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A B S T R A C T

Structured illumination microscopy (SIM) is one of super-resolution optical microscopic techniques, and it
has been widely used in biological research. In this paper, a physics-driven deep image prior framework for
super-resolution reconstruction of SIM (entitled DIP-SIM) is proposed. DIP-SIM does not rely on a large number
of labeled data, and the output becomes more interpretable due to the intrinsic constraint of a physical model.
Both the simulation and experiment verify that DIP-SIM can reconstruct a super-resolution image with a quality
comparable to conventional SIM. Of note, it allows for super-resolution reconstruction from three raw images
for two-orientation SIM and four raw images for three-orientation SIM, and hence it has a much faster imaging
speed and lower photobleaching compared with the traditional SIM. We can envisage that the proposed method
can be applied to chemistry and biomedical fields, etc.
. Introduction

Optical microscopy is an indispensable tool for exploring the un-
nown microscopic world. Due to the restriction of the diffraction limit,
he spatial resolution of conventional optical microscopy is limited to
∕2, which is generally about 200 nm [1–4]. As one of the key advances
n optical microscopy during the past three decades, super-resolution
SR) microscopic approaches have been proposed to enhance the spatial
esolution to tens or a few nanometers. Representative SR techniques
nclude single-molecule localization microscopy (PALM/STORM) [5,6],
timulated emission depletion microscopy (STED) [7,8], and struc-
ured illumination microscopy (SIM) [9,10]. Among them, SIM has the
dvantages of fast-speed, non-invasive, low phototoxicity, and photo-
leaching. Hence SIM has been acting as an essential imaging tool in
iomedical research, especially for live cell imaging [11–13].

In SIM, samples are illuminated with periodic sinusoidal patterns
f different phase shifts and different orientations, and the intensity
mages (with moiré pattern) are captured with a 2D sensor. Several
lgorithms, such as Fair-SIM [14], Open-SIM [15], and CC-SIM [16],
ave been developed to reconstruct a SR image from the recorded raw
mages. The majority of the algorithms perform SR reconstruction in the
requency domain. In the implementation, these algorithms decouple
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the frequency spectra along different diffraction orders of structured
illumination, shift them back to their original position, and combine
them in the frequency domain. An inverse Fourier transform on the
synthesized spectrum yields a SR image. In parallel with the frequency-
domain approaches, spatial-domain approaches have been proposed to
directly process SIM data in the spatial domain [17,18]. Compared
to frequency-domain algorithms, this approach uses the same number
of frames to achieve a comparable resolution but with a much faster
processing speed. However, for these methods, the incorrect estimation
of experimental parameters (optical transfer function, structured illumi-
nation direction, phase, etc.) causes the inappropriate superimposition
of spectra along different diffraction orders of structured illumination,
which degrades the final image quality. Conventional SIM turns nine
raw images (three orientations and three phase shifts) into a SR image
with isotropic spatial resolution. As a valuable effort to reduce the
raw image, a frequency domain SIM-RA based on an ordinary least
square technique allows for SR image reconstruction using four raw
SIM images [19].

In recent years, deep learning [20,21] has been demonstrated as
a powerful tool in solving various inverse problems through training
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Fig. 1. The schematic diagram of DIP-SIM model. 𝐷𝑖,𝑗 (r) indicates six (three) raw images as input to the network 𝑅𝜃 . 𝑅𝜃 indicates the estimation of a SR image S′ (r). D′
𝑖,𝑗 (r)

are the calculated six (three) raw images. H{⋅} is the operator described with Eq. (3).
a network with a large quantity of paired images. The incorpora-
tion of deep learning into SIM has invited many ideas and break-
throughs in SR reconstruction of SIM. To cite a few, Qiao et al.
proposed a deep Fourier channel attention network (DFCAN), which
exhibited robust image reconstruction under low signal-to-noise ratio
(SNR) conditions [22]. Shah et al. proposed and demonstrated super-
resolution residual encoder–decoder SIM (SR-REDSIM) and residual
encoder–decoder fairSIM (RED-fairSIM) for high-robustness SIM re-
construction under different noise levels. The authors proved that
RED-fairSIM has better generalization ability than SR-REDSIM under
different SIM imaging conditions [23]. Jin et al. proposed a DL-SIM
method, which reduces the number of high-quality raw images re-
quired for reconstructing SIM images and ultimately improves the
temporal resolution [24]. The majority of deep-learning based SIM
reconstruction approaches are based on data-driven neural networks,
and therefore, they require a large pair of inputs (raw images) and
desired outputs (ground truth) to optimize network parameters. The
raw images can be acquired on a real SIM system using various sam-
ples and experimental conditions. However, the high-quality outputs
corresponding to the raw images are difficult to obtain. Furthermore,
the training processes of different network frameworks may take hours
or even days. Although simulated data can be used as the training
set, it is sometimes difficult to model variants of test samples, and the
mapping function is only suitable for objects with the same prior as the
simulated training set [25]. Burns et al. proposed a physics-informed
neural network (PINN), which used nine sub-frames (3 orientations and
3 phases) for the super-resolution reconstruction of SIM images [26].
Ulyanov et al. designed a Deep Image Prior (DIP) framework that uses
an untrained network as a constraint to solve common inverse prob-
lems, considering a well-designed network framework has an implicit
bias in images [27]. The DIP has a preponderant advantage in that it
does not need pre-training with a large amount of labeled data.

Inspired by the idea of DIP, we present a physics-driven deep image
prior framework for the super-resolution reconstruction of SIM (entitled
DIP-SIM). In DIP-SIM, the neural network parameters are updated by
optimizing the loss between the experimental raw images and the one
predicted with the imaging model. It allows for SR reconstruction from
six or even three frames of raw data for two-orientation SIM, and
four raw images for three-orientation SIM. Hence it has a much faster
imaging speed and lower photobleaching compared with the traditional
SIM.

2. Methods

Structured illumination microscopy utilizes moiré patterns to down-
shift high-frequencies of the object wave into the frequency support of
2

the microscope and eventually enhances the resolution of the micro-
scope. In SIM, the intensity distribution of structured illumination can
be written as:

𝐼𝑖,𝑗 (𝒓) = 𝐼0
[

1 + 𝑚
2
cos

(

2𝜋𝑘𝑠 ⋅ 𝒓 + 𝜑𝑖,𝑗
)

]

, (1)

where r is the spatial coordinate. 𝐼0(r) is the dc term of the periodic
illumination. m is the modulation factor. 𝜑𝑖,𝑗 is the 𝑗th phase shifting
for the 𝑖th fringe orientation. 𝑘𝑠 is the spatial frequency. In spatial
light modulator (SLM) or digital micromirror device (DMD) based SIM,
𝑘𝑠 and 𝜑𝑖,𝑗 are digitally set by the SLM or DMD, so that they can be
measured once for all.

Under the illumination of the fringe pattern 𝐼𝑖,𝑗(r), a fluorescent
labeled sample S(r) is imaged by the microscopic system, and the
recorded intensity image corresponds to the convolution of S(r) ⋅ 𝐼𝑖,𝑗(r)
with the intensity point spread function (PSF) h𝐷(r) of the system:

𝐷𝑖,𝑗 (𝒓) =
[

𝑆(𝒓) ⋅ 𝐼𝑖,𝑗 (𝒓)
]

⊗ ℎ𝐷(𝒓). (2)

Herein, a physics-driven deep image prior framework structured
illumination microscopy (entitled DIP-SIM) is proposed to reconstruct
a SR image from 𝐷𝑖,𝑗(r), as shown in Fig. 1.

Firstly, the estimation of a SR image S′(r) is performed with a
Encoder–Decoder CNN network [27].

𝑆′(𝒓)=𝑅𝜃(𝐷𝑖,𝑗 (𝒓)), (3)

where 𝜃 indicates the parameter setting of the network 𝑅𝜃 . This net-
work [28] consists of five encoder base units, five decoder base units,
and long skip connections implemented via concatenation, as shown
in Fig. 2. The encoder base unit mainly contains convolution blocks
(3 × 3 convolution (stride 2) + batch normalization + Leaky ReLU +
3 × 3 convolution (stride 1) + batch normalization + Leaky ReLU), with
which image features are extracted. The down-sampling is performed
by setting the sliding stride of the convolutional layer to 2, while up-
sampling is accomplished by the Lanczos operator. The decoder basic
unit mainly contains convolution blocks (3 × 3 convolution (stride 1)
+ batch normalization + Leaky ReLU +1 × 1 convolution (stride 1)
+ batch normalization + Leaky ReLU), with which image information
is recovered. The long skip connection uses convolution blocks (1 × 1
convolution (stride 1) + batch normalization + Leaky ReLU). The
function of the long skip connection is to fuse shallow information
with deep information to provide more semantic information for the
decoding process. In the output layer, an estimated high-quality SIM
image is reconstructed by using 1 × 1 convolution and sigmoid.

Then, the output of the neural network, i.e., S′(r), is used to
calculate the intensity distribution of the raw images D′

𝑖,𝑗(r) under the
structured illumination 𝐼𝑖,𝑗(r):

𝐷′ (𝒓) = 𝐻(𝑆′(𝒓)), (4)
𝑖,𝑗
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Fig. 2. Encoder–decoder architecture with long skip connections. In the right side of the figure, Conv2 represents the convolutional layer setting the stride to 2, BN represents
batch normalization, Sig represents the sigmoid activation function, and Conv1 represents the convolutional layer setting the stride to 1. d[i], u[i], 𝑛𝑠[i] represents at the 𝑖th
encoder base unit, decoder base unit and skip connections, respectively.
where H{.} is the operator to mimic the SIM imaging process governed
by the physical model in Eq. (2). Specifically, S′(r) is multiplied with
the structured illumination 𝐼𝑖,𝑗(r), and is further convoluted with the
PSF h𝐷(r) of the system.

Finally, the neural network parameters are updated by optimizing
the loss between the experimental raw images 𝐷𝑖,𝑗(r) and the calculated
raw images D′

𝑖,𝑗(r). For this purpose, the combination of SSIM and
mean square error is used as the loss function of DIP-SIM:

𝑅𝜃∗ = arg min ‖𝐷′
𝑖,𝑗 (𝒓) −𝐷𝑖,𝑗 (𝒓)‖2 + 𝛿 × [1−𝑆𝑆𝐼𝑀(𝐷′

𝑖,𝑗 (𝒓), 𝐷𝑖,𝑗 (𝒓))], (5)

where 𝛿 is a weighting factor used to balance the relative contribution
of the structural similarity index (SSIM) loss function and the mean
square error (MSE) loss function, which is set to 0.1 in most cases in
this paper. The parameter of the neural network is optimized as the
loss gradually decreases. Eventually, the feasible mapping function 𝑅𝜃∗
between 𝑆𝑆𝑅(r) and 𝐷𝑖,𝑗(r) can be generated:

𝑆𝑆𝑅(𝒓) = 𝑅𝜃∗ (𝐷𝑖,𝑗 (𝒓)). (6)

In DIP-SIM, the SR reconstruction of the sample image is obtained
by the interplay between H{.} and 𝑅𝜃 , which is intrinsically constrained
by the priors of 𝐷𝑖,𝑗(r) and the physical model in the DIP-SIM. It can be
seen that Eq. (5) does not contain the ground truth S(r) that are often
high-resolution images obtained with a high-NA objective. It means
that DIP-SIM does not require ground truth S(r) during the training
process. Therefore, compared to conventional data-driven based end-to-
end neural networks [18,22–25,29,30], the proposed DIP-SIM network
does not require the data pairs for pre-training since it has implicit
biases in images [27]. The network can obtain prior knowledge from
several raw images instead of large datasets of images, significantly
reducing the experimental data as required by conventional data-driven
networks.

Different from the conventional SIM reconstruction, for which nine
raw images (with 3 directions × 3 phase shifts) are required to re-
construct a super-resolution SIM image, DIP-SIM can reconstruct a SR
image with fewer raw images. In the following, we will demonstrate
DIP-SIM reconstruction with six raw images (termed DIM-SIM-6) and
three raw images (termed DIP-SIM-3) for two-orientation SIM. Specif-
ically, for DIP-SIM-6, two groups of structured illumination with two
orthogonal orientations and three phase shifts of 0, 2𝜋∕3, and 4𝜋∕3
for each were used. For DIP-SIM-3, three raw images were used. Two

raw images were obtained using the structured illumination along the

3

x direction under the phase shift of 0 and 2𝜋∕3. The third image is
the raw image obtained using the structured illumination along the y
direction and the phase shift of 0.

The network was implemented based on the PyTorch platform (ver-
sion 1.10.1, coded with Python 3.7.5). We adopted the Adam optimizer
with a learning rate of 𝛼 = 0.01, 𝛽1 = 0.9, and 𝛽2 = 0.999 to update the
parameters in the neural network. The code was deployed on the server
with an Intel Core i9-10980XE CPU, 128 GB RAM, and an NVIDIA
GeForce RTX 3090 running the CentOS Linux operating system. The
main progress is illustrated in Algorithm 1.

3. Results

The performance of DIP-SIM has been demonstrated with both
simulation and experiment. The simulation is ideal for quantifying the
reconstruction quality of DIP-SIM, while the experiment is suited to
verify the practicability of the DIP-SIM.

3.1. Simulation

In the first simulation,we have simulated DIP-SIM imaging for two-
orientation SIM, for which the images of various biological samples
selected from the BioSR dataset are used as ground truth images [22].
To simulate raw intensity images, the images are multiplied by different
structured illumination and convolved with a known PSF, as described
in Eq. (2). The parameters of the simulated SIM system are the same
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Fig. 3. Wide-field and DIP-SIM-6 of a microtubule image from BioSR dataset. (a) Ground truth (GT). (b) Magnified view of the region in (a) indicated with a white box. (c)
Wide-field image, obtained by simply averaging six raw images. (d)∼(f) Images reconstructed by DIP-SIM-6 and DIP-SIM-3, and conventional end-to-end network. (g) The intensity
profiles along the dash lines in (b–f). Scale bar in (a) is 10 μm. Scale bar in (b–f) is 3 μm.
Fig. 4. Three-orientation DIP-SIM imaging of a microtubule image. (a) Raw images obtained with the SI with an azimuth of 0◦, 120◦, and 240◦, respectively. (b–f) Images of
round truth (GT), wide-field, DIP-SIM-9, DIP-SIM-7, DIP-SIM-4. (g) The intensity profiles along the dash lines in (b–f). Scale bar in (d) is 3 μm.
r

s the experimental setting described in Section 3.2. Specifically, the
tructured illumination pattern is characterized with 𝐼0 = 1, 𝑚 =
.75, and 𝑘𝑠 = 1.5 × 10−6 μm−1 [31] obtained by the raw image
alculation [15]. Taking the fringe orientations of +45◦, −45◦ and
hase shifts of 0, 2𝜋∕3, and 4𝜋∕3, we can obtain six different structured
llumination patterns. The ground-truth images and the simulated raw
ntensity images are used as training pairs. First of all, a comparison of
he proposed DIP-SIM and the conventional data-driven-based end-to-
nd network approach was carried out. An end-to-end network, which
ses the same neural network model but without using a physical
odel, was used to reconstruct a SR image via a mapping function

btained by fitting the training pairs. The output of the end-to-end
etwork is shown in Fig. 3(f). For performance quantification, Fig. 3(a)
hows a high-resolution ground truth image of a microtubule image
elected from BioSR dataset. The image of a sub-region indicated with
white box in Fig. 3(a) is magnified and shown in Fig. 3(b). The SR

mages, reconstructed using six raw images by DIP-SIM-6 and three
aw images by DIP-SIM-3, are shown in Fig. 3(d) and (e), respectively.
ompared to the wide-field image, both the DIP-SIM-6 and DIP-SIM-3

mages have a higher spatial resolution as shown in Fig. 3.
Furthermore, the reconstructed images of DIP-SIM-3 and DIP-SIM-6

ere compared with that of the end-to-end network. It turns out that
he MSE of the reconstructed images by the end-to-end network, DIP-

IM-3, and DIP-SIM-6 with respect to the ground-truth image is 0.04,

4

0.06, and 0.04, respectively. Furthermore, a cut-line was extracted
from the same position of the images in Fig. 3(b–f), and the intensity
distributions along the lines are shown in Fig. 3(g). The comparison
confirms that DIP-SIM-6 and DIP-SIM-3 can resolve finer structures of
microtubules than the wide-field microscopy. As expected, compared to
the end-to-end network approach, both DIP-SIM-6 and DIP-SIM-3 can
obtain a high-quality SR-SIM image without a large amount of labeled
data.

In the second simulation, we have demonstrated that the DIP-
SIM approach can be applied to three-orientation SIM, which has an
isotropic resolution enhancement. The microtubule sample was used
as the test sample. Three groups of raw intensity images (see Fig. 4(a))
were simulated using the structured illumination (SI) with an azimuth
of 0◦, 120◦, and 240◦, and each group contains three phase-shifted
aw images with a phase shift increment of 2𝜋/3. The images of the

GT, wide-field, DIP-SIM-9, DIP-SIM-7, and DIP-SIM-4 are shown in
Fig. 4(b–f), respectively. Compared to the wide-field image obtained by
simply averaging nine raw images, the images reconstructed by DIP-
SIM-9, DIP-SIM-7, and DIP-SIM-4 have a distinctly-enhanced spatial
resolution. The intensity distributions along the line crossing the same
position in Fig. 4(b–f) were extracted and compared in Fig. 4(g). It
is distinct that the DIP-SIM-9, DIP-SIM-7, and DIP-SIM-4 images show
similar structures, among which the two closely-placed tubules with a

distance of 0.45 μm from are well separated. While, the quality of the
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Fig. 5. Effect of the estimation error of SI parameters on DIP-SIM-6 reconstruction. (a)∼(b) The DIP-SIM-6 images reconstructed using the phase shifts and the spatial frequency
with different error levels. (c)∼(d) The SSIM of the DIP-SIM-6 images with respect to the ground truth for different error levels. The true phase shift of 0, 2𝜋/3, and 4𝜋/3 and
the spatial frequency of 1.5 × 10−6 m−1. The scale bar in (a) is 3 μm.
Fig. 6. Effect of Poisson noise on DIP-SIM-6 reconstruction. (a) The wide-field and DIP-SIM-6 images at five different Poisson noise levels. (b) The SSIM versus the SNRs of the
aw images. The scale bar in (a) is 3 μm. The curve in (b) is the three-order polynomial fit.
econstructed images decreases with the raw image number, which is
eflected in the fact that DIP-SIM-9, DIP-SIM-7, and DIP-SIM-4 images
ave their SSIMs of 0.97, 0.95, and 0.93, respectively. If the number of
aw images is further reduced, the artifacts of the reconstruction will
ecome overwhelming since the analytic solutions are uncertain (not
nique) for the constraint of fewer than four raw images [32].

In the real implementation, the parameters of the structured il-
umination are calculated from the raw images using the traditional
lgorithm [15]. Errors may occur when the SNR of raw images is low.
e examined the performance of DIP-SIM against the estimation error

f the phase shift and spatial frequency. DIP-SIM-6 imaging of the
icrotubular sample was simulated using Eqs. (1) and (2). Then, DIP-

IM-6 images were reconstructed using the phase shift and the spatial
requency with 1%, 2%, 5%, 10% deviation from their true values, and
he results are shown in Fig. 5(a) and (b), respectively. For a better
uantitative evaluation, the SSIM of the DIP-SIM-6 images with respect

o the ground truth for different error levels of the phase shift and

5

spatial frequency was calculated, as shown in Fig. 5(c–d). It is distinct
that the larger the error is, the higher artifacts (residual fringe) appear
in DIP-SIM images. DIP-SIM-6 are tolerant to 2.5% and 2% error on
the phase shifts and spatial frequency if a SSIM of 0.9 is used as the
threshold.

To follow up, the same microtubular sample from BioSR was used
to quantify the robustness of the proposed DIP-SIM against background
noise. Fig. 6(a) shows the pairs of the wide-field and DIP-SIM-6 images
reconstructed from different sets of raw images at five different Poisson
noise levels of 9.50, 8.83, 8.35, 7.71, and 6.53, respectively. The noise
level was quantified by the signal-to-noise (SNR) in the raw images.
The SSIM of the DIP-SIM-6 images at different noise levels with respect
to the ground truth was calculated, as shown in Fig. 6(b). The results
show that the SSIM decreases with the SNR of the raw images, while
the SSIM remains still above 0.9 as long as the signal to noise (SNR)
is above 8.4. We find from a further study that DIP-SIM-6 is inferior

to the conventional SIM algorithm on suppression of the out-of-focus
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Fig. 7. The schematic diagram of large-field SIM. (a) Experimental setup. (b) Pinhole filtering of the ±1st spectra after loading the binary gratings to SLM. (c) Phases loaded on
the SLM to generate fringe patterns. DM, dichroic mirror; L1–L6, achromatic lens; M1–M2, mirror; MO, micro-objective; NPBS, non-polarizing beam splitter; P1–P2, polarizer; SLM,
spatial light modulator; TL, tube lens.
artifact, considering the conventional SIM has an intrinsic background
removal capability via phase-shifting calculation.

3.2. Experiments

The schematic diagram of two-orientation SIM setup is shown in
Fig. 7(a). A 532 nm diode laser (1875-532L, Laserland, Wuhan, China)
is used as the light source, and the intensity of the illumination beam
is adjusted by rotating the polarizer P1. A polarizer P2 located in
the beam path converts the illumination into horizontally polarized
light, ensuring the maximum modulation efficiency of the spatial light
modulator (SLM). The illumination beam is further expanded by a
telescope system L1 − L2 so that a uniform illumination is generated.
A 2D grating, of which the ±1st diffraction orders have the highest
diffraction efficiency, is placed on the beam path to generate structured
illumination. After being Fourier converted by the lens L3, the spectrum
of the illumination appears on the plane with a distance d from a
SLM (1920 × 1200 pixels, pixel size 8 μm, HDSLM80R, UPOLabs Co.,
Ltd., China). The +1st diffraction order of the grating along the x (y)
direction is phase shifted by the SLM, while the ±1st diffraction orders
along the y (x) are diffracted off by the binary grating loaded on SLM.
These spectra are further imaged onto the filter mask by the telescope
system L4−L5. The mask contains four circular holes (diameter 350 μm,
spacing 5.5 mm) that preserve only the spectrum of the ±1st orders
along the 𝑥 and 𝑦 directions, as shown in Fig. 7(b). The circular holes
will block the diffraction orders once being diffracted by the binary
grating loaded on SLM. Furthermore, two polarizers with polarization
azimuth +45◦ (−45◦) are placed on the spectrum of the ±1st orders
in the 𝑥 and 𝑦 directions, respectively. Such polarization setting avoids
the interference of the beams in the 𝑥 and 𝑦 directions. The resulting
structured illumination fringes are imaged to the sample plane by two
telescope systems (L5 − L6 and TL-MO). The phase mask in Fig. 7(c)
will be used to generate selecting fringe orientation and perform phase-
shifting. The grayscale images corresponding to the 0, 2𝜋∕3, and 4𝜋∕3
phase shifts are sequentially loaded into the SLM to generate structured
light illumination with different phase shifts in the x (y) direction.
The intensity images of three phase shifts in different directions are
recorded by a CMOS (4096 × 3000 pixels, pixel size 3.45 μm, Basler ace
acA4112-20um, Basler Vision Technology (Beijing) Co., Ltd., China).
6

DIP-SIM was verified by two-orientation SIM imaging 240 nm-
diameter fluorescent beads (RF240C, emission-peak wavelength
580 nm, Shanghai Huge Biotechnology Co., Ltd, China). The fluorescent
beads were imaged with the SIM setup shown in Fig. 8. Two groups of
fringe patterns with orthogonal orientation were utilized to illuminate
the sample in sequence, and each group of the patterns was shifted
three times. The generated six raw intensity images were recorded by
the CMOS camera. The numerical aperture (NA = 0.75) of the objective
limits the lateral resolution to 𝛿 = 𝜆𝑒𝑚/(2NA) = 0.39 μm estimated by
Abbe criterion, where 𝜆𝑒𝑚 = 580 nm is the emission-peak wavelength of
the fluorophore used. The period of the structured illumination fringes
is 𝑃SIM = 0.69 μm, and the theoretical enhancement in the lateral
resolution of SIM is [(2 × NA/𝜆𝑒𝑚) +1/PSIM]/[2 × NA/𝜆𝑒𝑚] = 1.6,
meaning that the theoretical resolution of large-field SIM of 0.24 μm
(estimated by Abbe criterion) [33].

The super-resolution images of the fluorescent beads were recon-
structed by using the conventional reconstruction approach [31,34],
DIP-SIM-6, and DIP-SIM-3. Fig. 8(a)-left and right show the wide-
field image and DIP-SIM-6 image. And, the images of four sub-regions
obtained by wide-field mode (obtained by averaging the six raw in-
tensity images), conventional SIM, DIP-SIM-6, DIP-SIM-3 are shown
in rows 1–4 of Fig. 8(b), respectively. Compared to the wide-field
image, the conventional SIM, DIP-SIM-6, and DIP-SIM-3 images have
a much higher spatial resolution. This conclusion is further confirmed
by analyzing the intensity distributions along the line crossing the
same beads in the images obtained by the four modalities, as shown
in Fig. 8(c). Obviously, the two closely-placed beads with a distance
of 0.38 μm that are not resolvable in the wide-field image become
distinguishable in conventional-SIM, DIP-SIM-6, and DIP-SIM-3 images.
To quantitatively assess the lateral resolution of each imaging modality,
eighteen fluorescent beads were randomly selected from Fig. 8(a), and
the intensity distributions along the line crossing the bead centers were
extracted and fitted with Gaussian functions. The full widths at the half
maximum (FWHMs) are shown in Fig. 8(d). It is found in Fig. 8(d) that
the average FWHM is 0.54 ± 0.03 μm, 0.30 ± 0.03 μm, 0.31 ± 0.03 μm,
0.34 ± 0.03 μm for conventional wide-field microscopy, conventional
SIM, DIP-SIM-6, and DIP-SIM-3, respectively. Specifically, a resolution
enhancement factor of 1.74 is achieved for DIP-SIM-6 and 1.59 for DIP-
SIM-3. The image decorrelation analysis has also been conducted to
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Fig. 8. Wide-field and DIP-SIM-6 imaging on 240 nm-diameter fluorescent beads. (a) Wide-field (left) and DIP-SIM-6 (right). (b) Magnified view of the region in (a) indicated
with a white box: row 1: wide-field image, row 2∼4: images reconstructed by the conventional SIM, DIP-SIM-6 and DIP-SIM-3. (c) The intensity profiles along the dash lines in
(b). (d) Statistic of spatial resolution in term of the FWHM of individual particles. (e)∼(h) Decorrelation-based resolution analysis of the wide-field, conventional SIM, DIP-SIM-6,
DIP-SIM-3 images. Scale bar in (a) is 10 μm. Scale bar in (b) is 3 μm.
evaluate the spatial resolution of different imaging modalities, as shown
in Fig. 8(e–h) [35]. The results reveal that the wide-field, SIM, DIP-SIM-
6, and DIP-SIM-3 images have a normalized cut-off frequency of 𝑘c =
0.58 μm−1, 0.93 μm−1, 0.92 μm−1, and 0.86 μm−1, meaning that they
have a spatial resolution (calculated by 2𝛿/M/𝑘c = 2 × 3.45/20/𝑘c)
of 0.59 μm, 0.37 μm, 0.38 μm, and 0.40 μm, respectively. Here, 𝛿 and
M are the pixel size of the camera and the magnification of the SIM
system.

The comparison implies that DIP-SIM-3 only requires three raw
images to achieve a plausibly comparable spatial resolution to DIP-SIM-
6, and therefore, it has a much faster imaging speed and a two-fold
reduction of photobleaching. However, the DIP-SIM-3 suffers from a
burn-in effect (i.e., the illumination patterns do not average out to
a uniform illumination), leading to a poorer reconstruction quality
compared to the DIP-SIM-6 image. In mathematics, this is due to
the fact that the analytical reconstruction becomes uncertain (or not
unique) from the equations constrained by three raw images [32].

As is generally known, the excitation light in SIM can cause pho-
tobleaching, which will, in turn, prevent SIM from long-term imaging
of fluorescent-labeled samples. In principle, the lower the intensity of
the excitation light is, the lower the photobleaching can be caused.
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However, a low excitation light often results in a lower brightness
in the recorded image, which challenges the super-resolution recon-
struction. Herein, we compared the performance of conventional SIM,
DIP-SIM-6, and DIP-SIM-3 when dealing with the data acquired with
week-brightness samples. In this experiment, 240 nm-diameter fluo-
rescent beads were used as the sample. To mimic low-brightness raw
images obtained with low-intensity excitation light, we recorded raw
images with a monotonously reduced exposure time. The brightness of
a raw image was characterized by photons per bead (PPB) in the image.
Fig. 9 shows the reconstructed wide-field image, conventional SIM, DIP-
SIM-6, and DIP-SIM-3 images of the sample at four different brightness
with 780, 700, 610, and 280 PPB, respectively. ROIs from the same
location in the four-modality images were magnified and shown in
the lower-right corner of each image. The intensity distributions along
the line crossing two connecting beads in the four-modality images at
different brightness conditions were compared in Fig. 9(b–e).

Furthermore, we quantitatively assessed the quality of DIP-SIM-6
and DIP-SIM-3 images, using the conventional SIM image with the
highest brightness (i.e., 780 PPB) as the ground truth. Herein, the peak
signal-to-noise ratio (PSNR) and SSIM were used as the criteria, and the
results are shown in Table 1. It is found that as the brightness of the



X. Liu, J. Li, X. Fang et al. Optics Communications 537 (2023) 129431

r
D
o

r
b

Fig. 9. Wide-field and DIP-SIM images of fluorescent beads at different exposure time. (a) Wide-field, conventional SIM, DIP-SIM-6, and DIP-SIM-3 images. four regions of interest
(ROIs) at different locations are magnified for better comparison of wide-field, conventional SIM, DIP-SIM-6, and DIP-SIM-3. (b–e) Intensity distribution for different exposure
times. The scale bar in (a) is 10 μm.
aw data decreases, the reconstruction quality of both DIP-SIM-6 and
IP-SIM-3 decrease, and the latter one is slightly worse than the prior
ne.

In addition, we applied DIP-SIM-6 and DIP-SIM-3 to super-
esolution imaging of mouse stem cells labeled with primary anti-
ody (𝛽-Tubulin antibody, #2146, produced in rabbit) and secondary

antibody (Goat anti-Rabbit IgG(H + L)-Alexa Fluor 532). Fig. 10(a)
shows the wide-field (upper-left) and DIP-SIM-6 (lower-right) images
of microtubules in fixed cells. The comparison shows that the latter
one has shaper structures with a clearer background. Further, the
wide-field, conventional SIM, DIP-SIM-6, and DIP-SIM-3 images of four
ROIs, indicated with the four white boxes, are magnified and shown
in Fig. 10(b). It is obvious that the DIP-SIM-6, DIP-SIM-3, and conven-
tional SIM images show much finner structures of the microtubules.
The intensity distributions (Fig. 10(c)) along the cut lines in Fig. 10(b)
exhibit that the two fibers that are 500 nm apart (below the diffraction
limit) are not resolvable in the wide-field image. However, they can be
well resolved in both the DIP-SIM-6, DIP-SIM-3, and conventional SIM
images. In general, the loss decreases gradually with the increase of the
iteration number, as shown in Fig. 10(d). While, the neural network of
DIP-SIM-6 and DIP-SIM-3 can provide a high-quality SR-SIM image.

4. Conclusion and discussion

In conclusion, a physics-driven deep image prior framework for the
super-resolution reconstruction of SIM (entitled DIP-SIM) is proposed
and demonstrated. The incorporation of a physical model releases the
neural network from the dependency on a large number of labeled data.
DIP-SIM can reconstruct a super-resolution image from six images for
8

Table 1
Comparison of DIP-SIM-6 and DIP-SIM-3 reconstruction from raw data of different
brightness.

Photons per particle DIP-SIM-6 DIP-SIM-3

PSNR/SSIM

780 31.52/0.95 29.62/0.93
700 30.82/0.93 29.47/0.89
610 29.11/0.88 27.73/0.86
280 25.94/0.86 25.65/0.83

two-orientation and from nine raw images for three-orientation SIM, re-
spectively. The reconstruction has a quality comparable to conventional
SIM. Furthermore, the proposed DIP-SIM allows for the reconstruction
of a SR image with fewer raw images, such as three raw images for two-
orientation SIM and four raw images for three-orientation SIM, despite
the analytical reconstruction becomes underdetermined for fewer than
four raw images [35]. This is due to the fact that the iteration of DIP-
SIM can better extract and utilize high-frequency information encoded
in the raw images as long as the parameter is realistic. However,
DIP-SIM may provide artificial SR structures (artifacts) where the un-
derdetermined problem occurs due to missing bright-fringe coverage.
As another disadvantage, DIP-SIM requests pre-known parameters of
structured illumination and PSF, and the relative error on the parame-
ter estimation should be lower than 2%. After all, DIP-SIM has a much
faster imaging speed and lower photobleaching compared with the
traditional SIM. We can envisage that DIP-SIM will be widely applied
in biomedical imaging.
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Fig. 10. Wide-field and DIP-SIM-6 images of the microtubules in fixed mouse stem cells labeled with Alexa fluor 532. (a) Wide-field image (upper-left) and DIP-SIM-6 image
(lower-right) of the sample. (b) Magnified view of the four ROIs in (a) indicated with a white box: row 1∼4: Wide-field, conventional SIM, DIP-SIM-6, and DIP-SIM-3 images. (c)
The intensity profiles along the dash lines in (b). (d) Loss changes versus the number of iterations. The scale bar in (a) is 10 μm, and the scale bar in (b) is 3 μm.
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