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a b s t r a c t 

In the lens-based imaging model, the Scheimpflug principle is expressed as the object plane, the image plane, and 

the lens plane intersect in a line. With this principle, the focused object plane in the lens’s object side can be tilted 

by placing a tilted sensor at the image side of the lens; thereby, multi-cameras can be focused on the same object 

space with an overlapping field of view and depth of field. For Scheimpflug cameras, additional tilt angles between 

the camera sensor and the optical axis are introduced, which has been well studied in pinhole cameras’ calibration 

methods. Telecentric lens, as a commonly used lens type, has constant magnification in the axial direction and 

has a wide range of applications in close-range photogrammetry. To calibrate and rectify the telecentric lenses 

in Scheimpflug conditions, we derived a concise imaging model by expressing the sensor tilt angles and the lens 

magnification into a simplified intrinsic matrix. Based on the derived imaging model, an integrated calibration 

algorithm without solving the tilt angles and a stereo-rectification method for stereo matching are developed. 

The effectiveness and accuracy of the proposed methods are verified by experiments, including the comparison 

with the traditional telecentric model and pinhole model. Combined with the experimental results, we analyzed 

the potential impact of the extrinsic rotation matrix’s ambiguity, verified whether the lens distortion affects the 

re-projection error, and discussed how the calibration posture influences the calibration accuracy. 
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. Introduction 

Stereo vision plays an essential role in non-contact 3D measurement

 1 , 2 ], which employs two cameras to achieve applications such as visual

ynthesis, terrain surveying, and deformation detection [3–7] . In the 3D

easurement of small objects that require higher accuracy, the lens’s

orking distance needs to be reduced to achieve a small field of view and

 high numerical aperture. The stereo microscope is a commonly used

bservation tool for microscopic targets, containing two independent

icroscopic optical paths. Nevertheless, it is more suitable for direct

bservation by the human eyes and needs some modifications before it

an be used for quantitative 3D measurement [8–10] . 

When used in machine vision applications, a telecentric lens provides

n optical path with a small field of view and provides a fixed size,

igher resolution, and lower distortion imaging within a considerable

epth of field. These characteristics are of great significance to binocu-

ar systems under the microscopic field of view. Scholars have carried
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ut a series of calibration methods for telecentric lenses to improve the

ystems’ accuracy, flexibility, and efficiency involving telecentric lenses

 7 , 11–15 ]. Liu et al. [16] used a 3D gauge as the calibration target and

ses the factorization method and beam adjustment to realize the tele-

entric microscopic 3D measurement system’s calibration. Although the

D gauge can directly provide spatial data to solve all the rotation ma-

rix parameters, it requires much higher manufacturing accuracy. For a

icroscopic view with a limited depth of field, the whole body of the

D calibration block is difficult to be imaged entirely in focus. 

In recent years, the plane calibration method has been proposed and

eveloped [ 7 , 11 , 14 , 16–21 ]. In the perspective model camera, all pa-

ameters can be solved using only standard plane gauge [22] . Li et al.

11] proposed a telecentric lens calibration method and used it in a tele-

entric microscopic 3D measurement. A plane with a 2D comb function

istributed circles is applied as the calibration target in this method. A

eglected issue is that the depth insensitivity of a telecentric lens in the

ptical axis direction leads to uncertainty of the plane posture, which
g University of Science and Technology , No. 200 Xiaolingwei Street , Nanjing , 
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Fig. 1. The optical model of (a) an object-side telecentric lens; (b) an image-side 

telecentric lens. In an object-side telecentric lens, the aperture stop is installed at 

the focal plane in the image space; In an image-side telecentric lens, the aperture 

stop is installed at the focal plane in the object space. 

2

 

l  

a  

S

2

 

w  

i  

T  

i  

d  

c  

a  

fi  

i  

s  

t  

d

 

t  

t  

b  

t

 

c  

a  

s  

s  

d  

s  

o  

p

2

 

akes the extrinsic matrix of the imaging model challenging to deter-

ine [ 23 , 24 ]. To solve this problem, Chen et al. [7] proposed obtaining

he image of the calibration target in a shifted position by a translation

tage to help determine the normal direction of each calibration pose.

i et al. [19] proposed a microscopic fringe projection profilometry sys-

em that includes a long-distance lens for the projector and a telecentric

ens for the camera. The pixel coordinates of the feature points of the

rojector’s light path are obtained by the phase-shifting method. Then

he relative position of all the calibration poses can be obtained, thereby

roviding the 3D coordinates of all the feature points of all calibration

oses, which also solves the extrinsic ambiguity problem. 

The calibration methods of telecentric cameras have been greatly

mproved thanks to the continuously proposed calibration algorithms.

owever, a problem has to be faced when conducting measurement

ithin a small field of view, which is the depth of field is much smaller

han that under the macro field of view, and the telecentric camera is

o exception. 

Scheimpflug principle can be described as tilting the camera sensor

o that the focused object plane in front of the lens can be tilted, thereby

xtending the depth of field in the object space [25–30] . This is why the

cheimpflug camera offers a wide range of applications in the field of

ypical close-range photogrammetry, particle image velocity, and digital

mage correlation. 

Scheimpflug principle is also used in microscopic 3D measurement

ith telecentric lenses. In the multi-view-based microscopic 3D mea-

urement, there is still a problem that it is hard to make a maximized

uperposition of the sharply imaged area of different optical paths due

o the limited depth of field [31] . Steger [32] proposed a comprehensive

nd versatile camera model for cameras in Scheimpflug conditions but

id not provide a calculation method to get initial values of the param-

ters. Wang [31] applied four telecentric lenses in Scheimpflug condi-

ions to construct a multi-view fringe projection 3D microscopy system.

n this work, the cameras are calibrated using the general imaging model

33] , which considers that imaging is the process of collecting incoming

ays from the scene onto the sensor. Mei [30] adopted the Scheimpflug

ondition in a telecentric lens-based stereoscopic vision 3D measure-

ent system. In this work, the Scheimpflug condition is calibrated us-

ng HALCON’s method, which independently involves and calculates the

otation and tilt angles without considering the affine ambiguity. Peng

15] also applied the Scheimpflug telecentric lens in a fringe projec-

ion system and derived a model to compensate for the image distortion

aused by the sensor tilt based on the geometric theory. However, this

odel is only applicable for the object side telecentric lenses and lim-

ted within a relatively small tilt angle as the tilt is molded as part of the

istortion. Moreover, the model illustrated here requires that the length

f the lens should be provided in advance, which in practice is not easy

o obtain [28] . 

In this paper, in order to improve the imaging quality in multi-view

D sensing by conveniently using the Scheimpflug condition, we pro-

ose a simplified matrix-based imaging model for a bi-telecentric lens

n Scheimpflug condition by establishing a direct mapping relationship

etween the 3D coordinate of the object and the 2D coordinates on the

amera sensor. In our method, the tilt angles of the sensor are also in-

roduced but are converted into the magnification variation in two di-

ections and a tangential parameter. The detailed solution of the imag-

ng model is derived, based on which a telecentric stereo-rectification

ethod in Scheimpflug condition is developed. In the experiments,

ingle-camera calibration and stereo rectification of dual-Scheimpflug

elecentric cameras are successfully performed, based on which we can

onclude that the proposed concise imaging model is correct and the cor-

esponding parameter solving method is effective. After homography-

ransform-based epipolar rectification, stereo matching processes

n DIC [34] or fringe projection-based 3D measurement [35–37]

re simplified into one-dimensional searching, which dramatically im-

roves the measurement efficiency. 
c  

2 
. The imaging model of telecentric lenses 

In this section, we briefly introduce the three kinds of telecentric

enses: the object-side telecentric lenses, image-side telecentric lenses,

nd bi-telecentric lens (also known as the bilateral telecentric lens) in

cheimpflug condition. 

.1. Object-side and image-side telecentric lenses 

The object-side telecentric lens model can be simplified to a lens

ith its entrance pupil is at infinity. As shown in Fig. 1 (a), an aperture

s added at its rear focal plane to limit the angle of the imaging light.

he light emitted from point 𝑃 is imaged at point 𝑝 by the beam pass-

ng through this aperture only. This imaging model possesses a fixed

istance between the lens and the camera sensor so that the chief ray

an remain unchanged while the object point moves nearer or further

long the optical axis; that is how the characteristic of constant magni-

cation being ensured. Objects beyond the depth of field will cause the

mage to blur but will not change the image size. However, the imaging

ide has perspective characteristics. If the camera sensor moves or tilted,

he imaging magnification will change or no longer maintain uniform

istribution. 

Some object-side telecentric lenses provide a manual focus function

o facilitate the measurement of objects at different distances. However,

he lens’s telecentricity will lose when the object distance is too long

ecause the very first lens will gradually replace the aperture stop as

he aperture of the entire imaging system. 

As the name suggests, the image-side telecentric lens has opposite

haracteristics to the object-side telecentric lens. Its exit pupil is located

t infinity by adding an aperture stop at the focal plane in the object

pace shown in Fig. 1 (b). An exit pupil at infinity makes the lens image-

ide telecentric. This property minimizes any angle-of-incidence depen-

ence of the sensor or any beam-splitter prism assembly behind the lens,

uch as a color separation prism in a three-CCD camera. The uniformity

f the illumination light on the image side also makes them suitable for

hotography and radiometry. 

.2. Bi-telecentric lens in Scheimpflug condition 

As Fig. 2 shows, a bi-telecentric lens (also known as a bi-lateral tele-

entric lens) is composed of two sets of lenses called object-side lens
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Fig. 2. The optical model of a bi-telecentric lens. The object-side lens’s rear focal 

plane coincides with the front focal plane of the image-side lens at a common 

plane where an aperture stop is placed. 

Fig. 3. The schematic of the image property of a bi-telecentric lens in 

Scheimpflug condition. 

a  

c  

p  

w  

c  

s  

f  

d  

o  

s  

H  

i  

p

 

m  

i  

a  

c  

i  

l

 

S  

t  

s  

p  

o  

t  

i  

l

 

𝑙

a  

t  

a  

t

 

c  

d  

Fig. 4. The distorted images captured by a pinhole camera in Scheimpflug con- 

ditions with different tilted angles (a) and a bi-telecentric camera in Scheimpflug 

conditions with different tilted angles (b). 

Fig. 5. Simplified schematic of the imaging process and the coordinate systems 

of a bi-telecentric camera. 
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nd image-side lens, respectively. The object-side lens’s rear focal plane

oincides with the front focal plane of the image-side lens at a common

lane where an aperture stop is placed. This aperture stop cooperates

ith the object-side lens to form telecentricity in the object space and

ooperates with the imaging lens to form telecentricity in the image

pace. The magnification of the bi-telecentric lens is determined by the

ocal lengths of the two sets of lenses together, so no matter the working

istance or the camera sensor’s position changes, it will not change the

ptical magnification. This feature makes the bi-telecentric lens most

uitable for the measurement field based on optical image processing.

owever, a specific working distance should be satisfied when apply-

ng bi-telecentric lenses to minimize imaging distortion and maintain

erfect telecentricity. 

The Scheimpflug condition can be applied in telecentric lenses to si-

ultaneously achieve fixed magnification and considerable field imag-

ng depth [ 15 , 30–32 ]. According to the Scheimpflug principle, if the

ngle between the camera sensor and the optical axis is changed, the

amera sensor is no longer perpendicular to the optical axis. Correspond-

ngly, the object plane conjugate to the camera sensor will also be no

onger perpendicular to the optical axis. 

As shown in Fig. 3 is a bi-telecentric lens imaging model in

cheimpflug condition. 𝑙 1 and 𝑙 , 1 are two lines perpendicular to the op-

ical axis and are conjugate to each other in the object space and image

pace. 𝑃 is an object point on 𝑙 1 in the object space, and 𝑝 is the image

oint on 𝑙 , 1 in the image space. 𝑙 2 and 𝑙 , 2 are conjugated tilted lines in the

bject and image space, respectively. Point 𝑃 1 on 𝑙 2 is closer to the lens

han point 𝑃 and has its image point 𝑝 1 further to the lens than point 𝑝

n the image space. When the distance between the object point and the

ens changes, the image point is only displaced in the axial direction. 

However, if the digital image sensor is tilted, for example, from 𝑙 , 1 to

 

, 

2 the captured images would be changed depends on the tilt angles 𝛼

nd 𝛽 of the sensor. In Fig. 4 , we provide several cases of the effect to

he images caused by sensor tilt of pinhole (perspective model) cameras

nd telecentric (affine model) cameras, from which we can distinguish

he difference between the two imaging models. 

To derive the imaging model of the bi-telecentric lens in Scheimpflug

ondition, we first assume that the camera sensor is installed perpen-

icular to the lens axis, and on this basis, characterize the Scheimpflug
3 
ondition by introducing two tilt angles, 𝛼 and 𝛽, which are the angles

he sensor rotates around the horizontal and vertical axes, respectively.

.2.1. Imaging model of an ideal bi-telecentric camera 

Refer to Fig. 5 , suppose a point 𝑃 ( 𝑥, 𝑦, 𝑧 ) in the world coordinate is

maged on the camera sensor denoted as point 𝑝 ( 𝑢 𝑝 , 𝑣 𝑝 ) . Its homogeneous

mage coordinate is projected from the camera coordinate in an affine

orm as 

 

 

 

 

𝑢 𝑝 
𝑣 𝑝 
1 

⎤ ⎥ ⎥ ⎦ = A 𝑃 𝐶 = 

⎡ ⎢ ⎢ ⎣ 
𝑚 0 𝑢 0 
0 𝑚 𝑣 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝑥 𝑐 
𝑦 𝑐 
1 

⎤ ⎥ ⎥ ⎦ (1)

Here, 𝑚 is the equivalent magnification of the telecentric lens. For an

deal telecentric camera, 𝑒 ( 𝑢 0 , 𝑣 0 ) is the image coordinate of the optical

enter, and 𝑢 0 , 𝑣 0 can be set as zeros as there is no actual perspective cen-

er of a telecentric lens. For a particular system, there exists a unique

orld coordinate system. The pattern on the calibration board deter-

ines 𝑋 and 𝑌 , as well as the original point 𝑂. The world and camera

oordinate are related by a rotation matrix R and a translation vector t
s 

 

 

 

 

𝑥 𝑐 
𝑦 𝑐 
𝑧 𝑐 

⎤ ⎥ ⎥ ⎦ = R 

⎡ ⎢ ⎢ ⎣ 
𝑥 

𝑦 

𝑧 

⎤ ⎥ ⎥ ⎦ + t (2)

Here, R = [ r 𝑥 r 𝑦 r 𝑧 ] 𝑇 and t = [ 𝑡 𝑥 𝑡 𝑦 𝑡 𝑧 ] 𝑇 . Because of the

elecentricity in the image space, the variation of 𝑧 𝑐 will not change

he image position as illustrated in Fig. 3 [3] . Therefore, the whole pro-

ection of a point in the world coordinate 𝑃 ( 𝑥, 𝑦, 𝑧 ) to an image point

 ( 𝑢 𝑝 , 𝑣 𝑝 ) can be expressed as 

 

𝒑 

1 

] 
= 

⎡ ⎢ ⎢ ⎣ 
𝑚 0 𝑢 0 
0 𝑚 𝑣 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ 
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

A 

⎡ ⎢ ⎢ ⎣ 
𝑟 11 𝑟 12 𝑟 13 𝑡 𝑥 
𝑟 21 𝑟 22 𝑟 23 𝑡 𝑦 
0 0 0 1 

⎤ ⎥ ⎥ ⎦ 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐑 𝐭 

[ 
𝑷 

1 

] 
= 𝐇 

[ 
𝑷 

1 

] 
(3)

Here, H = A R t is the homography matrix, transforming the world

oordinates of objects into their corresponding image coordinates. 
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Fig. 6. The coordinate systems of the Scheimpflug bi-telecentric camera. The 

imaging coordinates of the tilted sensor are related to the ideal (not tilted) imag- 

ing coordinates by adding a rotation matrix based on 𝜶 and 𝜷 to the ideal bi- 

telecentric camera imaging model. 
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.2.2. Imaging model of a Scheimpflug bi-telecentric camera 

A camera sensor is a two-dimensional plane on which the image

oordinates are located. The imaging coordinates of the tilted sensor,

hich corresponds to the captured image, can be related to the ideal

not tilted) imaging coordinates by adding a rotation matrix to the ideal

i-telecentric camera imaging model [28] . 

As shown in Fig. 6 , plane Π is the sensor plane that intersects the

ptical axis at point 𝑂 𝐶 which is the optical center of the lens and 𝑂 𝐶 -

 𝐶 𝑌 𝐶 𝑍 𝐶 is the coordinate system of the telecentric lens. Πp is the hy-

othesized ideal plane that also intersects the optical axis at point 𝑂 𝐶 

nd is perpendicular to 𝑍 𝐶 axis. 𝑈 𝑃 - 𝑉 𝑃 and 𝑈 - 𝑉 are the pixel coordi-

ate systems of plane Πp and Π, respectively. Suppose an incident light

ertically irradiates plane Πp and respectively intersects plane Πp and Π
t point 𝑝 ( 𝑢 𝑝 , 𝑣 𝑝 ) and 𝑞( 𝑢, 𝑣 ) . Since plane Πp is an auxiliary surface that

oes not exist, the relationship between plane Π and plane Πp can be

ound by tilting plane Π around the 𝑌 𝐶 axis and 𝑋 𝐶 axis successively.

he tilt around the 𝑍 𝐶 axis can be regarded as the lens’s rotation, which

oes not affect the mathematical model of the imaging process. 

The imaging coordinate 𝑝 ( 𝑢 𝑝 , 𝑣 𝑝 ) in Eq. (3) corresponds to the un-

illed plane Πp and can be considered as the intermediate transition

ariable. The ultimate pixel coordinate 𝑞( 𝑢, 𝑣 ) is acquired by rotating

 ( 𝑢 𝑝 , 𝑣 𝑝 ) around 𝑌 𝐶 axis with angle 𝛽 and around 𝑋 𝐶 axis with angle 𝛼

uccessively. 

Refer to 𝑂 𝐶 - 𝑋 𝐶 𝑌 𝐶 𝑍 𝐶 coordinate system, the rotation matrix is noted

s 𝑅 𝑋𝑌 and expressed as 

 𝑋𝑌 = 𝑅 𝑋 

𝑅 𝑌 = 

⎡ ⎢ ⎢ ⎣ 
1 0 0 
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
cos 𝛽 0 sin 𝛽
0 1 0 

− sin 𝛽 0 cos 𝛽

⎤ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎣ 
cos 𝛽 0 sin 𝛽

sin 𝛼 sin 𝛽 cos 𝛼 − sin 𝛼 cos 𝛽
− cos 𝛼 sin 𝛽 sin 𝛼 cos 𝛼 cos 𝛽

⎤ ⎥ ⎥ ⎦ (4) 

The unit direction vector of ( 𝐮 𝐩 , 𝐯 𝐩 ) in plane 𝚷𝑝 are 𝐮 𝐩 ( 1 , 0 , 0 ) and

 𝐩 ( 0 , 1 , 0 ) . After rotation by 𝑹 𝑿 𝒀 the unit direction vector of 𝐮 and 𝐯 in
lane 𝚷 are 

 

 

 

 

 

 

 

 

 

𝑢 = 𝐑 𝑿 𝒀 𝐮 𝐩 = 

⎡ ⎢ ⎢ ⎣ 
cos 𝜷

sin 𝜶 sin 𝜷
− cos 𝜶 sin 𝜷

⎤ ⎥ ⎥ ⎦ 
𝑣 = 𝐑 𝑿 𝒀 𝐯 𝐩 = 

⎡ ⎢ ⎢ ⎣ 
0 

cos 𝜶
sin 𝜶

⎤ ⎥ ⎥ ⎦ 
(5) 

Taking pixel coordinates as the unit, 𝒑 ( 𝒖 𝒑 , 𝒗 𝒑 ) can be represented

y 𝒒 ( 𝒖 , 𝒗 ) because the pixel coordinates of the optical center 𝑶 𝑪 in

oth planes are the same and can be regarded as ( 𝒖 0 , 𝒗 0 ) . Refer to 𝑶 𝑪 -

 𝒀 𝒁 coordinate system, the spatial coordinate of point 𝒒 can be
𝑪 𝑪 𝑪 

4 
xpressed as 

 

(
𝒖 − 𝒖 0 

)
+ 𝒗 

(
𝒗 − 𝒗 0 

)
= 

⎡ ⎢ ⎢ ⎣ 
cos 𝜷

sin 𝜶 sin 𝜷
− cos 𝜶 sin 𝜷

⎤ ⎥ ⎥ ⎦ 
(
𝒖 − 𝒖 0 

)
+ 

⎡ ⎢ ⎢ ⎣ 
0 

cos 𝜶
sin 𝜶

⎤ ⎥ ⎥ ⎦ 
(
𝒗 − 𝒗 0 

)
(6)

The coordinate values of point 𝒒 in the 𝑿 𝑪 and 𝒀 𝑪 directions are the

ame as point 𝒑 because of the telecentricity so that the first two rows

f Eq. (6) are the same to ( 𝒖 𝒑 − 𝒖 0 , 𝒗 𝒑 − 𝒗 0 ) : 
 

(
𝒖 − 𝒖 0 

)
cos 𝜷 = 𝒖 𝒑 − 𝒖 0 (

𝒖 − 𝒖 0 
)
sin 𝜶 sin 𝜷 + 

(
𝒗 − 𝒗 0 

)
cos 𝜶 = 𝒗 𝒑 − 𝒗 0 

(7) 

Based on Eq. (7) , we can get the expression of 𝒒 ( 𝒖 , 𝒗 ) represented by

 ( 𝒖 𝒑 , 𝒗 𝒑 ) and ( 𝜶, 𝜷) as 

 

 

 

 

𝒖 

𝒗 

1 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
1∕ cos 𝜷 0 𝒖 0 

− tan 𝜶 tan 𝜷 1∕ cos 𝜶 𝒗 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
1 0 − 𝒖 0 
0 1 − 𝒗 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝒖 𝒑 
𝒗 𝒑 
1 

⎤ ⎥ ⎥ ⎦ (8) 

By introducing Eq. (8) into Eq. (3) , the final relationship between

mage point 𝒒 ( 𝒖 , 𝒗 ) and object point 𝑷 ( 𝒙 , 𝒚 , 𝒛 ) can be derived as 

 

 

 

 

𝑢 

𝑣 

1 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
𝑚 ∕ cos 𝛽 0 𝑢 0 

− 𝑚 tan 𝛼 tan 𝛽 𝑚 ∕ cos 𝛼 𝑣 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐀 𝐦 

⎡ ⎢ ⎢ ⎣ 
𝑟 11 𝑟 12 𝑟 13 𝑡 𝑥 
𝑟 21 𝑟 22 𝑟 23 𝑡 𝑦 
0 0 0 1 

⎤ ⎥ ⎥ ⎦ 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐑 𝐭 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝑥 

𝑦 

𝑧 

1 

⎤ ⎥ ⎥ ⎥ ⎦ = 𝐇 

[ 
𝑷 

1 

] 

(9) 

Here, 𝐇 = 𝐀 𝐦 

𝐑 𝐭 is the new homography matrix. The only changed

art is that the intrinsic matrix 𝐀 becomes 𝐀 𝐦 

. The changes are equiv-

lent to the magnification variation of 1∕ cos 𝜷 and 1∕ cos 𝜶 in the two

irections of the image coordinates, as well as an additional param-

ter − 𝒎 tan 𝜶 tan 𝜷 representing the tangential deformation. Compared

ith Peng’s work [15] , the tilt effect is simplified from tangential distor-

ion to the intrinsic parameter changes, which is due to the orthogonality

f the bi-telecentric optical path on both sides of the lens. 

However, as Eq. (9) shows, there is an offset ( 𝒖 0 , 𝒗 0 ) in 𝐀 𝐦 

. In fact,

he telecentricity in the image space enables the offset ( 𝒖 0 , 𝒗 0 ) be set

ny values because the optical center is located at infinity [7] . If the

istortion of the bi-telecentric lens can be reduced to a negligible degree,

e can move the origin of the camera coordinates 𝑶 𝑪 to the origin of the

ixel coordinates. In the subsequent calibration, ( 𝒖 0 , 𝒗 0 ) in 𝐀 𝐦 

are set to

ero in a distortion-free case to facilitate the calculation procedure. 

It should be noted that if 𝜶 and 𝜷 are reversed at the same time,

 𝐦 

will not change, which means that there are two solutions of 𝐀 𝐦 

.

his is also because of telecentricity in the image space. If It is neces-

ary to analyze the effect of distortion, there are two ways to determine

he signs, one is based on the involvement of the lens distortion model,

nd the other is based on the prior knowledge of the imaging system.

owever, the distortion of the lens may not provide enough perspective

ffect; thus, the signs can only be determined by the second way. In a

pecific system, the larger of the two tilt angles is easy to estimate, based

n which the other tilt angle can be determined according to the sign

onstraint relationship of − 𝒎 t 𝐚𝐧 𝜶 tan 𝜷 in the retrieved 𝐀 𝐦 

. 

. Calibration of single Scheimpflug bi-telecentric camera 

.1. Simplified imaging model of a Scheimpflug bi-telecentric camera 

As mentioned in the previous section, lens distortion is not consid-

red in the intrinsic parameter calibration step, and ( 𝒖 0 , 𝒗 0 ) can be set

s any values. For convenience, we select the first pixel of the sensor

s ( 𝒖 0 , 𝒗 0 ) so that the perpendicular plane 𝚷𝑝 can be regarded as being

btained by tilt the sensor plane 𝚷 around its first pixel by two angles

and 𝜷, as shown in Fig. 7 . In this way, the intrinsic matrix is simply

xpressed as 

 

𝐒 
𝐦 

= 

⎡ ⎢ ⎢ ⎣ 
𝒎 ∕ cos 𝜷 0 0 

− 𝒎 tan 𝜶 tan 𝜷 𝒎 ∕ 𝐜𝐨𝐬 𝜶 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ (10)
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Fig. 7. The coordinate systems of the Scheimpflug bi-telecentric camera with 

( 𝒖 0 , 𝒗 0 ) being zeros. 
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Of course, 𝒕 𝒙 and 𝒕 𝒚 should be accordingly shifted to be homologous

ith the new 𝑶 𝑪 . The imaging model thus becomes 

 

 

 

 

𝑢 

𝑣 

1 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
𝑚 ∕ cos 𝛽 0 0 

− 𝑚 tan 𝛼 tan 𝛽 𝑚 ∕ cos 𝛼 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐀 𝐒 𝐦 

⎡ ⎢ ⎢ ⎣ 
𝑟 11 𝑟 12 𝑟 13 𝑡 𝑥 
𝑟 21 𝑟 22 𝑟 23 𝑡 𝑦 
0 0 0 1 

⎤ ⎥ ⎥ ⎦ 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐑 𝐭 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑥 

𝑦 

𝑧 

1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎣ 
ℎ 11 ℎ 12 ℎ 13 ℎ 14 
ℎ 21 ℎ 22 ℎ 23 ℎ 24 
0 0 0 1 

⎤ ⎥ ⎥ ⎦ 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐇 

[ 
𝑷 

1 

] 
(11) 

.2. The 2D planar calibration method 

.2.1. Intrinsic parameters calibration without lens distortion 

The calibration board is placed in a specific posture to ensure that

he whole plane is within the imaging depth of field to obtain a clear

attern image. After capturing the calibration pattern, the center co-

rdinates of 𝑵 circle markers are extracted by the ellipse fitting func-

ion. Because there is no perspective distortion, the ellipse center’s bias

oes not need to be compensated [27] . The extracted center coordinates

re noted as 𝐩 𝐜 : 𝒑 1 ( 𝒖 1 , 𝒗 1 ) , 𝒑 2 ( 𝒖 2 , 𝒗 2 ) , ⋯ 𝒑 𝑵 

( 𝒖 𝑵 

, 𝒗 𝑵 

) . The world coordi-

ates system of each calibration posture is determined by its feature

oints, and the three-dimensional coordinate distribution of these fea-

ure points are correspondingly noted as 𝐏 𝐜 : 𝑷 1 ( 𝒙 1 , 𝒚 1 , 0 ) , 𝑷 2 ( 𝒙 2 , 𝒚 2 , 0 ) ,
 𝑷 𝑵 

( 𝒙 𝑵 

, 𝒚 𝑵 

, 0 ) . Because the 𝒛 of each point is zero so that 𝐏 𝐜 is shorted

s 𝐏 𝐒 𝐜 = ( 𝒙 𝒊 , 𝒚 𝒊 ) and 𝐑 𝐭 is shorted as 𝐑 

𝐒 
𝐭 

 

𝐒 
𝐭 = 

⎡ ⎢ ⎢ ⎣ 
𝒓 11 𝒓 12 𝒕 𝒙 
𝒓 21 𝒓 22 𝒕 𝒚 
0 0 1 

⎤ ⎥ ⎥ ⎦ (12)

Therefore, the imaging model of the calibration pattern is further

implified as 

 

 

 

 

𝑢 𝑖 
𝑣 𝑖 
1 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
𝑗 0 0 
𝑙 𝑘 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ 
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝐀 𝐒 𝐦 

⎡ ⎢ ⎢ ⎣ 
𝑟 11 𝑟 12 𝑡 𝑥 
𝑟 21 𝑟 22 𝑡 𝑦 
0 0 1 

⎤ ⎥ ⎥ ⎦ 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐑 𝐒 𝐭 

⎡ ⎢ ⎢ ⎣ 
𝑥 𝑖 
𝑦 𝑖 
1 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
ℎ 11 ℎ 12 ℎ 14 
ℎ 21 ℎ 22 ℎ 24 
0 0 1 

⎤ ⎥ ⎥ ⎦ 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐇 𝐒 

[ 
𝐏 𝐒 𝐜 
1 

] 
(13)

ith 

 

 

 

 

 

𝑗 = 𝒎 ∕ cos 𝜷
𝑘 = 𝒎 ∕ cos 𝜶
𝑙 = − 𝑚 tan 𝜶 tan 𝜷

(14) 

The parameters can be solved in three steps: Step 1 . Calculate the

omography matrix; Step 2 . Solve 𝒋 , 𝒌 , and 𝒍 according to the unit or-

hogonality of the rotation matrix, and Step 3 . Get 𝜶 and 𝜷 from 𝒋 , 𝒌 ,
5 
nd 𝒍 . The last step is to verify whether the calibrated result is consis-

ent with the actual system and is unnecessary for subsequent stereo

ectification. 

tep 1. Calculate the homography matrix 

This step is to solve 𝒉 11 , 𝒉 12 , 𝒉 21 , and 𝒉 22 in 𝐇 

𝐒 . The relationship

etween the world coordinates ( 𝒙 𝒊 , 𝒚 𝒊 ) of each feature point and its pixel

oordinates ( 𝒖 𝒊 , 𝒗 𝒊 ) in the image provides two equations as shown in Eq.

15) . Since three non-collinear points determine a plane, the rank of the

ugmented coefficient matrix derived from all the points on a plane is

ix; thus, the solution to Eq. (15) provided by all points in a calibration

attern exists. All the six variables in 𝐇 

𝐒 can be solved directly by using

he least square method [3] . 

 

 

 

 

 

 

 

𝒙 1 𝒚 1 1 0 0 0 
0 0 0 𝒙 1 𝒚 1 1 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝒙 𝑵 

𝒚 𝑵 

1 0 0 0 
0 0 0 𝒙 𝑵 

𝒚 𝑵 

1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝒉 11 
𝒉 12 
𝒉 14 
𝒉 21 
𝒉 22 
𝒉 24 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝒖 1 
𝒗 1 
⋮ 
𝒖 𝑵 

𝒗 𝑵 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(15) 

tep 2. Solve 𝒋 , 𝒌 , and 𝒍 according to the unit orthogonality of the ro-

ation matrix 

First, we need to express the rotation parameters ( 𝒓 11 , 𝒓 12 , 𝒓 21 , 𝒓 22 )

s the relationship between ( 𝒉 11 , 𝒉 12 , 𝒉 21 , 𝒉 22 ) and ( 𝒋 , 𝒌 , 𝒍 ) . Based on

q. (13) we can write 𝐑 

𝐒 
𝐭 as 

 

𝐒 
𝐭 = 𝐀 

𝐒 −1 
𝐦 

𝐇 

𝐒 = 

⎡ ⎢ ⎢ ⎣ 
1∕ 𝒋 0 0 

− 𝒍 ∕ 𝒋 𝒌 1∕ 𝒌 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝒉 11 𝒉 12 𝒉 14 
𝒉 21 𝒉 22 𝒉 24 
0 0 1 

⎤ ⎥ ⎥ ⎦ (16)

So that 

 

 

 

 

 

 

 

𝒓 11 = 𝒉 11 ∕ 𝒋 
𝒓 12 = 𝒉 12 ∕ 𝒋 
𝒓 21 = 𝒉 21 ∕ 𝒌 − 𝒉 11 𝒍 ∕ 𝒋 𝒌 
𝒓 22 = 𝒉 22 ∕ 𝒌 − 𝒉 12 𝒍 ∕ 𝒋 𝒌 

(17) 

Then the unit orthogonality of 𝐑 is applied, that is 

 

 

 

 

 

⟨𝐫 𝒙 , 𝐫 𝒙 ⟩ = 1 ⟨𝐫 𝒚 , 𝐫 𝒚 ⟩ = 1 ⟨𝐫 𝒙 , 𝐫 𝒚 ⟩ = 0 
(18) 

After substituting Eq. (17) into Eq. (18) and combining similar terms,

e can get a simplified equation as 

 

2 𝒌 2 − 

(
𝒌 2 + 𝒍 2 

)(
𝒉 2 11 + 𝒉 2 12 

)
− 𝒋 2 

(
𝒉 2 21 + 𝒉 2 22 

)
+ 2 𝒋 𝒍 

(
𝒉 11 𝒉 21 + 𝒉 12 𝒉 22 

)
+ 

(
𝒉 12 𝒉 21 − 𝒉 11 𝒉 22 

)2 = 0 (19) 

It can be written as follows 

1 − 

(
ℎ 2 11 + ℎ 2 12 

)
− 

(
ℎ 2 21 + ℎ 2 22 

)
2 
(
ℎ 11 ℎ 21 + ℎ 12 ℎ 22 

)] ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑗 2 𝑘 2 

𝑘 2 + 𝑙 2 

𝑗 2 

𝑗𝑙 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
⏟⏞⏞⏟⏞⏞⏟

S 

= − 

(
ℎ 12 ℎ 21 − ℎ 11 ℎ 22 

)2 
(20) 

Note that there are four unknowns in 𝐒 ( 𝒔 1 , 𝒔 2 , 𝒔 3 , 𝒔 4 ) with 𝒔 1 = 𝒋 2 𝒌 2 ,

 2 = 𝒌 2 + 𝒍 2 , 𝒔 3 = 𝒋 2 , and 𝒔 4 = 𝒋 𝒍 . Therefore, at least four sets of cali-

ration images are required to solve 𝐒 . After 𝐒 is solved, four equa-

ions containing three unknown internal parameters are obtained. The

 𝒆 𝒗 𝒆 𝒏 𝒃 𝒆 𝒓 𝒈 - 𝑴 𝒂 𝒓 𝒒 𝒖 𝒂 𝒓 𝒅 𝒕 algorithm is applied here to get the optimized

esults. Because the magnification 𝒎 is a negative value and absolute

alues of 𝜶 and 𝜷 are less than 90°, the sign of 𝒋 , 𝒌 , and 𝒍 can be de-

ermined based on 𝑺 ( 𝒔 , 𝒔 , 𝒔 , 𝒔 ) . The initial value of 𝒋 , 𝒌 , and 𝒍 for
1 2 3 4 
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Fig. 8. The lens posture ambiguities of a stereo telecentric system. For a specific 

world coordinate system, due to the lens’s telecentricity, there exist two possible 

solutions for a single camera. 

i⎧⎪⎨⎪⎩
 

i

𝐹  

w

S

(  

 

𝜷  

c  

t

3

 

o  

u  

t⎧⎪⎪⎨⎪⎪⎩
 

n  

m  

a  

l  

i  

e  

r  

t  

𝒄  

p  

p

 

[  

d  

s  

b  

d  

s  

e  

a  

t

3

 

s  

t  

E  

h  

p  

c  

t  

E⎧⎪⎪⎪⎨⎪⎪⎪⎩
 

b  

a  

i  

o  

f

𝑭  

 

f  

p  

𝐪  

o  

o  

u

 

t  

c  

t  

f  

t  

c  

c⎧⎪⎪⎨⎪⎪⎩
 

s  

o  

s{
 

fi

𝐹  
teration can be calculated by 

 

 

 

 

 

𝒋 0 = − 

√
𝒔 3 

𝒌 0 = − 

√
𝒔 1 ∕ 𝒔 3 

𝒍 0 = − 

𝒔 4 √
𝒔 3 

(21) 

The objective function 𝑭 1 
𝒐 𝒑 𝒕 

of the 𝑳 𝒆 𝒗 𝒆 𝒏 𝒃 𝒆 𝒓 𝒈 - 𝑴 𝒂 𝒓 𝒒 𝒖 𝒂 𝒓 𝒅 𝒕 algorithm

s 

 

1 
𝑜𝑝𝑡 = argmin 

𝑗,𝑘,𝑙 

∑‖‖‖𝐅 − 𝐒 2 ‖‖‖ (22)

ith 𝐅 = [ 𝒋 2 𝒌 2 , 𝒌 2 + 𝒍 2 , 𝒋 2 , 𝒋 𝒍 ] 𝐓 and 𝐒 = [ 𝒔 1 , 𝒔 2 , 𝒔 3 , 𝒔 4 ] 𝐓 . 

tep 3. Get 𝒎 , 𝜶 and 𝜷 from 𝒋 , 𝒌 , and 𝒍 

Refer to Eq. (14) , we can derive that 

 𝒌 ∕ 𝒋 ) 2 cos 4 𝜶 − 

(
( 𝒍 ∕ 𝒋 ) 2 + ( 𝒌 ∕ 𝒋 ) 2 + 1 

)
cos 2 𝜶 + 1 = 0 (23)

By solving Eq. (23) , the rotation angle 𝜶 can be acquired, and then

can also be obtained based on Eq. (14) . The calcualted angle will be

ompared with the physical angles of the camera lens to make sure that

he imaging process is correctly modeled. 

.2.2. Extrinsic parameters 

After the intrinsic parameters are obtained, 𝐑 2 × 2 ( 𝒓 11 , 𝒓 12 , 𝒓 21 , 𝒓 22 )
f each calibration pattern can be calculated by Eq. (17) . Because 𝐑 is

nitary and orthogonal, the remaining elements of 𝐑 can be calculated

hrough 

 

 

 

 

 

 

 

𝒓 13 = ± 

√ 

1 − 𝒓 2 11 − 𝒓 2 12 

𝒓 23 = ± 

√ 

1 − 𝒓 2 21 − 𝒓 2 22 
𝐫 𝒛 = 𝐫 𝒙 × 𝐫 𝒚 

(24) 

However, the derived rotation matrix is not strictly orthogonal and

eeds to be orthogonalized using SVD for further optimization. Further-

ore, the telecentricity of the plane imaging process has its natural dis-

dvantage that the posture of the lens has ambiguities [24] , which could

ead to wrong 3D results based on a stereo telecentric system, as shown

n Fig. 8 . For the chosen world coordinate system, the 𝑳 - 𝒄 𝒂 𝒎 𝒆 𝒓 𝒂 can be

ither the 𝒓 𝒆 𝒂 𝒍 𝒄 𝒂 𝒎 𝒆 𝒓 𝒂 or the 𝒗 𝒊 𝒓 𝒕 𝒖 𝒂 𝒍 𝒄 𝒂 𝒎 𝒆 𝒓 𝒂 . The calibration pattern

epresented by the world coordinate system is recorded with exactly

he same image by the two cameras. It is the same situation for the 𝑹 -

 𝒂 𝒎 𝒆 𝒓 𝒂 , so the stereo structure cannot be uniquely determined. This

roblem is actually originated from Eq. (24) that both 𝒓 13 and 𝒓 23 have

ositive and negative solutions. 

To solve this problem, we adopt the method proposed by Chen

7] that uses a micro-positioning stage to provide a known translational
6 
isplacement 𝒛 𝒅 along the 𝒁 axis of the world coordinate system so that

igns of 𝒓 13 and 𝑟 23 can be confirmed. Together with the captured image

efore the displacement, the signs of 𝒓 31 and 𝒓 32 can be unambiguously

etermined before the subsequent optimization. For a stereo telecentric

ystem, only one calibration posture needs to be captured by two cam-

ras at the same time to eliminate its ambiguity of external parameters,

nd this calibration pose is used as the shared world coordinates for the

wo cameras. 

.2.3. Global optimization considering lens distortion 

Without considering the lens distortion, we have got the closed-form

olutions of the parameters in Eq. (13) . However, two problems still need

aking into account. The first one is that the derived rotation matrix from

q. (24) is not strictly orthogonal. The second one is that lens distortion

as not been calibrated. In this subsection, two non-linear optimization

rocesses are conducted in sequence to solve these problems. The opti-

al center 𝒆 ( 𝒖 0 , 𝒗 0 ) needs to be explicit to ack as the distortion center,

herefore the derived 𝐀 

𝐒 
𝐦 

and 𝐑 

𝐒 
𝐭 needs to be respectively adjusted to

q. (25) to keep 𝐇 

𝐒 the same as in Eq. (13) . 

 

 

 

 

 

 

 

 

 

𝐀 𝐦 

= 

⎡ ⎢ ⎢ ⎣ 
𝒋 0 𝒖 0 
𝒍 𝒌 𝒗 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ 
𝐑 

𝐒 
𝐭 = 

⎡ ⎢ ⎢ ⎣ 
𝒓 11 𝒓 12 𝒕 𝒙 − ( 𝒖 0 ∕ 𝒋 ) 
𝒓 21 𝒓 22 𝒕 𝒚 − ( 𝒗 0 ∕ 𝒋 ) 
0 0 1 

⎤ ⎥ ⎥ ⎦ 
(25) 

The initial values of the optical center (distortion center) 𝒆 ( 𝒖 0 , 𝒗 0 ) can

e set as the sensor center or derived by the optical center estimation

lgorithm [38] . The first non-linear optimization is to update the unique

ntrinsic matrix 𝐀 𝐦 

from different calibration postures as well as each

rthogonal rotation matrix 𝐑 and translation vector 𝐭 by minimizing the

ollowing function with 𝑳 𝒆 𝒗 𝒆 𝒏 𝒃 𝒆 𝒓 𝒈 - 𝑴 𝒂 𝒓 𝒒 𝒖 𝒂 𝒓 𝒅 𝒕 algorithm: 

 

2 
𝒐 𝒑 𝒕 

= 𝐚𝐫𝐠𝐦𝐢𝐧 
𝐀 𝐦 , 𝐑 , 𝐭 

∑
𝝃

∑
𝜼

‖𝐪 𝝃, 𝜼 − ̂𝐪 
(
𝐀 𝐦 

, 𝐑 𝝃 , 𝐭 𝝃 , 𝐏 𝝃, 𝜼

)‖2 (26)

Here, 𝝃 is the number of calibration postures, 𝜼 is the number of

eature points on the calibration pattern, 𝐪 𝝃, 𝜼 and 𝐏 𝝃, 𝜼 are the control

oints on the captured images and the calibration pattern, respectively.

̂
 is the projection of feature points 𝐏 𝝃, 𝜼 according to Eq. (13) . In the

ptimization process, the rotation matrix 𝐑 is firstly transformed into an

rthogonal matrix using SVD and then parameterized by three scalers

sing 𝑅𝑜𝑑𝑟𝑖𝑔𝑢𝑒 𝑠 , 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 . 

When 𝑭 2 
𝒐 𝒑 𝒕 

is minimized, the generated intrinsic matrix 𝐀 𝐦 

and ex-

rinsic matrix 𝐑 

𝐒 
𝐭 are utilized to calculate the initial guesses of distortion

oefficients in another non-linear optimization. Traditional camera dis-

ortion includes radial distortion and tangential distortion. Since the ef-

ect of tangential distortion can be alternatively represented by a part of

he Schiempflug condition, the distortion needs to be compensated only

ontains three radial coefficients denoted as 𝐤 = [ 𝒌 1 𝒌 2 𝒌 3 ] and

an be modeled in the camera coordinates system as 

 

 

 

 

 

 

 

[ 
𝒙 𝒅 
𝒄 

𝒚 𝒅 
𝒄 

] 
= 

[ 
𝒙 𝒖 
𝒄 

𝒚 𝒖 
𝒄 

] 
+ 

[ 
𝜹𝒙 
𝜹𝒚 

] 
, [ 

𝜹𝒙 
𝜹𝒚 

] 
= 

[ 
𝒙 𝒖 
𝒄 
𝒓 2 
𝒄 

𝒙 𝒖 
𝒄 
𝒓 4 
𝒄 

𝒙 𝒖 
𝒄 
𝒓 6 
𝒄 

𝒚 𝒖 
𝒄 
𝒓 2 
𝒄 

𝒚 𝒖 
𝒄 
𝒓 4 
𝒄 

𝒚 𝒖 
𝒄 
𝒓 6 
𝒄 

] [
𝒌 1 𝒌 2 𝒌 3 

]𝑻 (27) 

Here, ( 𝒙 𝒅 
𝒄 
, 𝒚 𝒅 

𝒄 
) and ( 𝒙 𝒖 

𝒄 
, 𝒚 𝒖 

𝒄 
) are the distorted and undistorted po-

itions in the camera coordinate system. 𝒓 2 
𝒄 
= 𝒙 𝒖 

2 
𝒄 

+ 𝒚 𝒖 
2 

𝒄 
. Based on the

ptimized results from Eq. (26) , we can derive the initial value of 𝐤 by

olving Eq. (27) with 
 [

𝒙 𝒅 
𝒄 

𝒚 𝒅 
𝒄 

1 
]𝑻 = 𝐀 

−1 
𝐦 

[
𝒖 𝒄 𝒗 𝒄 1 

]𝑻 [
𝒙 𝒖 
𝒄 

𝒚 𝒖 
𝒄 

]𝑻 = 𝐑 

𝐒 
𝐭 
[

𝒙 𝒚 1 
]𝑻 (28) 

Then the following non-linear optimization can be performed to re-

ne all the parameters with the following cost function: 

 

3 
𝑜𝑝𝑡 = 

argmin 
𝐀 , 𝐑 , 𝐭, 𝐤 

∑
𝜉

∑
𝜂

‖‖‖𝐪 𝜉,𝜂 − ̂𝐪 
(
𝐀 𝐦 

, 𝐑 𝜉 , 𝐭 𝜉 , 𝐤 , 𝐏 𝜉,𝜂

)‖‖‖2 (29)

𝐦 
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Here, �̂� is the new projection of the feature point 𝐏 𝝃, 𝜼 according to

q. (13) with the updated camera coordinate in Eq. (27) . After 𝑭 3 
𝒐 𝒑 𝒕 

is

inimized, the calibration of a telecentric camera is thoroughly com-

leted. 

. Stereo rectification of Scheimpflug telecentric lenses for 

tereo-matching 

As we know that 3D measurement or reconstruction relies on multi-

iew information, which usually needs to be extracted by means such

s fringe phase-matching or intensity feature correlation. The phase-

atching methods calculate the phase distribution map from the cap-

ured sinusoidal fringe patterns, and based on a reverse calibration pro-

edure of a projector’s optical path, then directly finds the matching

oint between the projector and the camera according to the phase val-

es [ 17 , 39 , 40 ]. The intensity correlation methods search the matching

oint by correlating the intensities around the source point with the in-

ensities around the candidate points in the other image through specific

outines [34] without the necessity to calibrate a projector. The recently

roposed microscopic telecentric stereo vision system [3] combines the

dvantages of the two kinds of methods. The critical stage is that the

tereo rectification renders the phase stereo matching between cameras

e much more efficient and convenient. 

The epipolar geometry of two telecentric cameras is similar to that

f two pinhole cameras [41–43] . An undistorted pixel 𝒑 𝑳 ( 𝒖 𝑳 , 𝒗 𝑳 ) in the

eft view corresponds to an epipolar line in the other view, on which the

atched pixel 𝒑 𝑹 ( 𝒖 𝑹 , 𝒗 𝑹 ) meets the affine epipolar constraint equation

s 

 𝒖 𝑹 + 𝒃 𝒗 𝑹 + 𝒄 𝒖 𝑳 + 𝒅 𝒗 𝑳 + 𝒆 = 0 (30)

here 𝒂 ∼ 𝒆 are five constants. The original images need to be trans-

ormed into new ones, and thus new sets of camera parameters are ac-

uired. Different from calculating the fundamental matrix between two

iews, we first calibrate the cameras with two sets of parameters for each

amera and then undistort them in the image coordinate, at last, rectify

hem with the newly derived imaging models. Here we use a prime to

epresent the new parameters and add subscript 𝑳 or 𝑹 to distinguish

he left and right cameras. Then we describe the original projection pro-

ess for both cameras as 

 

 

 

 

 

 

 

[ 
𝒑 𝑳 
1 

] 
= 𝐀 𝐦 𝑳 𝐑 𝐭 𝑳 

[ 
𝑷 

1 

] 
= 𝐇 𝐋 

[ 
𝑷 

1 

] 
[ 
𝒑 𝑹 
1 

] 
= 𝐀 𝐦 𝑹 𝐑 𝐭 𝑹 

[ 
𝑷 

1 

] 
= 𝐇 𝐑 

[ 
𝑷 

1 

] (31) 

And the rectified projection process for both cameras as 

 

 

 

 

 

 

 

[ 
𝒑 ′
𝑳 

1 

] 
= 𝐀 ′𝐦 𝑳 𝐑 

′
𝐭𝐋 

[ 
𝑷 

1 

] 
= 𝐇 

′
𝐋 

[ 
𝑷 

1 

] 
[ 
𝒑 ′
𝑹 

1 

] 
= 𝐀 ′𝐦 𝑹 𝐑 

′
𝐭𝐑 

[ 
𝑷 

1 

] 
= 𝐇 

′
𝐑 

[ 
𝑷 

1 

] (32) 

The final goal is to ensure that each object point will be imaged

n the same row in their own rectified image. To minimize the loss of

nvalid areas of the rectified images, we design new imaging models

s possible as close to the original parameters. For this purpose, three

riteria are drawn as the following: 

1. Remain the optical axis direction ( 𝐫 ′
𝒛 𝑳 

and 𝐫 ′
𝒛 𝑹 

) unchanged; 

2. Ensure that the 𝒚 direction of the rotation matrixes ( 𝐫 ′
𝒚 𝑳 

and 𝐫 ′
𝒚 𝑹 

) are

the same because the disparity is distributed in the 𝒙 𝒄 direction. 

3. To prevent the tilt component ( 𝒍 in 𝐀 𝐦 

) from affecting our final goal,

we can remove 𝒍 and then average other parameters in 𝐀 𝐦 𝑳 and 𝐀 𝐦 𝑹 

to generate a common 𝐀 

′𝐒 
𝐦 

to serve two camera models. 

𝐀 

′
𝐦 𝑳 

= 𝐀 

′
𝐦 𝑹 

= 

⎡ ⎢ ⎢ ( 𝒋 𝑳 + 𝒋 𝑹 )∕2 0 𝒖 0 
0 ( 𝒌 𝑳 + 𝒌 𝑹 )∕2 𝒗 0 

⎤ ⎥ ⎥ (33)
⎣ 0 0 1 ⎦ t  

7 
According to the above criteria, the new direction vector of the cam-

ra’s optical axes 𝐫 ′
𝒛 𝑳 

and 𝐫 ′
𝒛 𝑹 

remain unchanged and should intersect

ith each other in a plane, which is realized by setting appropriate 𝐭 ′
𝑳 

nd 𝐭 ′
𝑹 

. 𝐫 ′
𝒚 𝑳 

and 𝐫 ′
𝒚 𝑹 

should be perpendicular to this plane so that the dis-

arity only appears in the horizontal direction ( 𝐫 ′
𝒙 𝑳 

and 𝐫 ′
𝒙 𝑹 

). Therefore,

he new rotation matrix 𝐑 

′
𝑳 

and 𝐑 

′
𝑹 

is derived through 

 

𝐫 ′
𝒛 𝑳 

= 𝒓 𝒛 𝑳 
𝐫 ′
𝒛 𝑹 

= 𝒓 𝒛 𝑹 
(34) 

 

′
𝒚 𝑳 

and 𝐫 ′
𝒚 𝑹 

should be perpendicular to both 𝐫 ′
𝒛 𝑳 

and 𝐫 ′
𝒛 𝑹 

. 

 

𝐫 ′
𝒚 𝑳 

= 𝑛𝑜𝑟𝑚 

(
𝐫 ′
𝒛 𝑳 

× 𝐫 ′
𝒛 𝑹 

)
𝐫 ′
𝒚 𝑹 

= 𝐫 ′
𝒚 𝑳 

(35) 

Finally, based on the orthogonality of the rotation matrix, 𝐫 ′
𝒙 𝑳 

and

 

′
𝒙 𝑹 

can be obtained as 

 

𝐫 ′
𝒙 𝑳 

= 𝐫 ′
𝒛 𝑳 

× 𝐫 ′
𝒚 𝑳 

𝐫 ′
𝒙 𝑹 

= 𝐫 ′
𝒛 𝑹 

× 𝐫 ′
𝒚 𝑹 

(36) 

Where, function " norm " stands for the normalization of a matrix and

perator " ×" stands for the cross product. The requirement to 𝐭 ′
𝑳 

and 𝐭 ′
𝑹 

s 𝐭 ′
𝒚 𝑳 

= 𝐭 ′
𝒚 𝑹 

to disappear the vertical disparity. Here we first derive an

ntermediate translation vector as 
 [

𝝉𝒙 𝑳 𝝉𝒚 𝑳 1 
]𝑻 = 𝐑 

′
𝑳 
𝐑 

−1 
𝑳 

[
𝒕 𝒙 𝑳 𝒕 𝒚 𝑳 1 

]𝑻 [
𝝉𝒙 𝑹 𝝉𝒚 𝑹 1 

]𝑻 = 𝐑 

′
𝑹 
𝐑 

−1 
𝑹 

[
𝒕 𝒙 𝑹 𝒕 𝒚 𝑹 1 

]𝑻 (37) 

By setting the new translation vector as 

 

 

 

 

 

t ′𝑥𝐿 = 𝜏𝑥𝐿 

t ′𝑥𝑅 = 𝜏𝑥𝑅 

t ′𝑦𝐿 = t ′𝑦𝑅 = 

(
𝜏𝑦𝐿 + 𝜏𝑦𝑅 

)
∕2 

(38) 

The new translation vectors 𝐭 ′
𝑳 

and 𝐭 ′
𝑹 

are obtained. For now, we

ave derived all the parameters to generate 𝐇 

′
𝑳 

and 𝐇 

′
𝑹 

. Therefore, the

ransformation between the rectified and the original image coordinates

an be executed by 

 

 

 

 

 

 

 

[ 
𝒑 ′
𝑳 

1 

] 
= 𝐇 

′
𝑳 
𝐇 

+ 
𝑳 

[ 
𝒑 𝑳 
1 

] 
[ 
𝒑 ′
𝑹 

1 

] 
= 𝐇 

′
𝑹 
𝐇 

+ 
𝑹 

[ 
𝒑 𝑹 
1 

] (39) 

And vice versa. The symbol " + " means pseudo-inverse of a matrix.

owever, it should be noted again that the rectification is valid under

he distortion-free situation. Thus, before the rectification, the lens dis-

ortion should be correctly removed by the accurate calibration of the

ameras. 

. Experiments 

.1. Single-camera calibration in Scheimpflug condition 

First, To verify the correctness of the imaging model containing the

ilt angle information of the sensor in Eq. (11) , we adjusted the incli-

ation of a telecentric camera to five different angles along the sen-

or’s long side. As shown in Fig. 9 , the camera used in our experi-

ent is an 𝑰 𝒎 𝒂 𝒈 𝒊 𝒏 𝒈 𝑺 𝒐 𝒖 𝒓 𝒄 𝒆 𝑫 𝑴 𝑲 33 𝑼 𝑺 183 camera equipped with

 𝑺 𝑶 𝑵 𝒀 𝑰 𝑴 𝑿 183 𝑪 𝑳 𝑲 sensor that has a pixel size 𝒑 𝒔 of 2.4 𝜇m and

aximum resolution of 5544 × 3694. The lens is 𝑻 𝑪 𝑺 𝑴 048 from 𝑶 𝒑 𝒕 𝒐 -

 𝒏 𝒈 𝒊 𝒏 𝒆 𝒆 𝒓 𝒊 𝒏 𝒈 with a working distance of 134.6 mm and a vertical mag-

ification varying from 0.133 to 0.185, depending on the inclination

ngle. The FOV of the lens on the detector side can reach 2/3 inches,

hich is larger than the sensor size, so in order to fully apply the lens

OV, we set the image resolution as 4096 × 2160. 

The working distance is controlled to 134.6 mm to minimize the in-

uence of distortion. The sensor plane behind the lens is adjusted by con-

rolling the screwed amount of the lens thread into the adapter socket
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Fig. 9. The picture of the Scheimpflug telecentric camera in the calibration 

experiment. 
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o assure the best imaging quality. A freely rotatable nut on the outside

f the lens thread is used to lock the lens and the adapter. Note that

he relative phase between the camera interface and the Scheimpflug

daptor can also be adjusted by unlocking the connecting clasp, so it

s somehow tricky to ensure that the sensor only has an 𝜶 angle. Still,

ore or less a small 𝜷 angle exists (manually controlled within ±1 °). 
The calibration target is a special visual calibration board made of

lass material with an external dimension of 25 mm × 25 mm, as shown

n Fig. 10 (a). The pattern consists of a 31 × 27 array of circles with a

iameter of 0.323 mm, and the distance between the centers of every

wo circles is 0.645 mm. Through circle extraction, center positioning,

nd sorting, as shown in Fig. 10 (b), each image can provide 31 × 27

eature points, as shown in Fig. 10 (c). 

The tilt angle of the Scheimpflug adaptor is respectively set to 0°, 5°,

0°, 15°, and 20°. At each angle, ten calibration images are captured by

rranging the calibration board in ten different postures. The calculated

ntrinsic matrix 𝐀 

𝐒 
𝐦 

and the retrieved ( 𝜶, 𝜷) are listed in Table 1 . The

quivalent magnification 𝒎 𝒆 is calculated through Eq. (14) and the op-

ical magnification 𝒎 𝒐 is derived by multiplying the equivalent magnifi-

ation 𝒎 𝒆 with the pixel size 𝒑 𝒔 . For each tilt angle, the intrinsic matrix

 

𝐒 
𝐦 

contains three valid values termed 𝒋 , 𝒌 , and 𝒍 . From the results we

an see that the retrieved 𝜶 and 𝜷 are quite close to the preset angles,

hich experimentally proves the effectiveness of the proposed calibra-

ion method. However, due to the mechanical error caused by manual

peration, there are ±0 . 5 degrees bias between the preset and retrieved

ngles. The retrieved optical magnification 𝒎 𝒐 of all situations are the

ame to the specified magnification (0.185) even though the equivalent

agnification 𝒎 𝒆 varies a little bit. 

We also use another two calibration models and algorithms to an-

lyze the extracted calibration data, namely the orthogonal telecentric

odel and the perspective pinhole model. The intrinsic matrixes and re-

rojection errors are listed in Table 2 . The reprojection errors in 𝒖 and 𝒗
Fig. 10. (a) Calibration board; (b) feature poin

8 
irection with tilt angle change is shown in Fig. 13 . With the orthogonal

elecentric model, a consistent internal matrix of the camera should be

olved based on each calibration pattern. However, with the data ac-

uired under the Scheimpflug condition, the equivalent magnification

iffers between two axes and postures. Though the final internal matrix

an only be obtained by iterative optimization, the calibration error still

s bigger than that of our method because the tangential parameter is

ost. If a tangential value is added to the intrinsic matrix, a similar re-

ult can be obtained from our method. However, the physical meaning

f this variable refers to the production defect of the sensor, which of-

en takes a tiny value so that the larger tangential value calculated from

he data acquired in Scheimpflug condition is inapplicable. In addition,

 significant deviation between the magnification in two axes does not

ccord with the orthogonal telecentric model. 

For the pinhole model, the difference with the telecentric model is

hat it has a scaling factor 𝒔 . The equivalent focal length of the perspec-

ive model is quite long to be approximated as a telecentric model. A

arge equivalent focal length corresponds to a large distance of the op-

ical center from the sensor surface. Due to sensor tilt, it is necessary to

et different equivalent focal lengths in two axial directions. From the

alibration result shown in Table 2 . In some cases, it matches better in

he reprojection error than the orthogonal telecentric model because the

ilt effect is offset by the difference in the axial focal lengths. However,

f 𝜷 tilt is involved, another tangential parameter must be considered.

verall, the comparison proves that our method constructs a more rea-

onable model with minimum error under variable cases. 

To intuitively show the recovered posture of the sensor after rotation

round 𝐮 𝐩 and 𝐯 𝐩 axis, we plot the sensor planes in camera space as

hown in Fig. 11 , as well as the oblique, top, front, and side views of

he planes retrieved in five cases. The black rectangle is the untilted

ensor plane, while the blue rectangle is the tilt sensor plane. For a more

pparent distinction between the two planes, the untilted sensor plane

s placed in a lower position. It can be clearly seen from the front view

hat the tilt angle increases gradually with the increase of the actual

reset angle. Correspondingly, the top view and side view also changes

s the sensor plane gets more and more sloping. 

The lens distortion is then considered by introducing the lens dis-

ortion center estimation and iterated through Eq. (29) . However, the

istortion parameters are relatively tiny and converged to different val-

es. Besides, neither the re-projection errors nor the calibration results

how an apparent difference between considering and without con-

idering distortion. The reason may be that the distortion of the lens

s so small that its effect is even overwhelmed by the noise of the

mages. 
ts in sorting; (c) extracted feature points. 
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Table 1 

The calculated intrinsic matrix and relative parameters from five situations with increasing preset 

tilt angles. 

𝐒𝐞𝐭 𝐭𝐢𝐥𝐭 𝐚𝐧𝐠𝐥𝐞𝐬 𝐀 𝐒 𝐦 𝜶 𝜷 𝒎 𝒆 ( 𝐞𝐪𝐮𝐢𝐯𝐚𝐥𝐞𝐧𝐭 ) 𝒎 𝒐 ( 𝐨𝐩𝐭𝐢𝐜𝐚𝐥 ) 

𝜶 = 0 ◦ 𝜷 = 0 ◦
⎡ ⎢ ⎢ ⎣ 
−76 . 7146 0 0 
0 . 0088 −76 . 7153 0 

0 0 1 

⎤ ⎥ ⎥ ⎦ 0 . 6366 ◦ 0 . 5920 ◦ −76 . 7105 −0 . 1841 

𝜶 = 5 ◦ 𝜷 = 0 ◦
⎡ ⎢ ⎢ ⎣ 
−76 . 7137 0 0 
0 . 0348 −77 . 0143 0 

0 0 1 

⎤ ⎥ ⎥ ⎦ 5 . 0725 ◦ 0 . 2931 ◦ −76 . 7127 −0 . 1841 

𝜶 = 10 ◦𝜷 = 0 ◦
⎡ ⎢ ⎢ ⎣ 
−76 . 7200 0 0 
0 . 1662 −77 . 9366 0 

0 0 1 

⎤ ⎥ ⎥ ⎦ 10 . 1606 ◦ 0 . 6927 ◦ −76 . 7144 −0 . 1841 

𝜶 = 15 ◦𝜷 = 0 ◦
⎡ ⎢ ⎢ ⎣ 
−76 . 7301 0 0 
0 . 3105 −79 . 5690 0 

0 0 1 

⎤ ⎥ ⎥ ⎦ 15 . 3736 ◦ 0 . 8434 ◦ −76 . 7218 −0 . 1841 

𝜶 = 20 ◦𝜷 = 0 ◦
⎡ ⎢ ⎢ ⎣ 
−76 . 7281 0 0 
0 . 3779 −81 . 2584 0 

0 0 1 

⎤ ⎥ ⎥ ⎦ 19 . 2388 ◦ 0 . 8087 ◦ −76 . 7204 −0 . 1841 

Table 2 

The intrinsic matrixes derived from three models under five tilt angles. 

𝐒𝐞𝐭 𝐭𝐢𝐥𝐭 𝐚𝐧𝐠𝐥𝐞 Orthogonal telecentric model Reprojection error Perspective pinhole model Reprojection error 

𝜶 = 0 ◦ 𝜷 = 0 ◦
⎡ ⎢ ⎢ ⎣ 
−76 . 7157 0 0 

0 −76 . 7163 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ ( 0 . 0603 , 0 . 0591 ) 𝒔 

⎡ ⎢ ⎢ ⎣ 
3 . 634 𝐞 6 0 2047 . 5 

0 3 . 618 𝐞 6 1079 . 5 
0 0 1 

⎤ ⎥ ⎥ ⎦ ( 0 . 0939 , 0 . 0966 ) 

𝜶 = 5 ◦ 𝜷 = 0 ◦
⎡ ⎢ ⎢ ⎣ 
−76 . 7167 0 0 

0 −77 . 0093 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ ( 0 . 0881 , 0 . 0877 ) 𝒔 

⎡ ⎢ ⎢ ⎣ 
1 . 981 𝐞 6 0 2047 . 5 

0 2 . 086 𝐞 6 1079 . 5 
0 0 1 

⎤ ⎥ ⎥ ⎦ ( 0 . 1297 , 0 . 1079 ) 

𝜶 = 10 ◦𝜷 = 0 ◦
⎡ ⎢ ⎢ ⎣ 
−76 . 7117 0 0 

0 −77 . 9585 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ ( 0 . 2207 , 0 . 1815 ) 𝒔 

⎡ ⎢ ⎢ ⎣ 
2 . 188 𝐞 6 0 2047 . 5 

0 2 . 119 𝐞 6 1079 . 5 
0 0 1 

⎤ ⎥ ⎥ ⎦ ( 0 . 1757 , 0 . 1202 ) 

𝜶 = 15 ◦𝜷 = 0 ◦
⎡ ⎢ ⎢ ⎣ 
−76 . 7193 0 0 

0 −79 . 6226 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ ( 0 . 3919 , 0 . 2723 ) 𝒔 

⎡ ⎢ ⎢ ⎣ 
1 . 185 𝐞 6 0 2047 . 5 

0 1 . 477 𝐞 6 1079 . 5 
0 0 1 

⎤ ⎥ ⎥ ⎦ ( 0 . 1656 , 0 . 1437 ) 

𝜶 = 20 ◦𝜷 = 0 ◦
⎡ ⎢ ⎢ ⎣ 
−76 . 7260 0 0 

0 −80 . 8303 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ ( 0 . 4174 , 0 . 1783 ) 𝒔 

⎡ ⎢ ⎢ ⎣ 
1 . 884 𝐞 6 0 2047 . 5 

0 2 . 276 𝐞 6 1079 . 5 
0 0 1 

⎤ ⎥ ⎥ ⎦ ( 0 . 1747 , 0 . 1188 ) 

Fig. 11. The oblique, top, front, and side view of the retrieved posture of the tilt sensor planes in five cases. 
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In summary, all the parameters of the lens are calibrated perfectly

ith totally acceptable errors. The detailed calibration results are pro-

ided as in Fig. 12 . In addition to the distribution map of the re-

rojection errors, the standard deviation of the re-projection errors in

wo axes are also provided in both pixel coordinates ( 𝒖 , 𝒗 ) and equiva-

ent camera space coordinates ( 𝒙 , 𝒚 ) , respectively. 
𝑪 𝑪 

e  

9 
.2. Stereo rectification of dual-Scheimpflug telecentric cameras 

.2.1. Experimental setup and stereo calibration result 

The stereo calibration and rectification of a dual-Scheimpflug tele-

entric system are performed to verify the proposed method introduced

n Section 0. The experimental setup is as shown in Fig. 14 . Two cam-

ras are marked as 𝑳 𝒆 𝒇 𝒕 𝑪 𝒂 𝒎 𝒆 𝒓 𝒂 and 𝑹 𝒊 𝒈 𝒉 𝒕 𝑪 𝒂 𝒎 𝒆 𝒓 𝒂 , respectively. Each
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Fig. 12. The tilt angle of the Scheimpflug adaptor and the re-projection error 

of each situation. 

Fig. 13. The reprojection errors in 𝒖 direction (a) and 𝒗 direction (b) calculated 

using three models under five tilt angles. 

Fig. 14. Experomemtal setup of the stereo Scheimpflug telecentric lenses. 
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10 
amera is equipped with a bi-telecentric lens, adjusted in Scheimpflug

ondition by tilt the Scheimpflug adaptor. A C-mount phase ring on the

op side of the Scheimpflug adaptor is used to adjust the relative an-

le to the camera’s thread interface. In regular applications, the ring is

o avoid slanting images. However, in this subsection, we deliberately

otate the phase ring of the two cameras to five different angles in or-

er to testify the effectiveness of the proposed stereo calibration and

ectification methods. 

The cameras need to be calibrated under the same world coordinate

o that both cameras must share one calibration posture, and this posture

etermines the unique world coordinate for the stereo system. Without

oss of generality, we take the horizontally placed posture to provide

niqueness. The posture ambiguity is eliminated by capturing another

mage after a preset displacement is applied on the calibration board. 

Both lenses are placed on the top of the sample platform at an oblique

ngle, and we adjust the tilt angle of the Scheimpflug adaptor to focus

he image plane on the sensor plane. Refer to Fig. 3 , suppose the object

lane is at the front focal plane of the first lens, a deviation of 𝚫𝒍 occurs

n the object space causes a deviation of 𝚫𝒍 ′ in the image space. Denote

 𝒎 𝒂 𝒈 and 𝑨 𝒎 𝒂 𝒈 as the transverse magnification and axial magnification,

espectively, and then we have 

 𝒎 𝒂 𝒈 = 𝑻 𝒎 𝒂 𝒈 
2 ≈ 𝐭𝐚𝐧 𝜽′∕ 𝐭𝐚𝐧 𝜽 (40)

The transverse magnification of the lens is 0.185, therefore

𝐚𝐧 𝜽′∕ 𝐭𝐚𝐧 𝜽 ≈ 0 . 185 can be used as a criterion to guide the tilt angle set-

ing. There is an ∼45° angle between the optical axes of the left and right

enses in the experiment setup. According to Eq. (40) , the tilt angles of

he cameras are set ∼ ±3 . 3 °. 
The phase rings of the two cameras are rotated to five situations, as

hown in Table 3 . However, the angles (phases) are manually adjusted;

herefore, the actually turned angels are not precisely the same as the

reset values in Table 3 . By applying the stereo calibration procedure

ntroduced above, we calculated the cameras’ intrinsic and extrinsic pa-

ameters under five situations. 
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Table 3 

The calibrated camera parameters of the five camera pairs. 

Rotated 

Phase(deg) 0 degrees ± 5 degrees ± 10 degrees ± 15 degrees ± 20 degrees 

Camera L R L R L R L R L R 

Intrinsic Tilt 

Angles (deg) 

𝜶 = 0 . 2858 
𝜷 = − 3 . 2740 

𝜶 = 0 . 4391 
𝜷 = 3 . 4954 

𝜶 = 0 . 3640 
𝜷 = − 3 . 3642 

𝜶 = 0 . 3248 
𝜷 = 3 . 8647 

𝜶 = 0 . 7895 
𝜷 = − 3 . 1917 

𝜶 = 0 . 6964 
𝜷 = 3 . 7124 

𝜶 = 1 . 2733 
𝜷 = − 3 . 3280 

𝜶 = 0 . 7805 
𝜷 = 3 . 5894 

𝜶 = 1 . 2542 
𝜷 = − 2 . 9789 

𝜶 = 0 . 6611 
𝜷 = 3 . 2119 

Extrinsic 

Rotation 

Angle(deg) 

22 . 4091 22 . 0505 22 . 5902 22 . 1257 23 . 0527 21 . 5341 21 . 7055 22 . 4668 22 . 7571 20 . 3988 

Extrinsic 

Rotation Axis 

(normalized) 

⎡ ⎢ ⎢ ⎣ 
−0 . 5836 
1 . 1547 

−0 . 5710 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 

0 . 5950 
−1 . 1545 
0 . 5595 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
−0 . 5767 
1 . 1547 

−0 . 5780 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 

0 . 5175 
−1 . 1527 
0 . 6352 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
−0 . 6272 
1 . 1532 

−0 . 5260 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 

0 . 4718 
−1 . 1486 
0 . 6768 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
−0 . 6841 
1 . 1477 

−0 . 4635 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 

0 . 4380 
−1 . 1443 
0 . 7063 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
−0 . 7611 
1 . 1326 

−0 . 3714 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 

0 . 4784 
−1 . 1493 
0 . 6710 

⎤ ⎥ ⎥ ⎦ 

Fig. 15. Camera sensor postures retrieved in five situations. 
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Based on the retrieved 𝐀 𝐦 

, we can derive 𝒋 , 𝒌 , and 𝒍 by Eq. (22) . Then

he sensor tilt angle 𝜶 and 𝜷 can also be obtained by solving Eq. (24) ,

hich are listed in the second row in Table 3 . A positive 𝒔 4 corresponds

o a negative 𝒍 and a clockwise rotation of the sensor around the optical

xis 𝒁 𝑪 . By using 𝑅𝑜𝑑𝑟𝑖𝑔𝑢𝑒 𝑠 , 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 the rotation matrix is con-

erted to an angle and an axis represented by a vector about which the

arget rotates the angle. The rotation matrixes of left and right cameras

nder each situation make two camera coordinate systems rotate nearly

he same angles but in opposite directions relative to the common plane

here the world coordinate system locates. It should be noted that the

ommon plane is not perfectly horizontal, together with the sensor tilt,

akes the rotation matrix of the camera pair not be strictly symmetrical,

hich is consistent with and can be confirmed from the data in Table 3 .

The spatial location of sensor plane 𝚷 relative to the ideal image

lane 𝚷𝑝 is shown in Fig. 15 . The blue rectangle represents the left cam-

ra’s sensor tilt, while the red rectangle represents the right camera’s

ensor tilt. The black rectangle is a horizontally placed sensor plane for

eference. From the result, we can see that the sensor orientation varies

 little bit, only around 𝑿 𝑪 and 𝒀 𝑪 axis but not 𝒁 𝑪 . This is because the

ens is symmetrical about the optical axis so that the rotation around 𝒁 𝑪 

xis does not make any sense to the imaging. The effect of the rotation

round 𝒁 𝑪 axis will not change the intrinsic parameters but the extrinsic

arameters. From the side view, we can see that when the angle of the

hase ring is zero, the sensor only tilts around its 𝐮 axis. But when the

ngle of the phase ring gradually increases, the sensor gradually appears

ignificant tilt around its 𝐯 axis. 

Fig. 16 shows the extrinsic parameters in the form of spatial graphs.

he black rectangle represents the calibration board, which is also the

t  

11 
 − 𝑿 𝒀 plane of the world coordinate system. The blue rectangle and

he red rectangle respectively represent the 𝑶 𝑪 - 𝑿 𝑪 𝒀 𝑪 plane of the left

nd right camera. The telecentricity renders the camera coordinates in-

ensitive in the change along its 𝒁 𝑪 axis. Therefore for ease of display,

he camera coordinate systems are shifted along their 𝒁 𝑪 axes to make

hem be closer for observation. In the meanwhile, the world coordinate

ystem is also shifted along its 𝒁 axis. 

.2.2. Stereo rectification result 

The stereo rectification can be realized based on Eq. (39) . For each

ntegral pixel coordinate 𝒑 ′
𝑳 

of the rectified image, its corresponding

ub-pixel coordinate on the original image is obtained by calculating

 𝑳 . The rectified image can be reconstructed by sub-pixel interpolating

he original image based on 𝒑 𝑳 . In the first experiment, the calibration

oard image representing the shared world coordinate system, is used as

he original image pair. The rectification result is presented in Fig. 17 ,

rom which we can clearly figure out that after the rectification, the

ixels in the left and right rectified images are strictly transformed in

he same vertical position. 

In order to verify the effectiveness of the proposed method for ar-

itrarily placed objects, a QR code pattern is printed and used as the

arget. The rectified result is as shown in Fig. 18 , in which the left two

olumns are the initially captured image pairs and the right two columns

re the rectified images. The cameras are rotated to the same relative

ngles as that set in the last experiment. As shown in the top view in

ig. 16 , as the extrinsic rotation angles increases, the captured targets

orrespondingly rotate to opposite angles from zero degrees to about

wenty degrees. Differently, the QR code patterns in the rectified im-
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Fig. 16. The spatial perspective of extrinsic rotation in five situations. 
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B  
ges look rotated back to a consistent shape through the rectification,

nd the epipolar lines are adjusted to the same horizontal position. 

. Discussion 

.1. The effect of the extrinsic ambiguity on the measurement 

As we know that the world coordinates of the stereo vision system

re determined by the spatial position of one calibration pattern, and

he relative position of the camera depends on the calculated extrinsic

arameters. In order to make the disparity fully reflected on the cam-

ras, the angle and baseline of the cameras need to be carefully tack-

ed in triangulation. However, if the retrieved extrinsic parameters are

ot accurate, the camera’s position in the actual space cannot be truly

econstructed. As shown in Fig. 8 , when the external parameters are

mbiguous, the two cameras’ spatial positions may appear very close.

n this way, both the angle and baseline between the two cameras will

ecome much smaller, far from the structure requirements of binocular

easurements. 

With the change of the signs of 𝒓 13 and 𝒓 23 in Eq. (24) , there will be a

otal of 16 different initial combinations of rotation matrix values before

ptimization. In order to explain the measurement error introduced by

he ambiguity of the rotation matrix, we calibrated the system with ten

alibration images and deliberately changed the signs of 𝒓 13 and 𝒓 23 and

se the new 𝒓 13 and 𝒓 23 as the initial values to re-optimize the camera

arameters. The left and right cameras both have four posture candi-

ates, resulting in sixteen possible posture combinations, as shown in

ig. 19 . 

In fact, for two bi-telecentric cameras with two optical axes intersect-

ng or close to each other, the ambiguity of the rotation angle around

 axis will be clearly reflected in the structure shown in Fig. 19 . Mean-

hile, the ambiguity of the rotation angle around 𝒀 axis is too subtle

o distinguish, so it is not easy to judge whether the rotation angle is

orrect through direct observation. 

 

 

 

 

cos ( 𝜃2 ) cos ( 𝜃3 ) 
cos ( 𝜃1 ) sin ( 𝜃3 ) − cos ( 𝜃3 ) sin ( 𝜃1 ) sin ( 𝜃2 ) 
sin ( 𝜃1 ) sin ( 𝜃3 ) − cos ( 𝜃1 ) cos ( 𝜃3 ) sin ( 𝜃2 ) 

− cos ( 𝜃2 ) sin ( 𝜃3 ) 
cos ( 𝜃1 ) cos ( 𝜃3 ) − sin ( 𝜃1 ) sin ( 𝜃2 ) sin ( 𝜃3
cos ( 𝜃3 ) sin ( 𝜃1 ) + cos ( 𝜃1 ) sin ( 𝜃2 ) sin ( 𝜃3
12 
As shown in Fig. 20 , the reconstruction of the calibration pattern is

erformed here to show the influence of the external parameter’s am-

iguity on the measurement. The 3D data of the calibration markers

econstructed from the wrong posture combination appears stretched to

everal directions and mirrored. Even subtle differences can cause sig-

ificant distortion to the 3D data, which is not allowed in high-precision

ision-based measures. Nevertheless, the good news is that the rotation

ngle around 𝒀 axis can also be retrieved through a converged iteration

rocedure even with an incorrect initial value if specific conditions are

atisfied, which will be discussed in the next sub-section. 

.1.1. The effect of the calibration posture on the intrinsic matrix 

The number and position of the calibration postures decide whether

he solution exists and the camera parameters’ accuracy. Since four un-

nowns exist in Eq. (20) , at least four calibration patterns are required.

he rotation and translation matrix need to be controlled to ensure that

he equations in Eq. (20) are linearly independent of each other. To

e specific, the augmented matrix composed of equation Eq. (19) de-

ived from all the calibration patterns should be full rank, and if not,

he solution would be quite unstable or does not exist. Each calibration

osture corresponds to an equation, and three situations will cause the

ugmented matrix to be rank deficient. 

Situation 1 Only translation between the calibration postures 

In this situation, referring to Eq. (13) , only 𝒕 𝒙 and 𝒕 𝒚 changes, fol-

owed by the changing of 𝒉 14 , and 𝒉 24 while 𝒉 11 , 𝒉 12 , 𝒉 21 , and 𝒉 22 re-

ain unchanged. Therefore, no contribution is made by translation to

he augmented matrix. 

Situation 2 Only rotation around the 𝒁 -axis 

Suppose that the world coordinate system of a particular calibrated

osture is obtained by successively rotating the camera coordinate sys-

em around its 𝒁 𝑪 -axis, 𝒀 𝑪 -axis, and 𝑿 𝑪 -axis by 𝜽3 , 𝜽2 , 𝜽1 , respectively.

he corresponding rotation matrix is 

2 ) 
 ( 𝜃2 ) sin ( 𝜃1 ) 
1 ) cos ( 𝜃2 ) 

⎤ ⎥ ⎥ ⎦ (41) 

This matrix is also the rotation matrix 𝐑 from the coordinates of the

oints in the world coordinate system to the camera coordinates system.

y incorporating Eq. (41) into the homography matrix, we can simplify
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Fig. 17. The rectification of the images containing the calibration pattern. (a) – (e) Orignal and rectified image pairs under five rotation angles. Black rectangles 

mark the circled areas on the original image pairs. Blue and red rectangles respectively mark the circled areas on the rectified images. 
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2 
(
ℎ 11 ℎ 21 + ℎ 12 ℎ 22 

)
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(
ℎ 12 ℎ 21 − ℎ 11 ℎ 22 

)2 
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
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1 
− 𝑗 2 cos 2 𝜃2 

− 𝑘 2 cos 2 𝜃1 − sin 2 𝜃1 sin 2 𝜃2 − 2 𝑙 sin 𝜃1 sin 𝜃2 cos 𝜃2 − 𝑙 

2 𝑗 
(
𝑙 cos 2 𝜃2 + sin 𝜃1 sin 𝜃2 cos 𝜃2 

)
− 𝑗 2 𝑘 2 cos 2 𝜃1 cos 2 𝜃2 

If another calibration posture has the same 𝒁 -axis direction, the third

olumn in Eq. (41) is the same as the first one. Then the angles of the two

ostures around the 𝑿 𝑪 -axis, 𝒀 𝑪 -axis are the same, being both 𝜽1 and

. This means that the two calibration postures will provide the same
2 

13 
2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(42) 

ugmentation coefficient as Eq. (42) states, which means the calibration

mage formed by the rotation in the calibration plane (around the 𝒁 -

xis) has no contribution to the solution of the equation. 
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Fig. 18. The rectification of the images containing the QR code pattern. (a) – (e) Orignal and rectified image pairs under five rotation angles. The correct information 

can be scanned by a smartphone from both the original images and the rectified images. 

Fig. 19. Four initial candidates of the rotation matrix of the left camera (a) and 

right camera (b). 
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14 
Situation 3 Different posture but the same picture captured 

This is a situation that is easy to explain and understand but unlikely

o happen. One calibration image corresponds to two spatial postures of

he board, with their depth distribution being mirrored along the 𝒁 -axis.

n this case, the rotation angles around three axes should all be the same

ut in the opposite direction, which has a reasonably small probability

f occurrence. 

The above-introduced situations should be consciously avoided to

ake all the calibration images provide valid equations to Eq. (20) . Be-

ides, to ensure that the augmented matrix has a smaller condition num-

er to obtain a more stable solution, it is necessary to avoid the rotation
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Fig. 20. The reconstructed cloud data of the markers from ten calibration patterns. Each subgraph corresponds to one calibration image and has sixteen results 

caused by the 4 × 4 combinations. 
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ngle 𝜽1 and 𝜽2 from becoming zero degrees or ninety degrees (actually

mpossible). 

. Conclusions 

In this paper, we derived a concise imaging model and proposed

 plane calibration method to solve the camera parameters in the cal-

bration of telecentric lenses in Scheimpflug conditions. The intrinsic

arameters containing the sensor tilt angles and the lens magnification

re expressed as three parameters that can be directly solved base on the

omography matrix. On this basis, the Scheimpflug stereo rectification

ethod was proposed and verified through two sets of experiments. 

In the discussion part, we have the conclusion that the initial rota-

ion angles need not be precisely the ground truth. The ambiguity can

e eliminated through 𝑅𝑜𝑑𝑟𝑖𝑔𝑢𝑒 𝑠 , 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 based optimization

rocedure provided that the rotation direction is roughly correct. We

lso discussed how the postures of the calibration boards influence the

alibration accuracy and concluded several situations under which the

ostures are ineffective. 

The success of the calibration and rectification of the telecentric lens

n Scheimpflug conditions will offer a valuable reference in system de-

ign with a more considerable measurement depth of field for fast and

ccurate microscopic 3D measurement applications such as DIC, struc-

ured light projection. 
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