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Abstract. In scene-based nonuniformity correction (NUC) methods for
infrared focal plane array cameras, the statistical approaches have been
well studied because of their lower computational complexity. However,
when the assumptions imposed by statistical algorithms are violated,
their performance is poor. Moreover, many of these techniques, like the
global constant statistics method, usually need tens of thousands of image
frames to obtain a good NUC result. In this paper, we introduce a new sta-
tistical NUC method called the multiscale constant statistics (MSCS). The
MSCS statically considers that the spatial scale of the temporal constant
distribution expands over time. Under the assumption that the nonunifor-
mity is distributed in a higher spatial frequency domain, the spatial range
for gain and offset estimates gradually expands to guarantee fast com-
pensation for nonuniformity. Furthermore, an exponential window and a
tolerance interval for the acquired data are introduced to capture the drift
in nonuniformity and eliminate the ghosting artifacts. The strength of the
proposed method lies in its simplicity, low computational complexity, and
its good trade-off between convergence rate and correction precision.
The NUC ability of the proposed method is demonstrated by using in-
frared video sequences with both synthetic and real nonuniformity. C© 2011
Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3610978]
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1 Introduction
Thermal array detectors, also known as infrared focal plane
arrays (IRFPA), are a rapidly developing technology and are
used in a wide range of industry, medical, and military ap-
plications. However, the nonuniformity in IRFPAs, which is
due to pixel-to-pixel variation in the detectors’ response, can
considerably degrade the quality of IR images since it re-
sults in a fixed-pattern noise (FPN) that is superimposed on
the true image.1 Therefore, nonuniformity correction (NUC),
being an indispensable key step, is applied to nearly all of the
IRFPA-based engineering applications. Further, what makes
the problem worse is that the nonuniformity varies over time
and is closely related to external conditions,2, 3 which results
in the failure of traditional reference-based NUC methods.
In order to solve this problem, several scene-based nonuni-
formity correction (SBNUC) techniques have been recently
developed.

There are two main categories of SBNUC: statistical
methods4–7 and registration-based methods.8–10 Compared
with registration-based methods, statistical approaches have
been well studied because of their relatively lower computa-
tional complexity, smaller storage demands, and better real-
time performance. The most well-known statistical method
relies on the global constant statistic (GCS) assumption,4, 5

which states that the statistics of the observed scene be-
come constant over time. This assumption requires that each
detector in the array spend an equal amount of time observ-
ing a wide range of irradiance values. So it usually needs
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thousands of image frames in order to achieve a good NUC
effect. When this assumption is violated, its performance is
poor and ghosting artifacts are easily produced.5, 6 The local
constant statistic (LCS)7 method improves the GCS method
and statistically assumes constant distribution in a local re-
gion around each pixel but uneven distribution in a larger
scale. Thus, it improves the correction accuracy and reduces
the ghosting artifacts that normally result in the GCS method.
However, since no temporal window has been utilized in
LCS, it fails to capture the drift of gain and offset coeffi-
cients. Besides, although LCS uses multiscale representa-
tion, the nonuniformity coefficients are actually decomposed
into two components [low spatial frequency (LSF) and high
spatial frequency (HSF)]. It has not fully utilized the mul-
tiscale scene information and a high-pass filtering function
with proper filter size can achieve the same result.

In this paper, a new statistical NUC method called multi-
scale constant statistics (MSCS) is presented. We seek more
effectiveness in the use of the scene information in differ-
ent spatial scales. The MSCS assumption considers that it
takes different frame samples for different spatial scales to
meet the constant statistics constraint. The smaller the spatial
scale is, the easier for the scale to meet the constant statistics
assumption during a short period of time. So, in the MSCS
method, the spatial range of gain and offset gradually esti-
mates expands over time. Besides, we further improve the
MSCS method by adding two extra features: an exponential
window to capture the drift in nonuniformity and a tolerance
interval for the acquired data to further reduce the ghost-
ing artifacts. The final experimental results validate that the
proposed method achieves a good NUC effect.
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This paper is organized as follows. Section 2 reviews the
GCS and the LCS methods. Section 3 presents the original
form of the LCS method. Also, the MSCS method is in-
troduced in detail. In Sec. 4, further enhancements on the
MSCS method are discussed. The performance parameters
are evaluated in Sec. 5. In Sec. 6, the proposed method is
tested and compared with the GCS and LCS using sequences
of infrared data with both simulated and real nonuniformity.
Finally, we draw some conclusions of this paper in Sec. 7.

2 Global Constant Statistics and Local Constant
Statistics

In this section, we first review the GCS method and its gen-
eralized form is given. Then the generalized form of the LCS
is briefly recalled.

2.1 Global Constant Statistics Method
First, we assume that the photo-responses of an individual
detector in a focal plane array can be characterized by a linear
irradiance-voltage model11

yi j (n) = gi j (n) · xi j (n) + bi j (n), (1)

where n is frame index. The true scene value collected by the
(i, j)th detector xi j (n) is scaled by a gain factor gi j (n) and
shifted by an offset term bi j (n) to produce the observed detec-
tor output yi j (n). Nonuniformity correction is performed by
applying a linear mapping to the observed pixel values yi j (n)
to provide an estimate of the true scene value xi j (n) so that
the detectors appear to be uniformly performing. For sim-
plicity of notation, the pixel superscripts i j will be omitted
and we use g and b to represent the gain and offset matrices
of an IRFPA. Note that all matrix operations in this paper are
preformed on a pixel-by-pixel basis.

The GCS method4 assumes that the temporal means and
mean deviations of input irradiances at each pixel are iden-
tical. For this assumption to hold, it is necessary that over
time all possible scene irradiance values will be observed
by all detectors. Then, x(n) can be assumed to have zero
mean and unity mean deviation without losing generality.
The expressions are now written{

m = b
σ = g , (2)

where m is the temporal mean and σ is the mean deviation of
the observed signal. The estimated true signal is expressed
as

x = y − m

σ
. (3)

Estimated mean and mean deviation of y can be calculated
by the following recursive equations:⎧⎪⎪⎨
⎪⎪⎩

m(n) = y(n) + (n − 1)m(n − 1)

n

σ (n) = |y(n) − m(n)| + (n − 1)σ (n − 1)

n

. (4)

Obviously, the offset obtained by Eq. (2) contains the di-
rect current (DC) component and the gain is not normalized.
The dynamic range of the corrected image may be incon-
sistent with the input, which is not what we want. So, the
corrected images are usually rescaled to the same contrast

and brightness as the original uncorrected image

x = y − m

σ
×〈σ 〉 + 〈m〉

=
y −

(
m − σ

〈σ 〉×〈m〉
)

σ
〈σ 〉

= y − b̄cs

ḡcs
, (5)

where 〈•〉 denotes the spatial average of all the elements in
the array. Thus, we get the generalized form of the GCS. The
normalized gain ḡcs is σ

〈σ 〉 and the normalized offset b̄cs is
m − ḡcs〈m〉.
2.2 Local Constant Statistics Method
The GCS method gives appropriate results only when all
detector elements have been exposed to the same range of
scene irradiance. In practical applications, this assumption
is very difficult to be satisfied. Therefore, the LCS assumes
that the temporal signal distribution is locally constant at
each pixel but uneven in a larger scale. The gain and offset of
the generalized form of the LCS (the LCS method presented
in Ref. 7 is derived from the generalized form of the GCS,
so we call it the generalized form of LCS to differentiate
from the original form of LCS which given in Sec. 3.1) are
calculated as follows:7⎧⎨
⎩ ḡlcs = HSF (ḡcs) + I = HSF

(
σ

〈σ 〉
)

+ I

b̄lcs = HSF (b̄cs |ḡlcs) = HSF (m − ḡlcs〈m〉)
, (6)

where HSF (•) represents the high spatial frequency compo-
nent of the input. I is an array of all ones. In the LCS, the
HSF parts of the gain and offset image obtained by the GCS
method are considered as the interference of the true scene
signal. In order to remove the distribution variations of scene
signal from the nonuniformity coefficients, the LCS method
decomposes the gain image obtained by the GCS method
into a multispectral and multiscale representation,12, 13 and
removes its LSF part to get a better gain estimate first. Then,
it applies the spectrum-shaping method to the offset image,
removing its LSF part to obtain a better offset estimate. Note
the gain ḡlcs obtained by spectrum shaping is applied to nor-
malize the offset image b̄cs obtained by the GCS method.
The corrected image of the LCS can be expressed as

x = y − b̄lcs

ḡlcs
. (7)

3 Multiscale Constant Statistics Method

3.1 Original Form of Local Constant Statistic
In Sec. 2.2, we have reviewed the correction formula of the
generalized form of LCS. In order to better explain the LCS
method, we covert the generalized form of LCS to its original
form. Similar to Eq. (5), we perform inverse transform to
Eq. (7)

x = y − b̄lcs

ḡlcs
=

y − HSF
{

m −
[
HSF

(
σ

〈σ 〉
)

+ I
]
×〈m〉

}
HSF

(
σ

〈σ 〉
)

+ I

=
y −

[
HSF (m) − HSF (σ )

〈σ 〉 ×〈m〉
]

HSF (σ )+〈σ 〉
〈σ 〉
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=
y −

[
HSF (m) + 〈m〉 − HSF (σ )+〈σ 〉

〈σ 〉 ×〈m〉
]

HSF (σ )+〈σ 〉
〈σ 〉

+ 〈m〉

= y − [HSF (m) + 〈m〉]
HSF (σ ) + 〈σ 〉 〈HSF (σ )

+〈σ 〉〉 + 〈HSF (m) + 〈m〉〉. (8)

The above derivation uses two simple relations:
HSF (HSF (•)) = HSF (•) and 〈HSF (•)〉 = 0. Referring to
Eq. (5), we can get{

blcs = HSF (m) + 〈m〉
glcs = HSF (σ ) + 〈σ 〉 . (9)

From the gain and offset formula of the original form of the
LCS, we can see that the LCS method uses the DC compo-
nents in substitution for the LSF parts in the mean and mean
deviation images. The spatial scale that meets the LCS con-
straint is equivalent to the spatial frequency of the high-pass
filter (as mentioned above, in the LCS, a high-pass filtering
function with proper filter size can achieve the same result
as the spectrum shaping).

3.2 Multiscale Constant Statistics
The GCS algorithm assumes that the temporal mean and
mean deviation of each pixel are constant over time and
space. This assumption holds for typical video sequences
where tens of thousands of frames are averaged. The LCS
algorithm assumes that the temporal signal distribution is
not constant at each pixel but is locally true. This assumption
requires fewer frames since it is very likely that detectors
within a small block around one pixel could be exposed
to similar scenes. However, in the LCS, the definition of
“local” is vague and determined by the characteristics of the
noise pattern. It is unreasonable since the temporal signal
distribution should be independent with the nonuniformity.
When there is nonuniformity in the LSF domain, the LCS
method has to increase the maximal pyramid level to make the
local more “global.” Under this condition, the LCS method
is fairly similar to the GCS method and at least thousands of
frames are needed to yield a good NUC result.

Before we introduce the MSCS constraint, we first make
clear the relationship between the number of samples aver-
aged and temporal signal distribution over space. We use a
clean 5000-frame 14-bit infrared video sequence collected at
1 p.m. on a sunny day by using an 320×256 mid-wave IR
(3 to 5 μm) cooled camera. The sequence was shot at the
top of a tall building and the camera kept moving during the
whole process. Some frames show half sky and half ground
and some structures with strong irradiance repeatedly appear
in the field of view. We have accumulated the temporal mean
and mean deviation images and recorded them at 250, 500,
1000, 2000, and 5000 frames, respectively. Figure 1 shows
the first frame of the test sequence and the temporal mean
images at different stages. The spatial variance is used to
measure the uniformity of the mean and the mean devia-
tion images, and the variances of mean and mean deviation
images at different stages are shown in Fig. 2.

It can be seen, with the increase in the number of averaged
frames, the variances of the mean and the mean deviation im-

Fig. 1 Temporal mean images at different stages. (a) Frame 1 of the
test video sequence taken at the top of a tall building. Temporal mean
images of (b) 250, (c) 500, (d) 1000, (e) 2000, and (f) 5000 image
frames. All images are scaled to the same display range.

ages gradually decrease. Accordingly, the mean image shown
in Fig. 1 becomes more and more uniform. This also means
that we are getting closer and closer to the GCS constant.
However, the final variance of the mean image is 1206 and
the final variance of the mean deviation image is 146, which
indicates that 5000 frames are not enough to meet the GCS
constraint.

To better analyze the temporal signal distribution in differ-
ent spatial scales, we further decompose the temporal mean
and the mean deviation images using the Laplacian pyramid
(LP)12, 13

{
m = L0(m) ⊕ L1(m) ⊕ L2(m) ⊕ . . . ⊕ L N−1(m) ⊕ G N (m)

σ = L0(σ ) ⊕ L1(σ ) ⊕ L2(σ ) ⊕ . . . ⊕ L N−1(σ ) ⊕ G N (σ ).

(10)

Thus, an original image is decomposed into levels of
Laplacian images L0, L1, . . . , L N−1 and a Gaussian image
G N at the highest level of the pyramid (in this case, N
= 4). We do not subsample the Gaussian image and ap-
ply a 9 × 9 normal filter at level 0 (the filter size doubles
between two levels), thus, the decomposition and synthesis
can be achieved by addition and subtraction between images.
The spatial variances of the Laplacian images of the mean
and mean deviation images at different stages are shown in
Fig. 3.

Fig. 2 Evolution of the variances of the temporal mean and the mean
deviation images.
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Fig. 3 Spatial variances of the Laplacian images of the (a) mean and (b) mean deviation images at different stages.

It can be seen from Fig. 3 that the variances of the HSF
components are much smaller. Observing the temporal mean
images in Fig. 1, we can also get the similar result: the uneven
distribution of the temporal mean and the mean deviation
images mostly concentrates on the LSF domain. This verifies
the LCS constraint. In addition, it can also be found that the
variances of HSF components dropped very fast, and the
higher the spatial frequency, the lower the spatial variance.
For the mean image, it only took L0(m) 250 frames to reach
a variance of 25. However, to reach the same error, L1(m),
L2(m), and L3(m) needed about 500, 1000, and 2000 frames,
respectively. For the mean deviation image, we could get the
similar relation. So we can draw the following conclusions:
it takes different frame samples for different spatial scales
to meet the constant statistics constraint. The smaller the
spatial scale is, the easier it is for that scale to meet the
constant statistics assumption during a short period of time,
and vice versa. This is called the MSCS constraint.

A direct interpretation of the MSCS is that the closer the
two detectors, the more likely they could “see” the same
scene during a short period. For a single image, each pixel is
isolated, so the constant statistics constraint is limited to the
range of each individual pixel. As the number of averaged
frames increases, the temporal signal distribution is assumed
to be locally constant surrounding each pixel. As the number
of frames further increases, the scale will gradually extend to
the whole array. Meanwhile, the GCS assumption is satisfied.

Next, we will explain the MSCS assumption from another
point of view. In the GCS algorithm, the mean and mean
deviation are estimated with finite samples. The estimates
of mean and standard deviation have the following relations
with the true mean and standard deviation:4

MSEm(n) = Var [m(n)] = E
{
[m(n) − m]2

} = σ 2
y

n
, (11)

MSE σ 2 (n) = Var [σ 2(n)] = E
{[

σ 2(n) − σ 2
]2} ≈ 2σ 4

y

n
,

(12)

where MSE is the mean square error and E[•] and Var [•]
represent the statistical expectation and statistical variance,
respectively (since we have E[m(n)] = m and E[σ 2(n)]
= σ 2, here the mean square error is equivalent to the

variance). It can be seen from the above equations that the
errors of the mean and mean deviation estimates do not only
decrease with the frame number, but are in proportion to the
temporal variance of the observed data σ 2

y . We know that
the mean and mean deviation images can be decomposed
into a multiscale representation. The errors (variances) of the
mean and the mean deviation estimates in one scale should be
determined by the statistical characteristics of the observed
data in that scale. This means that if the temporal variance of
the signals at one level is smaller than that of others, fewer
frames are needed to achieve the same estimation error.

Figure 4 shows a clean infrared image and its correspond-
ing three Laplacian images and one Gaussian image using
a four-level LP decomposition. The spatial variances for the
corresponding Laplacian images are shown in Fig. 5. We
can see that pixel-to-pixel correlations are largely removed
in the Laplacian pyramid and the spatial variance of pixel
values in the Laplacian pyramid is almost doubled between
two levels.13 Here, we extend the relation to temporal domain
approximately

σ 2
Ll (y) ≈ 2l−kσ 2

Lk (y), ∀k, l ∈ Z, (13)

where σ 2
Ll (y) is the temporal variance of the observed data at

level l of the LP and σ 2
Lk (y) is the temporal variance of the

observed data at level k of the LP. This relation has been ver-
ified with several simulations and experiment. It can be seen
that, for a given detector, the standard deviation of its tempo-
ral values in smaller scales is much larger than those of the
larger scales. From Eqs. (11) and (12), we know that in order
to reach the same estimation error (variance), the numbers
of frames needed for different scales are different. For the
LP representation, the level increases by one, then to achieve
the same error, nearly twice as many samples are required.
This relation is in good accordance with the experimental
results of Sec. 3.2. Besides, the derivations of Eqs. (11) and

Fig. 4 Multiscale analysis of a clean infrared image: Laplacian pyra-
mid parses an image into a series of Laplacian images of higher
frequencies and a Gaussian image of lower frequency.
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Fig. 5 Spatial variances of the Laplacian images of the correspond-
ing infrared image shown in Fig. 4.

(12) assume that pixel values are independent from frame to
frame. Real-world images contain temporal correlations so
that the variance of the mean and the mean standard devi-
ation estimates may not always monotonically decrease as
the frame number increases. But the pixel-to-pixel correla-
tions are largely removed in the Laplacian images. So, it is
reasonable to use Eqs. (11) and (12) for approximate error
analysis.

3.3 Nonuniformity Correction Using Multiscale
Constant Statistics

In this section, we discuss the NUC method based on the
MSCS constraint. Figure 6 shows the multiscale representa-
tion of one typical nonuniformity image (a 40◦C blackbody
image captured by a one-point corrected uncooled infrared
camera). Figure 7 shows the spatial variance of the images
shown in Fig. 6.

Different from the scene image, the variance of the
nonuniformity image is mainly distributed in the HSF do-
main. Most spatial variation is contained in the pyramid from
level 0 to 1. This is exactly what we want, because only when
one spatial scale meets the constant statistics constraint, can
the nonuniformity of that scale be effectively corrected. As
we pointed out earlier, the statistical constant constraint in
smaller scales is easier to be satisfied. This means that we can
quickly achieve a good uniformity correction result, without
waiting until the GCS constraint is met when tens of thou-
sands of frames have been used.

In addition, in stark contrast to the LSF image G4 shown
in Fig. 4, we can see the LSF part (G4) of the nonuniformity
image is very uniform and it has very little influence on the
visual effect. This part can be ignored in NUC processing.
Because, only when the error introduced by the uneven dis-
tribution of the true scene signal of one scale is less than
the nonuniformity of that scale, can the NUC processing of
that scale produce a positive effect. Usually, the error caused
by a violation of the constant statistics constraint in larger
scales is much greater than the residual nonuniformity in LSF.

Fig. 6 Multiscale analysis of a nonuniformity image captured by an
uncooled infrared camera.

Fig. 7 Spatial variances of the images at different LP levels of the
nonuniformity infrared image shown in Fig. 6.

Similarly, for the HSF components, if the frame samples are
so few for one scale to meet constant statistics constraint, we
should not use the statistics (mean and mean deviation) of
that scale and assume the mean and mean deviation images
in that scale are uniform images. In this way, the ghosting
artifacts caused by the violation of the constant statistics con-
straint and the incorrect updating of NUC parameters can be
greatly reduced.

Making the spatial scale of nonuniformity correction and
spatial scale that meet the constant statistics constraint to
synchronously expand is the basic idea of the MSCS-based
NUC method. Figure 8 gives a schematic diagram of the
MSCS, which can better illustrate this process. For the first
frame, the constant statistics constraint is limited to the range
of each individual pixel. So, we assume the mean and mean
deviation are uniform images{

b = 〈m〉
g = 〈σ 〉 . (14)

No NUC occurs at this time. As the number of accumulated
frames increases, the spatial scale corresponding to level L0
of the LP meets the constant statistics constraint. Then, we
have{

b = L0(m) ⊕ 〈m〉
g = L0(σ ) ⊕ 〈σ 〉 . (15)

At this point, we only introduce the statistics of L0 into
the nonuniformity coefficients. Similarly, when the number
of frames further increases, the scale extends to L1level{

b = L0(m) ⊕ L1(m) ⊕ 〈m〉
g = L0(σ ) ⊕ L1(σ ) ⊕ 〈σ 〉 . (16)

Fig. 8 Schematic diagram of the MSCS algorithm: the scope of
MSCS gradually expands over time.
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Followed by analogy, the spatial range of the MSCS expands
to L2, L3, . . . , L N−1{

b = L0(m) ⊕ L1(m) ⊕ L2(m) ⊕ . . . ⊕ L N−1(m) ⊕ 〈m〉
g = L0(σ ) ⊕ L1(σ ) ⊕ L2(σ ) ⊕ . . . ⊕ L N−1(σ ) ⊕ 〈σ 〉 .

(17)

Then, most of the nonuniformity is contained in the scale
that meets the constant statistics constraint and the resid-
ual nonuniformity in G N can be ignored. The MSCS NUC
reaches steady state and the formula for offset and gain are
identical with those of the original form of the LCS.

The entire process described above expressed the basic
idea of MSCS correction, i.e., the NUC parameters expand
their sphere of influence in the spatial domain step by step.
However, the effective radius of each Gaussian kernel is
doubled between levels in the LP representation. It is clear the
spatial range meets the constant statistics constraint should
continuously expands rather than “jump” from one scale to
another. From Eqs. (14)–(17), it can be found that the mean
and mean deviation images are actually decomposed into
LSF and HSF. Obviously, we can use a size-variable Gaussian
filter to achieve the similar effect. Therefore, the offset and
gain of the MSCS are calculated as follows:{

b(n) = HSF n[m(n)] + 〈m(n)〉
g(n) = HSF n[σ (n)] + 〈σ (n)〉 , (18)

where HSF n(•) denotes the HSF part of the mean and mean
deviation images obtained by the size-variable Gaussian filter
at frame n. Taking the mean image for example, its HSF
component at frame n can be calculated as follows:

HSF n(m(n)) = m(n) − L SFn(m(n))

= m(n) − m(n) ⊗ G(σg(n)), (19)

where G(σg(n)) denotes the Gaussian kennel with a standard
deviation parameter of σg(n), ⊗ is the convolution operator.
As discussed earlier, we know that if the spatial scale is
doubled, the number of frames needed to meet the constant
statistics constraint is approximately doubled accordingly.
So, the relation between the number of averaged frame and
the standard deviation parameter σg(n) of the Gaussian filter
could be approximated as linearity.

σg(n) =
{ (n − 1)σg max

K
n ≤ K

σg max n > K
, (20)

where σg max is the maximal standard deviation of the size-
variable Gaussian filter. K represents the number of frames
this maximal scale (corresponding to σg max) needed to meet
the constant statistics constraint. The spatial range of the
MSCS gradually expands as n increases until K frames are
used. The (n − 1) term is to ensure that σg(n) is zero for
the first frame, i.e., no NUC is performed.

The choice of σg max should take into account the spatial
distribution characteristics of the nonuniformity, and it de-
termines the value of K . K is chosen as kσg max + 1, where
k is a time constant parameter that determines how fast the
spatial scale of MSCS expands. Pulsing one is to avoid di-
viding by zero under the special circumstance of σg max = 0.
The selection of σg max and k will be discussed in detail in
subsequent sections.

4 Further Enhancements on the Multiscale
Constant Statistics Method

In this section, we improve the MSCS method by adding
two extra features: an exponential window for gain and off-
set estimation and a decision criterion to adaptively exclude
abnormal data. These features can naturally help produce a
faster update for the estimation and further reduce the ghost-
ing artifacts.

4.1 Multiscale Constant Statistics with an
Exponential Window

The recursive Eq. (4) consider the gain and the offset as
stationary-unknown parameters. But, it was stated that the
nonuniformity slowly and randomly changes over time.
Therefore, the estimation provided by any NUC method must
follow this drift. To better estimate changes of nonuniformity
coefficients, here we introduce an exponential window5 for
gain and offset estimation. The exponential window empha-
sizes more on recent data, it provides the NUC method with
the ability to follow changes in the operating point and drift in
nonuniformity coefficients. By applying an exponential win-
dow function to the MSCS method, the recursive equations
can be written as{

m(n) = α(n)y(n) + [1 − α(n)]m(n − 1)

σ (n) = α(n)|y(n) − m(n)| + [1 − α(n)]σ (n − 1)
,

(21)

where α(n) is the time coefficient, which controls the window
size and may change with n

α(n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

M
n ≤ M

1

n
N < n ≤ K

1

K
n > K

. (22)

The evolution of α(n) has three stages. The initialization
stage includes the first M frames. This stage allows the gain
and offset in small scale to quickly converge. Meanwhile,
it avoids the large initial error that is normally introduced
by using Eq. (4). Usually, M can be set as the number
of frame needed for the scale of L0 (9 × 9 Gaussian fil-
ter with the standard deviation of 1.5) to meet the constant
statistics constraint. So, in our cases M ≈ 1.5k (since we
have σg(n) = (n−1)σg max

K when n ≤ k, and K = kσg max + 1,
if σg(M) = 1.5,M = 1.5K

σg max
+ 1 ≈ 1.5k). Followed by the ini-

tialization stage is the stage of MSCS scale expansion. The
value of α(n) gradually reduces with the increase of n to
allow more frames to be averaged. Finally, the algorithm
reaches the steady state after K frames. The maximal scale
is supposed to meet the constant statistics constraint and the
nonuniformity has almost been removed. At that time, the al-
gorithm should keep on iterating to guarantee the correction
of the temporal drift of the FPN.

4.2 Deghosting
Ghosting artifacts are major problems of statistical SBNUC,
which seriously affect the correction accuracy and visual
quality. In the applications such as detection and tracking of
targets, the problem is even worse because the slow speed
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targets may be blended into the NUC coefficients and then
leave an inverse ghost image in its original place. In the
MSCS, ghosting artifacts are caused by two main factors:
lack of global motion and extreme scene values. As for the
former, the correction parameters are obtained by two tempo-
ral low-pass filters. If there is no image motion, it is implied
that all signal energy is at zero frequency and the real scene
will leak into the correction parameters. The ghosting caused
by insufficient global motion is not uncommon among almost
all SBNUC (Refs. 5, 7, and 16) and can be reduced by the
change detection mechanism, which prohibits parameter up-
dates when motion of the scene is insufficient.

As for the latter, our method generates running averages
for the acquired data and their mean deviation for NUC
parameters estimation. Though our method adopts a size-
variable low-pass filter to better control the convergence of
the gain and offset, it is evident that the running average is
not a robust statistic since it is unduly affected by outliers
or other small departures from model assumptions. The out-
lier values should be excluded or their contributions should
be attenuated to prevent a large degree of influence on the
parameters. Nevertheless, there is no rigid mathematical def-
inition of what constitutes an outlier; determining whether
or not an observation is an outlier is ultimately a subjective

exercise. There are two kinds of methods available in the
literature. In Refs. 14, 15, and 16, the outliers are defined
based on experience, i.e., they are presumed to be of high
local variance or around edges. The other method is based on
statistics.17, 18 These methods usually make use of mean and
variance of the previous data samples (or error samples) as a
prior to examine the following data. Since in our method, the
nonuniformity parameters are inherently calculated by mean
and mean deviation statistics. We adopt a temporal statistics
deghosting method similar to the method in Ref. 17. We use
the temporal statistics of previous frames to decide whether
the current pixel value will be used to compute the correc-
tion coefficients. Obviously, only when the previous statistics
are reliable enough can we use them to determine whether
a newcomer is outlier. So, during the initialization stage, no
deghosting should be operated. After the initialization stage,
we only utilize the statistics in the scales that are supposed
to meet the constant statistics constraint. A tolerance interval
for the acquired data is defined as follows:

[b(n − 1) − Wg(n − 1), b(n − 1) + Wg(n − 1)], (23)

where the parameter W determines the width of the tolerance
interval. The rule to operate deghosting is summarized as
follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
m(n) = α(n)y(n) + [1 − α(n)]m(n − 1)

σ (n) = α(n)|y(n) − m(n)| + [1 − α(n)]σ (n − 1) if |y(n) − b(n − 1)| ≤ Wg(n − 1){
m(n) = m(n − 1)
σ (n) = σ (n − 1) if |y(n) − b(n − 1)| > Wg(n − 1)

. (24)

The updating of the correction coefficients is operated only
when the observed signal were found reliable. This mech-
anism prevents biased estimates from abnormal updating
caused by the outliers and helps to sample data better.

5 Parameters Evaluation

5.1 Determining the Maximal Scale for Multiscale
Constant Statistics

The maximal standard deviation σg max of the size-variable
Gaussian filter determines the largest scale of MSCS in steady
state. If the largest scale of MSCS is equal to the image
size, then the MSCS will gradually approach the GCS as
the frame number increases. Obviously, we hope most of
the noise patterns can be filtered out by the Guassian filter
with a standard deviation of σg max, and σg max should be as
small as possible to avoid the unwanted errors introduced
by the true scene signal. So, we can simply face the camera
to blackbodies at different operation temperatures and get
a set of images that contain only noise patterns. Then, we
apply the size-variable Gaussian filter to these noise images.
When the residual nonuniformity in the filter output of each
image can be ignored as the standard deviation parameter
increases. An ideal value of σg max is obtained. The σg max
should generally not be too large since the residual FPN
of IRFPAs mostly concentrates on the HSF domain after
calibration by reference-based NUC methods.7, 19

5.2 Parameters Analysis
There are two parameters can be used as control knobs in
our algorithm: the time constant parameter k and the width
of the tolerance interval W . We now study the impact of
the two parameters on the noise compensation capability of
our algorithm for the purpose of finding the best performing
setting. To measure the overall NUC performance when the
image is corrupted by both offset and gain nonuniformity,
the peak signal-to-noise ratio (PSNR)10, 14 is used to quantify
the differences between a clean reference image against its
noisy and nonuniformity corrected versions, and it is defined
as

PSNR(n) = 20 log10

[
D

RMSE (n)

]
, (25)

RMSE (n) =

√√√√∑
i, j

[xi j − xi j (n)]2

N
, (26)

where xi j (n) is the (i, j)th pixel’s value of the true frame
while x̂i j (n) is the pixel’s value of the corrected frame. N
is the total number of pixels in the image. D represents the
dynamic range of the images (we choose D as the average
dynamic range of the input frames). The larger the PSNR
value, the closer the estimated signals are to the true signals.
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Fig. 9 PSNR versus frame number using different time constant parameters.

For convenience and in all simulations, the initial correction
parameters have been initialized with unitary gain and null
offset. The simulated gain and the offset are normally dis-
tributed and the nonuniformity is assumed to be distributed
mainly within the scale corresponding to σg max = 5.

5.2.1 Time constant parameter analysis
We use a clean 1500-frame outdoor infrared video sequence
corrupted by simulated nonuniformity. To better study the
convergence process with different time constants parameter
k. The sequence presents a sufficient global motion and very
little extreme scene, thus no deghosting is performed. We
have studied four k values, respectively 25, 50, 100, and 200.
The PSNRs of the corrected images versus frame number are
shown in Fig. 9.

It can be seen that the speed of convergence decreases with
the increase in the value of k. This is expected, since when k
is small, the cutoff frequency of the temporal low-pass filter
will be high and fewer frames will be averaged. Besides, if
k is too small (k = 25), the curve becomes so volatile that
after 200 frames the curve began to decline, which result
from the lack of statistical gray-value diversity within less
frames. This lack of diversity violates the MSCS assumption.
Conversely, the steady-state error increases with the increase
in the time constant. So, k can be set as 100, this value
obtains a good trade-off between the speed and the steady-
state accuracy of estimation. Furthermore, in real situations,
the value of k needs to be adjusted according to the sample
rate and the application field of the camera.

5.2.2 Tolerance interval analysis
The 1500-frame sequence with artificial nonuniformity used
to test the deghosting performance has been taken using the
same camera as in Sec. 3.2, corrupted by using synthetic gain
and offset. The sequence typically presents complex back-
ground and extreme scene values such as strong edges of
structures, high-gray-level objects caused by sunlight reflec-
tion, separation edges caused by horizon effects, or inten-
sity transitions between sky and ground regions. To prevent
ghosting artifacts, a proper W should be adopted to better
classify the outliers and remove these anomalous observa-
tions that cause biased estimates. For a proper comparison,
the time constants parameter k is chosen as 100 using the

previous results. The PSNRs of the corrected images are
shown in Fig. 10 by varying the tolerance interval W .

It can be seen that the PSNR is almost insensitive to the
tolerance interval W for the first 200 frames. But after that,
the deghosting plays a more important role in the convergence
process. If a smaller value of W is used, the PSNR curve
becomes rather smooth and inactive after 200 frames, which
can be helpful to prevent ghosting. However, subsequent
convergence of the algorithm becomes slower since only
very few data points are used for estimations. On the other
hand, a larger value of W tends to decrease the deghosting
effect. It is recommended to choose W = 2 to improve the
deghosting capabilities of our method. This choice yields
best results of NUC with our default time constant parameter
setting.

6 Nonuniformity Correction Performance
In this section, several tests on both simulated and real data
are performed to verify the MSCS method and to compare
the NUC performance of our method with the GCS and LCS.

6.1 Applications to Simulated Infrared Data
In this test, 1200-frame image sequence clipped from the
same 5000-frame sequence as in Sec. 3.2 are artificially cor-
rupted by FPN, and then the performance of the aforesaid
three NUC methods will be quantitatively evaluated using
the PSNR as a metric. The PSNR of the corrupted image
sequences with simulated nonuniformity are about 24.2 dB
for all of the frames. For this simulated nonuniformity, the
maximum pyramid level in LCS is set as two for spectrum

Fig. 10 PSNR results using a different W.
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Fig. 11 PSNR results of the synthetic noisy test sequence corrected
with different NUC methods.

shaping and the MSCS uses σg max = 5. The CS and LCS use
a time constant of 0.003 for the exponential window. For our
method, we use k = 100 and W = 2.

Figure 11 shows the PSNR of each frame corrected
by different methods. It can be clearly seen that the pro-
posed method considerably reduces the FPN. Furthermore,
it achieves minor residual error and faster convergence when
compared with the other two NUC methods.

The resulting video sequence was analyzed and some sam-
ple frames of the uncorrected and corrected sequences are
shown in Video 1. There are significant improvements in the
amount of discernable scene details and visually the noise
pattern is greatly reduced by all three methods. But the CS
and LCS method introduce disturbing ghosting, which can
be clearly seen by inspecting their error images (Fig. 12).
However, we can hardly see any ghosting artifact in the
MSCS’s output and the level of the residual nonuniformity
is rather low. These results are ratified by the PSNR of each
image displayed.

6.2 Applications to Real Infrared Data
In this section, the CS, LCS, and MSCS were applied to
a noisy sequence collected by using a 320 × 256 HgCdTe

Video 1 Simulated nonuniformity image results (frame 961).
(a) Image with simulated gain and offset nonuniformity (PSNR
= 23.9 dB). (b) Corrected with MSCS (PSNR = 41.9 dB). (c) Cor-
rected with CS (PSNR = 28.2 dB). (d) Corrected with LCS (PSNR
= 36.8 dB). (QuickTime, 11.46 MB).
[URL: http://dx.doi.org/10.1117/1.3610978.1]

Fig. 12 Error images for (a) CS; (b) LCS; (c) MSCS. All images are
scaled to the same display range.

IRFPA camera, operating in the 8 to 14 μm range. The video
contains 1500 frames captured at a rate of 25 fps. The CS and
LCS use a time constant of 0.006, and the MSCS method uses
k = 50 and W = 2. Video 2 and Fig. 13 show examples of the
raw frame (frames 150 and 965) with the corresponding cor-
rected versions using different methods. Before correction,
most of the image details are obscured by the nonuniformity.
The stripping patterns in the raw frame are most likely due
to the readout architecture of the IRFPA. Notice, also, that
the image appears darker in some regions as a result of the
nonuniformity. Based on the spatial frequency characteristics
of the pattern noise, MSCS uses σg max = 12 and LCS uses a
four-level LP for spectrum shaping.

From Video 2, it can be noted that the CS and LCS meth-
ods do not result in a noticeable change compared with the
original image. The spatial noise has been partially removed
but the underlying scene details cannot be readily seen. How-
ever, most of striping patterns are effectively removed by
using the MSCS method with only some LSF nonuniformity
remaining, which has a very weak influence on visual effect.
The dark electric cords can be clearly seen in the corrected
image of the MSCS, but blend in with the nonuniformity in
the results of GCS and LCS.

For Fig. 13, the three methods have already been able
to significantly reduce the FPN. However, the CS algorithm
introduces disturbing ghosting artifacts, which suggests that
the correction is indeed scene dependent. LCS produces a bit
less ghosting artifacts than the CS method, but the presence
of strange shadows (ghosting) around the lawn is also per-
ceptible. The MSCS method effectively avoids the ghosting

Video 2 NUC performance comparison of the frame 150 of the real
infrared sequence. (a) Unprocessed; (b) corrected with MSCS; (c)
corrected with CS; (d) corrected with LCS. (QuickTime, 14.79 MB).
[URL: http://dx.doi.org/10.1117/1.3610978.2]
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Fig. 13 NUC performance comparison of the frame 965 of the real
infrared sequence. (a) Unprocessed; (b) corrected with MSCS; (c)
corrected with CS; (d) corrected with LCS.

artifacts and produces, to the naked eye, a much better NUC
than the other two algorithms. Through comparison, it is not
difficult to find that our proposed method is superior in fast
noise reduction and avoiding producing unwanted artifacts;
as a result, the frame corrected by our proposed method has
a better visual effect.

7 Conclusions and Discussions
In this paper, we have presented a new statistical SBNUC
method for IRFPA based on the MSCS assumption. The
MSCS assumption takes regarding the relationship between
the temporal signal distribution over space and the number
of frame samples. It has been found that the scale that meets
the constant statistics assumptions is in proportion to the
number of frames approximately averaged. So, the MSCS
NUC gradually expands its effective spatial scale over time
according to the spatial scale that meets the CS constraint. Be-
sides, an exponential window and a tolerance interval for the
acquired data are introduced to capture the drift in nonuni-
formity and eliminate the ghosting artifacts. After several
tests using both synthetic and real infrared data, our proposal
not only performs an efficient nonuniformity correction of
the sequences, but it also produces compensated images
with better quality than the GCS method and the LCS
method. More importantly, our method is quite simple uti-
lizing low computational resources and very little memory,
which makes it more competitive in real-time processing.
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