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Quantitative phase imaging (QPI) by differential phase contrast (DPC) with partially coherent illumination
provides speckle-free imaging and lateral resolution beyond the coherent diffraction limit, demonstrating great
potential in biomedical imaging applications. Generally, DPC employs weak object approximation to linearize
the phase-to-intensity image formation, simplifying the solution to the phase retrieval as a two-dimensional
deconvolution with the corresponding phase transfer function. Despite its widespread adoption, weak object
approximation still lacks a precise and clear definition, suggesting that the accuracy of the QPI results, especially
for samples with large phase values, is yet to be verified. In this paper, we analyze the weak object approximation
condition quantitatively and explicitly give its strict definition that is applicable to arbitrary samples and illumi-
nation apertures. Furthermore, an iterative deconvolution QPI technique based on pseudo-weak object approxi-
mation is proposed to overcome the difficulty of applying DPC to large-phase samples without additional data
acquisition. Experiments with standard microlens arrays andMCF-7 cells demonstrated that the proposed method
can effectively extendDPCbeyondweak object approximation to high-precision three-dimensionalmorphological
characterization of large-phase technical and biological samples. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.476170

1. INTRODUCTION

Phase contrast imaging is an essential label-free imaging tech-
nique because it enables the visualization of biological processes
at multiple scales and resolutions in a non-invasive manner,
providing a unique tool for cell division [1], intracellular dy-
namics [2], phenotypic screening [3], etc. It manipulates scat-
tered radiation through optical field modulations to convert the
phase information of non-self-luminous and non-absorbing
samples into intensity signals. One of the most classical phase
contrast imaging methods is based on interferometric imaging
[usually quantitative, also known as quantitative phase imaging
(QPI)] [4–7], whose highest spatial frequency, however, is con-
fined to coherent diffraction limit NA

λ , leading to a limited
lateral resolution and poor environmental stability.

Partially coherent illumination endows phase contrast
imaging with the superiority of high robustness and signifi-
cantly extended lateral resolution, prompting its applications
in biological imaging. The pioneering techniques in this field,
such as Zernike phase contrast and differential interference

contrast (DIC), have become standard solutions for cellular
and subcellular observation [8–12]. Recent advances in parti-
ally coherent imaging have further boosted to the development
of a series of QPI techniques, such as transport-of-intensity
equation (TIE) [13–15], differential phase contrast (DPC)
[16–18], and Fourier ptychographic microscopy (FPM)
[19–24]. These techniques quantify the optical path length
fluctuations across transparent samples and acquire three-di-
mensional (3D) quantitative phase, enabling phase contrast im-
aging to move from “qualitative” to “quantitative” [15,25–28].
Because of their superior imaging performance and flexible ex-
perimental configuration, QPI techniques have demonstrated
their great potential in diverse biological applications [29–32].

QPI by DPC with partially coherent imaging is realized
through asymmetric illumination modulation and deconvolution
reconstruction, providing speckle-free imaging and twice the lat-
eral resolution of the coherent diffraction limit [33,34]. It esti-
mates the quantitative phase distribution of the sample from
the measured intensities, which is considered to solve an inverse
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problem [35,36]. A strict and correct “intensity-phase” model is
required to achieve accurate phase retrieval. However, mutual in-
coherence of the illumination points results in the nonlinear (or,
more precisely, bilinear) dependence of the partially coherent field
on the sample properties, which makes it a daunting challenge to
recover the sample phase through intensity inversion. Thus, the
primary task of QPI with partially coherent imaging is to accu-
rately explain the nonlinear (bilinear) image generation model, a
fundamental issue of great importance for the development of
QPI. A well-established model is based on the transmission
cross-coefficient (TCC) model, which establishes a four-dimen-
sional (4D) expression on the pairs of spatial frequencies of the
sample in the spatial frequency domain [37,38] so that the con-
tribution of the sample- and system-dependent parts are repre-
sented separately. In addition, the phase-space representations,
expressed through 4D Winger functions in the joint spatial fre-
quency domain, model its bilinear characteristics with the advan-
tage of separating the imaging system and the sample [39–42].
However, these high-dimensional representations are difficult
to obtain precisely, while their massive data and computation costs
make it impractical to recover sample information.

The preferred solution to achieve QPI under partially coher-
ent imaging is to simplify the bilinear transmission of image
information as linear properties. For this purpose, the sample
(or object) approximations, including weak/slowly varying
object approximation [17,33], Born/Rytov approximation
[43,44], and multi-slice scattering approximation [45], have
been proposed, all of which brought new insights into QPI.
For example, weak object approximation considers the ampli-
tude of the scattered light is much smaller than that of the un-
scattered light, linearizing the relationship between recorded
intensity and sample transmission [46,47]. Then, a regulariza-
tion deconvolution solver is proposed to recover the quantita-
tive phase of the sample [17,48]. Slowly varying object
approximation establishes a phase-gradient sensitive mecha-
nism, leading to a “lookup table” correspondence between the
measured intensity and the sample phase gradient [49,50].
However, the introduction of approximations means that the
imaging performance of the algorithms derived from them is
limited by how well the real sample matches the approximation
model, making accurate phase (thickness) reconstruction of di-
verse samples from QPI alone difficult. Moreover, the explicit
definitions of these approximations in existing work are still
poorly understood. These limitations may result in QPI losing
its proudest “quantitative” properties and no longer providing
credible evidence for subsequent analyses such as cell morphol-
ogy and cell mass measurement [51,52].

In this paper, we explore the strict definition of weak object
approximation and further propose an iterative deconvolution
DPC QPI technique that achieves accurate quantitative phase
reconstruction without any additional acquisition, allowing
QPI to be extended for biology applications of large-phase sam-
ples. The strict definition of weak object approximation is
explicitly stated: the one-step deconvolution method could
obtain accurate quantitative phase results only when the sample
phase is not greater than 0.5 rad. Furthermore, to overcome
the difficulty of applying DPC to large-phase samples, we in-
troduce a pseudo-weak object approximation to model the

complex transmittance function of the sample and propose
an iterative deconvolution algorithm to achieve accurate QPI
without additional data acquisition. The iterative process is per-
formed with a deconvolution solver to refine the phase; thus,
the phase components can be fully decoupled from the acquis-
ition intensity. We conduct an experiment using a standard mi-
crolens array with a large phase of 37 rad (23 μm) and verify
that the proposed method yields a quantitative phase consistent
with the nominal value. Furthermore, the experiment results on
MCF-7 cells accurately present the 3D morphological distribu-
tion of the cells, which demonstrates great potential for cell
morphology and cell mass measurements.

2. STRICT WEAK OBJECT APPROXIMATION
CONDITION

A. Quantitative Phase Imaging by DPC Based
on Weak Object Approximation
QPI based on partially coherent imaging provides better lateral
resolution and immunity to the system’s imperfections by si-
multaneously illuminating the sample from multiple angles
in a mutually incoherent manner. The light intensity follows
Abbe diffraction theory [53], i.e., mutual incoherence of the
illumination points leads to the incoherent superposition of
the intensity caused by each point. The cross propagation
and superposition of each point often result in the nonlinear
(or, more precisely, bilinear) dependence of the partially coher-
ent field on the sample properties [37,38,54]:

I�x� �
ZZZ

S�u�T �u1�T ��u2�H �u� u1�

×H��u� u2�ej2πx·�u1−u2�du1du2du, (1)

where x represents the two-dimensional (2D) coordinates of
the camera plane, and u represents the spectrum coordinates.
The sample is represented as a Fourier spectrum form of its
complex transmittance function T �u� � F fejϕ�x�g [where
ϕ�x� is the phase of the sample], and T �u1�T ��u2� is its
mutual spectrum. S�u� represents the partially coherent illu-
mination source, which is usually an extended source whose
illumination NA is less than or equal to the NA of the objective
lens. H �u� represents the coherent transfer function (CTF),

which can be expressed as H �u� � P�u�ejkδz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−�λux�2−�λuy�2

p

[P�u� is the pupil function of the objective lens, and

ejkδz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−�λux�2−�λuy�2

p
is the defocusing factor for propagating

the light field on different planes]. From Eq. (1), the intensity
I�x� of each point in the image is considered as a point pair
dependent on the sample amplitude. To separate the effects of
the system and the sample properties, the sample-independent
factors are established as TCC (or the partially CTF in
Sheppard’s paper Ref. [33]), which is a 4D function of pairs
of spatial frequencies:

TCC�u1, u2� �
Z

S�u�H �u� u1�H��u� u2�du: (2)

This equation illustrates that TCC is determined by the
illumination function S�u� and CTF, and it establishes a
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quantitative relationship between sample distribution and ac-
quired intensity. It can be found from Eq. (1) that the contri-
butions from sample amplitude and phase in the intensity
signal under partially coherent imaging cannot be expressed
explicitly. This makes it a daunting challenge to recover the
sample phase through intensity inversion.

Object approximation is the most common method for sim-
plifying the partially coherent imaging model to a mathemati-
cally analytic form [34]. Weak object approximation achieves
the linearization of the intensity expression, establishing an
effective phase inversion mechanism (the forward model of
partially coherent imaging and QPI algorithm are given in
Appendices A and B). It requires the phase terms of the sample
to be very weak (usually much less than 1 rad), and then the
complex transmittance function of the sample t�x� � ejϕ�x� can
be approximated as

t�x� � ejϕ�x� ≈ 1� jϕ�x�: (3)

This expression ignores a series of higher-order terms in
phase and retains only its primary term, successfully separating
the DC (background) and phase terms into the real and imagi-
nary parts of the complex distribution. Then, a linear expres-
sion of mutual intensity is substituted into Eq. (1) to obtain
the intensity distribution under the weak phase approxima-
tion [55],

I�x� ≈ TCC�0, 0� � 2Re

�Z
TCC�u, 0��jΦ�u��ej2πx·udu

�
,

(4)

where TCC�0, 0� is the direct current (DC) component (the
background). TCC�u, 0� is the weak phase transfer function
(WPTF), characterizing the quantitative relationship between
the sample phase and the acquisition intensity. For QPI, which
converts jΦ�u� to the intensity with real distribution modu-
lated by WPTF, the illumination S�u� or CTF H �u� modu-
lations are required to produce a phase transfer response with
an oddly symmetric distribution.

DPC adopts asymmetric illumination, a flexible and con-
venient implementation without mechanical manipulation,
to achieve an oddly symmetric WPTF and evenly symmetric
absorption transfer function [16,17]. Consequently, a simple
differential calculation can be implemented to eliminate the
background item from Eq. (4), and only linear phase items
are left in IDPC

i �x�,

IDPC
i �x� � I i1�x� − I i2�x�

I i1�x� � I i2�x�
, (5)

where i indicates the direction of asymmetric illumination
Si�u 0�, and I i1�x� and I i2�x� denote the two intensity images
along the same asymmetric axis. Then, the corresponding
WPTF can be expressed as

WPTF�u�

�
R
Si�u 0�H��u 0 � u�H �u 0� − Si�u 0�H �u 0 − u�H��u 0�du 0R jSi�u 0�jjH �u 0�j2du 0 :

(6)

This leads to a linear relationship between the phase of the
sample and the acquired intensity, and the quantitative phase
information can then be reconstructed by Fourier space decon-
volution with the WPTF [16–18,56]. Tikhonov regularization
is commonly used to solve the ill-posed problem to obtain a
stable approximate solution,

ϕ�x� � F −1

�P
i �WPTF�i �u� · IDPC

i �u��P
ijWPTFi�u�j2 � β

�
, (7)

where β represents the regularization parameter to avoid exces-
sive amplification of noise.

B. Illumination and Nonlinear Error of Weak Object
Approximation
Weak object approximation simplifies partially coherent imag-
ing; however, it also limits the applicability of the phase inversion
algorithm. Specifically, only if the weak object condition is met
can the quantitative phase distribution of the sample be recov-
ered accurately without distortions and artifacts. Otherwise,
DPC will suffer from severe nonlinear errors and lose its nature
of “quantitative.” The analysis of the theoretical model of the
deconvolution solution reveals that two approximations are in-
volved in its derivation. On the one hand, weak object approxi-
mation linearizes the complex transmittance function of the
sample by omitting the higher-order terms in its Taylor ex-
panded form, as shown in Eq. (3). On the other hand, the
higher-order scattering terms are ignored to derive the analytical
expression of the WPTF, as shown in Eq. (4). Although the
two approximations jointly contribute to the deconvolution
reconstruction algorithm, the intensity difference of Eq. (5) elim-
inates the nonlinear error caused by the latter approximation.
Thus, the reconstruction error in the DPC deconvolution
mainly arises from the mismatch between the ideal sample
function ejϕ�x� and the linear sample function 1� jϕ�x�. In
Appendix C, we prove this conclusion by simulating the one-step
deconvolution reconstruction under both sample models, and
the results are shown in Fig. 7. In addition, a critical corollary
suggests that although weak object approximation is only de-
scribed as a sample simplification model (which appears to be
relevant only to the sample’s absolute phase), the acquired inten-
sity under angularly varying illumination exhibits different
nonlinear characteristics. Then, weak object approximation will
result in different degrees of information being ignored. This
implies that the mismatch between the actual and linear intensity
model under weak object approximation is related to illumina-
tion aperture.

Figure 1 explains the information mismatch between the
actual and linear intensity model under weak object approxi-
mation with different illumination by numerical simulation.
The complex transmittance functions of ejϕ�x� and 1� jϕ�x�,
which express the actual sample distribution and the linear
distribution, were used to generate the DPC acquisition images
at different illumination coefficients sill (where sill � NAill

NAobj
,
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indicating the ratio of illumination NAill and objective NAobj).
The acquisition images were defined on a grid with 400 ×
400 pixels with a pixel size of 0.3 μm × 0.3 μm. The wave-
length of the illumination is 525 nm, and the NAobj is 0.4.
All subsequent simulations follow these parameter configura-
tions. The corresponding intensity differences and root mean
square error (RMSE) values were then calculated to measure
the model mismatch, as shown in Figs. 1(d) and 1(e). It can
be seen that the intensity difference between the two sample
models grows exponentially with the increasing illumination
coherence coefficients (sill from 0 to 1). This will result in in-
accurate phase reconstruction by the deconvolution solver
under weak object approximation. We further display the re-
constructed phase at sill � 1 in Fig. 1(e), which shows a signifi-
cantly weaker phase value compared to the ground-truth phase.
Figure 1(f ) shows the 3D morphological distribution of the
phase loss of the reconstructed phase compared to the ground-
truth phase. In Appendix C (Figs. 7 and 8), two simulations
further illustrate that the imaging performance of the one-step
deconvolution solver is related to the illumination aperture.
Therefore, a conclusion can be drawn that the definition of
weak object approximation should not only consider the sam-
ple but should be analyzed in terms of the QPI performance to
take into account the illumination aperture and sample.

C. Strict Weak Object Approximation Condition
The well-defined weak object approximation is the basis for
guaranteeing the accuracy of quantitative phase reconstruction,

while it also allows the imaging performance of QPI to be mea-
sured and analyzed in an informed manner. However, due to
the complex theoretical derivation of the deconvolution solver,
it is challenging to determine the strict definition of weak ob-
ject approximation from the mathematical expression. To ad-
dress this problem, we analyzed the imaging performance of
DPC QPI at maximum nonlinear error to explore the strict
weak object approximation definition applicable to all samples
and illumination apertures. Two representative samples of a
slowly varying microlens array and three sharply varying steps
were selected as target samples, and their phase amplitudes can
be adjusted arbitrarily. Meanwhile, the illumination aperture
can be set from half-circle to half-annulus to simulate different
illuminations. The largest nonlinear error will arise when the
sample of three sharply varying steps is illuminated by a
half-annular aperture with the maximum illumination coeffi-
cient. In this case, an accurate reconstruction of the sample
phase using the one-step deconvolution will serve as the basis
for the strict definition of weak object approximation.

Figure 2 shows the numerical simulation results for two rep-
resentative samples with varying phases from 0.2 rad to 2 rad
under different illumination apertures. As shown in Fig. 2(a),
three types of illumination apertures were set, including a half-
circular aperture, a half-annular aperture of 0.5 width, and a
half-annular illumination of 0.01 width with the maximum il-
lumination coefficient. The half-circular aperture and the half-
annular aperture of 0.01 width correspond to two extremes of
the nonlinear error. Specifically, the intensity superposition
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Fig. 1. Simulation and comparison of ideal intensity model and weak object approximation intensity model under different illumination co-
efficients. (a) Ground-truth amplitude and phase images of the complex transmittance function used to simulate the sample. (b) Spectrum dis-
tribution of the theoretical sample distribution ejϕ�x� and linear distribution 1� jϕ�x�. (c) Different illumination coefficients. (d) Intensity
difference images at different illumination coefficients sill. (e) RMSE values of the intensities under two sample models with varying illumination
coefficients. (f ) 3D profile of the reconstructed phase error at sill � 1.
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under a half-circular illumination weakens the nonlinear error;
however, this error will exist in the intensity with the maximum
weight under the half-annular illumination of 0.01 width. To
quantitatively measure the reconstruction errors, the RMSE
values between these reconstructed phases and the ground-
truth phases are calculated to plot the numerical curves. As
shown in Figs. 2(b) and 2(c), the reconstruction error increases
monotonically with increasing phase amplitude. This indicates
that the difference between the acquired intensity and the linear
intensity desired by the one-step deconvolution increases when
imaging samples with larger phases. The reconstructed phase of
the sharply varying step sample under the half-annular illumi-
nation of 0.01 width results in a more serious reconstruction
error, which is consistent with our inference. To measure phase
reconstruction performance, an RMSE value of less than 1%
was used to determine the accurate reconstructed phase since
the reconstruction error can be almost neglected in this case.
From Figs. 2(b) and 2(c), when the phase is less than or equal
to 0.5 rad, the reconstruction RMSE at any sample and illu-
mination aperture is less than 1%. Therefore, the strict weak
object approximation is suggested to be defined as not greater
than 0.5 rad [ϕ�x� ≤ 0.5 rad]. Figures 2(d) and 2(e) further
give the reconstructed phases of these two types of samples
under the half-annular illumination of 0.01 width. When the
phase amplitude is equal to 0.5 rad, the DPC reconstruction
yields a reconstructed phase that is consistent with the

ground-truth phase, which can no longer be achieved when
the phase amplitudes are 1 rad and 1.5 rad.

3. ITERATIVE DECONVOLUTION BASED ON
PSEUDO-WEAK OBJECT APPROXIMATION

To achieve accurate QPI of large-phase objects, we introduce
pseudo-weak object approximation in electron microscopy
into DPC and develop a more precise object approximation
model [57,58]. Considering a sample distribution t�x� � ejϕ�x�

with a large phase, it can be modeled as a superposition of n
layers satisfying weak object approximation ϕ�x� � ϕ1�x� �
ϕ2�x� � 	 	 	 � ϕn�x� [where each layer has equal phase
ϕ1�x� � ϕ2�x� � 	 	 	 � ϕn�x� ≤ 0.5 rad]. Then the sample
distribution can be approximated as

t�x� � ej�ϕ1�x��ϕ2�x��			�ϕn�x��

≈ �1� jϕ1�x���1� jϕ2�x�� 	 	 	 �1� jϕn�x��

≈ 1� j
Xn
r

ϕr�x� −
Xc2n
r, s

ϕr�x�ϕs�x�

− j
Xc3n
r, s, t

ϕr�x�ϕs�x�ϕt�x� �…, (8)

where r, s, t,… indicates the layer index of the sample
(1,2,…, n), and any two of them are required to be unequal,
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Fig. 2. Numerical simulation results with variable phase to determine the definition of the strict weak object approximation. (a) Illumination
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which means r ≠ s, r ≠ t, or s ≠ t,…. This equation is the ex-
pression of pseudo-weak object approximation, which consid-
ers an object with a large phase beyond the limit of weak object
approximation as a multi-layer phase structure so that its com-
plex transmittance function can be precisely modeled as a
superposition of the phases and their cross-mixed terms. The
previous weak object approximation 1� jϕ1�x� can then be
considered as a special case where the sample has only a single
layer.

Considering the intensity distribution under the DPC
difference model, the real part of the intensity spectrum dis-
tribution derived from the convolution of the complex trans-
mittance function will be eliminated under asymmetric
illumination, leaving only its imaginary part terms. When
the sample phase satisfies the strict weak object approximation
(≤0.5 rad), the first-order phase term in the imaginary part will
be the main contribution of the DPC intensity, as shown in
Eq. (4). Then, the differential intensity and the sample phase
are linearly related by the WPTF, which derives the one-step
deconvolution algorithm in Eq. (7) to achieve accurate phase
reconstruction. Once the sample phase exceeds the strict weak
phase approximation condition, the phase and the differential
intensity cannot be interpreted as linearly correlated, so the
one-step deconvolution is no longer applicable. In this case,
the pseudo-weak object approximation can be introduced to
treat the sample with a more accurate model. From Eq. (8),
the sample is approximated as a superposition of a series of
weak object components. This indicates that the acquired im-
age can be expressed as the superposition of linear intensity ex-
pected by deconvolution and nonlinear intensity errors. Thus,
solving the phase can then be considered an optimization
problem, which can be efficiently handled by an iterative
reconstruction algorithm. As a result, the phase of the sample
beyond weak object approximation can be accurately recovered.

The primary motivation of the iterative reconstruction algo-
rithm is to eliminate the nonlinear components and extract the
intensity components that are linearly related to the phase of
the large-phase object. Based on pseudo-weak object approxi-
mation, the nonlinear intensity error can be obtained by cal-
culating the intensity residual between the forward-generated
intensity of partially coherent imaging and the phase-linear cor-
related intensity. Consequently, the iterative algorithm requires
no additional acquisition data (usually four images) and refines
the reconstructed phase by a continuous deconvolution solver.
In this process, the input intensity used for the deconvolution
process is denoted as

IDPC
linear�x� � IDPC

real �x� − ΔIDPC
error �x�, (9)

where IDPC
linear�x� is the estimated linear intensity for deconvolu-

tion that eliminates the nonlinear intensity error ΔIDPC
error �x�,

and IDPC
real �x� is the phase gradient image calculated using

the actual acquired image according to Eq. (5). The nonlinear
error ΔIDPC

error �x� can be approximately estimated by solving the
intensity difference between the intensity model based on
Abbe’s theory and the transfer function model. On the one
hand, an initial phase is used to generate the acquired intensity
of DPC by superimposing the intensity corresponding to each
point source in the asymmetric illumination,

I real�x� �
Z

jF −1fS�u 0�F �ejϕ�x��P�u − u 0�gj2du 0: (10)

The generated intensity images under the same asymmetric
axis are used to calculate the phase gradient image IDPC 0

real �x� by
Eq. (5). On the other hand, the linearized intensity required by
the deconvolution solver of DPC is calculated according to the
transfer function theory,

IDPC 0
linear �x� � F −1fWPTF�u�Φ�u�g: (11)

Then, the nonlinear error caused by the mismatch between
these two models can be estimated as

ΔIDPC
error �x� � IDPC 0

real �x� − IDPC 0
linear �x�: (12)

During the iterative process, ΔIDPC
error �x� will be continuously

estimated and eliminated from the actual acquisition intensity,
which leads to IDPC

linear�x� close to the intensity linearly related
to the true phase of the sample. In order to solve the phase,
the algorithm can be derived as the following optimization
problem:

min ε � min
X
x

fIDPC
real �x� − IDPC 0

real �x�g: (13)

Then, the phase of the sample is iteratively updated based
on the following equation:

ϕm�1�x� � F −1

�P
iF �IDPC

linear,i,m�x�� ·WPTF�i �u�P
ijWPTFi�u�j2 � β

�
, (14)

where m is the number of iterations. β represents the regulari-
zation parameter to avoid excessive amplification of noise.

The algorithm flow chart of the iterative deconvolution is
displayed in Fig. 3. The algorithm begins with the one-step
deconvolution reconstruction, where the solved phase is used
as the initial phase. In the iterative process, the solved phase and
a uniform amplitude construct a complex transmittance func-
tion to generate DPC images under asymmetric illuminations
based on Abbe’s method. Specifically, the acquired image under
partially coherent imaging is represented as a linear superposi-
tion of the intensities obtained by multiple point sources inde-
pendently illuminating objects with the complex distribution
of ejϕ�x�. They were used to solve the phase gradient intensity
based on Eq. (5). Synchronously, the estimated phase is used to
perform a convolution with the WPTF to obtain an intensity
distribution linearly related to the phase. The intensity images
under both models are used to estimate the nonlinear intensity
error caused by the mismatch of sample models based on
Eq. (12). Then, this nonlinear error will be subtracted from
the actual acquisition intensity, whereby the intensity signals
that interfere with the deconvolution algorithm are eliminated,
leaving only the linear intensity desired by the deconvolution
[Eq. (9)]. Finally, as expressed in Eq. (14), a deconvolution
reconstruction is then performed using estimated linear inten-
sity to recover the updated phase of the current iteration. The
above iterative process will be performed several times until the
difference between the estimated intensity generated by the re-
constructed phase and the acquired image can be negligible.
As a result, the iteration converges to a stable phase value.

We demonstrated the imaging performance of iterative de-
convolution through numerical simulations. The same micro-
lens distribution similar to the previous simulation is used to

Research Article Vol. 11, No. 3 / March 2023 / Photonics Research 447



generate the DPC images. In order to explore the phase imag-
ing performance of the iterative deconvolution for large-phase
objects, we constructed a sample with a phase distribution of
0−10 rad. This phase distribution corresponds to a sample with
a thickness of more than 1 μm, which goes far beyond the def-
inition of weak object approximation. The illumina-
tion aperture is first set as a half-circular illumination, whose
corresponding WPTF is shown in Fig. 4(a). The one-step de-
convolution and iterative deconvolution (performed 10 times)
algorithms were used to solve the phase of the sample, respec-
tively, and the resulting reconstructed phases and their 3D
pseudo-color rendering images are shown in Fig. 4(a).
Figure 4(a) also plots the numerical profiles of this recon-
structed phase and the ground-truth phase for a quantitative
comparison. It can be seen that the reconstructed phase under
one-step deconvolution demonstrates a phase amplitude of
5 rad, which is much less than the ground-truth phase ampli-
tude of 10 rad. Such a reconstruction result gives a misleading
measurement. The iterative deconvolution yields the accurate
reconstructed phase, which shows a consistent phase amplitude
with the ground-truth phase. We further performed a simula-
tion under the annular illumination aperture with an annulus
width of 0.25, and the simulation results are shown in
Fig. 4(b). Although the nonlinear error in the acquisition in-
tensity increases, the iterative deconvolution accurately recovers
the quantitative phase of the samples.

4. EXPERIMENTAL VALIDATION

To verify the phase reconstruction accuracy of iterative decon-
volution, several experiments were conducted on different sam-
ples. The experimental system was built on a commercial
inverted microscope platform (Olympus, IX73), and its illumi-
nation source was replaced by a programmable LED array with

a spacing of 2 μm to flexibly implement asymmetric illumina-
tion at a wavelength of 504 nm. In image acquisition process,
four illumination patterns (left, right, up, and down) were
switched, and the transmitted light field information of the
sample was collected by an objective lens with 10×∕0.4 NA
(Olympus UPlanSApo). In the camera plane, a CCD camera
sensor (The Imaging Source, DMK 33UX183) with a pixel size
of 2.4 μm was used to record intensity images. As a result, raw
images can be completed within 200 ms.

A. Quantitative Morphological Characterization
of Microlens Arrays
To quantitatively demonstrate the accuracy of the iterative de-
convolution method for reconstructing the phase, a standard
microlens array sample [SUSS, Microoptics, refractive index
(RI) of 1.46] with a curvature radius of 350 μm and a pitch
of 250 μm was used as the target. It was placed in water with
a dielectric RI of 1.33, so its theoretical height of 23 μm cor-
responds to a phase amplitude of 37 rad. Figures 5(a1), 5(a2)
and 5(b1), 5(b2) display the asymmetric illumination patterns
and the phase gradient images in two directions along the cor-
responding shearing directions. These captured images were
used to perform the one-step deconvolution reconstruction
directly, and the reconstructed phase is shown in Fig. 5(d1).
A significantly weaker phase contrast can be found, indicating
that the reconstructed phase in the traditional one-step decon-
volution method is smaller than the theoretical phase value
of the microlens array. The acquired images were then used
to implement the proposed iterative deconvolution method
(which takes several minutes). Figure 5(c) shows the variation
curve of the intensity differences in iterations [Eq. (13)], which
gradually converges to a stable small value as the iteration num-
ber increases. Once there is a constant minimum error be-
tween the estimated and acquired intensities, the iteration will
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Fig. 3. Algorithm flow chart of the iterative deconvolution reconstruction.
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be terminated, and the final iteration result will be output, as
shown in Fig. 5(d2). We further selected one microlens unit as
the region of interest (ROI) for the quantitative characteriza-
tion of its 3D morphology, and the results are shown in
Figs. 5(e1), 5(e2) and 5(f1), 5(f2), respectively. From the
3D pseudo-color morphological distribution in Figs. 5(f1)
and 5(f2), the iterative deconvolution correctly characterizes
the true 3D morphology of the microlens, which is difficult
to achieve by one-step deconvolution. Finally, in order to quan-
titatively compare the numerical accuracy of the reconstructed
phases under these two algorithms, we extracted the quantita-
tive phase values along the white dashed and plotted the curve
in Figs. 5(g1) and 5(g2). It verifies that the iterative deconvo-
lution algorithm provides reliable quantitative phase data for
subsequent research and analysis.

B. Morphological Detection of Biological Cells
Morphological detection of biological cells is critical for the
early confirmation of cancer treatment, where the cell changes

during malignant transformation can be quantified by studying
morphology, membrane dynamics, and cell refraction indices.
DPC QPI provides a reliable pathology testing means for
cancer tissues and cells. We conducted an experiment on
MCF-7 human breast cancer cells to compare the cell morphol-
ogy testing performance of one-step deconvolution and itera-
tive deconvolution algorithms. During sample preparation, the
MCF-7 cells were placed in 4% paraformaldehyde solution
without any staining and labeling treatment. Figure 6 displays
the reconstructed results under one-step deconvolution and
iterative deconvolution. We adopted the Tikhonov regulariza-
tion and introduced a suitable regularization parameter for both
deconvolution processes. In Fig. 6(a), we show the field-of-view
(FOV) reconstructed phase under iterative deconvolution.
Then, the phase values along the white dashed line were ex-
tracted to plot the quantitative curves, yielding the results in
Figs. 6(b) and 6(c), respectively. It can be clearly observed that
for mitotic cells with large phase values, one-step deconvolution
(blue curve) provides a degraded cell morphology feature, while
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the iterative deconvolution (red curve) accurately recovers both
low-frequency and high-frequency quantitative features of
the sample, demonstrating accurate 3D morphological data.
Figures 6(d1)–6(g1) and 6(d2)–6(g2) present the enlarged
phase of four ROIs under one-step deconvolution and iterative
deconvolution. Compared to the one-step deconvolution algo-
rithm, the iterative deconvolution algorithm recovers the cel-
lular contours and the internal subcellular structures with
highly accurate quantitative phase distribution. A 3D pseudo-
color rendering image and a quantitative profile are then plot-
ted to characterize the 3D morphological distribution of MCF-
7 cells, as shown in Fig. 6(h). It can be found that the iterative
deconvolution demonstrates a more significant cell thickness,
which provides more accurate morphological detection data
for cell analysis.

5. CONCLUSION

In this paper, we have explored the strict definition of weak
object approximation under partially coherent imaging and
proposed an iterative deconvolution algorithm to achieve accu-
rate QPI for large-phase objects. By exploring the imaging
performance of QPI under weak object approximation with
different illumination coherence and sample distribution, the
strict weak object approximation is defined as a sample with
a phase no greater than 0.5 rad. Thus, QPI by DPC enables
accurate quantitative phase reconstruction for arbitrarily sam-
ples and illumination apertures. Furthermore, an iterative

deconvolution QPI algorithm based on pseudo-weak ob-
ject approximation was proposed to go beyond weak object
approximation, achieving accurate QPI for large-phase objects
without any additional acquisition. As a result, QPI by DPC is
no longer limited by the premise of weak object approximation
and can be applied to the high-precision phase characterization
and measurement of large-phase samples. We demonstrated the
accuracy of the proposed method using a standard microlens
array sample with a large phase. Compared with the conven-
tional one-step deconvolution, the proposed method more ac-
curately recovers a phase consistent with the nominal value.
The experiment on MCF-7 cells demonstrated that our
method accurately reflects the 3D morphological data of the
cells, which will provide strong support for subsequent cell
morphology and cell mass analysis. Our method will enable
the quantitative nature of DPC QPI and provide a powerful
tool for the quantitative characterization and measurement
of biological applications with large-phase objects.

In QPI techniques based on partially coherent imaging,
weak object approximation and slowly varying object approxi-
mation are the two most general approximation models. Unlike
weak object approximation, which requires the absolute phase
of the object to be very small, slowly varying object approxi-
mation requires that the difference between the sample phase
and its neighborhood is much less than 1 rad. Although these
two approximations are defined from different perspectives,
they can be equivalent when some other approximations are
introduced [15]. For example, the quantitative phase of a

0

10

20

30

Ph
as

e
(ra

d)

(d1)

(e1)

(e1)

(f1)

Ph
as

e
(ra

d)

(d2)

(e2)

(e2)

(f2)

-0.5

0

0.5

-0.6

-0.4

-0.2

0

0.2

0.4

(a1)

(a2)

(b1)

(b2)

(c)

Raw phase gradient images One-step deconvolution

Iterative deconvolution

0 10 20 30
Iteration number

0

0.05

0.1

0.15

In
te

ns
ity

 e
rro

r
200 μm

60 μm

0

10

20

30

0

10

20

30

0

10

20

30

rad

rad

rad

rad

0
50

100
150

200
250

300
Spatial coordinates

( μm
)

0 10 20 30

G
round truth phase

R
econstructed phase

Height (μm)

0
50

100
150

200
250

300
Spatial coordinates (μm

)

0 10 20 30

G
round truth phase

R
econstructed phase

Height (μm)
(g1)

(g2)

Fig. 5. Experiment results on a standard microlens array sample (SUSS, Microoptics, RI of 1.46) with a curvature radius of 350 μm and a pitch of
250 μm. (a1), (a2) Asymmetrical illumination patterns. (b1), (b2) Differential intensity images along different shearing directions. (c) Variation
curve of the intensity error. (d1) and (d2), (e1) and (e2) Reconstructed phases and their ROI under one-step deconvolution and iterative decon-
volution. (f1) and (f2) 3D pseudo-color morphological distribution. (g1) and (g2) Quantitative phase values along the white dashed.

450 Vol. 11, No. 3 / March 2023 / Photonics Research Research Article



sample with a slowly varying phase and weak absorption can
be solved by the weak phase deconvolution algorithm, which
means that the deconvolution solver based on weak object
approximation can be relaxed to a slowly varying object.
It is also important to mention that, to simplify the model,
we analyzed the DPC QPI of a pure phase object, whose
nonlinear errors originate only from the higher order terms
of the phase. As for samples with both absorption and phase
[t�x� � a�x�ejϕ�x�], their absorption can be eliminated by
the difference calculation in DPC under weak object approxi-
mation. However, the nonlinear error between their acquired
intensity and the ideal one used for deconvolution is more com-
plex, containing higher-order convolution terms of the sample
absorption as well as the cross-convolution terms of the absorp-
tion and phase. A similar iterative deconvolution method can

be used to eliminate the nonlinear error in the acquired image
so that the input to the deconvolution solver is as close as pos-
sible to the intensity linearly related to the phase. In the future,
we will explore different versions of the iterative deconvolution
algorithm for accurate quantitative phase reconstruction of
objects containing non-uniform absorption.

APPENDIX A: FORWARD MODEL OF PARTIALLY
COHERENT IMAGING

Partially coherent imaging provides better lateral resolution and
immunity to the system’s imperfections by simultaneously illu-
minating the sample from multiple angles in a mutually inco-
herent manner. The light intensity follows Abbe diffraction
theory [53], i.e., mutual incoherence of the illumination points
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leads to the incoherent superposition of the intensity caused by
each point. The cross propagation and superposition of each
point often result in the nonlinear (or, more precisely, bilinear)
dependence of the partially coherent field on the sample prop-
erties [37,38,54]. This makes it difficult to invert the imaging
process to retrieve the sample phase. In 1953, Hopkins estab-
lished the TCC model for partially coherent imaging to segre-
gate the sample- and the system-dependent parts [37]. The
formula of the image intensity by propagating the mutual in-
tensity through the optical system is derived,

I�x� �
ZZZ

S�u�T �u1�T ��u2�H �u� u1�

×H��u� u2�ej2πx·�u1−u2�du1du2du, (A1)

where x represents the 2D coordinates of the camera plane, and
u represents the spectrum coordinates. The sample is repre-
sented as a Fourier spectrum form of its complex transmittance
function T �u� � F fejϕ�x�g [where ϕ�x� is the phase of the
sample], and T �u1�T ��u2� is its mutual spectrum. S�u� rep-
resents the partially coherent illumination source, which is usu-
ally an extended source whose NA of illumination is less than or
equal to the NA of the objective lens. H �u� represents CTF,
which can be expressed as H �u� � P�u�ejkδz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−�λux�2−�λuy�2

p

[P�u� is the pupil function of the objective lens, and

ejkδz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−�λux�2−�λuy�2

p
is the defocusing factor for propagating

the light field on different planes]. Interpreting the above ex-
pression from the spatial domain [59], the intensity of each
point in the image is considered as a point pair dependent
on the sample amplitude. To separate the effects of the system
and the sample properties, the sample-independent factors are
established as TCC (or the partially CTF in Ref. [33]), which is
a 4D function of pairs of spatial frequencies:

TCC�u1, u2� �
Z

S�u�H �u� u1�H��u� u2�du: (A2)

Equation (A2) illustrates that TCC is determined by the
illumination function S�u� and CTF, and it establishes a
quantitative relationship between sample information and ac-
quired image intensity. Then, the acquired intensity can be rep-
resented by propagating the mutual intensity through the
optical system:

I�x� �
ZZ

T �u1�T ��u2�TCC�u1, u2�ej2πx·�u1−u2�du1du2:

(A3)

For non-self-luminous and non-absorbing samples, QPI is
an inverse problem of estimating the sample phase from
measured intensities. The appropriate optical modulations
(manipulation of the scattered radiation) are required to gen-
erate an effective (non-zero) TCC response. Thus, the phase
information of the sample can be transferred into the acquired
intensity signals. Oblique illumination and defocusing CTF are
two widely developed means of phase modulation, and the de-
veloped QPI technologies are called TIE (defocusing-based)
[15] and DPC (asymmetric illumination-based) [18,56]. It
is not hard to find that the inverse solution of the phase
directly obtained from Eq. (A3) is unattainable. The ampli-
tudes and phases of the samples are cross-mixed from the above

4D integral formula, which means the contributions from sam-
ple amplitude and phase in the intensity signal cannot be dis-
tinguished. Thus, the key to QPI based on partially coherent
imaging is to separate the phase terms from the complex
nonlinear distribution of the mutual spectrum of the sample.

APPENDIX B: DECONVOLUTION QUANTITATIVE
PHASE SOLVER UNDER WEAK OBJECT
APPROXIMATION

In order to efficiently extract the phase components from the
intensity measurement, weak or slowly varying object approx-
imations are introduced in QPI to simplify the complex trans-
mittance function of the sample [16,33,34], while Born and
Rytov approximations are considered in diffraction tomography
to account for the scattered field model. Although these ap-
proximations have different mathematical expressions, they are
based on the unifying idea that the imaging model is reduced to
a mathematically analytical form by introducing certain ap-
proximations in the imaging process. Weak object approxima-
tion, which effectively separates the modulatory effects of the
imaging system on the different components of the sample
(absorption and phase), leads to a QPI deconvolution solver.
It restricts the phase terms of the sample to very weak (usually
much less than 1 rad), and then the complex transmittance
function of the sample t�x� � ejϕ�x� [where ϕ�x� is the phase
of the sample] can be simplified as

t�x� � ejϕ�x� ≈ 1� jϕ�x�: (B1)

This expression ignores a series of higher-order terms in
phase and retains only its primary term, successfully separating
the DC and phase terms into the real and imaginary parts of
the linearized complex distribution. To reanalyze the forward
model of Eq. (A3) under weak object approximation, the
Fourier transform is applied to obtain the spectrum distribution
of the sample, and then the cross-spectrum distribution of the
sample can be linearly expressed as

T �u1�T ��u2� ≈ δ�u1�δ�u2� � j�δ�u1�Φ�u2� � δ�u2�Φ�u1��:
(B2)

Notice that the second approximation is considered by
omitting the interference terms between the scattered light,
which just corresponds to the first-order Born approximation
commonly used in diffraction tomography. Such a linear ex-
pression of mutual intensity is then substituted into Eq. (A3)
to obtain the intensity distribution under weak object approxi-
mation [55],

I�x� � TCC�0, 0� � 2Re

�Z
TCC�u, 0��jΦ�u��ej2πx·udu

�
,

(B3)

where TCC�0, 0� is the DC component, which indicates the
background distribution. Since the TCC is Hermitian symmet-
ric, Eq. (B3) uses a simple relation of TCC��0, u� �
TCC�u; 0� to simplify the expression. Thus, the quantitative
relationship between the sample phase and the acquisition in-
tensity is represented through the WPTF [60], which can be
expressed as
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WPTF�u� ≡ TCC�u; 0� �
Z

S�u 0�H �u 0 � u�H��u 0�du 0:

(B4)

Since the sample phase distribution ϕ�x� is a real function,
then the real part of jΦ�u� is an odd function, and its imaginary
part is an even function. For QPI that converts jΦ�u� to the
intensity with real distribution modulated by WPTF, illumina-
tion or CTF modulations are required to produce a WPTF
with an oddly symmetric distribution.

DPC adopts asymmetric illumination, a flexible and con-
venient implementation without mechanical manipulation,
to achieve an oddly symmetric WPTF and an evenly symmetric
absorption transfer function [16,17]. Consequently, a simple
differential calculation can be implemented to eliminate the
background item (and absorption item) from Eq. (B3), and
only linear phase items are left in IDPC

i �u�,

IDPC
i �u� � I i1�u� − I i2�u�

I i1�u� � I i2�u�
, (B5)

where i indicates the direction of asymmetric illumination
Si�u 0�, and I i1�x� and I i2�x� denote the two intensity images
along the same asymmetric axis. DPC typically uses asymmetric
illumination along two asymmetric axes to acquire four
intensity images. Then, the corresponding WPTF can be
expressed as

WPTFi�u�

�
R
Si�u 0�H��u 0 � u�H �u 0� − Si�u 0�H �u 0 − u�H��u 0�du 0R jSi�u 0�jjH �u 0�j2du 0 :

(B6)

Solving for the phase distribution of the sample from the
acquired intensity is an ill-posed problem, which can obtain
a stable approximate solution by the regularization method.
In DPC, Tikhonov regularization is a common solver for such
an inverse algorithm,

ϕ�x� � F −1

�P
i �WPTF�i �u� · IDPC

i �u��P
ijWPTFi�u�j2 � β

�
, (B7)

where β represents the regularization parameter to avoid exces-
sive amplification of noise.

APPENDIX C: ILLUMINATION COHERENCE AND
ITERATIVE DECONVOLUTION ALGORITHM

To explore the effect of weak object approximation on DPC,
we analyzed the deconvolution reconstruction error under dif-
ferent illumination apertures through numerical simulations.
The complex transmittance functions of the samples were
set to ejϕ�x� and 1� jϕ�x� to simulate the theoretical sample
distribution and the linear distribution, respectively. As shown
in Figs. 7(a) and 7(b), we assumed a sample with unit ampli-
tude and a phase of a microlens array distribution in the range
of 0−2 rad, whose distribution exceeds the generic weak
object approximation. Figures 7(e1) and 7(f1) display the spec-
trum distribution of these two types of samples. The acquisi-
tion intensity under DPC was generated based on Abbe’s
method by superimposing the intensity produced by each
point source in the illumination aperture. The asymmetric

illumination aperture was set as the conventional half-circular
uniform pattern, and the corresponding WPTFs are shown in
Figs. 7(c) and 7(d). Figures 7(e2) and 7(f2) show the phase
gradient images along the left-right shearing direction under
two sample distributions. They were employed to perform
the one-step deconvolution reconstruction, and the resulting
phases are shown in Figs. 7(e3) and 7(f3). Furthermore, to
compare these two reconstructed phases with the ground-truth
phase, we extracted the phase values and plotted the quantita-
tive profiles, as shown in Fig. 7(g). The reconstructed phase of
the linear sample distribution of 1� jϕ�x� is consistent with
the ground-truth phase, which verifies our inference that the
nonlinear error in the reconstructed phase arises entirely
from weak object approximation [Eq. (3)]. It also demonstrates
that severe mismatch errors between the reconstructed phase
and the ground-true phase occur when the sample phase ex-
ceeds its approximation conditions. An even worse situation
arises when the sample’s phase is further increased, and the
reconstruction results cannot be used as reliable information
for quantitative phase inspection.

Next, the illumination aperture was set as an annular illu-
mination aperture with a width of 0.01, which corresponds to
the acquisition intensity with the worst nonlinear characteris-
tics. We used the same parameter configuration as the circular
illumination to explore the reconstruction errors of weak object
approximation under annular illumination, and the simulation
results are shown in Fig. 8. The DPC acquisition images at
both sample types were obtained by superimposing the sub-
aperture sample information of annular illumination, whose
NAill is equal to objective NAobj. As shown in Figs. 8(e2)
and 8(f2), the intensity images under the annular illumination
demonstrate a distribution significantly different from that of
the half-circular illumination aperture. These images were de-
convoluted with the WPTF under the half-annular (Fig. 8(c))
to reconstruct the quantitative phase distribution of the sample,
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Fig. 7. Simulation of one-step deconvolution reconstruction under
half-circular illumination. (a), (b) Ground-truth amplitude and phase
images of the complex transmittance function used to simulate the
sample. (c), (d) WPTF and synthetic WPTF. (e1), (f1) Spectrum
of the theoretical sample distribution ejϕ�x� and linear distribution
1� jϕ�x�. (e2), (f2) Phase gradient images along the left-right shear-
ing direction. (e3), (f3) Reconstructed phases. (g) Quantitative profiles
of reconstructed phase and truth phase.
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and the results are shown in Figs. 8(e3) and 8(f3), respectively.
As expected, the sample approximation under half-annular il-
lumination leads to an even more serious reconstruction error
than under half-circular illumination (the true value is 2 rad,
and the reconstruction result is only 1.5 rad). This result con-
firms our deduction that, although weak object approximation
theoretically requires the sample with a small absolute thick-
ness, the illumination aperture determines the degree of
nonlinear error between the phase deconvolution solver model
and the acquired intensity image. Therefore, the applicable
conditions of the deconvolution reconstruction algorithm
based on weak object approximation must take into account
the effect of the illumination aperture.
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