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ARTICLE INFO ABSTRACT

Keywords: In the lens-based imaging model, the Scheimpflug principle is expressed as the object plane, the image plane, and
Scheimpflug the lens plane intersect in a line. With this principle, the focused object plane in the lens’s object side can be tilted
Telecentric

by placing a tilted sensor at the image side of the lens; thereby, multi-cameras can be focused on the same object
space with an overlapping field of view and depth of field. For Scheimpflug cameras, additional tilt angles between
the camera sensor and the optical axis are introduced, which has been well studied in pinhole cameras’ calibration
methods. Telecentric lens, as a commonly used lens type, has constant magnification in the axial direction and
has a wide range of applications in close-range photogrammetry. To calibrate and rectify the telecentric lenses
in Scheimpflug conditions, we derived a concise imaging model by expressing the sensor tilt angles and the lens
magnification into a simplified intrinsic matrix. Based on the derived imaging model, an integrated calibration
algorithm without solving the tilt angles and a stereo-rectification method for stereo matching are developed.
The effectiveness and accuracy of the proposed methods are verified by experiments, including the comparison
with the traditional telecentric model and pinhole model. Combined with the experimental results, we analyzed
the potential impact of the extrinsic rotation matrix’s ambiguity, verified whether the lens distortion affects the

Stereo-rectification
Optical metrology
Microscopy

re-projection error, and discussed how the calibration posture influences the calibration accuracy.

1. Introduction

Stereo vision plays an essential role in non-contact 3D measurement
[1,2], which employs two cameras to achieve applications such as visual
synthesis, terrain surveying, and deformation detection [3-7]. In the 3D
measurement of small objects that require higher accuracy, the lens’s
working distance needs to be reduced to achieve a small field of view and
a high numerical aperture. The stereo microscope is a commonly used
observation tool for microscopic targets, containing two independent
microscopic optical paths. Nevertheless, it is more suitable for direct
observation by the human eyes and needs some modifications before it
can be used for quantitative 3D measurement [8-10].

When used in machine vision applications, a telecentric lens provides
an optical path with a small field of view and provides a fixed size,
higher resolution, and lower distortion imaging within a considerable
depth of field. These characteristics are of great significance to binocu-
lar systems under the microscopic field of view. Scholars have carried

out a series of calibration methods for telecentric lenses to improve the
systems’ accuracy, flexibility, and efficiency involving telecentric lenses
[7,11-15]. Liu et al. [16] used a 3D gauge as the calibration target and
uses the factorization method and beam adjustment to realize the tele-
centric microscopic 3D measurement system’s calibration. Although the
3D gauge can directly provide spatial data to solve all the rotation ma-
trix parameters, it requires much higher manufacturing accuracy. For a
microscopic view with a limited depth of field, the whole body of the
3D calibration block is difficult to be imaged entirely in focus.

In recent years, the plane calibration method has been proposed and
developed [7,11,14,16-21]. In the perspective model camera, all pa-
rameters can be solved using only standard plane gauge [22]. Li et al.
[11] proposed a telecentric lens calibration method and used it in a tele-
centric microscopic 3D measurement. A plane with a 2D comb function
distributed circles is applied as the calibration target in this method. A
neglected issue is that the depth insensitivity of a telecentric lens in the
optical axis direction leads to uncertainty of the plane posture, which

* Corresponding authors at: School of Electronic and Optical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing,

Jiangsu Province 210094, China.

E-mail addresses: chengian@njust.edu.cn (Q. Chen), zuochao@njust.edu.cn (C. Zuo).

https://doi.org/10.1016/j.optlaseng.2021.106793

Received 18 March 2021; Received in revised form 28 June 2021; Accepted 30 August 2021

Available online 11 September 2021
0143-8166/© 2021 Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.optlaseng.2021.106793
http://www.ScienceDirect.com
http://www.elsevier.com/locate/optlaseng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2021.106793&domain=pdf
mailto:chenqian@njust.edu.cn
mailto:zuochao@njust.edu.cn
https://doi.org/10.1016/j.optlaseng.2021.106793

Y. Hu, Z. Liang, S. Feng et al.

makes the extrinsic matrix of the imaging model challenging to deter-
mine [23,24]. To solve this problem, Chen et al. [7] proposed obtaining
the image of the calibration target in a shifted position by a translation
stage to help determine the normal direction of each calibration pose.
Li et al. [19] proposed a microscopic fringe projection profilometry sys-
tem that includes a long-distance lens for the projector and a telecentric
lens for the camera. The pixel coordinates of the feature points of the
projector’s light path are obtained by the phase-shifting method. Then
the relative position of all the calibration poses can be obtained, thereby
providing the 3D coordinates of all the feature points of all calibration
poses, which also solves the extrinsic ambiguity problem.

The calibration methods of telecentric cameras have been greatly
improved thanks to the continuously proposed calibration algorithms.
However, a problem has to be faced when conducting measurement
within a small field of view, which is the depth of field is much smaller
than that under the macro field of view, and the telecentric camera is
no exception.

Scheimpflug principle can be described as tilting the camera sensor
so that the focused object plane in front of the lens can be tilted, thereby
extending the depth of field in the object space [25-30]. This is why the
Scheimpflug camera offers a wide range of applications in the field of
typical close-range photogrammetry, particle image velocity, and digital
image correlation.

Scheimpflug principle is also used in microscopic 3D measurement
with telecentric lenses. In the multi-view-based microscopic 3D mea-
surement, there is still a problem that it is hard to make a maximized
superposition of the sharply imaged area of different optical paths due
to the limited depth of field [31]. Steger [32] proposed a comprehensive
and versatile camera model for cameras in Scheimpflug conditions but
did not provide a calculation method to get initial values of the param-
eters. Wang [31] applied four telecentric lenses in Scheimpflug condi-
tions to construct a multi-view fringe projection 3D microscopy system.
In this work, the cameras are calibrated using the general imaging model
[33], which considers that imaging is the process of collecting incoming
rays from the scene onto the sensor. Mei [30] adopted the Scheimpflug
condition in a telecentric lens-based stereoscopic vision 3D measure-
ment system. In this work, the Scheimpflug condition is calibrated us-
ing HALCON’s method, which independently involves and calculates the
rotation and tilt angles without considering the affine ambiguity. Peng
[15] also applied the Scheimpflug telecentric lens in a fringe projec-
tion system and derived a model to compensate for the image distortion
caused by the sensor tilt based on the geometric theory. However, this
model is only applicable for the object side telecentric lenses and lim-
ited within a relatively small tilt angle as the tilt is molded as part of the
distortion. Moreover, the model illustrated here requires that the length
of the lens should be provided in advance, which in practice is not easy
to obtain [28].

In this paper, in order to improve the imaging quality in multi-view
3D sensing by conveniently using the Scheimpflug condition, we pro-
pose a simplified matrix-based imaging model for a bi-telecentric lens
in Scheimpflug condition by establishing a direct mapping relationship
between the 3D coordinate of the object and the 2D coordinates on the
camera sensor. In our method, the tilt angles of the sensor are also in-
troduced but are converted into the magnification variation in two di-
rections and a tangential parameter. The detailed solution of the imag-
ing model is derived, based on which a telecentric stereo-rectification
method in Scheimpflug condition is developed. In the experiments,
single-camera calibration and stereo rectification of dual-Scheimpflug
telecentric cameras are successfully performed, based on which we can
conclude that the proposed concise imaging model is correct and the cor-
responding parameter solving method is effective. After homography-
transform-based epipolar rectification, stereo matching processes
in DIC [34] or fringe projection-based 3D measurement [35-37]
are simplified into one-dimensional searching, which dramatically im-
proves the measurement efficiency.
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Fig. 1. The optical model of (a) an object-side telecentric lens; (b) an image-side
telecentric lens. In an object-side telecentric lens, the aperture stop is installed at
the focal plane in the image space; In an image-side telecentric lens, the aperture
stop is installed at the focal plane in the object space.

2. The imaging model of telecentric lenses

In this section, we briefly introduce the three kinds of telecentric
lenses: the object-side telecentric lenses, image-side telecentric lenses,
and bi-telecentric lens (also known as the bilateral telecentric lens) in
Scheimpflug condition.

2.1. Object-side and image-side telecentric lenses

The object-side telecentric lens model can be simplified to a lens
with its entrance pupil is at infinity. As shown in Fig. 1(a), an aperture
is added at its rear focal plane to limit the angle of the imaging light.
The light emitted from point P is imaged at point p by the beam pass-
ing through this aperture only. This imaging model possesses a fixed
distance between the lens and the camera sensor so that the chief ray
can remain unchanged while the object point moves nearer or further
along the optical axis; that is how the characteristic of constant magni-
fication being ensured. Objects beyond the depth of field will cause the
image to blur but will not change the image size. However, the imaging
side has perspective characteristics. If the camera sensor moves or tilted,
the imaging magnification will change or no longer maintain uniform
distribution.

Some object-side telecentric lenses provide a manual focus function
to facilitate the measurement of objects at different distances. However,
the lens’s telecentricity will lose when the object distance is too long
because the very first lens will gradually replace the aperture stop as
the aperture of the entire imaging system.

As the name suggests, the image-side telecentric lens has opposite
characteristics to the object-side telecentric lens. Its exit pupil is located
at infinity by adding an aperture stop at the focal plane in the object
space shown in Fig. 1(b). An exit pupil at infinity makes the lens image-
side telecentric. This property minimizes any angle-of-incidence depen-
dence of the sensor or any beam-splitter prism assembly behind the lens,
such as a color separation prism in a three-CCD camera. The uniformity
of the illumination light on the image side also makes them suitable for
photography and radiometry.

2.2. Bi-telecentric lens in Scheimpflug condition

As Fig. 2 shows, a bi-telecentric lens (also known as a bi-lateral tele-
centric lens) is composed of two sets of lenses called object-side lens
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Fig. 2. The optical model of a bi-telecentric lens. The object-side lens’s rear focal
plane coincides with the front focal plane of the image-side lens at a common
plane where an aperture stop is placed.
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Fig. 3. The schematic of the image property of a bi-telecentric lens in
Scheimpflug condition.

and image-side lens, respectively. The object-side lens’s rear focal plane
coincides with the front focal plane of the image-side lens at a common
plane where an aperture stop is placed. This aperture stop cooperates
with the object-side lens to form telecentricity in the object space and
cooperates with the imaging lens to form telecentricity in the image
space. The magnification of the bi-telecentric lens is determined by the
focal lengths of the two sets of lenses together, so no matter the working
distance or the camera sensor’s position changes, it will not change the
optical magnification. This feature makes the bi-telecentric lens most
suitable for the measurement field based on optical image processing.
However, a specific working distance should be satisfied when apply-
ing bi-telecentric lenses to minimize imaging distortion and maintain
perfect telecentricity.

The Scheimpflug condition can be applied in telecentric lenses to si-
multaneously achieve fixed magnification and considerable field imag-
ing depth [15,30-32]. According to the Scheimpflug principle, if the
angle between the camera sensor and the optical axis is changed, the
camera sensor is no longer perpendicular to the optical axis. Correspond-
ingly, the object plane conjugate to the camera sensor will also be no
longer perpendicular to the optical axis.

As shown in Fig. 3 is a bi-telecentric lens imaging model in
Scheimpflug condition. /; and /; are two lines perpendicular to the op-
tical axis and are conjugate to each other in the object space and image
space. P is an object point on /, in the object space, and p is the image
point on /; in the image space. /, and /;, are conjugated tilted lines in the
object and image space, respectively. Point P, on /, is closer to the lens
than point P and has its image point p, further to the lens than point p
in the image space. When the distance between the object point and the
lens changes, the image point is only displaced in the axial direction.

However, if the digital image sensor is tilted, for example, from /; to
I, the captured images would be changed depends on the tilt angles «
and p of the sensor. In Fig. 4, we provide several cases of the effect to
the images caused by sensor tilt of pinhole (perspective model) cameras
and telecentric (affine model) cameras, from which we can distinguish
the difference between the two imaging models.

To derive the imaging model of the bi-telecentric lens in Scheimpflug
condition, we first assume that the camera sensor is installed perpen-
dicular to the lens axis, and on this basis, characterize the Scheimpflug
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Fig. 4. The distorted images captured by a pinhole camera in Scheimpflug con-
ditions with different tilted angles (a) and a bi-telecentric camera in Scheimpflug
conditions with different tilted angles (b).
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Fig. 5. Simplified schematic of the imaging process and the coordinate systems
of a bi-telecentric camera.

condition by introducing two tilt angles, « and g, which are the angles
the sensor rotates around the horizontal and vertical axes, respectively.

2.2.1. Imaging model of an ideal bi-telecentric camera

Refer to Fig. 5, suppose a point P(x, y, z) in the world coordinate is
imaged on the camera sensor denoted as point p(u,, v,). Its homogeneous
image coordinate is projected from the camera coordinate in an affine
form as

u, m 0wyl x.
v,|=APc=|0 m vy (€))]
1 0 0 11

Here, m is the equivalent magnification of the telecentric lens. For an
ideal telecentric camera, e(u, vy) is the image coordinate of the optical
center, and u, v, can be set as zeros as there is no actual perspective cen-
ter of a telecentric lens. For a particular system, there exists a unique
world coordinate system. The pattern on the calibration board deter-
mines X and Y, as well as the original point O. The world and camera
coordinate are related by a rotation matrix R and a translation vector t
as

X, x
Ye|=Rly[+t ()]
z z

c

Here, R=[r, r, r]" andt=[r, 1, 7. Because of the
telecentricity in the image space, the variation of z, will not change
the image position as illustrated in Fig. 3 [3]. Therefore, the whole pro-
jection of a point in the world coordinate P(x,y,z) to an image point
pu,, v,) can be expressed as

m 0 ugflry  rp rizo f
P P
[ﬂ ={0 m vy|lry ryp  ry 1 [1] =H[1] 3)
0 0 1 0 0 0 1
A R,

Here, H = AR, is the homography matrix, transforming the world
coordinates of objects into their corresponding image coordinates.
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Fig. 6. The coordinate systems of the Scheimpflug bi-telecentric camera. The
imaging coordinates of the tilted sensor are related to the ideal (not tilted) imag-
ing coordinates by adding a rotation matrix based on « and $ to the ideal bi-
telecentric camera imaging model.

2.2.2. Imaging model of a Scheimpflug bi-telecentric camera

A camera sensor is a two-dimensional plane on which the image
coordinates are located. The imaging coordinates of the tilted sensor,
which corresponds to the captured image, can be related to the ideal
(not tilted) imaging coordinates by adding a rotation matrix to the ideal
bi-telecentric camera imaging model [28].

As shown in Fig. 6, plane II is the sensor plane that intersects the
optical axis at point O, which is the optical center of the lens and O-
XcYcZ is the coordinate system of the telecentric lens. Ilp is the hy-
pothesized ideal plane that also intersects the optical axis at point O
and is perpendicular to Z. axis. Up-Vp and U-V are the pixel coordi-
nate systems of plane Ilp and II, respectively. Suppose an incident light
vertically irradiates plane I1p and respectively intersects plane I1p and I1
at point p(u,, v,) and q(u, v). Since plane Ilp is an auxiliary surface that
does not exist, the relationship between plane IT and plane IIp can be
bound by tilting plane IT around the Y- axis and X axis successively.
The tilt around the Z axis can be regarded as the lens’s rotation, which
does not affect the mathematical model of the imaging process.

The imaging coordinate Py, v,) in Eq. (3) corresponds to the un-
tilled plane Ilp and can be considered as the intermediate transition
variable. The ultimate pixel coordinate g(u,v) is acquired by rotating
p(u,, v,) around Y, axis with angle § and around X axis with angle «
successively.

Refer to O--X Y- Z coordinate system, the rotation matrix is noted
as Ryy and expressed as

1 0 0 cos 0 sing
Ryy =RyRy =0 cosa —sina 0 1 0
0 sina cosa |[|—sinf O cosp
cos f 0 sin f
=| sinasinf cosa  —sinacosp 4)

—cosasinf  sina cos a cos

The unit direction vector of (up, vp) in plane Ip are u,(1,0,0) and
vp(0, 1, 0). After rotation by Ryy the unit direction vector of u and v in
plane IT are

cos f§
u=Ryyu, =| sinasinf
—cosasin f§ )
0
v=Rxyv, =[cosa
sin &

Taking pixel coordinates as the unit, p(u,.v,) can be represented
by q(u,v) because the pixel coordinates of the optical center O, in
both planes are the same and can be regarded as (u,, v,). Refer to O-
XY cZ coordinate system, the spatial coordinate of point g can be
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expressed as

cos 0
u(u—uy) +v(v—vy) =| sinasinp |(u—upy)+|cosa|(v-1y) ©6)
—cosasinf§ sina

The coordinate values of point g in the X - and Y ¢ directions are the
same as point p because of the telecentricity so that the first two rows

of Eq. (6) are the same to (up — ug, vp — vg):

(u—ug) cos B = u, —ug
. . _ (7N
(u—uy)sinasinB+ (v—v;) cosa = v, =y
Based on Eq. (7), we can get the expression of q(u, v) represented by
p(uy,vy) and (a, p) as

u 1/cos p 0 uplf1 0 —uy|u,
vi=|-tanatanf 1/cosa v,||0 1 -vyfv, 8)
1 0 0 1jfo o 1 1

By introducing Eq. (8) into Eq. (3), the final relationship between
image point g(u, v) and object point P(x, y, z) can be derived as

u m/ cos f§ 0 ug|lry r riz x p
vl=|-mtanatanf m/cosa vy ||[ry Ty Tn 1, i :H[l]
1 0 0 1]l 0 0 0 1 1
. ~/
An R,

C)]

Here, H = A R, is the new homography matrix. The only changed
part is that the intrinsic matrix A becomes A,,. The changes are equiv-
alent to the magnification variation of 1/cos  and 1/ cos a in the two
directions of the image coordinates, as well as an additional param-
eter—mtan a tan § representing the tangential deformation. Compared
with Peng’s work [15], the tilt effect is simplified from tangential distor-
tion to the intrinsic parameter changes, which is due to the orthogonality
of the bi-telecentric optical path on both sides of the lens.

However, as Eq. (9) shows, there is an offset (uy, vy) in A,,. In fact,
the telecentricity in the image space enables the offset (u,,v,) be set
any values because the optical center is located at infinity [7]. If the
distortion of the bi-telecentric lens can be reduced to a negligible degree,
we can move the origin of the camera coordinates O to the origin of the
pixel coordinates. In the subsequent calibration, (4, vy) in A, are set to
zero in a distortion-free case to facilitate the calculation procedure.

It should be noted that if @ and B are reversed at the same time,
A, will not change, which means that there are two solutions of A,.
This is also because of telecentricity in the image space. If It is neces-
sary to analyze the effect of distortion, there are two ways to determine
the signs, one is based on the involvement of the lens distortion model,
and the other is based on the prior knowledge of the imaging system.
However, the distortion of the lens may not provide enough perspective
effect; thus, the signs can only be determined by the second way. In a
specific system, the larger of the two tilt angles is easy to estimate, based
on which the other tilt angle can be determined according to the sign
constraint relationship of —mtana tan g in the retrieved A,.

3. Calibration of single Scheimpflug bi-telecentric camera
3.1. Simplified imaging model of a Scheimpflug bi-telecentric camera

As mentioned in the previous section, lens distortion is not consid-
ered in the intrinsic parameter calibration step, and (u,, v,) can be set
as any values. For convenience, we select the first pixel of the sensor
as (ug, vy) so that the perpendicular plane IIp can be regarded as being
obtained by tilt the sensor plane IT around its first pixel by two angles
a and B, as shown in Fig. 7. In this way, the intrinsic matrix is simply
expressed as

m/ cos 0 0
s
A> =|-mtanatanp m/cosa 0 (10)
0 0 1
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Fig. 7. The coordinate systems of the Scheimpflug bi-telecentric camera with
(uy, vy) being zeros.

Of course, t, and t,, should be accordingly shifted to be homologous
with the new O(. The imaging model thus becomes

x
m/ cos f 0 Oflry;  rp riz
_ - y
v|l=|-mtanatanp m/cosa Of|ry 1y 13 2
z
1 0 0 11l 0 0 0 1
u . J/ 1
A‘; R¢

(A b s h14[
i
arn

=|hy  hy hy  hy h
o o o0 1

H
3.2. The 2D planar calibration method

3.2.1. Intrinsic parameters calibration without lens distortion

The calibration board is placed in a specific posture to ensure that
the whole plane is within the imaging depth of field to obtain a clear
pattern image. After capturing the calibration pattern, the center co-
ordinates of N circle markers are extracted by the ellipse fitting func-
tion. Because there is no perspective distortion, the ellipse center’s bias
does not need to be compensated [27]. The extracted center coordinates
are noted as p.: p;(u;,v,), p,(Uy,v5), - py(up,vy). The world coordi-
nates system of each calibration posture is determined by its feature
points, and the three-dimensional coordinate distribution of these fea-
ture points are correspondingly noted as P.: P (x,y;,0), P,(x;,¥,,0),
-+ Pn(xpn,¥n.0). Because the z of each point is zero so that P, is shorted
as P§ = (x;.y,) and R, is shorted as RS

¢ LSV ST IR 2
Ry =[ry 1 t, (12)
0 0 1

Therefore, the imaging model of the calibration pattern is further
simplified as

uj i 0 Offrir r2 f|]x hip hip o g ps
vi|=|1 k Oflro  rn t(|yi|=ha  hyn  hy [lc] (13)
1 0O 0 1]]10 0 11 0 0 1
— . J
AS RS HS

with

j=m/cosp

k=m/cosa (14)
| = —mtanatan

The parameters can be solved in three steps: Step 1. Calculate the
homography matrix; Step 2. Solve j, k, and I according to the unit or-
thogonality of the rotation matrix, and Step 3. Get a and § from j, k,
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and I. The last step is to verify whether the calibrated result is consis-
tent with the actual system and is unnecessary for subsequent stereo
rectification.

Step 1. Calculate the homography matrix

This step is to solve h;;, hy,, hy;, and hy, in HS. The relationship
between the world coordinates (x;, y;) of each feature point and its pixel
coordinates (u;, v;) in the image provides two equations as shown in Eq.
(15). Since three non-collinear points determine a plane, the rank of the
augmented coefficient matrix derived from all the points on a plane is
six; thus, the solution to Eq. (15) provided by all points in a calibration
pattern exists. All the six variables in HS can be solved directly by using
the least square method [3].

x, y 1 0 0 0 :“ u,
0 0 0 x; y 1 h” v,
: : P h“‘ =| : (15)
xy yy 1 0 0 0 hZ‘ uy
0 0 0 xy yn 1,2 |vn
h24

Step 2. Solve j, k, and I according to the unit orthogonality of the ro-
tation matrix

First, we need to express the rotation parameters (r,;, r,, ry;, ry)
as the relationship between (h,;, hj5, hy;, hy,) and (j, k, I). Based on
Eq. (13) we can write R as

1/j 0  O)hyy hyp hy

RS=AS'HS =|—1/jk  1/k O|lhy hy hy (16)
0 o 1]lo o 1
So that
rip=hy/j
rp=hpy/j a7

ry =hy /k—hy 1/ jk
ry =hy/k—hpl/jk

Then the unit orthogonality of R is applied, that is

(rere) =1
(ry,ry)=1 (18)
(I'x,l'y> =0

After substituting Eq. (17) into Eq. (18) and combining similar terms,
we can get a simplified equation as

j2k2 - (k2 + 12)(”%1 + h%z) _jz(hgl +h§2) +2jl(h11h21 + h'2h22)
+(h12hy —h|1h22)2 =0 (19)

It can be written as follows

j2k2
K2+ 12
[l _(hi + h%z) _(h§1 + h%z) 2(hlthl + hlzhzz)] j2
jI
——
S
= —(hiphy; - huhzz)2 (20)

Note that there are four unknowns in S(sy, s,, 83, s,) with s; = j2k?,
s, = k> + 1%, 55 = j%, and s, = jl. Therefore, at least four sets of cali-
bration images are required to solve S. After S is solved, four equa-
tions containing three unknown internal parameters are obtained. The
Levenberg-M arquardt algorithm is applied here to get the optimized
results. Because the magnification m is a negative value and absolute
values of « and B are less than 90°, the sign of j, k, and I can be de-
termined based on S(s,, s,, s3,54). The initial value of j, k, and [ for
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Fig. 8. The lens posture ambiguities of a stereo telecentric system. For a specific
world coordinate system, due to the lens’s telecentricity, there exist two possible
solutions for a single camera.

iteration can be calculated by

Jo=—1/53
ko =—v/s1/s3 @2n
S4

=~

The objective functionF‘])ptof the Levenberg-M arquardt algorithm

is
= argmln z HF S2” (22)

with F = [j2k%, k> + 1%, j%,j11" and S = [sy, s,, 53, 5417

Step 3. Get m, a and B from j, k, and [
Refer to Eq. (14), we can derive that
(k/jYcos*a — (1/))* + (k/j)* + 1)cos’a + 1 =0 (23)

By solving Eq. (23), the rotation angle a can be acquired, and then
B can also be obtained based on Eq. (14). The calcualted angle will be
compared with the physical angles of the camera lens to make sure that
the imaging process is correctly modeled.

3.2.2. Extrinsic parameters

After the intrinsic parameters are obtained, R, , » (r{1, 13, 731, T2))
of each calibration pattern can be calculated by Eq. (17). Because R is
unitary and orthogonal, the remaining elements of R can be calculated
through

— 2 2
ri3 =%4/1 o,

24
ry=x\/l-r3 -1, @9

I =r,Xr,

However, the derived rotation matrix is not strictly orthogonal and
needs to be orthogonalized using SVD for further optimization. Further-
more, the telecentricity of the plane imaging process has its natural dis-
advantage that the posture of the lens has ambiguities [24], which could
lead to wrong 3D results based on a stereo telecentric system, as shown
in Fig. 8. For the chosen world coordinate system, the L-camera can be
either the real camera or the virtual camera. The calibration pattern
represented by the world coordinate system is recorded with exactly
the same image by the two cameras. It is the same situation for the R-
camera, so the stereo structure cannot be uniquely determined. This
problem is actually originated from Eq. (24) that both r; and r,; have
positive and negative solutions.

To solve this problem, we adopt the method proposed by Chen
[7] that uses a micro-positioning stage to provide a known translational
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displacement z, along the Z axis of the world coordinate system so that
signs of r|; and r,; can be confirmed. Together with the captured image
before the displacement, the signs of r;; and r3;, can be unambiguously
determined before the subsequent optimization. For a stereo telecentric
system, only one calibration posture needs to be captured by two cam-
eras at the same time to eliminate its ambiguity of external parameters,
and this calibration pose is used as the shared world coordinates for the
two cameras.

3.2.3. Global optimization considering lens distortion

Without considering the lens distortion, we have got the closed-form
solutions of the parameters in Eq. (13). However, two problems still need
taking into account. The first one is that the derived rotation matrix from
Eq. (24) is not strictly orthogonal. The second one is that lens distortion
has not been calibrated. In this subsection, two non-linear optimization
processes are conducted in sequence to solve these problems. The opti-
cal center e(u,v,) needs to be explicit to ack as the distortion center,
therefore the derived AS and Rf needs to be respectively adjusted to
Eq. (25) to keep HS the same as in Eq. (13).

i 0 u
Am=|1 Kk b,
0o 0 1 . @5)
ryo rp =W/
Rts =|ry rn  t,—=W/))
0 0 1

The initial values of the optical center (distortion center) e(u, v,) can
be set as the sensor center or derived by the optical center estimation
algorithm [38]. The first non-linear optimization is to update the unique
intrinsic matrix A, from different calibration postures as well as each
orthogonal rotation matrix R and translation vector t by minimizing the
following function with Levenberg-M arquardt algorithm:

F? _argmmZan“ A(Ap Re.te Pe ) |12 (26)

Here, € is the number of calibration postures, 5 is the number of
feature points on the calibration pattern, g, and P, are the control
points on the captured images and the calibration pattern, respectively.
§ is the projection of feature points P, , according to Eq. (13). In the
optimization process, the rotation matrix R is firstly transformed into an
orthogonal matrix using SVD and then parameterized by three scalers
using Rodrigues rotation formula.

When F (Zwt is minimized, the generated intrinsic matrix A, and ex-
trinsic matrix RtS are utilized to calculate the initial guesses of distortion
coefficients in another non-linear optimization. Traditional camera dis-
tortion includes radial distortion and tangential distortion. Since the ef-
fect of tangential distortion can be alternatively represented by a part of
the Schiempflug condition, the distortion needs to be compensated only

contains three radial coefficients denotedask=[ k; k, k; ]and
can be modeled in the camera coordinates system as
d u S
el = [+ 3
c c y w6 (27)

U2 u 4
[6x]=[xr xird xr][kl ok ]T
6}’ ycc ycc ycc

Here, (x4, y9) and (x*, y“) are the distorted and undistorted po-

P . . 2 2
sitions in the camera coordinate system. r> = x" + y* . Based on the

optimized results from Eq. (26), we can derive the initial value of k by
solving Eq. (27) with

[ v ] =a e w 1 o8

[x ye ] =R[x »y 1]

Then the following non-linear optimization can be performed to re-
fine all the parameters with the following cost function:

3 argmin

Fon = Ko RLK ROk 2 oz -a

d(Am Rt K, P“)” 29)
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Here, § is the new projection of the feature point P, , according to
Eq. (13) with the updated camera coordinate in Eq. (27). After F f)pt is
minimized, the calibration of a telecentric camera is thoroughly com-
pleted.

4. Stereo rectification of Scheimpflug telecentric lenses for
stereo-matching

As we know that 3D measurement or reconstruction relies on multi-
view information, which usually needs to be extracted by means such
as fringe phase-matching or intensity feature correlation. The phase-
matching methods calculate the phase distribution map from the cap-
tured sinusoidal fringe patterns, and based on a reverse calibration pro-
cedure of a projector’s optical path, then directly finds the matching
point between the projector and the camera according to the phase val-
ues [17,39,40]. The intensity correlation methods search the matching
point by correlating the intensities around the source point with the in-
tensities around the candidate points in the other image through specific
routines [34] without the necessity to calibrate a projector. The recently
proposed microscopic telecentric stereo vision system [3] combines the
advantages of the two kinds of methods. The critical stage is that the
stereo rectification renders the phase stereo matching between cameras
be much more efficient and convenient.

The epipolar geometry of two telecentric cameras is similar to that
of two pinhole cameras [41-43]. An undistorted pixel p; (u;,v;) in the
left view corresponds to an epipolar line in the other view, on which the
matched pixel pg(ug,vy) meets the affine epipolar constraint equation
as

aup +bvg +cuy +dvyp +e=0 (30)

where a ~ e are five constants. The original images need to be trans-
formed into new ones, and thus new sets of camera parameters are ac-
quired. Different from calculating the fundamental matrix between two
views, we first calibrate the cameras with two sets of parameters for each
camera and then undistort them in the image coordinate, at last, rectify
them with the newly derived imaging models. Here we use a prime to
represent the new parameters and add subscript L or R to distinguish
the left and right cameras. Then we describe the original projection pro-
cess for both cameras as

Py | P P
o =AmLRtL[ ]=HL[ ]
1 1 1

' E P P @31)
| - At ] -]

And the rectified projection process for both cameras as

P P P
1 =AImLR,tL[1]=HL[1]
[p

] P P
| =AImRR,tR[1] =H;z[1]

The final goal is to ensure that each object point will be imaged
on the same row in their own rectified image. To minimize the loss of
invalid areas of the rectified images, we design new imaging models
as possible as close to the original parameters. For this purpose, three
criteria are drawn as the following:

~

(32)

==

1. Remain the optical axis direction (r; L and r; R) unchanged;

2. Ensure that the y direction of the rotation matrixes (r’ I and r; R) are
the same because the disparity is distributed in the x, direction.

3. To prevent the tilt component (I in A,,) from affecting our final goal,
we can remove [ and then average other parametersin A,; and A,z
to generate a common A’ :1 to serve two camera models.

(r+Jr)/2 0 U
AL =ALg = 0 (kp+kg)/2 v, 33)
0 0 1
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According to the above criteria, the new direction vector of the cam-
era’s optical axes r/, and r], remain unchanged and should intersect
with each other in a plane, which is realized by setting appropriate t}
and t}. r; , and r; g Should be perpendicular to this plane so that the dis-
parity only appears in the horizontal direction (r/, and r’ ). Therefore,

the new rotation matrix R, and R, is derived through

!
r’ =r
{ e = e (34)
l‘z R TzR
/ ! : ! !’
L and rr should be perpendicular to both r}, and r],.
! —_ ! !
ryL —norm(rzLszR) 35
T (35
=T
Finally, based on the orthogonality of the rotation matrix, r}, and
r’ . can be obtained as
xR
! — /! !
rxL - rzL X l‘yL 36
r' =1, xr (36)
xR~ "zR YR

Where, function "norm" stands for the normalization of a matrix and
operator "x" stands for the cross product. The requirement to t; and t},
is t; L= t; gto disappear the vertical disparity. Here we first derive an
intermediate translation vector as

T -1 T
[ 7o Ty 1] =RyR b 1 1] a7
[ 7r 1] =ReRY[ e t,e 1]
xR YR R R xR YR
By setting the new translation vector as
UXL =TxL
t/r = TR (38)

thy =thg= (TyL + ‘L'yR)/2

The new translation vectors t’L and t;e are obtained. For now, we
have derived all the parameters to generate H), and H}. Therefore, the
transformation between the rectified and the original image coordinates
can be executed by

P _ prL
] = 7
4 _ Pr
] -]

And vice versa. The symbol "+" means pseudo-inverse of a matrix.
However, it should be noted again that the rectification is valid under
the distortion-free situation. Thus, before the rectification, the lens dis-
tortion should be correctly removed by the accurate calibration of the
cameras.

(39)

5. Experiments
5.1. Single-camera calibration in Scheimpflug condition

First, To verify the correctness of the imaging model containing the
tilt angle information of the sensor in Eq. (11), we adjusted the incli-
nation of a telecentric camera to five different angles along the sen-
sor’s long side. As shown in Fig. 9, the camera used in our experi-
ment is an Imaging Source DMK 33U S183 camera equipped with
a SONY IMX183CLK sensor that has a pixel size pg of 2.4 ym and
maximum resolution of 5544 x 3694. The lens is TC.S M 048 from Opto-
Engineering with a working distance of 134.6 mm and a vertical mag-
nification varying from 0.133 to 0.185, depending on the inclination
angle. The FOV of the lens on the detector side can reach 2/3 inches,
which is larger than the sensor size, so in order to fully apply the lens
FOV, we set the image resolution as 4096 x 2160.

The working distance is controlled to 134.6 mm to minimize the in-
fluence of distortion. The sensor plane behind the lens is adjusted by con-
trolling the screwed amount of the lens thread into the adapter socket
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Fig. 9. The picture of the Scheimpflug telecentric camera in the calibration
experiment.

to assure the best imaging quality. A freely rotatable nut on the outside
of the lens thread is used to lock the lens and the adapter. Note that
the relative phase between the camera interface and the Scheimpflug
adaptor can also be adjusted by unlocking the connecting clasp, so it
is somehow tricky to ensure that the sensor only has an a angle. Still,
more or less a small g angle exists (manually controlled within +1°).

The calibration target is a special visual calibration board made of
glass material with an external dimension of 25 mm x 25 mm, as shown
in Fig. 10(a). The pattern consists of a 31 x 27 array of circles with a
diameter of 0.323 mm, and the distance between the centers of every
two circles is 0.645 mm. Through circle extraction, center positioning,
and sorting, as shown in Fig. 10(b), each image can provide 31 x 27
feature points, as shown in Fig. 10(c).

The tilt angle of the Scheimpflug adaptor is respectively set to 0°, 5°,
10°, 15°, and 20°. At each angle, ten calibration images are captured by
arranging the calibration board in ten different postures. The calculated
intrinsic matrix A;Sn and the retrieved (a, §) are listed in Table 1. The
equivalent magnification m, is calculated through Eq. (14) and the op-
tical magnification m,, is derived by multiplying the equivalent magnifi-
cation m, with the pixel size p,. For each tilt angle, the intrinsic matrix
Ai‘ contains three valid values termed j, k, and . From the results we
can see that the retrieved « and B are quite close to the preset angles,
which experimentally proves the effectiveness of the proposed calibra-
tion method. However, due to the mechanical error caused by manual
operation, there are +0.5 degrees bias between the preset and retrieved
angles. The retrieved optical magnification m, of all situations are the
same to the specified magnification (0.185) even though the equivalent
magnification m, varies a little bit.

We also use another two calibration models and algorithms to an-
alyze the extracted calibration data, namely the orthogonal telecentric
model and the perspective pinhole model. The intrinsic matrixes and re-
projection errors are listed in Table 2. The reprojection errors in u and v
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direction with tilt angle change is shown in Fig. 13. With the orthogonal
telecentric model, a consistent internal matrix of the camera should be
solved based on each calibration pattern. However, with the data ac-
quired under the Scheimpflug condition, the equivalent magnification
differs between two axes and postures. Though the final internal matrix
can only be obtained by iterative optimization, the calibration error still
is bigger than that of our method because the tangential parameter is
lost. If a tangential value is added to the intrinsic matrix, a similar re-
sult can be obtained from our method. However, the physical meaning
of this variable refers to the production defect of the sensor, which of-
ten takes a tiny value so that the larger tangential value calculated from
the data acquired in Scheimpflug condition is inapplicable. In addition,
a significant deviation between the magnification in two axes does not
accord with the orthogonal telecentric model.

For the pinhole model, the difference with the telecentric model is
that it has a scaling factor s. The equivalent focal length of the perspec-
tive model is quite long to be approximated as a telecentric model. A
large equivalent focal length corresponds to a large distance of the op-
tical center from the sensor surface. Due to sensor tilt, it is necessary to
set different equivalent focal lengths in two axial directions. From the
calibration result shown in Table 2. In some cases, it matches better in
the reprojection error than the orthogonal telecentric model because the
tilt effect is offset by the difference in the axial focal lengths. However,
if B tilt is involved, another tangential parameter must be considered.
Overall, the comparison proves that our method constructs a more rea-
sonable model with minimum error under variable cases.

To intuitively show the recovered posture of the sensor after rotation
around u, and v, axis, we plot the sensor planes in camera space as
shown in Fig. 11, as well as the oblique, top, front, and side views of
the planes retrieved in five cases. The black rectangle is the untilted
sensor plane, while the blue rectangle is the tilt sensor plane. For a more
apparent distinction between the two planes, the untilted sensor plane
is placed in a lower position. It can be clearly seen from the front view
that the tilt angle increases gradually with the increase of the actual
preset angle. Correspondingly, the top view and side view also changes
as the sensor plane gets more and more sloping.

The lens distortion is then considered by introducing the lens dis-
tortion center estimation and iterated through Eq. (29). However, the
distortion parameters are relatively tiny and converged to different val-
ues. Besides, neither the re-projection errors nor the calibration results
show an apparent difference between considering and without con-
sidering distortion. The reason may be that the distortion of the lens
is so small that its effect is even overwhelmed by the noise of the
images.

(b)

—
QD
~—

20401y

03'975/d/eg.9:)

9€9100.5

31

27

Fig. 10. (a) Calibration board; (b) feature points in sorting; (c) extracted feature points.
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Table 1
The calculated intrinsic matrix and relative parameters from five situations with increasing preset
tilt angles.

Set tilt angles Agl 1 p m,(equivalent) m,(optical)
[-76.7146 0 0]
a=0°p=0° 0.0088 —76.7153 0 0.6366° 0.5920° —76.7105 —0.1841
| o 0 1]
[-76.7137 0 0]
a=5 p=0° 0.0348 —77.0143 0 5.0725° 0.2931° —76.7127 —0.1841
| o 0 1]
[-76.7200 0 0]
a=10°p=0° 0.1662 —77.9366 0 10.1606° 0.6927° —76.7144 —0.1841
| o 0 1]
[-76.7301 0 0]
a=15°=0° 0.3105 —79.5690 0 15.3736° 0.8434° —76.7218 —0.1841
| o 0 1]
[-76.7281 0 0]
a=20°p=0° 0.3779 —81.2584 0 19.2388° 0.8087° —76.7204 —0.1841
0 0 1
Table 2
The intrinsic matrixes derived from three models under five tilt angles.
Set tilt angle Orthogonal telecentric model Reprojection error Perspective pinhole model Reprojection error
[-76.7157 0 0] [3.634e° 0 2047.5]
a=0°pg=0° 0 —76.7163 0 (0.0603, 0.0591) K 0 3.618e° 1079.5 (0.0939, 0.0966)
| o 0 1 | 0 0 1]
[-76.7167 0 0] [1.981e° 0 2047.5]
a=5 p=0° 0 —77.0093 0 (0.0881, 0.0877) s 0 2.086€° 1079.5 (0.1297, 0.1079)
| o 0 1 | © 0 1]
[-76.7117 0 0] [2.188¢° 0 2047.5]
a=10°=0° 0 —77.9585 0 (0.2207, 0.1815) K 0 2.119e° 1079.5 (0.1757, 0.1202)
| o 0 1 | o 0 1]
[-76.7193 0 0] [1.185¢° 0 2047.5]
a=15°=0° 0 —79.6226 0 (0.3919, 0.2723) s 0 1.477¢° 1079.5 (0.1656, 0.1437)
| o 0 1 | o 0 1]
[-76.7260 0 0] [1.884¢° 0 2047.5]
a=20°p=0° 0 —80.8303 0 (0.4174, 0.1783) K 0 2.276e° 1079.5 (0.1747, 0.1188)
0 0 1 0 0 1
Intrinsic Posture 0 degrees 5 degrees 10 degrees 15 degrees 20 degrees

Oblique View |

unit (mm)

Top View ’ ; ‘| ‘| :

unit (mm) i i il

Front View S S IO b = ) J T Jf \ . \
unit (mm) . ! N | i

sideView || ——0—on | 1 | E | )
unit (mm) | |

Fig. 11. The oblique, top, front, and side view of the retrieved posture of the tilt sensor planes in five cases.

In summary, all the parameters of the lens are calibrated perfectly 5.2. Stereo rectification of dual-Scheimpflug telecentric cameras
with totally acceptable errors. The detailed calibration results are pro-
vided as in Fig. 12. In addition to the distribution map of the re- 5.2.1. Experimental setup and stereo calibration result
projection errors, the standard deviation of the re-projection errors in The stereo calibration and rectification of a dual-Scheimpflug tele-
two axes are also provided in both pixel coordinates (u,v) and equiva- centric system are performed to verify the proposed method introduced
lent camera space coordinates (xc, yc), respectively. in Section 0. The experimental setup is as shown in Fig. 14. Two cam-

eras are marked as Le ft Camera and Right Camera, respectively. Each
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Fig. 12. The tilt angle of the Scheimpflug adaptor and the re-projection error
of each situation.
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Fig. 13. The reprojection errors in u direction (a) and v direction (b) calculated
using three models under five tilt angles.
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Fig. 14. Experomemtal setup of the stereo Scheimpflug telecentric lenses.

camera is equipped with a bi-telecentric lens, adjusted in Scheimpflug
condition by tilt the Scheimpflug adaptor. A C-mount phase ring on the
top side of the Scheimpflug adaptor is used to adjust the relative an-
gle to the camera’s thread interface. In regular applications, the ring is
to avoid slanting images. However, in this subsection, we deliberately
rotate the phase ring of the two cameras to five different angles in or-
der to testify the effectiveness of the proposed stereo calibration and
rectification methods.

The cameras need to be calibrated under the same world coordinate
so that both cameras must share one calibration posture, and this posture
determines the unique world coordinate for the stereo system. Without
loss of generality, we take the horizontally placed posture to provide
uniqueness. The posture ambiguity is eliminated by capturing another
image after a preset displacement is applied on the calibration board.

Both lenses are placed on the top of the sample platform at an oblique
angle, and we adjust the tilt angle of the Scheimpflug adaptor to focus
the image plane on the sensor plane. Refer to Fig. 3, suppose the object
plane is at the front focal plane of the first lens, a deviation of Al occurs
in the object space causes a deviation of Al’ in the image space. Denote
T ae and A,,,, as the transverse magnification and axial magnification,

mag mag
respectively, and then we have

Apag =Ty’ ~ tand’ /tand (40)

The transverse magnification of the lens is 0.185, therefore
tan@’ /tand ~ 0.185 can be used as a criterion to guide the tilt angle set-
ting. There is an ~45° angle between the optical axes of the left and right
lenses in the experiment setup. According to Eq. (40), the tilt angles of
the cameras are set ~ +3.3°.

The phase rings of the two cameras are rotated to five situations, as
shown in Table 3. However, the angles (phases) are manually adjusted;
therefore, the actually turned angels are not precisely the same as the
preset values in Table 3. By applying the stereo calibration procedure
introduced above, we calculated the cameras’ intrinsic and extrinsic pa-
rameters under five situations.
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Table 3
The calibrated camera parameters of the five camera pairs.
Rotated
Phase(deg) 0 degrees +5 degrees +10 degrees +15 degrees +20 degrees
Camera L R L R L R L R L R
Intrinsic Tilt ~ a = 02858 a = 04391 « = 03640 @« = 03248 @« = 07895 a = 06964 a = 12733 a = 07805 a = 12542 a = 06611
Angles (deg) B = —3.2740 f = 34954 f = —33642 f = 38647 S = -31917 p = 37124 f= -33280 f = 3.5894 = —29789 f = 32119
Extrinsic 22.4001 22.0505 22,5902 22.1257 23.0527 21.5341 21.7055 22.4668 227571 20.3988
Rotation
Angle(deg)
Exmr?m i ~0.5836 0.5950 ~0.5767 05175 ~0.6272 0.4718 ~0.6841 0.4380 ~0.7611 0.4784
("ta“"; d‘S 11547 —1.1545 11547 ~1.1527 11532 ~1.1486 11477 ~1.1443 11326 ~1.1493
normalized) | 5719 0.5595 ~0.5780 0.6352 -0.5260 0.6768 -0.4635 0.7063 -03714 0.6710
Intrinsic Posture +0 degrees +5 degrees +10 degrees +15 degrees +20 degrees
Oblique View
unit (mm)
Top View o o o o o
unit (mm) X X : , :
Front View { ——— ’ _— { — [ ’
unit (mm) e 4+ 2 o 2 n s |1 e < =2 o 2 i e |1 s <« =2 o 2 n s |1 e < =2 o 2 s |1 e < 2 o 2 o
Side View |, | = S e S N eom— S | S m——
unit (mm)

Fig. 15. Camera sensor postures retrieved in five situations.

Based on the retrieved A,,, we can derive j, k, and I by Eq. (22). Then
the sensor tilt angle a and g can also be obtained by solving Eq. (24),
which are listed in the second row in Table 3. A positive s, corresponds
to a negative I and a clockwise rotation of the sensor around the optical
axis Z . By using Rodrigues’ rotation formula the rotation matrix is con-
verted to an angle and an axis represented by a vector about which the
target rotates the angle. The rotation matrixes of left and right cameras
under each situation make two camera coordinate systems rotate nearly
the same angles but in opposite directions relative to the common plane
where the world coordinate system locates. It should be noted that the
common plane is not perfectly horizontal, together with the sensor tilt,
makes the rotation matrix of the camera pair not be strictly symmetrical,
which is consistent with and can be confirmed from the data in Table 3.

The spatial location of sensor plane II relative to the ideal image
plane IIp is shown in Fig. 15. The blue rectangle represents the left cam-
era’s sensor tilt, while the red rectangle represents the right camera’s
sensor tilt. The black rectangle is a horizontally placed sensor plane for
reference. From the result, we can see that the sensor orientation varies
a little bit, only around X and Y ¢ axis but not Z . This is because the
lens is symmetrical about the optical axis so that the rotation around Z
axis does not make any sense to the imaging. The effect of the rotation
around Z . axis will not change the intrinsic parameters but the extrinsic
parameters. From the side view, we can see that when the angle of the
phase ring is zero, the sensor only tilts around its u axis. But when the
angle of the phase ring gradually increases, the sensor gradually appears
significant tilt around its v axis.

Fig. 16 shows the extrinsic parameters in the form of spatial graphs.
The black rectangle represents the calibration board, which is also the

11

O — XY plane of the world coordinate system. The blue rectangle and
the red rectangle respectively represent the Oo-X Y ¢ plane of the left
and right camera. The telecentricity renders the camera coordinates in-
sensitive in the change along its Z axis. Therefore for ease of display,
the camera coordinate systems are shifted along their Z axes to make
them be closer for observation. In the meanwhile, the world coordinate
system is also shifted along its Z axis.

5.2.2. Stereo rectification result

The stereo rectification can be realized based on Eq. (39). For each
integral pixel coordinate p/, of the rectified image, its corresponding
sub-pixel coordinate on the original image is obtained by calculating
pr- The rectified image can be reconstructed by sub-pixel interpolating
the original image based on p; . In the first experiment, the calibration
board image representing the shared world coordinate system, is used as
the original image pair. The rectification result is presented in Fig. 17,
from which we can clearly figure out that after the rectification, the
pixels in the left and right rectified images are strictly transformed in
the same vertical position.

In order to verify the effectiveness of the proposed method for ar-
bitrarily placed objects, a QR code pattern is printed and used as the
target. The rectified result is as shown in Fig. 18, in which the left two
columns are the initially captured image pairs and the right two columns
are the rectified images. The cameras are rotated to the same relative
angles as that set in the last experiment. As shown in the top view in
Fig. 16, as the extrinsic rotation angles increases, the captured targets
correspondingly rotate to opposite angles from zero degrees to about
twenty degrees. Differently, the QR code patterns in the rectified im-
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Fig. 16. The spatial perspective of extrinsic rotation in five situations.

ages look rotated back to a consistent shape through the rectification,
and the epipolar lines are adjusted to the same horizontal position.

6. Discussion
6.1. The effect of the extrinsic ambiguity on the measurement

As we know that the world coordinates of the stereo vision system
are determined by the spatial position of one calibration pattern, and
the relative position of the camera depends on the calculated extrinsic
parameters. In order to make the disparity fully reflected on the cam-
eras, the angle and baseline of the cameras need to be carefully tack-
led in triangulation. However, if the retrieved extrinsic parameters are
not accurate, the camera’s position in the actual space cannot be truly
reconstructed. As shown in Fig. 8, when the external parameters are
ambiguous, the two cameras’ spatial positions may appear very close.
In this way, both the angle and baseline between the two cameras will
become much smaller, far from the structure requirements of binocular
measurements.

With the change of the signs of r|; and ry; in Eq. (24), there will be a
total of 16 different initial combinations of rotation matrix values before
optimization. In order to explain the measurement error introduced by
the ambiguity of the rotation matrix, we calibrated the system with ten
calibration images and deliberately changed the signs of r|; and r,; and
use the new ry3 and r,; as the initial values to re-optimize the camera
parameters. The left and right cameras both have four posture candi-
dates, resulting in sixteen possible posture combinations, as shown in
Fig. 19.

In fact, for two bi-telecentric cameras with two optical axes intersect-
ing or close to each other, the ambiguity of the rotation angle around
X axis will be clearly reflected in the structure shown in Fig. 19. Mean-
while, the ambiguity of the rotation angle around Y axis is too subtle

cos(6,) cos(63) —cos(6,) sin(63)

As shown in Fig. 20, the reconstruction of the calibration pattern is
performed here to show the influence of the external parameter’s am-
biguity on the measurement. The 3D data of the calibration markers
reconstructed from the wrong posture combination appears stretched to
several directions and mirrored. Even subtle differences can cause sig-
nificant distortion to the 3D data, which is not allowed in high-precision
vision-based measures. Nevertheless, the good news is that the rotation
angle around Y axis can also be retrieved through a converged iteration
procedure even with an incorrect initial value if specific conditions are
satisfied, which will be discussed in the next sub-section.

6.1.1. The effect of the calibration posture on the intrinsic matrix

The number and position of the calibration postures decide whether
the solution exists and the camera parameters’ accuracy. Since four un-
knowns exist in Eq. (20), at least four calibration patterns are required.
The rotation and translation matrix need to be controlled to ensure that
the equations in Eq. (20) are linearly independent of each other. To
be specific, the augmented matrix composed of equation Eq. (19) de-
rived from all the calibration patterns should be full rank, and if not,
the solution would be quite unstable or does not exist. Each calibration
posture corresponds to an equation, and three situations will cause the
augmented matrix to be rank deficient.

Situation 1 Only translation between the calibration postures

In this situation, referring to Eq. (13), only 7, and 7, changes, fol-
lowed by the changing of h,4, and h,, while h,;, h,, h,,, and h,, re-
main unchanged. Therefore, no contribution is made by translation to
the augmented matrix.

Situation 2 Only rotation around the Z-axis

Suppose that the world coordinate system of a particular calibrated
posture is obtained by successively rotating the camera coordinate sys-
tem around its Z --axis, Y c-axis, and X -axis by 65, 0,, 6, respectively.
The corresponding rotation matrix is

sin(6,)

cos(6;) sin(03) — cos(65) sin(f; ) sin(, )cos(8;) cos(f3) — sin(;) sin(f,) sin(f3)— cos(H,) sin(d;) 41)
sin(#, ) sin(63) — cos(8;) cos(#5) sin(h,)cos(83) sin(8;) + cos(;) sin(h,) sin(B3)cos(f;) cos(6,)

to distinguish, so it is not easy to judge whether the rotation angle is
correct through direct observation.

This matrix is also the rotation matrix R from the coordinates of the
points in the world coordinate system to the camera coordinates system.
By incorporating Eq. (41) into the homography matrix, we can simplify

12
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Fig. 17. The rectification of the images containing the calibration pattern. (a) — (e) Orignal and rectified image pairs under five rotation angles. Black rectangles
mark the circled areas on the original image pairs. Blue and red rectangles respectively mark the circled areas on the rectified images.

the coefficients in Eq. (20) as

1 1
2 2 .
_(hn + hlz) —j?cos%0,
—(h2, +h) —k2cos26, — sin?0;sin’0, — 21 sin 8, sin 6, cos B, — I2cos26, (42)
2(hy1hyy + hiahy) 2j(Icos?6, + sin 0, sin 6, cos 6, )
_(h12h21 — h11h22)2 —j2k2005291005202

If another calibration posture has the same Z-axis direction, the third
column in Eq. (41) is the same as the first one. Then the angles of the two
postures around the X --axis, Y c-axis are the same, being both 6, and
0,. This means that the two calibration postures will provide the same

13

augmentation coefficient as Eq. (42) states, which means the calibration
image formed by the rotation in the calibration plane (around the Z-
axis) has no contribution to the solution of the equation.
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(a)

Fig. 18. The rectification of the images containing the QR code pattern. (a) - (e) Orignal and rectified image pairs under five rotation angles. The correct information
can be scanned by a smartphone from both the original images and the rectified images.

Situation 3 Different posture but the same picture captured

This is a situation that is easy to explain and understand but unlikely
to happen. One calibration image corresponds to two spatial postures of
the board, with their depth distribution being mirrored along the Z-axis.
In this case, the rotation angles around three axes should all be the same
but in the opposite direction, which has a reasonably small probability
of occurrence.
y The above-introduced situations should be consciously avoided to
make all the calibration images provide valid equations to Eq. (20). Be-
sides, to ensure that the augmented matrix has a smaller condition num-
ber to obtain a more stable solution, it is necessary to avoid the rotation

Fig. 19. Four initial candidates of the rotation matrix of the left camera (a) and
right camera (b).

14
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Fig. 20. The reconstructed cloud data of the markers from ten calibration patterns. Each subgraph corresponds to one calibration image and has sixteen results

caused by the 4 x 4 combinations.

angle 6, and 0, from becoming zero degrees or ninety degrees (actually
impossible).

7. Conclusions

In this paper, we derived a concise imaging model and proposed
a plane calibration method to solve the camera parameters in the cal-
ibration of telecentric lenses in Scheimpflug conditions. The intrinsic
parameters containing the sensor tilt angles and the lens magnification
are expressed as three parameters that can be directly solved base on the
homography matrix. On this basis, the Scheimpflug stereo rectification
method was proposed and verified through two sets of experiments.

In the discussion part, we have the conclusion that the initial rota-
tion angles need not be precisely the ground truth. The ambiguity can
be eliminated through Rodrigues rotation formula based optimization
procedure provided that the rotation direction is roughly correct. We
also discussed how the postures of the calibration boards influence the
calibration accuracy and concluded several situations under which the
postures are ineffective.

The success of the calibration and rectification of the telecentric lens
in Scheimpflug conditions will offer a valuable reference in system de-
sign with a more considerable measurement depth of field for fast and
accurate microscopic 3D measurement applications such as DIC, struc-
tured light projection.
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