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1. Introduction

Miniaturized ultrathin endoscopes play a vital role in minimally
invasive surgery and biological applications such as in vivo
fluorescence microscopy. There is a need to develop nonrigid
endoscopes to access different body cavities through a small
incision. Multimode fibers (MMF) are miniaturized, flexible,

and high-capacity information channels
that may meet these extremely high
demands due to their small diameter down
to tens of microns and their ability to bend
into acute angles.[1–9] However, the nature
of MMF transmission leads to the scram-
bling of incident wavefronts resulting in
random speckle patterns at the fiber out-
put. A number of techniques in the adap-
tive optics domain have recently been
developed to overcome this transmission
degradation and to permit the desired light
control through MMF.[3,10–12] Recently,
advances in complex modulation of the
phase or the intensity of a light beam
were enabled by the development of
light-shaping hardware such as spatial light
modulators (SLM) and digital micromirror
devices (DMD).[13,14] Subsequently, the
transmission matrix (TM) measurement

of MMFs was explored,[2,3,8,9,15,16] allowing potential endoscopic
applications.[8,9,17,18]

The MMF transmission state is highly sensitive to external
perturbations and environmental changes.[19–21] When the fiber
is disturbed, the transmission state changes, and the precali-
brated TM fails to remain valid to the new MMF transmission
states. Therefore, a completely rigid MMF endoscope was usually
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Multimode fibers (MMF) are miniaturized, flexible, and high-capacity information
channels, promising to open up new applications in endoscopic imaging.
However, precise light control through an MMF with continuous deformations is
still a challenge. Here, a scalable calibration framework for a dynamically
deformed MMF using deep learning is proposed. The proof-of-concept
experiments demonstrate that the proposed continual generative adversarial
model has the ability to characterize the MMF transmission states sequentially
and detect the fiber deformation using proximal reflection in real-time syn-
chronously, allowing self-adaptively cross-state focusing through a semi-flexible
MMF without distal access after the scalable calibration. This framework is a
continual learning scheme under extreme memory constraints where the model
is able to synthesize training data and prevent forgetting the previously learned
bending states. The proposed method paves the way for the experimental
realization of scalable calibration of a dynamically deformed MMF.
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used to overcome this limitation, where the fiber was calibrated
once for one specific spatial conformation.[8,9,22,23] Nevertheless,
a flexible or semi-flexible endoscope is necessary for some appli-
cations. In most biomedical applications, inserting the MMF into
deep tissue would induce inevitable shape and temperature
changes. Real-time compensation for distortions was proposed
in ref.,[24] but additional feedback hardware was still needed.
It was also reported that imaging with a fiber bent within a
restricted radius of curvature range was achieved by using a par-
ticular S-shaped configuration.[25] A detailed analysis of the prop-
agation-invariant modes within TMs was conducted but only
using graded-index MMFs.[26] Recently, more compressive sens-
ing MMF imaging schemes were proposed toward robustness of
light transport or fast imaging speed.[27–32]

On the other hand, it has been widely recognized that reflected
light transmitted back through the fiber is beneficial to detect
fiber deformation and is promising for imaging without distal
access,[33–37] which is critical for practical MMF imaging. One
early attempt was by using a virtual coherent point light source
placed at the distal fiber tip to dynamically compensate for bend-
ing, and the light was focused through a semi-flexible MMF for
which the number of conformation is limited.[33] Subsequently,
focusing was maintained as the fiber was maneuvered to the
target site prior to imaging by the addition of a partial reflector
to the distal fiber end.[34] Recently, Gordon et al. have proposed a
method introducing a thin stack of structured metasurface reflec-
tors at the distal facet of the fiber, to characterize MMF TMs for
lensless imaging without distal access.[36] Also, the transpose
relationship between the backward and forward transmission
through an MMFwas verified in ref., [37] revealing that the direct
retrieval of the forward TM from a round-trip measurement was
impeded by the symmetry.

Deep learning techniques have been successfully applied to sim-
ple geometries (such as MNIST digits, letters) reconstruction[38–41]

and spatially distributed data transmission[42,43] through MMFs.
Particularly, it was also suggested that the neural network learned
and generalized different transmission states when the MMF was
bent or subject to continuous transmission characteristic varia-
tions.[38,39] Further, it was also reported that transmission of natural
scenes through an MMF up to 10m was achieved by statistically
reconstructing the inverse TM for the fiber.[44] Turpin et al. dem-
onstrated light scattering control in transmission and reflection
with neural networks.[45]

To precisely control the light propagation using existing
algorithms through a dynamically deformed MMF is very
challenging. First, different from other scattering media, the
transmission properties of MMF are extremely susceptible to
the fiber’s deformation. A precalibrated TM or a fixed neural net-
work for the MMF transmission can only be applicable to the
current fiber state. Second, previous studies about continuous
MMF transmission variations have an assumption that these
schemes have full access to data collected previously as the fiber
is dynamically deformed,[39] which was impractical due to the
limited memory on the machine. Third, most of the methods
described above require access to the distal facet of the fiber,
which is not feasible in most realistic usage scenarios without
bulky distal optics.

Here, we propose and demonstrate a scalable calibration frame-
work using deep learning for a dynamically deformedMMF under

extreme memory constraints (EMC).[46,47] We term this deep-
learning-based approach DI-GAN (Generative Adversarial
Network for Deep Imaging) and use it to characterize the
MMF transmission states sequentially and detect the fiber defor-
mation in real-time synchronously, enabling self-adaptively
cross-state focusing through a semi-flexible MMF without distal
access after the scalable calibration. DI-GAN, modified based
on CVAE-GAN,[48] is trained using a conditional GAN in a
continual fashion with mutually matched triplets of 1) various ran-
domly generated input patterns coupled into the proximal fiber
end, 2) the corresponding transmitted speckle images, and
3) reflected speckle images captured at the distal and proximal
ends, respectively, under different bending positions of a dynami-
cally deformed MMF. The network architecture is plotted in
Figure S3 (Section S4, Supporting Information) trained using data
collected under the experimental setup shown in Figure 1. This
framework accurately reconstructs the input patterns from the
transmitted speckle images through a fiber with continuous defor-
mations, naturally leading to the calibration of the fiber at the cor-
responding bending position and enabling the input excitation
wavefront prediction for focusing light at the distal tip of the fiber.
We also leverage the reflection information transmitted back to the
proximal end of the fiber to detect the fiber conformation in real-
time, and then spots can be self-adaptively generated on the distal
fiber facet by projecting the corresponding input patterns inferred
by the network without distal access. Therefore, access to the distal
end (transmitted speckle images collection) is only needed during
the training stage. But after that training, access to the distal end is
not necessary as there is access to the reflection. For fully utilizing
the reflection information and simplifying the setup, our proof-of-
concept experiment deploys anMMF coupler instead of a standard
MMF nor a reflector (Figure S2, more details in Section S3,
Supporting Information).

The remainder of this paper is organized as follows. First, using
DI-GAN, we implement the scalable calibration of a semi-flexible
MMF under EMC by investigating the input–output relationships
under different MMF transmission states. Second, we demon-
strate DI-GAN-based transmission inference using reflection,
which indicates the deterministic one-to-one mapping between
the transmission and the reflection over the same input pattern.
Third, we utilize the reflected speckle image to identify the current
bending state and achieve self-adaptively focusing at an arbitrary
state before and after MMF deformation. Furthermore, another
important feature of DI-GAN is shown that it enables focusing
performancemonitoring at the proximal end without distal access.

2. Experimental Section

2.1. Experimental Setup

A schematic diagram of our experimental setup is depicted in
Figure 1. The experiments are performed on an MMF coupler
(Thorlabs, TM50R5F1A). Each port of the MMF coupler has a
0.8-m length fiber lead with a core diameter of 50 μm and
NA¼ 0.22. The 1� 2 MMF coupler is designed to split light
between Port 2 and Port 3 with a 50:50 coupling ratio. In our
setup, we use Port 2 as our signal input and Port 1 as a trans-
mission output. Port 3 is used to capture the reflected light from
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Port 1 using Camera 2. The system consists of three modules:
1) laser modulationmodule; 2) collectionmodule; and 3) bending
module. In the laser modulation module, a collimated laser beam
from a continuous-wave diode-pumped laser (532 nm, Cobolt
Samba 50) is expanded to match the area of our DMD (Vialux
V-7001, �22 kHz). The DMD can modulate the laser beam into
desired random patterns with binary spatial amplitudes. Each
pixel of the input pattern occupies 4� 4 DMD micromirror pix-
els. For example, a pattern of 24� 24-pixel can be obtained by
maintaining the total micromirror pixel numbers at 96� 96.
Lenses L1, L2, L3, and L4 are placed in a 4f setup to project
the modulated beam to the back focal plane of a microscope
objective lens OL1 (Nikon CFI Plan Achro 20X, NA¼ 0.4). A pin-
hole filters the first diffraction order in the Fourier plane of L3,
blocking the remaining orders. The beam is then coupled into
Port 2 of the MMF coupler by OL1. In the collection module,
the output from the fiber facet of Port 1 and Port 3 is both col-
lected and collimated by a microscope objective (OL2, OL3,
Olympus PLN 20X, NA¼ 0.4) and tube lens (TL1, TL2,
Thorlabs AC254-200-A-ML). Camera 1 (QImaging optiMOS)
and Camera 2 (JAI SP-500M-CXP4) are triggered simultaneously
by the signal from the DMD. This allows two cameras to capture
corresponding speckle images from the fiber facet when the
DMD projects random patterns. In the bending module, as
shown in Figure 1, the pigtail of the MMF in Port 1 is initially
placed between three opposing optical posts. The post in the mid-
dle is mounted on a single-axis translation stage. The bending
state of the MMF can be changed by tuning the position of
the post at a displacement step of 1mm. In our proof-of-concept
experiments, the data sets are collected when the fiber pigtail is
sequentially bent to 10 different positions (from 0 to 9mm). To
perform more continuous control of fiber deformation, one can
use a three-axis motorized translation stage (more discussions in

Section 4). Examples of transmitted and reflected speckle images
are illustrated in Figure S1a and S2a in Supporting Information,
respectively.

2.2. Data Preprocessing and Preparation of Training Data

The system shown in Figure 1 operates at 200 frames per second
(i.e., 200 input-transmission-reflection triplets per second), and
10 000 transmitted speckle images and reflected speckle images
are collected for each fiber bending state sequentially. The 10 000
input patterns displayed on the DMD are randomly generated
with an ‘ON’ to ‘OFF’ pixel ratio of 50:50 (implemented using
random.randint function within the Python Numpy Library)
in a 24� 24 square configuration. Both transmission and reflec-
tion images are then downsampled to 96� 96 pixels, using resize
function with INTER_AREA interpolation within the Python cv2
Library to speed up training and reduce computer memory
usage, without losing image information.[49] The dynamic range
of image intensity is subsequently normalized to [-1, 1] in order
to stabilize the training of the GAN network. For each data set
collected at each bending state, 90% of the data (i.e., 9000 data
triplets) are randomly selected for training using the train_test_
split function within the Python Scikit-learn Library, and the
remaining 10% of data form the testing data set.

2.3. Continual Generative Adversarial Model under EMC:
DI-GAN

The proposal focuses on the accessibility to training data and the
scalability of the model. This issue is often termed continual
learning or incremental learning.[50] One of the most straightfor-
ward solutions for this problem is sequential fine tuning (SFT),
where the network is trained sequentially with a sequence of

Figure 1. The experimental setup used to obtain the data under different bending states. The beam is expanded, collimated, and directed onto the DMD,
the reflection of which is coupled into Port 2 of the MMF coupler. The transmission output from Port 1 of the MMF coupler is captured by Camera 1.
Simultaneously, the reflection output from Port 3 of the MMF coupler is captured by Camera 2. The MMF pigtail in Port 1 is bent using three opposing
optical posts, the middle one of which is mounted on a single-axis translation stage (shown in the inset below). L1-L4: bi-convex lenses; TL1, TL2: tube
lens; DMD: digital micromirror device; OL1-OL3: objective lens; MMF: multimode fiber.
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independent tasks. The parameters of a network are first trained
on previous data sets and then are fine tuned using the new data
set to learn the current task. Nevertheless, this method will inev-
itably result in another problem, catastrophic forgetting,[51]

where the network forgets its previous learning task. The reason
is straightforward: the parameters of the network (optimized
using the previous data set) have been tuned to adapt to the latest
data distribution. Numerous efforts have been made to design
network architectures and training algorithms that can prevent
or at least alleviate catastrophic forgetting.[52] Based on how
the task data are stored and utilized through the sequential
learning process, there are three types of families to prevent
forgetting: replay methods,[53–55] regularization-based meth-
ods,[51,56] and parameter isolation methods.[57,58] Inspired by
these previous studies and given the impossibility of storing
all data collected during the MMF bending, we propose our
continual generative adversarial model under EMC. Instead of
learning the different bending states of the fiber jointly at the
same time in a single training process under the assumption that
all data for training are available beforehand,[39] we develop a con-
tinual learning scheme under EMC where the model is able to
synthesize training data for itself and the memory usage is
extremely limited during the course of training. Compared with
the conventional neural network, which results in forgetting the
previous after transfer learning, our proposed scheme permits
continual generalization of all bending states after the scalable
calibration process.

As shown in Figure 2, the DI-GAN updating is based on the
mechanism of replaying memories from previous transmission
states to consolidate them while learning new ones, preventing
the models from forgetting the previous bending states.[59] Here,
the memories refer to the images data synthesized by the previ-
ously trained model, differing from computer memory. If the
synthesized images data match the data distribution of the
ground truth very well, there is no need to allocate computer
memory for data storage, and the training of the models satisfies
the EMC. In our case, the training data set in each round contains
9000 newly collected data for the current bending state and
9000� i network-synthesized data for the previous bending
states, where imeans the number of previous bending positions.
For example, shown in Figure 2, after training using the data set
collected at the first bending position, the models have had the
ability to synthesize data of transmission and reflection,

matching the data distribution of the first bending position very
well. The fiber is then bent to the second position, so another data
set is collected. In the next round of training, the newly collected
data and the data synthesized by the previously trained models
will be jointly used to train the new models. The training process
continues until the MMF dynamic bending ends, and then the
networks are able to generalize all bending states. See more
details in Section S4 and S5, Supporting Information.

3. Results

3.1. Scalable Calibration of a Semi-flexible MMF Using DI-GAN

Figure 3a demonstrates DI-GAN-based DMD pattern reconstruc-
tion with high accuracy at different bending states (represented
by digits from ‘0’ to ‘9’), each one of which indicates the fiber
conformation distance curved from its original position. By
inputting the transmitted speckle images measured at the corre-
sponding bending states into the DI-GAN (Encoder network), we
recover the DMD patterns coupled into the fiber with �100%
accuracy. Note that the high fidelity of the reconstructed DMD
input patterns confirms the accurate characterization of the fiber
with altered positions. To further quantify DI-GAN (Encoder net-
work) output, we calculate various average performance evalua-
tions (see details in Section S1, Supporting Information); Table 1
illustrates that the reconstructed DMD patterns calculated from
transmitted speckle images agree with the true binary DMD pat-
terns at each MMF state very well.

Next, we apply DI-GAN to the data synthesis task for training
future models continuously without forgetting the previous
learning. Detailed in Section 2.3, the continual generative adver-
sarial model, DI-GAN, is trained using the data triplets of images
sequentially without direct access to the previously collected data
under EMC. For these data triplets, we can easily generate a mass
of random DMD patterns, and the trained DI-GAN will quickly
synthesize realistic reflected speckle images (using Decoder net-
work) and transmitted speckle image (using Generator network)
over the corresponding bending states. The synthesized data
triplets for the previous bending states are combined with the
newly collected data triplets for the current state, and the com-
bined outcome form the training data set for the next scalable
calibration process. Figure 3b demonstrates that the predicted

Figure 2. Illustration of the continual learning scheme under EMC. Training is first done on the data set available at the first bending state. After that,
when the fiber is bent to the second position, the new data set is collected and used together with the network-synthesized data to train the network. The
training process continues until the MMF dynamic bending ends, and then the networks are able to generalize all bending states.
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reflected speckle images synthesized from our model (Decoder
network) have over 98% PCC and 94% SSIM on average with the
ground truth reflected speckle images over ten bending states. It

should be noted that the ten different predicted examples shown
in Figure 3b are synthesized over an identical DMD pattern,
which indicates that the proposed models are capable of

(a)

(c)

(b)

Figure 3. Scalable calibration of a semi-flexible MMF using DI-GAN. a) DI-GAN-based DMD pattern reconstruction with high accuracy (�100%) at
different bending states. By appending a bending state (digits from ‘0’ to ‘9’) to a transmitted speckle image (left) and passing it through a trained
DI-GAN (Encoder network), a reconstructed DMD pattern (middle) can be accurately obtained. The output image is then processed to get a binary DMD
pattern (right) using a threshold of 0.5. The Pearson correlation coefficients (PCC) of the predicted DMD pattern and the accuracy of the binary DMD
pattern compared with the ground truth pattern are shown. b) From one same DMD pattern (left), diverse reflected speckle images (middle) synthesized
at different bending states using DI-GAN (decoder network). The ground truth reflected speckle images (right) are shown for comparison, and the PCC
and structural similarity index (SSIM) between the synthesis and ground truth are also given below. As in (a), color scale indicates intensity, which is
normalized to a dynamic range of [0, 255] for better visualization. Evaluations were repeated with 1000 images, achieving similar results. Scale bars,
10 μm. c) Bar examples of the scalability differences between SFT and the proposal, showing the reconstruction of standard bars pattern with different
frequencies using SFT and DI-GAN, after sequentially training the ten tasks (left to right: 0 mm to 9mm). The ground truth binary pattern of standard bars
is shown (rightmost).

Table 1. Average accuracy, F1_score, mean square error (MSE), PCC, SSIM, and output runtime for DMD patterns reconstruction at different bending
states.

Bending
state [mm]

Accuracy [%] F1_score MSE PCC SSIM Network output
runtime [s]

0 99.8052 0.9980 0.0032 0.9940 0.9924 0.0002

1 99.8323 0.9983 0.0026 0.9950 0.9940 0.0002

2 99.8038 0.9980 0.0030 0.9944 0.9930 0.0002

3 99.8217 0.9982 0.0027 0.9950 0.9939 0.0002

4 99.8569 0.9986 0.0024 0.9956 0.9945 0.0002

5 99.8018 0.9980 0.0031 0.9941 0.9927 0.0002

6 99.8007 0.9980 0.0031 0.9942 0.9928 0.0002

7 99.6800 0.9968 0.0041 0.9921 0.9904 0.0002

8 99.8247 0.9982 0.0028 0.9948 0.9936 0.0002

9 99.8220 0.9982 0.0029 0.9946 0.9932 0.0002
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generating realistic and diverse samples very well. More evalua-
tion results are presented in Table 2; it is worth mentioning that
theMSE values are relatively small because the intensity values of
the images have been scaled to the range of [-1, 1] for GAN train-
ing. Also, the generation of transmitted speckle images is vital for
the training of the continual model and that is presented in
Section 3.2.

As illustrated in Figure 3c, we compare the scalability between
the proposal and a simple baseline, SFT, by showing the recon-
struction of standard bars pattern after sequentially training the
ten tasks (left to right: 0 to 9mm). We observe that SFT
completely forgets previous tasks in all data sets it learned before
and can only reconstruct the DMD patterns at the last bending

state; while those input patterns recovered by DI-GAN are in
general clear and much more recognizable. This demonstrates
that our network has a certain extrapolation ability.

3.2. DI-GAN-based Transmission Inference Using Reflection

Toward complete data synthesis, DI-GAN can also be used to per-
form transmitted speckle image inference, where DI-GAN
(Generator network) can be trained using data pairs of DMD pat-
terns and reflected speckle images as the model inputs. Figure 4
demonstrates our blind testing results for DI-GAN-based trans-
mission inference using reflection. The trained Generator net-
work digitally transfers the reflected speckle image into a
transmitted speckle image, while at the same time retains high
contrast, matching the ground truth to a high degree of similar-
ity. For example, the predicted transmitted speckle image in the
upper row of Figure 4a has a PCC of 0.9829 and an SSIM of
0.9554 with the ground truth image. To further qualify the
performance of the proposed model architecture (using both
DMD pattern and reflection as combined input, termed as
DR2T-Generator), we also train a model only using reflection
to infer transmission (termed as R2T-Generator). The R2T-
Generator-inferred transmitted speckle images are also shown
in the left column of Figure 4b for comparison, outputting more
blurred images with smaller PCC and SSIM values. The pixels of
DR2T-Generator-inferred transmitted speckle images are sub-
stantially sharper as compared to the R2T-Generator-inferred
ones, providing a good match to the ground truth. The absolute
difference images of the DR2T-Generator results and R2T-
Generator results with respect to the corresponding ground-truth
images are also provided on the right of Figure 4b, with
MSE values reported, further demonstrating the success of

Table 2. Average MSE, PCC, SSIM, and output runtime for reflected
speckle image synthesis at different bending states.

Bending s
tate [mm]

MSE PCC SSIM Network output
runtime [s]

0 8.8965e-04 0.9831 0.9451 0.0001

1 9.4072e-04 0.9698 0.9208 0.0001

2 8.8988e-04 0.9771 0.9319 0.0001

3 8.9076e-04 0.9795 0.9383 0.0001

4 8.7479e-04 0.9826 0.9442 0.0001

5 8.9429e-04 0.9837 0.9464 0.0001

6 8.8040e-04 0.9819 0.9449 0.0001

7 9.0806e-04 0.9814 0.9433 0.0001

8 9.4311e-04 0.9810 0.9414 0.0001

9 1.1118e-03 0.9764 0.9299 0.0001

(a) (b)

Figure 4. DI-GAN-based transmitted speckle image inference using reflected speckle image. a) Different reflected speckle images (left) appended with
DMD patterns are digitally transferred into transmitted speckle image (middle), the resulting images provide a very good match to the corresponding
ground truth images (right). The PPCs and SSIMs of the predicted images calculated with the ground truth are shown. b) For comparison, R2T-Generator
outputs (left) are also shown, reporting a substantial blur in each case. As in a colour scale indicates intensity, which is normalized to a dynamic range of
[0, 255] for better visualization. The absolute difference images of the DI-GAN (DR2T-Generator) output images and the R2T-Generator output images
with reference to the corresponding ground truth (GT) images are also shown, with MSE values, further quantifying the performance of models. The
former absolute difference images suggest that the mismatch formed by DI-GAN is negligible, while the latter absolute difference images report increased
errors. Color scale for the absolute difference images indicates intensity, which is normalized to a dynamic range of [0, 127] for better visualization.
Evaluations were repeated with 1000 images, achieving similar results. Scale bars, 10 μm.
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DI-GAN, matching the aim of its training. More evaluation
results are presented in Table 3; it is worth mentioning that
the MSE values are relatively small because the intensity values
of the images have been scaled to the range of [�1, 1] for GAN
training.

So far, in Section 3.1 and 3.2, we have blindly tested both
transmission and reflection synthesis using DI-GAN (Decoder
network and Generator network, respectively). Specifically,
DI-GAN-based transmission inference using reflection indicates
the deterministic one-to-one mapping between the transmission
and the reflection over the same input pattern. Although not
demonstrated here, the reflected speckle image also carries
the complete information of the input pattern, which can be
recovered through the reflection with high accuracy, too (similar
to what has been shown in Figure 3a). We have evaluated the data

synthesis performance of DI-GAN under different metrics,
which reveal the effectiveness and robustness of DI-GAN to
the sequential learning task under EMC.

3.3. Self-adaptively Cross-state Focusing through a Semi-flexible
MMF

In Section 3.1, we have demonstrated the ability of DI-GAN
(Encoder network) to reconstruct the DMD input patterns with
�100% accuracy. As demonstrated in ref., [45] the focus can be
generated by using a neural network when the fiber conforma-
tion is kept stationary. To highlight the utility of DI-GAN for
cross-state focusing through a dynamically deformed MMF,
we take advantage of the DI-GAN to output the desired DMD
input patterns for spot generation at the distal tip of the fiber.
In Figure 3a, the inputs of the DI-GAN (Encoder network) are
transmitted speckle images, while here, we directly replace the
inputs with images with a focus at a desired location across
the speckle. Illustrated in Figure 5, by appending the correspond-
ing bending states, the different DMD patterns for focusing are
digitally generated by the network. For one specific bending state,
by inputting images with spots at different locations sequentially,
the network can quickly output a series of input patterns for
focusing. It has also been reported that focus could be generated
at the distal end of MMF using TM information.[60,61]

Specifically, the position of the focus is controlled by choosing
the corresponding row in the TM; to implement the complex con-
jugate in one row of the TM as the DMD input filed, the DMD
pixels where the real part was positive are selectively turned on.
For further comparison, we also show the input patterns
generated by TM in the righost column in Figure 5. As can
be seen in this comparison, the distribution of the pixels across
DI-GAN-predicted input patterns is more separate and sparser
than the TM-predicted ones, indicating that the DI-GAN enables

Table 3. Average MSE, PCC, SSIM, and output runtime for transmitted
speckle image generation at different bending states.

Bending
state [mm]

MSE PCC SSIM Network output
runtime [s]

0 9.0188e–04 0.9651 0.9027 0.0004

1 6.5470e–04 0.9762 0.9256 0.0004

2 4.4676e–04 0.9885 0.9558 0.0004

3 4.8768e–04 0.9854 0.9482 0.0004

4 4.5858e–04 0.9870 0.9526 0.0004

5 4.5225e–04 0.9883 0.9558 0.0004

6 4.4004e–04 0.9888 0.9558 0.0004

7 4.4614e–04 0.9880 0.9533 0.0004

8 4.7748e–04 0.9862 0.9496 0.0004

9 5.6292e–04 0.9819 0.9389 0.0004

Figure 5. DMD input patterns generation for cross-state focusing. By appending a bending state (digits from ‘0’ to ‘9’) to an image with a focus at the
desired location (left) and passing it through a trained DI-GAN (Encoder network), a predicted DMD input pattern for focusing (middle) can be digitally
obtained. The output pattern is then binarily processed to get a binary DMD pattern (right) using a threshold of 0.5. The DMD input patterns predicted by
TM are also provided on the righost, with denser and larger patches. Scale bars, 10 μm.
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to control light more precisely by providing better modulation
patterns.

Next, we project the input patterns predicted by DI-GAN and
TM onto the DMD, respectively, and observe the focus images
captured at the distal fiber end. Figure 6 illustrates the focusing
performance of these two methods (two DMD patterns
highlighted using red dotted squares from the bottom row in
Figure 5), showing an example of a focus that is around the fiber
end center. The first row in Figure 6a–c shows the focus evalua-
tion of DI-GAN method, and the second row in Figure 6d–f
shows the focus evaluation of TM method. For comparison,
we calculated the enhancement factor (EF, detailed in Section
S2, Supporting Information) of these two focuses. It has shown
that the EF of DI-GAN-generated focus (about 74.45) is nearly
double that of the TM-generated one (about 39.39). Besides,
the full width at half maximum (FWHM, detailed in Section
S2, Supporting Information) of the focus is calculated by per-
forming a 2D Gaussian fit over the region of interest (ROI)
around the focus center that covers �10� 10 μm2 (Figure 6b,
e, zoom-in areas in the red dotted squares from Figure 6a,d.
The intensity profiles of the focuses along the x and y axes, plot-
ted by fitting the data with a 2D Gaussian function, are also
shown in Figure 6c,f, respectively. For example, in Figure 6c,
the intensity profile of the focus in the ROI is shown using a blue

mesh grid, and the multi-colored smooth surface represents the
intensity 2D Gaussian fit, which is then projected onto the xoz
and yoz planes, respectively. It is clear that the focus generated
using DI-GAN has smaller FWHM (about 1.63 μm along the
x-axis and 1.66 μm along the y-axis) than the TM one (about
2.18 μm along the x-axis and 2.15 μm along the y-axis). The the-
oretical value of FWHM (Abbe diffraction limit, calculated as
λ/(2NA)) in our case is around 1.21 μm, and the degradation
results from the difference between the ideal input pattern
and practical input pattern. Since the DMD only supports binary
amplitude modulation rather than continuous (as with a liquid
crystal on silicon SLM), such field transformation will inevitably
result in a certain difference from the ideal case. Furthermore,
we observe that the DI-GAN has significantly improved the
signal-to-noise ratio (SNR, detailed in Section S2, Supporting
Information) of the focus, from 26.06 to 52.58, more than twice
the SNR of TM-generated one. In addition to focusing at the cen-
ter of the speckle, a video showing the scanning with multiple
spots enabled by the TM, and the proposed model can be found
via the link given in Supporting Information as ref., [5] demon-
strating that the CNN model has high enhancement and darker
background.

DI-GAN not only substantially surpasses the TM in focusing
ability but also permits focusing performance monitoring at the

(a)

(d)

(b) (c)

(f)(e)

Figure 6. Focus generation around the fiber end center with DI-GAN and TM. a) and d) Foci generated by projecting the two DMD input patterns using
DI-GAN and TM highlighted in the bottom row in Figure 5. b) and e) Zoomed areas from the ROI (red dotted squares, covering �10� 10 μm2,
i.e., 18� 18 pixels) in (a) and (d) with 3σ circle area and FWHM values. c) and f ) 2D Gaussian fit over (b) and (e). The blue mesh grid shows
the intensity profile of the focus, and the multicolored smooth surface represents the intensity 2D Gaussian fit, which is then projected onto the
xoz and yoz planes, respectively. FWHM values along the x-axis and y-axis are also provided. Experiments were repeated over 10 bending states, achieving
similar results. Grid pitch: 0.5537 μmpixel�1 (see calculation in Section S2, Supporting Information). Scale bars, 10 μm.
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proximal end without distal access. For MMF-based endoscope
application using scanning-based imaging technology, where the
fiber tip would be inserted inside the deep tissue, the imaging
quality primarily relies on the focusing performance that is
impossible to be evaluated directly. We show for the first time,
to the best of our knowledge, that the trained DI-GAN is able to
monitor the focusing performance at the proximal end without
distal access. Figure 4a has shown that the transmitted speckle
images at the distal fiber end could be predicted using the cor-
responding DMD patterns and reflected speckle images; simi-
larly, plotted in Figure 7, we use the DI-GAN (Generator
network) to predict the focusing at the distal fiber end under
the scenario where the distal tip is not accessible. A predicted
focus is visible with high similarity to the experimentally
captured focus, albeit with a 0.54 μm larger FWHM.

The last feature of the proposed DI-GAN is that the Classifier
network enables real-time bending state identification during
monitoring or focusing. Using the reflected speckle image as
the network input, the Classifier network can quickly output
its corresponding fiber bending conformation (classification onto
one of the 10 classes), with 100% accuracy in our case. Then, we
are able to detect whether the current fiber configuration is
changed, and recall the corresponding DMD input patterns
for focusing from the DMD’s on-board memory. By doing so,
we can achieve self-adaptively focusing at an arbitrary state before
and after MMF bending. Figure 8 shows the process of self-
adaptively cross-state focusing through a semi-flexible MMF to
solve the bending problem. Before the focusing starts, the frame-
work initializes itself to identify the current fiber deformation. In
the initialization, the DMD projects any patterns tentatively and
the reflected speckle images are observed at the proximal end, so
the fiber bending state can be identified in real-time with the help
of DI-GAN (Classifier network). Next, the DMD input patterns
over each corresponding bending state are recalled and projected
for focusing. Simultaneously, the focusing performance is

monitored using DI-GAN (Generator network) and the fiber
deformation is detected using DI-GAN (Classifier network) at
the proximal end continuously. During the scanning, if the net-
work detects a change of the fiber bending state, the different

Figure 7. Focusing performance monitoring from the proximal end without distal access. A clear focus is predicted using DI-GAN (Generator network) by
inputting the DMD pattern (left) for focusing used in the experiment and the reflected speckle image (middle) captured at the proximal end; the resulting
focus provides a very good match to the corresponding real focus (rightmost) experimentally captured at the distal end. The FWHMs of the predicted and
real focuses are shown. Scale bars, 10 μm.

Figure 8. The process of self-adaptively cross-state focusing.
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DMD input patterns for focusing are recalled. Therefore, self-
adaptively focusing at an arbitrary state before and after MMF
bending can be achieved.

4. Discussion and Conclusion

We have developed a unique framework, termed DI-GAN, pow-
ered by conditional GAN, that enables accurate input patterns
reconstruction through a fiber with continuous deformations
and permits input excitation wavefront prediction for self-
adaptively focusing light at the distal tip of the fiber without distal
access after the scalable calibration. This framework is a contin-
ual learning scheme under extreme memory usage limitation
where the model is able to synthesize training data and prevent
forgetting the previously learned bending states.

There are a few limiting factors in our proof-of-concept exper-
iment. First, although it has been demonstrated that the deep
learning method has surpassed the TM method in the ability
to precisely control light propagation through MMF, it is also
observed that the focus quality implemented using neural net-
works is not uniform across the fiber end. The DMD used in
our experiment only supports binary modulation, which yields
an inevitable difference between the ideal input pattern and
the actual input pattern. This difference in input field at different
positions results in a variation in the focus quality across the fiber
end. For further improvement of the focus quality, more macro
pixels on the DMD or a liquid crystal-based spatial light modula-
tor (LC-SLM) could be used since both approaches can substan-
tially improve the effective modulation. On the other hand, for
the current setup and model structure in the text, the prediction
of the DMD input pattern for focusing can be adjusted by chang-
ing the network input (focus intensity distribution), resulting in
even, controllable, and measurable focus intensity delivery.
Second, the number of MMF bending states in our proof-of-
concept experiment is limited, and the cross-state calibration
framework is only suitable for a semi-flexible MMF characteriza-
tion. In the proposal, although we just demonstrate ten bending
states within a small bending range (0 to 9mm), the fiber can be
bent in an arbitrary range because the different bending states
are indicated using simple and discrete labels (digits from ‘0’
to ‘9’). By appending the labels to the input images, the networks
can generate the output images at the corresponding bending
states. The separated labels are, however, not full featured and
thus not suitable for referring to an arbitrary fiber deformation.
To extend the framework to a totally flexible fiber in the future, a
continuous and user-defined reference that can better indicate
the fiber deformation needs to be explored for including them
into the training of models. For example, the stage could be
mounted on a three-axis motorized translation stage, allowing
continuous, precise, and repeatable control of fiber deformation,
and the data with a continuous reference could be collected
accordingly. Third, we also note that the training of the continual
learning model may be time consuming and challenging; how-
ever, this training process is a one-time shot, and the model can
be rapidly deployed after the training is complete. Given the
rapid development of high-performance computing technolo-
gies, neural networks may soon be able to be trained in a fraction
of the time they currently require. Finally, the proposed network

architecture used in DI-GAN is fixed, which may fail to accom-
modate continually incoming tasks. A dynamic architecture
expansion mechanism that ensures sufficient model capacity
is considered feasible. In addition to the architecture, loss func-
tion redesign is also conducive to the data synthesis ability of the
models.

In summary, we have presented a scalable calibration frame-
work for a dynamically deformed MMF under EMC using deep
learning. Our proof-of-concept experiments demonstrate that the
proposed continual generative adversarial model enables us to
characterize the MMF transmission states sequentially and
detect the fiber deformation in real-time synchronously, allowing
self-adaptively cross-state focusing through a semi-flexible MMF
without distal access after the scalable calibration. The proposed
method paves the way for the experimental realization of scalable
calibration of a dynamically deformed MMF and will lead to
future new flexible MMF-based endoscopes.
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