is the varying step of Δu12, then the varying rate ΔZ 11 of
depth can be derived combining Eq. (14):

ΔZ 11 � α11
ΔX 12

Δu12
− α11

ΔX 12

Δu12 � Δs
≈ α11

ΔX 12Δs
Δu212

: (18)

We can decrease Δs to make the variance of Z 11 more succes-
sive. However, limited to the precision of sub-pixel translation
peak and computational cost of multiple refocusing processes,
Δs can not be decreased limitlessly. In this paper, we set
Δs � 0.2 pixel and explore a simple strategy to refine Δu12.
Benefitting from the regular relationship between M and
Δu12 in Fig. 4, all the value of M as well as Δu12 near the
maximum peak can be used to refine Δu12 by polynomial fit-
ting or weighted average. In this paper, the final translation
Δū12 is refined by

Δū12 �
PΔu12�Δum12�3

Δu12�Δum12−3
MΔu12PΔu12�Δum12�3

Δu12�Δum12−3
M

, (19)

where Δum12 is the translation corresponding to maximum M .
The value of M is used as weighted coefficient for correspond-
ing Δu12. The translation Δu12 is refined by making full use of
the information near the maximum M .

M

u12  /  pixel

Fig. 3. Diagram of the relationship between the phase and defocus
degree, where the dotted curve represents the phase variance along with
Δu12; red circles are the regions with the phase nearing −2.8, and the
images in red rectangles are the corresponding refocused images I 1.

M

u12 / pixel

Fig. 4. Diagram of the relationship between modulation and the
defocus degree, where the dotted curve represents the modulation
variance along with Δu12, red circles are the regions with different
modulation, and the image in red rectangles are the corresponding
refocused images I1.

 ).u.a( noi taludo
M

 ).u.a( n oitaludo
M

 ).u.a( noi taludo
M

 ).u.a( n oitaludo
M

Translation (pixel) 

Translation (pixel) Translation (pixel) 

Translation (pixel) 

(a) (b)

(d)(c)

Fig. 5. Diagram of the varying curve of M of different wavelengths
along with Δu12. (a) The varying curve of M for 19-pixel wavelength.
(b) The varying curve of M for 19-pixel wavelength by adding
Gaussian noise. (c) Varying curve of M for 80-pixel wavelength.
(b) Varying curve of M for 80-pixel wavelength by adding
Gaussian noise.
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3. EXPERIMENTS

To verify the feasibility of the proposed method, we conducted
some experiments for depth estimation using a camera array
(Profusion 25M) and a projector (LightCrafter 4500). The
depth volume in these experiments is Z 11 ∈ �250, 450�, and
the selected wavelength of the fringes is 19 pixels. All the cam-
eras of Profusion 25 M are calibrated by [35], and we got the
parameters α11 � 909 pixels, as well as ΔX 12 � 12 mm.

A. Rectification Evaluation
The rectification is required to pre-process the raw before
refocusing process. Here the rectification is executed by the
method described in Section 2.A.2. Figure 6 displays the rec-
tified results. The corner point selected by red rectangles has
been captured by all the cameras, so it can be regarded as
the matching point to evaluate the effectiveness of the rectifi-
cation by detecting if it is located in the same line. The top line
in Fig. 6 tends to verify the horizontal rectification, and the
effectiveness of vertical rectification is indicated by the right
line in Fig. 6. The rectangle regions are enlarged; thus, we
can find that the both the matching points in the top row
and the right column are rectified in the same line.

B. Refocusing and Depth Estimation Experiment
The digital refocusing is implemented according to Eq. (16)
with the rectified images. A Kitty plaster is first measured,
and the result is shown in Fig. 7. We tracked the modulation
variance of three points labeled with the red, green, as well as
the blue color to display the relationship between maximum
modulation and different depths. The related results are shown
in Figs. 7(b)–7(e), where different depths correspond to con-
spicuously different translation Δu12. Note that the maximum
value of the three R, G, B curves is different because of a differ-
ent reflectivity of the measured surface and a different degree of
projector defocus. The defocus degree of the object itself is
difficult to detect using passive methods, but it can be actually
qualified with the help of easily estimated resorting to
sinusoidal patterns.

To synthetically evaluate the proposed method, three differ-
ent objects shown in Figs. 8(a)–8(c) are measured. The depths
of all these three objects are difficult to accurately estimate due
to the weak textures. For example, the plate in Fig. 8(c) may be
roughly regarded as a whole with the same depth by graph cut.
However, benefitting from the sensitivity of modulation to the
defocus degree, the proposed method can get accurate depths
shown in Figs. 8(d)–8(f ). The regular relationship between
modulation and pixel translation gives us the chance to make
full use of the redundant information to refine the pixel-
translation map, as well as the depth map. Figures 8(g)–8(l)
display the great improvement by using the interpolation
algorithm descibed in Eq. (19).

Fig. 6. Results of rectification, where the two red lines represent the
referenced straight line to detect if the matching points are rectified at a
line, and the sub-images at the top and right line are the enlargement
images of the red rectangles.
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Fig. 7. Refocused images with different translation Δu12.
(a)Measured object captured by the referenced camera. (b)Modulation
curves for the red, green, and blue points in (a). (c)–(e) Refocused
images at the maximum modulation of the curves in (b).
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Fig. 8. Depth estimation results of three measured objects.
(a)–(c) Three objects to be measured. (d)–(f ) Depth maps without
interpolation described in Eq. (19). (g)–(i) Depth with interpolation
in Eq. (19). (j)–(l) Detailed depth information corresponding to the
line labeled with the white color in (d)–(i), the red curves come from
(d)–(f ), and the green curves from (g)–(i).
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The depth of Kitty plaster was also estimated by a windowed
Fourier transform (WFT) method to make a comparison. We
first selected an image with the focus on the arms of the Kitty, as
shown in Fig. 9(a), to extract its modulation with WFT.
Figures 9(b) and 9(c) indicate that the WFT with the window
size of 20 pixels (approximately equal to the wave length of the
captured fringes) can obtain the more accurate modulation
where the focusing areas and that the defocusing areas can
be distinguished more clearly. Then we used WFT with a
20-pixel window size to estimate the depth map, and the results
are displayed in Figs. 9(d) and 9(e). By comparing the results in
Fig. 9 with that in Fig. 8, we can easily find that only a rough
depth map can be obtained by using WFT, especially in the
edge areas. Another point that should be noted is that the WFT
is very time-consuming.

To further analyze the improvement of the interpolation, a
ceramic ball with the radius of 25.4 mm and the nominal ac-
curacy of �5 μm were measured, as shown in Fig. 10(a). The
depth estimation results are shown in Figs. 10(b) and 9(c).
From Fig. 10(d), we can find the prominent improvement
of the interpolation. Since the parameters of the ceramic ball
have been known, the quantitative analysis is able to be imple-
mented. We first calculated the X c and Y c coordinates using
Z 11, then the ground truth of this ceramic ball was derived
from the sphere fitting based on the measured 3D data.
The differences between the ground truth and the measured
data shown in Figs. 10(e) and 10(f ) and Figs. 10(g) and 10(h)
give the statistical information where we can easily find the
quantitative improvement of the interpolation.

4. CONCLUSION

We have realized active depth estimation from defocus cues.
The pixel-wise modulation can be easily extracted from
three-step phase-shift fringes without any local analysis algo-
rithms. Based on the regular relationship between modulation
and defocus cues, we can accurately estimate and refine defocus
cues as well as the depth without error propagation. However,
the drawback of this method is that three fringe images are
required to obtain the fringe modulation, which means the
accuracy of this method is inferior to some other methods for
dynamic scenes. Replacing the phase-shift algorithm with a
Fourier transform [34] may be a feasible solution to further
reduce the number of patterns.
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