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a b s t r a c t 

In stereo vision based three-dimensional (3D) measurements, calibration and stereo matching are the most chal- 

lenging tasks for accurate 3D reconstruction. In this paper, a new microscopic telecentric stereo vision system is 

proposed to retrieve 3D data of micro-level objects by direct triangulation from two accurately calibrated telecen- 

tric cameras. The complex projector calibration procedure commonly seen in traditional structured-light based 

systems can be avoided. Besides, an improved and practical calibration framework of telecentric cameras is pre- 

sented. Compared with existing calibration methods which retrieve the distortion parameters without reasonable 

initial guesses, our proposed approach derives reliable initial guesses for all the camera parameters to avoid the 

local minima problem based on the estimation algorithms before iterations. To realize precise sub-pixel stereo 

matching, we propose an effective searching algorithm based on the epipolar rectification of the absolute phase 

maps obtained from fringe projection profilometry. Experimental results indicate that a measurable volume of 

10 mm ( L ) × 7 mm ( W ) × 7 mm ( H ) is achieved with the standard deviation of 1.485 𝜇m. 
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. Introduction 

In recent years, advances in precision manufacturing demand micro-

evel three-dimensional (3D) metrology to guarantee accurate fabrica-

ion and optimal designs. As a classic passive 3D measurement tech-

ique, stereo vision measurement has been extensively used for topom-

try of a wide range of surfaces [1] . However, correspondence (stereo

atching), which tries to find the corresponding parts in multi-views

emains as one main challenge in passive stereo vision measurement

ecause the physical features are usually not readily detectable and dis-

inguishable [2] . A practical solution is to use active markers for accu-

ate stereo matching. 

As a widely used non-contact method for surface profiling,

tructured-light projection technique can provide full-field active mark-

rs [3,4] . In traditional structured-light based systems, a digital projec-

or is employed to create required artificial fringe patterns and consid-

red as one view for stereo-measurement [5] . Appropriate calibration of

 projector based multi-view system is vital for accurate 3D reconstruc-

ion [6,7] . For micro-3D measurement, the smaller field of view (FOV)

n the microscopic multi-view system necessitates auxiliary lenses. One

pproach is to adopt a stereo-microscope for this task [8] . However, be-

ause of the complicated optics inside a stereo-microscope, calibration

f such an optical system with a flexible method [6] is difficult. The sec-
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nd approach is to use telecentric lenses owing to their increased depth

f field and constant magnification along the optical axis [9] . Initial

tudies using telecentric lenses for micro-3D topometry were based on

 single-camera configuration [10–14] . However, the projector in these

ystems needs calibration with the help of a calibrated camera, which

s a complex process. Besides, the calibration accuracy cannot be guar-

nteed due to the unpredictability caused by the gamma effects, lens

istortion, and the misalignment of the additional auxiliary lens in the

rojector. To utilize the advantage of full-field active markers provided

y the projector and avoid being bothered by the issues related to the

rojector, a potential solution is to design a stereo vision system that

omprises two well-calibrated telecentric cameras for stereo matching

nd one projector for active marker projection. 

In this paper, a microscopic telecentric stereo vision system is in-

roduced to overcome the challenges of system calibration and stereo

atching. The calibration procedure only involves two telecentric cam-

ras without the necessity to calibrate the projector; therefore, the com-

lexity of the projector calibration and other issues in single-camera

ased systems can be effectively avoided. For the telecentric camera

alibration, many approaches have been proposed. Li and Tian [15] pro-

osed a planar calibration technique which however does not consider

he ambiguity of the extrinsic parameters. Chen et al. [16] addressed
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Fig. 1. Simplified schematic of the imaging process and the coordinate systems 

of a telecentric camera. 
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his shortcoming by capturing image pairs along the depth axis for each

osture of the calibration board to unambiguously recover the rotation

atrix. However, the distortion center is not calibrated for the intrin-

ic parameters of the camera. Rao et al. [17] also proposed a method

hat directly uses the pinhole model to describe the imaging process of

he telecentric camera, which may fail for lenses with good telecentric-

ty. Different from the pinhole cameras, the distortion center (projection

enter) of a telecentric camera locates at infinite so that it is hidden in

he distortion-free camera model and can be only derived through iter-

tions. 

To better calibrate the distortion of a telecentric camera, we have

o know the position of the distortion center correctly. In Yao’s work

18] , a novel two-step calibration procedure to get the full-scale pa-

ameters including the distortion center by two non-linear optimization

rocesses is proposed. However, in their method, the detector’s center

s assumed as the initial value of the distortion center. Because the full-

cale camera parameters are all estimated together in each optimization

tep, the search process from the detector’s center is prone to find a lo-

al minimum when the actual distortion center is not close enough to

he detector’s center. To solve this problem, we propose an improved

nd efficient calibration framework for telecentric cameras in this pa-

er. Compared with the state-of-the-art methods that ignore or assume

nitial guesses for the distortion parameters before the iterations, the

roposed method uses a two-step estimation algorithm to decouple the

istortion center calculation from the full-scale parameters optimiza-

ion. The initial guesses of distortion coefficients are also effectively es-

imated before the iteration. With these trustworthy initial guesses, a

ore robust calibration framework is achieved, and thus the probabil-

ty of being trapped in local minima is significantly decreased. 

In the stereo matching step, telecentric epipolar rectification of the

alibrated telecentric stereo vision system is performed to facilitate the

atching process. Firstly full-field phase maps are obtained as in the

raditional manner. After the distortion compensation and epipolar rec-

ification of the phase maps, all the points of the measured scene lie

n the same vertical position in the two images. Thus by searching the

ixel with the closest phase value and inverse linear interpolation, sub-

ixel stereo matching of the two telecentric cameras can be efficiently

chieved. 

In this paper, the overall processes of the system calibration, epipo-

ar rectification, and 3D reconstruction using our microscopic profilom-

try system are detailed in Sections 2 –4 , respectively. The simulation

esult shows that with the reliable camera parameters acquired based

n trustworthy initial guesses, the re-projection error can be reduced by

ne order of magnitude or so. The experiments also demonstrate that the

roposed stereo matching method based on epipolar rectification of the

ull-field and high-resolution phase maps accommodates the measure-

ents for various kinds of objects with a sizeable measurable depth.

inally, the conclusion and suggestion for future work are summarized

o close this paper. 

. Telecentric camera model and telecentric epipolar rectification

.1. Telecentric camera model 

Unlike the perspective projection in the imaging process of a pinhole

amera, telecentric cameras provide purely orthographic projections of

he scene, which makes it easier to measure physical size independently

rom depths. The imaging model of a distortion-free telecentric cam-

ra is illustrated in Fig. 1 . ( x w , y w , z w ) and ( x c , y c , z c ) are the coor-

inates of an arbitrary object point P in the world coordinate system

 − 𝑋 𝑊 

𝑌 𝑊 

𝑍 𝑊 

and camera coordinate system 𝑂 𝐶 − 𝑋 𝐶 𝑌 𝐶 𝑍 𝐶 , respec-

ively. Because of the affine projection from the camera coordinate to

he image coordinate, the camera center O C of a telecentric camera lo-

ates at infinite. p ( 𝑢, 𝑣 ) is the image coordinate of point P and e ( 𝑢 0 , 𝑣 0 )
s the image coordinate of the optical center, which is also known as the

istortion center and usually does not coincide with the detector’s cen-
15 
er (image center). The aperture stop is used to assure the telecentricity

f the lens [19] . 

For the object point P ( 𝑥 𝑐 , 𝑦 𝑐 , 𝑧 𝑐 ) in the camera coordinate system, its

omogeneous image coordinate p̃ is projected in an affine form as 

 

p 

1 

] 
= 

⎡ ⎢ ⎢ ⎣ 
𝑚 0 𝑢 0 
0 𝑚 𝑣 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝑥 𝑐 
𝑦 𝑐 
1 

⎤ ⎥ ⎥ ⎦ , (1) 

here m is the effective magnification of the telecentric lens. For an ideal

elecentric camera, u 0 and v 0 can be set as zeros. Each calibration pattern

as it own world coordinate system. The pattern on the calibration board

etermines X W 

and Y W 

as well as the original point O . The world and

amera coordinate systems are related by a rotation matrix R and a

ranslation vector t as 

 

 

 

 

𝑥 𝑐 
𝑦 𝑐 
𝑧 𝑐 

⎤ ⎥ ⎥ ⎦ = R 

⎡ ⎢ ⎢ ⎣ 
𝑥 𝑤 
𝑦 𝑤 
𝑧 𝑤 

⎤ ⎥ ⎥ ⎦ + t . (2)

ere, R = [ r 𝑥 r 𝑦 r 𝑧 ] T and t = [ 𝑡 𝑥 𝑡 𝑦 𝑡 𝑧 ] T . The whole projection of a point

 ( 𝑥 𝑤 , 𝑦 𝑤 , 𝑧 𝑤 ) in the world coordinate to an image point p ( 𝑢, 𝑣 ) can be

xpressed as [15] 

 

p 

1 

] 
= A 

[ 
R 2×3 t 2×1 
0 1×3 1 

] [ 
P 

1 

] 
= H 

[ 
P 

1 

] 
, (3)

ere, 

 = 

⎡ ⎢ ⎢ ⎣ 
𝑚 0 𝑢 0 
0 𝑚 𝑣 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ , (4) 

nd H is the homography matrix, which transforms the world coordi-

ates of objects into their corresponding image coordinate. 

.2. Telecentric epipolar rectification 

The epipolar geometry of two telecentric cameras is similar to that of

wo pinhole cameras. A pixel p 𝐿 ( 𝑢 𝐿 , 𝑣 𝐿 ) in the left view corresponds to

n epipolar line in the other view, on which the matched pixel p 𝑅 ( 𝑢 𝑅 , 𝑣 𝑅 )
eets an the affine epipolar constraint equation as [20] 

𝑢 𝑅 + 𝑏𝑣 𝑅 + 𝑐𝑢 𝐿 + 𝑏𝑣 𝐿 + 𝑒 = 0 , (5)

here, a ∼ e are five constants. As shown in Fig. 2 (a), pixel p 𝐿 1 
on the

eft camera corresponds to an epipolar line l R , on which a pixel p 𝑅 1 
also

orresponds to an epipolar line l L . The telecentric stereo images can be

ectified to make the matched pixel pairs in the same vertical position

o facilitate the stereo matching of the stereo vision system as shown

n Fig. 2 (b). The original images need to be transformed into new ones,

nd thus a new set of camera parameters is acquired. Different from

alculating the fundamental matrix between two views [21] , we first

alibrate the cameras with two set of parameters for each camera and

hen rectify them. Here we use a prime to represent the new parameters

nd add subscript “L ′′ or “R ′′ to distinguish the left and right cameras.
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Fig. 2. Epipolar constraints for (a) unrectified telecentric stereo vision system and (b) rectified stereo vision system. 
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hen we describe the original projection process for both cameras as 
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] 
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R 𝐿 2×3 t 𝐿 2×1 
0 1×3 1 

] [ 
P 

1 

] 
= H 𝐿 

[ 
P 

1 

] 
[ 
p 𝑅 

1 

] 
= A 𝑅 

[ 
R 𝑅 2×3 t 𝑅 2×1 
0 1×3 1 

] [ 
P 

1 

] 
= H 𝑅 

[ 
P 

1 

] , (6)

nd the rectified as 

 

 

 

 

 

 

 

[ 
p 

′
𝐿 

1 

] 
= A 

′
𝐿 

[ 
R 

′
𝐿 2×3 t ′

𝐿 2×1 
0 1×3 1 

] [ 
P 

1 

] 
= H 

′
𝐿 

[ 
P 

1 

] 
[ 
p 

′
𝑅 

1 

] 
= A 

′
𝑅 

[ 
R 

′
𝑅 2×3 t ′

𝑅 2×1 
0 1×3 1 

] [ 
P 

1 

] 
= H 

′
𝑅 

[ 
P 

1 

] (7)

ccording to Liu et al. [22] , we can use the same intrinsic matrix for

oth cameras as 

 

′
𝐿 
= A 

′
𝑅 
= ( A 𝐿 + A 𝑅 )∕2 , (8)

nd the new rotation matrix R 

′
𝐿 

and R 

′
𝑅 

is derived through 

 

r ′
𝑧𝐿 

= r 𝑧𝐿 
r ′
𝑧𝑅 

= r 𝑧𝑅 
, (9)

 

r ′
𝑦𝐿 

= norm ( r ′
𝑧𝐿 

× r ′
𝑧𝑅 
) 

r ′
𝑦𝑅 

= r ′
𝑦𝐿 

, (10)

nd 
 

r ′
𝑥𝐿 

= r ′
𝑧𝐿 

× r ′
𝑦𝐿 

r ′
𝑥𝑅 

= r ′
𝑧𝑅 

× r ′
𝑦𝑅 

, (11)

here, function “norm ′′ means normalization of a matrix and operator

× ′′ means cross product. The new translation vectors t ′
𝐿 

and t ′
𝑅 

are

hen obtained through 

 

 

 

 

 

[
𝜏𝑥 𝐿 

𝜏𝑦 𝐿 
𝜏𝑧 𝐿 

]T = R 

′
𝐿 

R 

−1 
𝐿 

[
t T 
𝐿 2×1 1 

]T [
𝜏𝑥 𝑅 

𝜏𝑦 𝑅 
𝜏𝑧 𝑅 

]T = R 

′
𝑅 

R 

−1 
𝑅 

[
t T 
𝑅 2×1 1 

]T , (12)

nd 

 

 

 

 

 

t ′
𝐿 2×1 = 

[
𝜏𝑥 𝐿 

( 𝜏𝑦 𝐿 + 𝜏𝑦 𝑅 
)∕2 

]T 
t ′
𝑅 2×1 = 

[
𝜏𝑥 𝑅 

( 𝜏𝑦 𝐿 + 𝜏𝑦 𝑅 
)∕2 

]T (13)

For now, we have derived all the parameters to generate H 

′
𝐿 

and

 

′
𝑅 

. Therefore, the transformation between the rectified and the original

mage coordinates can be executed by 
16 
 

 

 

 

 

 

 

[ 
p 

′
𝐿 

1 

] 
= H 

′
𝐿 

H 

+ 
𝐿 

[ 
p 𝐿 

1 

] 
[ 
p 

′
𝑅 

1 

] 
= H 

′
𝑅 

H 

+ 
𝑅 

[ 
p 𝑅 

1 

] (14) 

he symbol }}+ 

′′ means pseudo-inverse of a matrix. 

However, the rectification discussed above is valid only under the

istortion-free situation. Thus, before the rectification, the lens distor-

ion should be correctly removed by the accurate calibration of the cam-

ras. The following section details our calibration process for the tele-

entric cameras. 

. Calibration of telecentric cameras 

.1. Homography matrix 

We use a plane with equally spaced circles as the calibration board as

hown in Fig. 1 . By placing the board in the common field of view of the

wo cameras, one needs to capture several different calibration patterns

n any posture to calibrate the cameras. Each calibration posture corre-

ponds to a unique 3D coordinate system which sets the pattern plane

s its 𝑧 𝑤 = 0 plane. For each calibration pattern, the circular markers

re on the pattern plane, thus their z w are all set as zero in the calcula-

ion. The pixel coordinates ( u, v ) of the circles’ centers can be extracted

rom the captured images, which make up an over-determined set of

quations based on Eq. (3) as 

 

 

 

 

𝑥 𝑤 𝑦 𝑤 1 0 0 0 
0 0 0 𝑥 𝑤 𝑦 𝑤 1 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ℎ 11 
ℎ 12 
ℎ 14 
ℎ 21 
ℎ 22 
ℎ 24 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎣ 
𝑢 

𝑣 

⋮ 

⎤ ⎥ ⎥ ⎦ . (15)

ere, ℎ 𝑖𝑗 ( 𝑖 = 1 , 2; 𝑗 = 1 , 2 , 4 ) are the elements of H , which can be calcu-

ated for each calibration posture using least square method. For h 13 and

 23 , we have to calculate them after the rotation matrix is obtained. 

.2. Effective magnification 

Based on Eqs. (3) and 4 , it is easy to get 

 𝑖𝑗 = ℎ 𝑖𝑗 ∕ 𝑚 (16)

ith 𝑖 = 1 , 2; 𝑗 = 1 , 2 , 3 . Because the rotation matrix R is a unitary and

rthogonal matrix, we can get 

 

⟨
r 𝑖 , r 𝑗 

⟩
= 1 , 𝑖 = 𝑗 ⟨

r 𝑖 , r 𝑗 
⟩
= 0 , 𝑖 ≠ 𝑗 

(17) 
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Fig. 3. Geometric properties of the feature points on the calibration pattern. 

dx w and dy w are the intervals of the feature points in X W 

and Y W 

directions. 
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ombining Eqs. (16) and 17 , the following equation can be derived

18] 

 

4 + 𝐵 𝑚 

2 + 𝐶 = 0 , (18)

here, 𝐵 = −( ℎ 2 11 + ℎ 2 12 + ℎ 2 21 + ℎ 2 22 ) and 𝐶 = ( ℎ 11 ℎ 22 − ℎ 12 ℎ 21 ) 2 . Basi-

ally, we get two different m 

2 as the roots for Eq. (18) . Theoretically,

he bigger root is a constant for any H while the smaller root changes for

ifferent H . Thus the unique solution for m 

2 is always the bigger root.

ithout loss of generality, we assume the effective magnification as a

ositive value so that we get 

 = 

√ 

0 . 5 
(
− 𝐵 + 

√
𝐵 

2 − 4 𝐶 

)
. (19)

hen 𝑟 𝑖𝑗 ( 𝑖 = 1 , 2; 𝑗 = 1 , 2 ) follows based on Eq. (16) . 

.3. Rotation matrix and translation vetor 

Although the effective magnification can be derived from each cali-

ration image, the extrinsic matrix [R t] of different calibration posture

till varies. From Section 3.2 , R 2×2 is obtained. Because R is unitary and

rthogonal, the remaining elements of R can be recovered by 

 

 

 

 

 

 

 

𝑟 𝑥 3 = ± 

√ 

1 − 𝑟 2 
𝑥 1 − 𝑟 2 

𝑥 2 

𝑟 𝑦 3 = ± 

√ 

1 − 𝑟 2 
𝑦 1 − 𝑟 2 

𝑦 2 

r 𝑧 = r 𝑥 × r 𝑦 

(20) 

bviously there still exists uncertainty of the signs for r x 3 and r y 3 . To

olve the sign ambiguity problem, Chen et al. [16] proposed a method

hat uses a micro-positioning stage to provide a translational displace-

ent z d along the Z W 

axis of the calibration pattern. Together with the

aptured image before the displacement, the signs of r x 3 and r y 3 can be

nambiguously determined. However, this method is effective only pro-

ided that ( u 0 , v 0 ) and ( t x , t y ) are known. Then in Yao’s method [18] ,

he detector’s center is temporally preset as ( u 0 , v 0 ), and then ( t x , t y ) can

e presented as 

 

𝑡 𝑥 = ( ℎ 14 − 𝑢 0 )∕ 𝑚 

𝑡 𝑦 = ( ℎ 24 − 𝑣 0 )∕ 𝑚 

(21) 

ccordingly, extrinsic parameters in [ R 2×3 t 2×1 ] can be completely re-

overed. However, when the lens distortion is considered, the distortion

enter is required because the imaging properties are radially symmet-

ic around the distortion center. Assuming the detector’s center as the

ptical center is anyhow a compromise that could result in inconsistent

esults with Eq. (17) . Therefore, it is necessary to estimate a reasonable

nitial guess of the distortion center not only for the accuracy and cor-

ectness of the extrinsic parameters but also for the better convergence

f the iteration to avoid local minima situation. 

.4. Distortion center estimation 

In the last subsection, we have discussed and concluded that an ini-

ial guess of the distortion center is important to unambiguously and

ccurately recover the rotation matrix R as well as the translation vec-

or t 2×1 . Besides, reasonable initial guesses can effectively decrease the

robability of being trapped into local minima. Here, we present a two-

tep method to accurately retrieve the distortion center of a telecentric

amera before the full-scale parameters optimization. 

Step 1 . Radial distortion center estimation In this step, we ignore the

angential distortion and only consider the radial distortion to estimate

n initial value of the distortion center e ( 𝑢 0 , 𝑣 0 ) . The relation between

 distorted point p 𝑑 ( 𝑢 𝑑 , 𝑣 𝑑 ) and its undistorted point p 𝑢 ( 𝑢 𝑢 , 𝑣 𝑢 ) on the

mage plane can be expressed as [23] 

 

𝑢 𝑑 = 𝜆( 𝑢 𝑢 − 𝑢 0 ) + 𝑢 0 
𝑣 𝑑 = 𝜆( 𝑣 𝑢 − 𝑣 0 ) + 𝑣 0 

(22) 
17 
here, 𝜆 = (1 + 𝑘 1 𝑟 
2 + 𝑘 2 𝑟 

4 + 𝑘 3 𝑟 
6 ) with 𝑟 2 = ( 𝑢 𝑢 − 𝑢 0 ) 2 + ( 𝑣 𝑢 − 𝑣 0 ) 2 .

 1, 2, 3 are the radial distortion coefficients. If we use homogeneous co-

rdinates, we can represent Eq. (22) as p̃ 𝑑 = 𝜆( ̃p 𝑢 − ̃e ) + ̃e and multiply

 ̃e ] × (the 3 ×3 matrix representing the cross product) on the left of this

quation, resulting in [ ̃e ] ×p̃ 𝑑 = 𝜆( [ ̃e ] ×p̃ 𝑢 ) . Since p̃ 𝑢 = H ̃P , we have 

 ̃e ] ×p̃ 𝑑 = 𝜆( [ ̃e ] ×H ̃P ) . (23)

inally, multiplying on the left by p̃ 

T 
𝑑 
, and observing that p̃ 

T 
𝑑 
[ ̃e ] ×p̃ 𝑑 = 0

e get 

̃
 

T 
𝑑 
( [ ̃e ] ×H ) ̃P = 0 . (24)

riting F 𝑎 = [ ̃e ] ×H as a 3 ×3 matrix, we have the affine fundamental

atrix relation, which can be solved using singular value decomposition

SVD). Note that ẽ T [ ̃e ] ×H = 0 T . Then we have 

 

T 
𝑎 ̃
e = 0 . (25) 

y solving Eq. (25) , the radial distortion center can be obtained. In order

o acquire a more trustworthy result, F 𝑎 that derived from multi-views

f the calibration pattern can be integrated together into a single F 𝐴 . 

Step 2 . Optimization in the image-plane After estimating the radial

istortion center, we then apply another optimization step considering

oth tangential and radial distortion. In this optimization, we rewrite

he relation between the ideal and distorted pixel coordinates in another

ommonly used form as [24] 

 

𝑢 𝑢 = 𝜆′𝑢 𝑛 + 2 𝑝 ′1 𝑢 𝑛 𝑣 𝑛 + 𝑝 ′2 ( 𝑟 
2 + 2 𝑢 2 

𝑛 
) + 𝑢 0 

𝑣 𝑢 = 𝜆′𝑣 𝑛 + 2 𝑝 ′2 𝑢 𝑛 𝑣 𝑛 + 𝑝 ′1 ( 𝑟 
2 + 2 𝑣 2 

𝑛 
) + 𝑣 0 

(26) 

ere, 𝜆′ = (1 + 𝑘 ′1 𝑟 
′2 + 𝑘 ′2 𝑟 

′4 + 𝑘 ′3 𝑟 
′6 ) with 𝑟 ′2 = 𝑢 2 

𝑛 
+ 𝑣 2 

𝑛 
and 𝑢 𝑛 = 𝑢 𝑑 − 𝑢 0 

nd 𝑣 𝑛 = 𝑣 𝑑 − 𝑣 0 . 𝑘 
′
1 , 2 , 3 and 𝑝 ′1 , 2 are the radial and tangential distortion

oefficients, respectively. Note that because the relation in Eq. (26) does

ot coincide with Eq. (22) , it is only used in the optimization to facilitate

he calculation. 

In this step, the optimization is based on the property of the affine

rojection from the calibration pattern to the captured image. As shown

n Fig. 3 , the feature points on the calibration pattern make up a 2D grid

ith the following geometric properties: all the points lie on a line in

ither X W 

or Y W 

direction, and these lines are equally spaced by dx w and

y w in X W 

and Y W 

directions, respectively. However, when captured by

 camera through a lens with distortion, the feature points shift from

he lines and all the adjacent points are no more equally spaced. The

urpose of the optimization is to find the best solution of ( u 0 , v 0 ) and

he appropriate distortion coefficients to make the compensated points

fter using Eq. (26) meet the geometric properties of the 2D grid again

ith the help of the cost function detailed below. 
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The initial guess of the distortion coefficients is set to zeros. After

ach re-projection, the lines in both directions are fitted using the ex-

racted feature points. There are totally 𝑁 = 20 lines on the calibra-

ion board: 11 lines along Y W 

direction and 9 lines along X W 

direc-

ion (as shown in Fig. 3 ). Writing the i th fitted line as 𝑙 𝑖 
𝑓𝑖𝑡 

. The dis-

ances from the line to its corresponding feature points p 

𝑖 
𝑑 

are denoted

s D 𝑖 = dist ( p 

𝑖 
𝑑 
, 𝑙 𝑖 
𝑓𝑖𝑡 

) . Because of the affine transformation, the intervals

f the feature points in X W 

or Y W 

directions should still be equal. Write

ll the intervals of the extracted points in X W 

and Y W 

directions as I 𝑋 
nd I 𝑌 . Then average values of I 𝑋 and I 𝑌 are subtracted from them to

et ̄I 𝑋 and ̄I 𝑌 . Finally, we have the cost function being minimized in the

ptimization: 

 𝑜𝑝𝑡 = argmin 
( 𝑢 0 ,𝑣 0 ) 

∑‖‖‖[ 𝐃 

T 
1 ⋯ 𝐃 

T 
𝑁 

𝐈̄ T 
𝑋 
𝐈̄ T 
𝑌 
] ‖‖‖2 , (27)

hich is solved using 𝐿𝑒𝑣𝑒𝑛𝑏𝑒𝑟𝑔 − 𝑀𝑎𝑟𝑞𝑢𝑎𝑟𝑑𝑡 algorithm. After the dis-

ortion center is accurately retrieved, the closed-form solutions for all

he parameters in Eq. (3) can be derived and used as the reliable initial

uesses for the full-scale optimization. 

.5. Non-linear full-scale optimization 

Without considering the lens distortion, we have got the closed-form

olutions of the parameters in Eq. (3) . However, two problems still need

aking into account. The first one is that the derived rotation matrix from

q. (20) is not strictly orthogonal. The second one is that lens distortion

as not been calibrated. In this subsection, two non-linear optimization

rocesses are conducted in sequence to solve these problems. 

The first non-linear optimization is to get the unique intrinsic matrix

 from different calibration postures as well as the orthogonal rotation

atrix R and translation vector t by minimizing the following function:

 1 = argmin 
A , R , t 

∑
𝑗 

∑
𝑘 

‖‖‖p 𝑗𝑘 − p̂ ( A , R 𝑗 , t 𝑗 , P 𝑗𝑘 ) 
‖‖‖2 . (28)

ere, j is the number of calibration postures, k is the number of feature

oints on the calibration pattern, p 𝑗𝑘 and P 𝑗𝑘 are the control points on

he captured images and the calibration pattern, respectively. p̂ is pro-

ection of feature points P 𝑗𝑘 according to Eq. (3) . In the optimization

rocess, the rotation matrix R is firstly transformed into an orthogonal

atrix using SVD and then parameterized by three scalers using Ro-

rigues ′ rotation formula . 

When F 1 is minimized, the generated intrinsic matrix A and ex-

rinsic matrix [ R 2×3 t 2×1 ] are utilized to calculate the initial guesses

f distortion coefficients in the second non-linear optimization. In this

ork, the lens distortion is represented by five coefficients denoted as

p = [ 𝑘 1 𝑘 2 𝑝 1 𝑝 2 𝑘 3 ] T and modeled in the camera coordinates system as

 

𝑥 𝑑 
𝑐 

𝑦 𝑑 
𝑐 

] 
= 

[ 
𝑥 𝑢 
𝑐 

𝑦 𝑢 
𝑐 

] 
+ 

[ 
𝛿𝑥 
𝛿𝑦 

] 
, 

 

𝛿𝑥 
𝛿𝑦 

] 
= 

[ 
𝑥 𝑢 
𝑐 
𝑟 2 
𝑐 

𝑥 𝑢 
𝑐 
𝑟 4 
𝑐 

2 𝑥 𝑢 
𝑐 
𝑦 𝑢 
𝑐 

𝑟 2 
𝑐 
+ 2 𝑥 𝑢 

𝑐 
𝑥 𝑢 
𝑐 
𝑟 6 
𝑐 

𝑦 𝑢 
𝑐 
𝑟 2 
𝑐 

𝑦 𝑢 
𝑐 
𝑟 4 
𝑐 

𝑟 2 
𝑐 
+ 2 𝑦 𝑢 

𝑐 
2 𝑥 𝑢 

𝑐 
𝑦 𝑢 
𝑐 

𝑦 𝑢 
𝑐 
𝑟 6 
𝑐 

] 
kp . 

(29)

ere, ( 𝑥 𝑑 
𝑐 
, 𝑦 𝑑 

𝑐 
) and ( 𝑥 𝑢 

𝑐 
, 𝑦 𝑢 

𝑐 
) are the distorted and undistorted position in

he camera coordinate system. 𝑟 2 
𝑐 
= 𝑥 𝑢 

𝑐 
2 + 𝑦 𝑢 

𝑐 
2 . Based on the optimized re-

ults above, we can derive the initial value of kp by solving Eq. (29) with

 

 

 

 

 

[
𝑥 𝑑 
𝑐 

𝑦 𝑑 
𝑐 

1 
]T = A 

−1 p̃ [
𝑥 𝑢 
𝑐 

𝑦 𝑢 
𝑐 

]T = 

[
R 2×3 t 2×1 

]
P̃ 

(30)

hen the second non-linear optimization can be performed to refine all

he parameters with the following cost function: 

 2 = argmin 
A , R , t , kp 

∑
𝑗 

∑
𝑘 

‖‖‖p 𝑗𝑘 − p̂ ( A , R 𝑗 , t 𝑗 , kp , P 𝑗𝑘 ) 
‖‖‖2 . (31)
18 
ere, p̂ is a projection of the feature point P 𝑗𝑘 according to Eqs. (3) and

29) . After F 2 is minimized, the calibration of a telecentric camera is

horoughly completed. 

. Stereo matching and 3D reconstruction 

Another complex task within a stereo vision system is the stereo

atching, which in our technique is accomplished with the help of

ringe projection technique. The structure model of the system is illus-

rated in Fig. 4 (a). Sinusoidal patterns encoded by horizontally increased

hase map are projected in sequence. The fringes are deformed by the

bject and then captured by the cameras. The captured fringe image can

e expressed as 

( 𝑢, 𝑣 ) = 𝐴 ( 𝑢, 𝑣 ) + 𝐵( 𝑢, 𝑣 ) cos [ 𝜑 ( 𝑢, 𝑣 )] . (32)

ere, A is the background item, B is the modulation and 𝜑 ( 𝑢, 𝑣 ) =
 𝜋𝑢𝑓 𝑢 + 𝜙𝛿( 𝑢, 𝑣 ) . f u is the carrier frequency and 𝜙𝛿 is the phase value

odulated by the object. By phase-shifting technique [25] and multi-

requency phase unwrapping [26] , 𝜑 from both cameras can be obtained

nd used to help the stereo matching after epipolar rectification. 

Telecentric epipolar rectification is performed on the unwrapped

hase maps using Eq. (14) after the cameras’ lens distortion is com-

ensated with the calibrated parameters [27] . Without loss of general-

ty, the left camera is considered as the main camera. It can be seen

rom Fig. 4 (b), for a pixel ( 𝑢 ′
𝐿 
, 𝑣 ′

𝐿 
) on the left camera with phase value

 ( 𝑢 ′
𝐿 
, 𝑣 ′

𝐿 
) , the task is to find the corresponding pixel 𝑢 ′

𝑅 
in the 𝑣 ′

𝐿 
th row

n the right image. Because the fringe direction is vertical so that the

nwrapped phase value increases along the horizontal direction. The

ntegral pixel 𝑢 ′𝐼 
𝑅 

that has the closest phase value to 𝜑 ( 𝑢 ′
𝐿 
, 𝑣 ′

𝐿 
) in the

 

′
𝐿 

th row is firstly obtained with its phase being 𝜑 ( 𝑢 ′𝐼 
𝑅 
) . Then sub-pixel

oordinate 𝑢 ′
𝑅 

is thereby calculated based on linear interpolation: 

 

′
𝑅 
= 𝑢 ′𝐼 

𝑅 
+ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝜑 ( 𝑢 ′
𝐿 
, 𝑣 ′

𝐿 
) − 𝜑 ( 𝑢 ′𝐼 

𝑅 
) 

𝜑 ( 𝑢 ′𝐼 
𝑅 
+ 1) − 𝜑 ( 𝑢 ′𝐼 

𝑅 
) 
, 𝜑 ( 𝑢 ′

𝐿 
, 𝑣 ′

𝐿 
) > 𝜑 ( 𝑢 ′𝐼 

𝑅 
) 

𝜑 ( 𝑢 ′
𝐿 
, 𝑣 ′

𝐿 
) − 𝜑 ( 𝑢 ′𝐼 

𝑅 
) 

𝜑 ( 𝑢 ′𝐼 
𝑅 
) − 𝜑 ( 𝑢 ′𝐼 

𝑅 
− 1) 

, 𝜑 ( 𝑢 ′
𝐿 
, 𝑣 ′

𝐿 
) ≤ 𝜑 ( 𝑢 ′𝐼 

𝑅 
) 

(33)

fter completing the stereo matching, we have the pixel pair maps

 p 

′
𝐿 
, p 

′
𝑅 
) . For more accurate sub-pixel searching, 𝑢 ′

𝑅 
can be interpolated

ith more complex fitting method that involves more neighboring pix-

ls but more time will be consumed. Together with the new camera

arameters after the epipolar rectification, the world coordinates P can

e directly calculated from Eq. (7) with least square method. 

. Experiments and discussion 

.1. Simulation of distortion center estimation 

In the simulation, the controlled variables contain the distortion cen-

er ( u 0 , v 0 ) and different combinations of distortion coefficients ( k 1 ,

 2 , k 3 ). The simulated image size is 500 ×600 with pixel size of 4 𝜇m.

or ( u 0 , v 0 ), we simulated five positions along the diagonal line of the

mage with the distance from the image center increased: (300,250),

240,200), (180,150), (120,100), and (60,50). At each position, three

istortion situations are simulated (only k 1 , only k 1 , k 2 , and k 1 , k 2 ,

 3 ). The simulated coefficients are 𝑘 1 = 3 . 5 × 10 −4 , 𝑘 2 = 2 × 10 −5 , and

 3 = 2 . 5 × 10 −6 , which are set according to common experience. Gaus-

ian noise with the standard deviation 𝜎𝑛 = 0 . 01 is added to each image.

We first verify the effectiveness of the proposed distortion center es-

imation method for each situation and then the full-scale calibration

arameters are derived using our method and Yao’s method [18] , re-

pectively. The retrieved distortion center position and re-projection er-

or are compared, and the simulation result is summarized in Fig. 5 .

s shown in Fig. 5 (a) and (b), the overall trend is that the error of the

stimation increases as the position deviation between the actual dis-

ortion center and the image center increases. When the deviation is



Y. Hu et al. Optics and Lasers in Engineering 113 (2019) 14–22 

Fig. 4. (a) Simplified structure model of the system. (b) Illustration of the bilocular matching based on the unwrapped phase map. 

Fig. 5. Summarized result of the simulation of distortion center estimation: Re- 

trieved center error using (a) our method and (b) Yao’s method in five positions; 

Re-projection error using (c) our method and (d) Yao’s method in five positions. 
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Fig. 6. One image pair of the captured patterns from (a) left camera and (b) 

right camera in the calibration. 
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t  
ithin 60 pixels like position 1 and 2, the results from both methods

re very close. However, the error by using our method remains very

mall even though the deviation exceeds 120 pixels like position 3, 4,

nd 5, while the error using Yao’s method becomes unstable because the

nitial distortion center is not close enough to the real one. Correspond-

ngly, Fig. 5 (c) and (d) reveal that if the distortion center is wrongly

erived, the re-projection error can be ten times that when a reasonable

istortion center is initially estimated. 

.2. Real-world camera calibration 

As shown in Fig. 4 (a). The system is composed of a digital projec-

or (DLP ® LightCrafter TM Evaluation Module with its original lens being

eplaced by a lens with much smaller magnification) and two cameras

BFS-U3-04S2M-CS, Pixel size: 6.9 𝜇m; Resolution: 720 × 540) mounted

ith telecentric lenses (XF-T0.5X110, Magnification: 0.5 × ; Depth of
19 
eld: 7 mm; Spatial resolution: 22 𝜇m). The calibration board (CC-008-

-0.65 from Calib Optics) used here is made of diffused reflection ce-

amic substrates. The pattern printed on it is white circles, which can

e seen in Fig. 8 . The center-to-center spacing between every two adja-

ent circles is 0.65 mm, and the diameters of big and small circles are

.4 mm and 0.175 mm, respectively. The calibration is based on this pat-

ern with an additional stage. Ten pairs of the calibration patterns are

aptured with different locations and angles. Edge detection and ellipse

tting can accurately extract these white circles’ centers after binariza-

ion processing of the image. Fig. 6 shows one pair of the extracted

alibration patterns. 

Firstly, the distortion center is estimated for both cameras. Because

he distortion of a telecentric lens is not as obvious as a pinhole lens,

ore calibration patterns are required to achieve a reliable estimation

f the distortion center. By increasing the calibration pattern number

rom 1 to 10, we conclude that at least six patterns are required. How-

ver, this number is empirical, which means it only can be obtained from

xperiments. Then the full-scale parameters follow with distortion con-

idered. The calibration results of the intrinsic parameters are presented

n Table 1 . Based on the calibration results, the re-projection errors ( 𝛿u ,

v ) of both cameras are calculated and presented in Fig. 7 . The standard

eviations of the re-projection errors are (0.07859, 0.07811) for the left

amera and (0.07969, 0.07554) for the right camera. 

.3. Rectification considering len distortion 

Note that the rectification is valid only for the distortion-free images

o that the captured images need to be undistorted based on the distor-

ion coefficients [27] in Table 1 before being rectified using Eq. (14) .
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Table 1 

Intrinsic parameters of left and right cameras. 

Estimated Optimized Effective Distortion 

center center magnification coefficients 

( u 0 , v 0 ) ( u 0 , v 0 ) m ( m ×Pixel size) ( k 1 , k 2 , k 3 , p 1 , p 2 ) 

L (389.1, 259.2) (383.0, 269.4) 72.20 (0.4982) ( − 1.215 e − 4, 1.852 e − 5, − 5.900 e − 7, 4.2303 e − 6, 1.821 e − 5) 

R (358.3, 267.6) (356.2, 268.6) 72.49 (0.5002) ( − 1.870 e − 4, 2.472 e − 5, − 8.122 e − 7, − 9.301 e − 7, 6.670 e − 6) 

Fig. 7. Re-projection errors ( 𝛿u , 𝛿v ) of (a) left camera and (b) right camera. 

Fig. 8. Rectification example: (a) - (b) Undistorted image pair of the calibration 

pattern; (c) - (d) Rectified image pair of the calibration pattern. 
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Fig. 9. Error distribution of the reconstructed result of the flat plane : (a) With 

distortion unremoved; (b) With distortion removed. 

Fig. 10. 3D reconstruction of the markers’ centers on the calibration board: (a) 

Image of the calibration board; (b) 3D distribution of the reconstructed markers’ 

centers with the depth color-coded. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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he new derived calibrated homography matrices are as follows: 

 

 

 

 

 

 

 

 

 

H 

′
𝐿 
= 

⎡ ⎢ ⎢ ⎣ 
-68 .081 -2 .5486 -23 .844 362 .54 

-1 .3196 72 .431 -3 .0225 301 .20 

0 0 0 1 

⎤ ⎥ ⎥ ⎦ 
H 

′
𝑅 
= 

⎡ ⎢ ⎢ ⎣ 
-68 .488 -0 .2762 22 .457 357 .90 

-1 .3196 72 .431 -3 .0225 301 .20 

0 0 0 1 

⎤ ⎥ ⎥ ⎦ 
(34)

ith the same second row parameters in H 

′
𝐿 

and H 

′
𝑅 

. Here we present

ne example of the rectification of one pair of images as shown in Fig. 8 .

he calibration board is randomly positioned and clearly that the corre-

ponding control points are not in the same vertical position in Fig. 8 (a)

nd (b). After the rectification using Eq. (14) , all the pixels in the left

nd right image are strictly transformed on the same vertical position,

hich can be clearly verified though the horizontal lines in Fig. 8 (c) and

d). 
20 
.4. Real-world 3D reconstruction 

After image rectification, the matched pixels in the image pair are in

he same vertical position. With the help of the unwrapped phase maps

cquired using fringe projection, the horizontal position of the matched

ixel in the right camera can be uniquely determined. Then 3D recon-

truction follows by solving Eq. (7) . To visually show the calibration

esults, we conducted two 3D measurements of a flat plane and the cal-

bration board, respectively. The flat plane is first measured. Fig. 9 (a) is

he result without considering the lens distortion and Fig. 9 (b) is the re-

ult of the distortion removed. The standard deviation of both results is

alculated to reflect the accuracy quantitatively. The error distribution

n the outside area in Fig. 9 (a) is larger than that in Fig. 9 (b) because

f the lens distortion. Although the standard deviation only improves

.209 𝜇m, the difference between Fig. 9 (a) and (b) reveals that the dis-

ortion is effectively removed. Note that when conducting the calibra-

ion step, one should render the pattern fill as more field of view of the

amera as possible. If only the center part of the field of view observes

he patter, the distortion can be hardly retrieved precisely. 

Another experiment measuring the absolute 3D position of the mark-

rs’ centers on the calibration board is conducted to further verify the

econstruction accuracy. The pattern on the board has white circle spots

ith their centers equally distributed like a 2D comb function as shown

n Fig. 10 (a). The centers’ pixel coordinates can be extracted and their

bsolute 3D distribution are reconstructed as presented in Fig. 10 (b)

ith their depths being color-coded. The distance between two neigh-

oring centers is calculated by 𝑑 = 

‖‖‖(𝑥 1 , 𝑦 1 , 𝑧 1 ) − 

(
𝑥 2 , 𝑦 2 , 𝑧 2 

)‖‖‖2 , where, d

s the distance between two points: ( x , y , z ) and ( x , y , z ) in space.
1 1 1 2 2 2 
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Fig. 11. 3D reconstruction a cube’s corner with mutually perpendicular sides: 

(a) - (b) Fringe images from two cameras; (c) Top view of the reconstructed 

profile of the corner; (d) Rotated view to examine the perpendicularity. 
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Fig. 12. Application of the quality inspection of one side of an integrated circuit 

chip: (a) Image of the measured area; (b) Reconstructed 3D data of the target; 

(c) Right side view of (b); (d) Three 3D lines corresponding to the 4th (red), the 

9th (green), and the 13th (blue) pin in (a) from left to right. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 13. Application of detecting the electronic circuit and metal pads on a PCB: 

(a) - (b) Images of the measured areas. (c) - (d) Reconstructed 3D profile of the 

targets. 

Table 2 

Information on used patterns to calculate 

phase maps. 

Items Values 

i (Fringe set) 1 2 3 

N i (Phase-shifting step) 2 2 8 

P i (Pixel number) 608 96 12 

K i (Frequency ratio) 1 6.3 8 

Period number 1 6.3 50.6 

e  

a  

s  

o

 

i  

M  

c  

c  

a  

s  

u  
here are 90 pairs of neighboring centers in X direction and 88 pairs

n Y direction. The calculated distances between the reconstructed cen-

ers have the mathematical expectation of 0.6506 mm and the RMSE

f 0.0014 mm, which is pretty close to the standard data (0.65 mm,

.0015 mm) of the calibration board. 

Benefiting from the increased depth of field of telecentric lenses,

he measurable volume of our system extends significantly. As shown

n Fig. 11 , a corner of a cube with side length of 10 mm is measured.

ig. 11 (a) and (b) are the fringe images from the left camera and the

ight camera, respectively. A top view of the reconstructed profile of

he corner is given in Fig. 11 (c), from which we can see that the mea-

urable depth easily achieves the depth of field of the lens (7 mm). As

e know that any two sides of a cube’s corner are mutually perpendic-

lar, we rotate the reconstructed 3D profile as shown in Fig. 11 (d) to

xamine this property. The results from the two experiments manifest

hat both the calibration of the system and 3D reconstruction process

re successful. 

So far we have proved that the calibration of our system and the 3D

econstruction is feasible based on the method described in Section 4 .

urthermore, our system can be applied in quality inspection of indus-

rial products. The first sample we measured is one side of an integrated

ircuit chip (package: QFP, pitch: 0.65mm). As shown in Fig. 12 (a), the

th and 13th pin from left to right are out of shape and a slightly higher

han the others. Usually, we cannot easily detect these defects because

f the large pin number. The 3D data of the target is reconstructed as

hown in Fig. 12 (b), from which we can easily find out the deformed

ins. The right side view of the data in Fig. 12 (c) provides a more intu-

tive observation. Quantitatively, we plot three 3D lines corresponding

o the 4th (red), the 9th (green), and the 13th (blue) pin as shown in

ig. 12 (d) for better observation. 

Another application of our technique shown here is detecting the

lectronic circuit and metal pads on a PCB (Printed Circuit Board). The

roper performance of PCB is assured by unerringly printing the elec-

ronic circuit and the metal pads on the substrate. Any small fault may

ause irreparable harm. Traditional inspection methods mainly rely on

D images, which cannot reveal the height information of the printed

etal. Here we give the measured 3D results of some wires and pads

n a PCB of a graphics card as shown in Fig. 13 (a) and (b). The normal

hickness of the printed copper is 1 ounce (1 ounce here represents the

hickness of 1 ounce of copper rolled out to an area of 1 square foot,
21 
quals ∼ 36 𝜇mm), which can be examined by the results in Fig. 13 (c)

nd (d). Note that the rightmost pad in Fig. 13 (b) is deliberately de-

igned shorter than the others to ensure safe power during hot-swap

peration, and this property is also observable in Fig. 13 (d). 

The number of images used to calculate phase maps is 12. Specific

nformation on the projected fringe patterns is as shown in Table 2 .

ore fringe patterns used, the more accurate the 3D result is [28] . To

apture the images within less time, we use trigger wires to electrically

onnect the projector and the cameras to provide a time-saving image

cquisition process. All the settings of the cameras are the same to make

ure the phase maps based stereo matching is credible. The total time

sed to get one final 3D model is typically around 1 second in Matlab,



Y. Hu et al. Optics and Lasers in Engineering 113 (2019) 14–22 

d  

i  

6

 

s  

s  

c  

t  

t  

w  

c  

l  

i  

m  

b  

o

 

s  

r  

a  

r  

i  

p  

t  

l  

s  

s  

i  

m  

m  

t

 

t  

s  

c  

c  

a  

i  

m  

u

F

 

N  

1  

P  

o  

o  

d  

S  

P  

R  

m  

3  

S  

t  

P

A

 

s  

T

R

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

[  

[  

 

[  

[  

[  

[  

[  

[  

[  

[  

 

[  

 

[  

[  

[  

[  

 

[  

[  

[  

 

epending on the computing power. By using a laptop with an Intel Core

7-4720 CPU and Matlab R2015b, the time used for Fig. 12 is 1361.3 ms.

. Conclusions 

In this paper, we present a new microscopic telecentric stereo vision

ystem with its calibration and applications. The complexity of the dense

tereo matching process is greatly simplified by applying accurate tele-

entric rectification for the stereo vision system. However, the rectifica-

ion is valid only if the lens distortion is correctly compensated. From

he simulation result of the distortion center estimation, we find that

hen the optical center is not close enough to the detector’s center, lo-

al minima problem can happen in the iteration-based optimization and

ead to inaccurate solutions. In our proposed calibration framework, the

nitial guesses of distortion center and coefficients are effectively esti-

ated before the iteration, which significantly reduces the possibility of

eing trapped in local minima, and thus the robustness of the calibration

f telecentric cameras is improved considerably. 

Since the projector does not need calibrating, the calibration of the

ystem is quite convenient and efficient. Small FOV of the projector is

ealized by using two low-cost lenses, and the FOV can also be easily

djusted by changing the relative position of the lenses. Based on the

ectification of the telecentric stereo vision system, sub-pixel matching

s realizable with the help of the phase maps generated from the fringe

rojection technique. The measurement uncertainty is determined by

he noise level of the phase maps and also depends on the interpo-

ation method used for stereo matching. Our approach is resistant to

light gamma effect since it affects the phase values of both cameras

imultaneously. The noise in the phase maps can be decreased by us-

ng denser fringe patterns and more substantial phase-shifting steps, but

ore patterns are required. Also, the interpolation method involving

ore data would give more precise matching result but more computa-

ionally costly. 

The overall process of the calibration for our system is detailed, and

he 3D reconstruction is demonstrated in the applications for micro-

urface profilometry. The experimental results show that our technique

an be successfully applied in industrial applications, such as quality

ontrol and on-line inspection for micro-scale products with a measur-

ble volume of 10 mm ( L ) × 7 mm ( W ) × 7 mm ( H ). It is worth mention-

ng that the system also has the potential for high-speed 3D measure-

ent [29] provided that the unwrapped phase maps can be obtained

sing fewer images, which is the possible direction for future work. 
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