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ABSTRACT

This document provides supporting information for "High-throughput transport-of-intensity

quantitative phase imaging with aberration correction". We discuss in detail the algorithm

steps, simulation results for optimal illumination configuration design of the proposed TI-AC

method, comparison between AO-QPI and TI-AC and spatially variant aberrations correc-

tion of TI-AC.
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1. The specific algorithm of TI-AC

The specific steps of the proposed TI-AC algorithm are as follows:

Step 1: data acquisition. Obtain a stack of defocus intensity of N z-axis measurements

Inmea(r), where n = 1, 2, ..., N (N = 12), and r is a two-dimensional coordinate in real space,

r = (x, y). The intensity measurements are captured by a defocus distance step-size of 1 µm

under annular NA-matched illumination. When the value of n equals to 1, it means that the

image is in-focus intensity.

Step 2: initialization. In the upsampled process, we assume that the actual pixel size

of the sensor is reduced to one-third of the actual situation to guarantee the Nyquist sampling

criterion and those low-resolution images are captured when pixel binning is enabled (3×3

pixels are combined into one pixel). Thus, we upsample the in-focus intensity image I1mea(r)

by a down-sampling factor of K = 3. Then use the upsampled image Iup(r) and zero-valued

phase to initialize the complex amplitude of the sample, O(r) =
√
Iup(r)e

jϕ(r), where ϕ(r) is

the phase of the high resolution object function distribution O(r). The pupil function P̂ (u)

(u is the spatial frequency coordinate corresponding to r) can be initialized as a circular

distribution with zero phase aberration, whose cutoff frequency depending on the objective

NA and illumination wavelength λ, i.e., NA/λ.

Step 3: coherent mode decomposition and numerical propagation. Based on

the assumed complex amplitude of object O(r) and pupil function P̂ (u) from Step 2 under

the annular NA-matched illumination distribution (NAi = NAo), we can obtain a stack of

intensity images corresponding to each LED individually illuminated

Ini (r) = |F−1{P[P̂ (u)Ô(u− ui)]}|2 (S1)

where i means the diversity angle of LED illumination [i = 1, 2, ..., I (I = 12)], F−1 is two

dimensional inverse Fourier transform, | · |2 represents the intensity for complex amplitude,

Ô(u) is the Fourier transform of high-resolution object function O(r), i.e., Ô(u) = F{O(r)},
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and ui indicates the spatial frequency vector of the i-th LED illumination. Besides, P is

numerical propagation process and can be expressed as ejkzstepn(
√

1−λ2|u|2), where k is wave

number, zstep is the step-size of defocus distance along the optical axis.

Step 4: intensity constraint. Perform incoherent superposition of the intensities Ini (r)

at the same defocus distance (under the same n) but different illumination angles (under

the diversity i) to calculate the partially coherent illumination intensity image Incal(r), and

then decompose the acquired measurements Inmea(r) into intensity components Indec,i(r) of the

complex amplitude Un
i (u)

Indec,i(r) =
|F−1{Ûn

i (u)}|2∑I=12
i=1 Ini (r)

Inmea(r) (S2)

According to the pixel binning model, Incal(r) =
∑I=12

i=1 Ini (r) here is the version after down-

sampling by K = 3. And the decomposition principle is based on the fact that the measured

intensities Inmea(r) satisfy the principle of incoherent superposition, i.e., the image acquired

when all 12 LEDs are simultaneously illuminated is equal to the sum of the images acquired

when each LED is individually illuminated. Then, the 3 times upsampling version of the

decomposed intensity images Indec,i(r) are used as the intensity constraint condition to update

the normalized complex amplitude Un
i (r). The update formula is derived as

Ui(r) = P−1{
√

Indec,i(r)
Un
i (r)

|Un
i (r)|

} (S3)

where Ui(r) is the inverse Fourier transform of the product of updated Ô(u) and P̂ (u), P−1

indicates the back-propagation process in −zstep case.

Step 5: phase recovery and aberration correction. Synthesize these propagated

complex amplitude stacks Ui(r) in the Fourier domain and perform global updates on the

target’s complex amplitude O(r) based on difference map1,2 by converting Eq. S1 into an
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optimization problem, and the corresponding vectorized objective function ε is as follows:

ε =
∑
i

∥∥∥√Ii −
∣∣F−1PiO

∣∣∥∥∥2

≡
∑
i

∥∥∥√Ii − |gi|
∥∥∥2

(S4)

where ∥·∥ is the Euclidean norm, F is the matrix representation of the discrete Fourier trans-

form and gi = F−1PiO. The matrix Pi is determined by P̂ (u), the matrix Ii corresponds to

the measured intensity images, and the matrix O is determined by Ô(u). The error metric

given by Eq. S4 is also called real-space error, quantifying how closely the current estimated

value fits the input data. Then, we apply the schemes of synthetic aperture and multiplex-

ing to difference map,1,2 which has the ability to update the entire objective function in one

iteration as an iterative global algorithm. In order to analyze the difference map DM more

intuitively, the following description is based on non-convex set projection theory, which is

formed by the difference of a pair of basic projections
∏

1 and
∏

2 and defined as

DM = 1 + β(
∏
1

◦ f2 −
∏
2

◦ f1) (S5)

where β is a non-zero real parameter, ◦ represents composite mapping,
∏

1 expresses the

object domain constraint set (convex), and
∏

2 is the Fourier domain constraint set (non-

convex). (
∏

1 ◦ f2−
∏

2 ◦ f1) is the difference of the two projection operators, each composed

with a map fi: EN → EN . The recovery process is to enforce the known object
∏

1 and

Fourier domain
∏

2 constraints through the framework of alternating projection as Eq. S5.

For effectively decoupling the system, it is necessary to take turns applying the two equations

several iterations (which is beneficial for finding the minimum value), thereby achieving phase

recovery and pixel super-resolution.

To correct phase aberrations, we use the embedded pupil function recovery (EPRY)

algorithm3 and Zernike polynomial constraints. After updating the pupil function using

EPRY to provide physical prior constraints for aberrations, Zernike polynomial constraints of

n-order are used as the basis functions to fit the retrieved aberrations, improving convergence
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efficiency. Due to the coupling effect between phase and aberrations under partially coherent

illumination, it is necessary to first perform separate phase recovery (with a small number

of iterations) and then simultaneously reconstruct the phase and aberrations to improve the

quality of aberration correction. Since TI-AC only uses brightfield intensity images as input

data, the formula for coherent ePIE case has been updated as shown in Eq. S64,5

P̂i (u) = P̂ (u) + α
Ô (u)∗

|Ô (u) |2
[Û

(j)
i (u)− Û

(j−1)
i (u)] (S6)

and then the global updating is implemented by using difference map.1 Here, Û (j)
i (u) and

Û
(j−1)
i (u) are the Fourier spectrum with and without the intensity constraint respectively,

j is the current iteration, and α is the updating step size. By repeating Steps 3 to 5 until

convergence or reach a certain number of iterations, the high-resolution complex amplitude

U with aberration correction can be recovered.

2. Minimum data redundancy criteria for TI-AC

In phase retrieval, successful recovery relies on sufficient data redundancy as it is a typical

ill-posed inverse problem. Considering the additional reconstruction of the system pupil, it

can be inferred that the requirement for data redundancy becomes even more demanding.

To achieve aberration correction with high imaging efficiency, we discussed deeper into the

minimum data redundancy criteria necessary for successful aberration correction in TI-AC.

Using the previously mentioned NA-matched illumination configuration, we simulate the

recovery of pupil aberration using varying numbers of raw images, as illustrated in Fig. S1.

Figures S1(a1) and S1(a2) are the input specimen phase and input aberration of the

simulation. In Fig. S1(b), we show the reconstructed aberrations with different number

of raw images. Besides, we provide the convergence curves of pupil function error in Fig.

S1(c). It can be observed that when the number of input data is less than 12 images, the

convergence speed is slow and the reconstructed aberration exhibits significant low-frequency
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artifacts, which reduces the accuracy of aberration correction. Our findings indicate that by

incorporating the uniform transmission assumption and the Zernike polynomial constraint

into the aberration recovery process, the TI-AC method can achieve successful phase retrieval

using 12 images. Furthermore, increasing the number of raw images does not significantly

improve the quality of the reconstructed phase. Consequently, by utilizing the annular NA-

matched illumination configuration with the Zernike polynomial constraint, only 12 images

could realize the aberration correction for our proposed TI-AC method.

3. Comparison between AO-QPI and TI-AC

To verify the advantage of TI-AC using annular illumination in acquiring high-SNR inten-

sity, we compared TI-AC with the AO-QPI method under a 12-piece LED setup and the

same exposure time of 15 ms per frame. AO-QPI acquires a total of 6 in-focus intensity

images as raw data through point-by-point illumination, whose brightfield in-focus intensity

is shown in Fig. S2(a1). TI-AC collects 12 through-focus intensity images under annular

illumination, and its in-focus intensity is shown in Fig. S2(b1). The comparison between

Figs. S2(a1) to (b1) shows that the dynamic range of brightfield intensity in AO-QPI differs

by several orders of magnitude from TI-AC, and the SNR between corresponding intensity

images is quite different as well. The intensity images acquired by TI-AC have better SNR

with full advantage of the detector dynamic range. It is verified that the proposed TI-AC

method has higher dynamic range (better SNR) of input data due to multiplexed illumina-

tion. To assess the tolerance of the TI-AC method for imperfect matched illumination, we

conducted a simulation using the TI-AC retrieved phase of HeLa cells in the main text of

Fig. 4. Specifically, the outer diameter of the annular illumination was varied from the op-

timal 1 (NA-matched illumination) to 0.95. Phase recovery was then performed using both

AO-QPI and the proposed TI-AC method, yielding the reconstructed phase results depicted

in Figs. S2(a2) and S2(b2), respectively. The results indicate that under suboptimal illu-
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mination conditions, AO-QPI tends to underestimate the low-frequency components of the

phase. Conversely, the TI-AC method is capable of accurately quantifying the low-frequency

phase components. This suggests that the TI-AC method reduces the stringent illumina-

tion matched requirements typically associated with FPM for the recovery of low-frequency

sample information. In the TI-AC method, each point light source belongs to simultaneous

illumination rather than sequential illumination, and a stable global unique solution can be

obtained based on the global update method of difference map. Therefore, even though

perfect matching is not feasible in practical experimental setups, the TI-AC method can

enhance the tolerance for illumination mismatch.

4. Spatially variant aberrations correction of TI-AC

During the development of our algorithm for image reconstruction, we have incorporated

several strategies to mitigate and correct for these aberrations. For example, considering the

spatially varying aberrations present in a large FOV, TI-AC digitally segments the entire

FOV into sub-regions to reconstruct the corresponding aberrations separately. As shown in

Fig. S3, it presents a typical example of aberration reconstruction from the center to the edge

of the FOV, illustrating the spatially varying aberrations and emphasizing the importance

of sub-regional aberration correction.
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Figure S1: The comparison of the reconstructed results under the annular matched illumina-
tion with different number of images. (a1) (a2) Input specimen phase and input aberration
of the simulation. (b) The reconstructed aberrations using the algorithm of TI-AC. (c)
Comparison of pupil function error (RMSE) in different amount of data under the same
illumination.
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Figure S2: Comparison between the AO-QPI method and TI-AC method. (a1) The in-focus
brightfield in-focus intensity of AO-QPI. (b1) The in-focus brightfield in-focus intensity of
TI-AC. (a2) Phase retrieved by AO-QPI under S = 0.95. (b2) Phase retrieved by TI-AC
under S = 0.95.
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Figure S3: Retrieved phase aberrations corresponding to Area 1 to Area 4 shown in Fig. 4
(a1). (a) Corrected full FOV phase by TI-AC. (b) Retrieved phase aberration in Area 1 to
Area 4.
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