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Abstract 

Recent advances in imaging sensors and digital light projection technology have 
facilitated rapid progress in 3D optical sensing, enabling 3D surfaces of complex-
shaped objects to be captured with high resolution and accuracy. Nevertheless, due 
to the inherent synchronous pattern projection and image acquisition mechanism, 
the temporal resolution of conventional structured light or fringe projection profilom-
etry (FPP) based 3D imaging methods is still limited to the native detector frame rates. 
In this work, we demonstrate a new 3D imaging method, termed deep-learning-ena-
bled multiplexed FPP (DLMFPP), that allows to achieve high-resolution and high-speed 
3D imaging at near-one-order of magnitude-higher 3D frame rate with conventional 
low-speed cameras. By encoding temporal information in one multiplexed fringe 
pattern, DLMFPP harnesses deep neural networks embedded with Fourier transform, 
phase-shifting and ensemble learning to decompose the pattern and analyze sepa-
rate fringes, furnishing a high signal-to-noise ratio and a ready-to-implement solution 
over conventional computational imaging techniques. We demonstrate this method 
by measuring different types of transient scenes, including rotating fan blades and bul-
let fired from a toy gun, at kHz using cameras of around 100 Hz. Experiential results 
establish that DLMFPP allows slow-scan cameras with their known advantages in terms 
of cost and spatial resolution to be used for high-speed 3D imaging tasks.

Keywords:  3D imaging, Fringe projection profilometry, Multiplex, Deep learning, 
Temporal super-resolution

Introduction
Over recent decades, significant advancements in optoelectronics have ignited interests 
in capturing and documenting instantaneous phenomena. The ability to capture imme-
diate three-dimensional (3D) geometric changes in objects provides invaluable insights 
into fast events, crucial for diverse fields such as industrial inspection [1], biomedicine 
[2], and solid mechanics [3]. Among the array of 3D imaging techniques, fringe projec-
tion profilometry (FPP) [4] is one of the most promising modalities due to its capacity 
for high-accuracy and full-field 3D measurements.
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To enhance the speed of FPP, efforts have been made to improve the speed of meas-
urement system. Binary defocusing techniques, for instance, have emerged to increase 
the projection speed of digital light processing (DLP) systems [5, 6]. By projecting binary 
fringes (1-bit) instead of grayscale patterns (8-bit) in a defocused manner, these tech-
niques have demonstrated the capability to increase projection speeds from a hundred 
frames per second (fps) to thousands or even tens of thousands fps. Additionally, custom 
projectors utilizing rotating wheels [7] or LED arrays [8, 9] have also been developed to 
achieve high-speed pattern projection.

Although system speed has improved, motion can still compromise 3D measure-
ments if numerous patterns are required for dynamic 3D reconstruction [10]. Therefore, 
researchers have presented methods using a small number of patterns, such as dual-fre-
quency phase-shifting (PS) [11], bi-frequency PS [12], 2+2 PS [9], composite PS [13], 
and micro Fourier transform profilometry [14]. These approaches utilize each projected 
pattern for both wrapped phase calculation and absolute phase unwrapping, effectively 
reducing the number of patterns. Fourier transform profilometry (FTP) employs a single 
fringe pattern for 3D reconstruction but struggles with complex shapes due to spectrum 
aliasing [15]. Recent advancements in artificial intelligence have introduced deep neural 
networks (DNNs) [16, 17] to optical metrology [18]. Properly trained DNNs can retrieve 
phase [19] and 3D coordinates [20–23] using a single fringe pattern accurately for com-
plex objects, pushing the 3D measurement speed to the upper limit that is the camera’s 
speed for capturing two-dimensional (2D) images.

However, enhancing the camera’s speed often comes at a cost, such as the decrease in 
pixel resolution and the signal-to-noise ratio (SNR) of captured images. Although high-
speed cameras capture images at a high frame rate without reducing the resolution, the 
cost of the system will sharply increase. Moreover, the speed of 3D imaging is inherently 
hindered by the rate at which 2D images can be captured and processed. Therefore, we 
are facing a big challenge that is “can affordable low-speed cameras be used to replace 
high-speed cameras and achieve high-speed 3D imaging without compromising image 
resolution”.

In recent years, we have witnessed the rapid progress of deep learning in computa-
tional imaging [24]. Meanwhile, the refresh rate of digital micro-mirror devices (DMDs) 
has significantly increased, reaching tens of thousands fps, while at an affordable price. 
This motivated us to combine computational imaging and deep learning to encode tem-
poral information in space and break through the physical limits of camera hardware 
speed. Inspired by the concept of holographic multiplexing [25], for the first time to our 
knowledge, we introduce a novel approach termed deep-learning-enabled multiplexed FPP 
(DLMFPP). DLMFPP enables high-speed 3D imaging, surpassing the camera’s acquisi-
tion rate by nearly an order of magnitude, while preserving spatial resolution. We employ a 
series of fringe images with varying tilt angles. When the speed of projector is higher than 
that of camera, we capture a multiplexed image overlaid with a sequence of fringe patterns. 
DLMFPP can decode the image into its original sequence by DNNs embedded with Fou-
rier transform (FT), PS [26], and ensemble learning [27]. By harnessing each fringe pattern 
to record the scene at different time, it achieves up to 9x temporal super-resolution imag-
ing beyond the camera’s frame rate. In practice, the DLMFPP method can be implemented 
on almost any off-the-shelf FPP system, eliminating the need for complicated optical paths 
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and furnishing a high SNR and ready-to-use solution compared to conventional computa-
tional imaging techniques [28–30]. We validate the effectiveness and versatility of DLMFPP 
through experimental demonstrations on different types of transient scenes, including 
rotating fan blades and bullet fired from a toy gun, showcasing its ability to achieve high-
speed kHz 3D imaging with low-speed cameras operating at around 100 Hz. By tran-
scending the limitations of sensor frame rates, the DLMFPP allows slow-scan cameras to 
quantitatively study dynamic processes with both high spatial and temporal resolution.

Methods
The schematic of the DLMFPP approach is demonstrated in Fig. 1. The projector sequen-
tially projects fringe patterns Ipm with different directions onto the dynamic scene. The pat-
tern sequence can be represented as

where (xp, yp) represents the pixel coordinate of projector, ap is the mean value, bp is the 
amplitude, and m denotes the pattern index m = 1, 2, 3, ...,M (M is the total number of 
the patterns). The phase ϕp

m is assigned as

where f px  and f py  are the frequency in xp , yp directions, respectively, and θ is a scalar 
characterizing the incline of fringes. After modulated by the object surface, the corre-
sponding fringe images Im (shown in Fig. 1) can be expressed as

where (x, y) indicates the pixel coordinate of camera, Am is the average intensity, Bm is 
the modulation, and φm is the phase to be measured. Letters of “MULTIPLEX” in Fig. 1 
represent a dynamic scene, and each Im encodes the scene at different time t. Then, the 
camera captures a multiplexed image ILE overlaid by the sequence of Im with a long 
exposure time. After performing FT on ILE , multiple fundamental frequency compo-
nents (corresponding to Im ) are circularly distributed in the spatial spectrum FLE , occu-
pying distinct locations. Specifically, we consider four principles when designing the 
pattern sequence Ipm : (1) the fringe interval in each Ipm is kept equal to guarantee the con-
sistent defocusing level when capturing the binary pattern sequence; (2) the zero com-
ponent in FLE should be far away from the fundamental components to avoid spectrum 
overlap; (3) the fundamental components of these fringe patterns should be distributed 
in a circular pattern in FLE , which minimizes the harm of spectrum leakage; (4) funda-
mental components near fy axis should be excluded as it is hard to employ this kind of 
near-horizontal fringe pattern to measure 3D shape for a conventional horizontally con-
figured FPP system.

The flowchart of DLMFPP is shown in Fig. 2, where there are two steps to analyze the 
input multiplexed image. Step 1 is to decompose the multiplexed pattern into a fringe 
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pattern sequence, each of which corresponds to the measured object at a moment. Step 2 is 
to analyze the decomposed fringe patterns for phase retrieval. To be specific, inspired by the 
rationalized deep learning framework [31], we propose a multiplexed pattern decomposing 
module (DNN1) that comprises three branches. The spatial decomposing (SD) branch is 
trained to extract the features of the multiplexed image ILE and decompose it in the spa-
tial domain. The frequency decomposing (FD) branch, which is parallel to the SD branch, 
incorporates the physical model of FT into the framework to analyze the multiplexed image 
as follows: (1) it obtains the spatial spectrum FLE of ILE by FT, and feeds its real and imag-
inary components into the FD branch [32]; (2) the branch then decomposes FLE in fre-
quency domain and outputs the real and imaginary parts of the separate spectrums as the 
branch output; (3) inverse FT (iFT) is performed to obtain separate fringe images. The fea-
ture ensemble (FE) branch is engineered to adaptively merge features learned by the SD and 
FD branches with the idea of ensemble learning [27]. This branch can incorporate features 
from both spatial and frequency domains and give the final outputs, i.e., separate fringe 
images I1 − I9 in Fig. 2. In Step 2, we design an augmented fringe pattern analysis (AFPA) 
module (DNN2) embedded with the physical model of PS to retrieve the phase from each 
fringe image. The module receives each separate fringe image Im as input and predicts the 
corresponding numerator Mm and denominator Dm . Then, the wrapped phase φm in Eq. (4) 
is demodulated through an arctangent function

where c is a constant determined by the phase demodulation approach, pattern index 
m = 1, 2, 3, ..., 9 . After that, the absolute phase �m can be acquired with the help of φ′

m 
from another camera via stereo phase unwrapping (SPU) [33], then 3D reconstruction 

(5)φm(x, y) = arctan
cBm(x, y) sin[φm(x, y)]

cBm(x, y) cos[φm(x, y)]
= arctan

Mm(x, y)

Dm(x, y)
,

Fig. 1  Schematic of DLMFPP: The projector sequentially projects fringe patterns Ipm [Eq. (1)] onto the dynamic 
scene, allowing the corresponding modulated fringe images Im [Eq. (4)] to encode the scene at different time 
t. Then the camera captures a multiplexed image ILE with a long exposure time, and the spatial spectrum FLE 
(multiple fundamental components corresponding to Im are circularly distributed) can be obtained by FT 
(pattern index m = 1, 2, 3, ...,M , M is the total number of the patterns). A synthetic scene composed of letters, 
“MULTIPLEX”, is used to illustrate the principle
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can be performed. Notably, in a conventional horizontally  configured FPP system, 
the mapping from phase to 3D coordinates is generally designed for vertical fringes. 
To cope with the case of arbitrarily oriented fringes in this work, we propose the aug-
mented 3D reconstruction (A3DR) method. By creating a unique correspondence value 
xpcosθm + (f

p
y /f

p
x )y

psinθm for every camera pixel coordinate (x,  y), 3D reconstruction 
can be performed from Eq. (S13) with pre-calibrated parameters. For further details on 
system calibration and A3DR, see Supplementary Note 6.

Fig. 2  Flowchart of DLMFPP. A multiplexed image ILE and its spatial spectrum FLE are fed into a multiplexed 
pattern decomposing module (DNN1) comprised of three branches. The DNN1 framework incorporates 
the physical model of FT and the idea of ensemble learning to decompose ILE and output separate fringe 
images Im . The AFPA module (DNN2) embedded with the physical model of PS receives each Im to predict 
the corresponding Mm and Dm , enabling wrapped phase φm calculation via Eq. (5). The absolute phase �m 
is then derived by SPU, and 3D data of #m can be reconstructed by the developed A3DR (pattern index 
m = 1, 2, 3, ..., 9 ). The insert shows the DLMFPP system configuration, consisting of a projector and two 
cameras. The projector sequentially projects nine fringe patterns with different directions onto a moving 
object, then the cameras capture the multiplexed image (shown as ILE ) with a long exposure time
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The SD, FD, FE branches and the AFPA module are constructed by MultiResUnet [34], 
which is a novel architecture that combines MultiRes blocks and residual paths on the 
well-known U-Net framework [35], owing the advantage to reconcile features from dif-
ferent context size, alleviate the disparity between the encoder-decoder features, save 
memory and speed up network training (detailed in Supplementary Note 2 and Fig. S2). 
Network training for multiplexed pattern decomposition and phase retrieval is carried 
out in a supervised manner, and the process is elaborated in Supplementary Note 4 and 
Fig. S4. Moreover, for the objective functions of training, the SD and FD branches use 
joint losses containing data-based and physics-based loss, while the FE branch and the 
AFPA module use only the data-based loss. The combination of physical and data loss 
can effectively improve the recovered accuracy and generalization of the DNNs. Details 
related to the loss functions design are provided in Supplementary Note 5 and Fig. S5. 
By incorporating FT, PS and ensemble learning, DLMFPP embeds more physical prior 
knowledge in the network structure and loss functions to provide reliable phase recov-
ery across various scenes and conditions, significantly improving the generalization abil-
ity of networks.

We developed the DLMFPP system shown in the insert of Fig.  2, composed by two 
CMOS cameras (Vision Research Phantom V611) and a customized projection system 
with an XGA resolution (1024×768) DMD. By functioning in binary (1-bit) mode, the 
DMD is manipulated to achieve a refresh rate of 1,000 fps. Meanwhile, the cameras are 
operated at an image resolution (640×440) with pixel depth of 16 bits. The projection 
system outputs a trigger signal every nine frames, thus the cameras work at a frame rate 
of ∼111.11 Hz. DLP development hardware is used for precisely triggering to ensure sig-
nal synchronization between the projector and the cameras. For more information about 
the system synchronization, see Supplementary Note 1 and Fig. S1. During the training 
stage, we photographed a variety of objects made of different materials (plastic, plaster, 
metal, ceramic, etc.) to generate diverse datasets. In this work, 1,200 groups of images 
were captured, of which 800 groups were used for training and 400 groups for validation. 
Details of training dataset generation can be found in Supplementary Note 3 and Fig. S3.

Results
To evaluate the contribution of each branch in DLMFPP, we measured three scenes 
to conduct  an ablation study as shown in Fig.  3. The ground truths of separate fringe 
images were captured by setting the camera frame rate to 1,000 Hz (same as the DMD 
refresh rate). Then, the ground truths of phase were obtained by 12-step PS, as in Fig. 3e 
(detailed in Supplementary Note 3). Figure 3a shows multiplexed images modulated by 
the scenes (insets show the corresponding Fourier frequency spectrums, locally zoomed 
in for better visibility) and the phase errors of FTP. We can see substantial phase errors 
on the sharp edges of the measured surface, and the average mean absolute error (MAE) 
of these scenes is up to 0.4731 rad. Figure 3b-d show the separate fringe images decom-
posed by the SD, FD, and FE branches, respectively, and the corresponding phase errors 
of the reconstructed results demodulated by AFPA. From the fringe images in Fig. 3b, 
we can observe obvious noise. Meanwhile, blur fringes can be observed around the 
edges of the object as shown in Fig. 3c, which results in significant phase errors with an 
average MAE of 0.2091 rad. Contrastingly, in Fig. 3d, the FE branch harnesses the idea 
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of ensemble learning to integrate features from both the spatial and frequency domains, 
yielding a high-quality restoration of fringe images. The resultant average peak SNR 
(PSNR) ups to 60.88 dB and the average structural similarity index (SSIM) ups to 0.9989. 
By feeding these fringe images into AFPA, we can achieve high-accuracy phase recovery 
with the average MAE of 0.0630 rad.

For dynamic 3D measurements of moving objects, we applied DLMFPP to measure 
a fan with 4 rotating plastic blades. Figure 4a presents a particular frame of the multi-
plexed image ILE and corresponding spectrum FLE (locally zoomed in for better visibil-
ity). Although significant motion blur of the blades is observed in the multiplexed image, 
the proposed DLMFPP can still successfully reconstruct the 3D shape of the blades, as 
shown in Fig. 4b and e. It is noted that the motion blur in DLMFPP is not determined by 
the camera exposure time, but by the projection time, which is near-one-order of magni-
tude-lower than the exposure time of a single camera frame. This greatly reduced expo-
sure time effectively handles the challenges of motion blur of dynamic scene changes, 
thus ensuring accurate 3D reconstruction. For more information on the discussion of 
motion blur in DLMFPP, see Supplementary Note 8 and Fig. S8. Figure 4c plots the dis-
placement of z at 3 selected point locations within 90 ms [A, B, and C in Fig. 4b], reveal-
ing that the rotation period of the fan blades is 45 ms, i.e., the rotation speed is 1,333 
rotations per minute (rpm). Figure 4d shows five fringe images ( I1 , I3 , I5 , I7 , and I9 , corre-
sponding to T = 27, 29, 31, 33, and 35 ms) decoded from the multiplexed image ILE and 
the corresponding 3D model reconstructed by the proposed DLMFPP. Moreover, Fig. 4f 
displays two cross sections of the 3D reconstruction, one of which shows the tangential 

Fig. 3  Ablation study of DLMFPP: a Multiplexed images modulated by 3 different scenes [insets show the 
corresponding spatial spectrums (locally zoomed in)] and phase errors of FTP; b-d separate fringe images 
decomposed by SD, FD, and FE branches, respectively, evaluated by PSNR and SSIM, and phase errors of the 
reconstructed results demodulated by AFPA; e ground truths of separate fringe images and phase, obtained 
by setting the camera frame rate same as the DMD refresh rate (1,000 Hz) and 12-step PS ( #m represents the 
mth pattern index of each scene, and m = 1, 2, 3, ..., 9)
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profile (black dot line) and the other the radial profile (white dot line). The profile of 
the centre hub is shown in the zoomed-in view. The corresponding 3D movie about 
the complete process of DLMFPP and 3D reconstruction results of the whole dynamic 
process of the rotating fan is further provided in Supplementary Movie S1. With this 
experiment, we can see that DLMFPP accurately retrieved nine 3D images with each 
multiplexed image ILE , validating that 1,000 Hz high-speed 3D shape measurement has 
been achieved with cameras running at ∼111.11 Hz. Additionally, we applied DLMFPP 
to image a running fascia gun for a supplementary experiment. It shows that the cyclic 
movement of the gun head has a period of about 35 ms, which corresponds to a speed of 
1,714 rpm of the rotary motor inside the gun. More experimental results are provided in 
Supplementary Note 9, Fig. S9 and Supplementary Movie S3.

To verify the scalability of our DNNs, we developed another system consisting of two 
low-speed cameras (Basler acA640-750um) and the same projection unit. The cameras 
are equipped with zoom lenses that adjust the focal length, aperture size and degree of 
focus to make the field of view and brightness consistent with the existing datasets. So 
we can directly utilize the trained DNNs before. The projector operated at the rate of 
1,080 fps and the camera at 120 fps. For the dynamic experiment, we measured a one-
time transient event: a bullet was fired diagonally downward from a toy gun, and then 
rebounded from the ground. Representative 3D reconstruction results during the event 
are presented in Fig. 5a. The bullet began to appear near the muzzle at 11.1 ms. It flew 
straight forward until 59.3 ms and then hit the ground and rebounded upwards. Three 
points are selected to demonstrate the performance of DLMFPP [A, B, and C in Fig. 5a]. 
The displacements in z direction at selected locations are plotted in insets of Fig.  5a, 
indicating that DLMFPP has accurately recovered the profile of the fast moving bullet 
at different moments. Figure 5b shows the side-view (y-z) of the 3D reconstruction at T 
= 45.4 ms, and Fig. 5c shows the trajectory and the variation of the velocity of the bullet 

Fig. 4  Measurement of a rotating fan by DLMFPP. a The multiplexed image ILE and corresponding spectrum 
FLE (locally zoomed in). b 3D reconstruction of the fan at T = 0 ms. c Displacement of z at 3 selected point 
locations within 90 ms [A, B, and C in (b)]. d Five fringe images ( I1 , I3 , I5 , I7 , and I9 , corresponding to T = 27, 29, 
31, 33, and 35 ms) decoded from the multiplexed image ILE , and the corresponding 3D model reconstructed 
by DLMFPP. e Side-view of (b). f Two cross sections of the 3D reconstruction, one of which shows the 
tangential profile (black dot line) and the other the radial profile (white dot line). The local zoomed-in view 
shows the profile of the centre hub
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during the whole process. The initial speed of the bullet was 2.4 m/s at discharge. It 
accelerated uniformly to 4.6 m/s during the flight and then hit the ground with the speed 
decreased abruptly to 0.8 m/s (refer to Supplementary Movie S2 for more details). The 
experiment demonstrates the scalability of our DNNs for high-speed 3D imaging with 
low-speed cameras and the capability of DLMFPP to capture one-time transient events.

It should be noted that DLMFPP is the first temporally super-resolved 3D imaging 
technique proposed in FPP, while previous deep learning-based approaches were devel-
oped for single-shot 3D imaging [20–23]. The structure, training process, and loss func-
tion design of previous networks cannot meet the necessity for high-accuracy phase 
recovery and measurement in temporally super-resolved 3D imaging, therefore we pro-
posed DLMFPP to address this challenge. To justify the progressiveness of DLMFPP, in 
Supplementary Note 7 and Fig. S6, we provide a comparative study and analysis between 
the proposed DLMFPP and two state-of-the-art deep learning-based approaches. This 
study demonstrates that DLMFPP solves the dilemma of the state-of-the-art methods 
in handling regions with large height variations and demodulates high-accuracy phase 
information from the multiplexed image. DLMFPP achieves the lowest phase error 
with the average MAE of 0.0495 rad, revealing the superior performance achieved from 
DLMFPP’s advanced network design.

For the 3D imaging speed in DLMFPP, the increase of imaging speed depends on 
the number of overlapped images in a multiplexed image. The overlapping number is 
referred to as compression rate (CR). In this work, we employ CR = 9 when the marginal 
benefit between CR and recovered phase accuracy is highest (detailed in the compara-
tive study of different CRs in Supplementary Note 7 and Fig. S7), allowing DLMFPP to 
achieve 9x temporal super-resolution. Practically, to trade off temporal resolution and 
spatial resolution accuracy, the DLMFPP approach is also flexible. If higher phase accu-
racy is required, CR can be reduced appropriately, and vice versa.

Discussion and conclusion
In this work, we have introduced a deep-learning-enabled temporally super-resolved 
3D measurement approach by multiplexed FPP. By temporally embedding a sequence of 
fringe patterns with different tilt angles into a single multiplexed image, DLMFPP allows 

Fig. 5  Measurement of bullet fired from a toy gun by DLMFPP. a 3D reconstruction results at T = 0, 11.1, 45.4, 
59.3, and 88.0 ms, with insets presenting displacements in z direction at A, B, and C locations. b The side-view 
(y-z) of the 3D reconstruction at T = 45.4 ms. c The 3D reconstruction of the scene at T = 90.7 ms, as well as 
the trajectory and the variation of the velocity of the bullet during the whole process
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to achieve high-resolution and high-speed 3D imaging at near-one-order of magnitude-
higher 3D frame rate with conventional low-speed cameras. Experiential results demon-
strate that kHz 3D imaging can be achieved by using cameras merely running at around 
100 Hz without compromising the spatial resolution.

DLMFPP encodes multi-frame temporal information in the spatial dimension, which 
gives this compressive imaging modality the advantage of cost-effective, low bandwidth/
memory requirements, and low power consumption [36]. Moreover, the modality breaks 
through the limitation of 3D imaging speed imposed by the intrinsic frame rate of the 
imaging sensor, allowing it to be further used for ultrahigh-speed imaging when com-
bined with high-speed cameras. This new 3D imaging paradigm opens an avenue for the 
development of high-speed or ultra-high-speed 3D imaging capabilities, thereby push-
ing the boundaries of current 3D imaging technologies.

Compared to conventional computational imaging techniques [28–30], DLMFPP 
system eliminates the need for complex optical modulation hardware (e.g., a spatial 
encoder), avoiding complicated optical paths. Practically, DLMFPP can be implemented 
on almost any off-the-shelf FPP system. This simple optical path avoids photon losses 
and makes greater use of optical information, guaranteeing a high SNR in 3D imaging. 
Moreover, DLMFPP combines the physical models of FT and PS method, and harnesses 
the idea of ensemble learning to integrate features from both the spatial and frequency 
domains. This progressive architecture also ensures the high SNR in high-speed 3D 
imaging with low-speed cameras. From the perspective of space-time-bandwidth prod-
uct (STBP), the multi-frame modulation mechanism of DLMFPP can rationally harness 
the spatio-temporal redundancy in fast changing scenes, thereby better utilizing the 
STBP of sensors compared to conventional single-frame recordings.

Despite promising results in high-speed 3D imaging, DLMFPP still faces challenges. 
For example, the exclusion of near-horizontal fringe patterns leaves the region near fy 
axis in the multiplexed spatial spectrum unused, which exacerbates the harm of spec-
trum overlap, affecting the recovered phase quality. Moreover, due to the trade-off 
between CR and the information capacity of each fringe image, further increasing the 
multiple of temporal super-resolution results in a loss of final phase quality, and vice 
versa. It should also be noted that the maximum speed of DLMFPP is still constrained 
by the projection rate. The speed can be potentially further enhanced by using custom 
physical grating [7] or LED arrays [8, 9], which will be explored in our future research. 
Furthermore, there is an untapped potential of DLMFPP, as latest innovations in deep 
learning can be directly introduced into the method. For example, physics-informed 
learning can bring domain expertise to improve performance [37–40], and all-optical 
neural networks operating at the speed of light can accelerate computations [41–43].
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