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The transport-of-intensity equation (TIE) enables quantitative phase imaging (QPI) under partially coherent
illumination by measuring the through-focus intensities combined with a linearized inverse reconstruction algo-
rithm. However, overcoming its sensitivity to imaging settings remains a challenging problem because of the
difficulty in tuning the optical parameters of the imaging system accurately and because of the instability to
long-time measurements. To address these limitations, we propose and experimentally validate a solution called
neural-field-assisted transport-of-intensity phase microscopy (NFTPM) by introducing a tunable defocus param-
eter into neural field. Without weak object approximation, NFTPM incorporates the physical prior of partially
coherent image formation to constrain the neural field and learns the continuous representation of phase object
without the need for training. Simulation and experimental results of HeLa cells demonstrate that NFTPM
can achieve accurate, partially coherent QPI under unknown defocus distances, providing new possibilities
for extending applications in live cell biology. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.521056

1. INTRODUCTION

Quantitative phase imaging (QPI) has gained increased interest in
optical microscopy research for its capability to quantify optical
thickness and morphologies of unlabeled samples [1–3]. The QPI
approach can be categorized into iterative and deterministic meth-
ods [4–6], where the deterministic method requires the establish-
ment of an analytical expression for the object phase with respect
to the measured intensity images. Given that the image formation
process in QPI is inherently non-linear, linearization approaches
are commonly invoked to facilitate solving for phase as a function
of intensity measurements. For example, as a well-established
deterministic phase retrieval approach, the transport-of-intensity
equation (TIE) applies paraxial approximation and slowly-varied
approximation to linearize the phase retrieval problem and can
recover the quantitative phase by utilizing intensity images at
multiple axially defocused planes [6,7]. Under partially coherent
illumination, TIE is expected to achieve improved spatial resolu-
tion beyond the coherent diffraction limit [8]. Nevertheless, in a
conventional microscope with circular illumination, partial coher-
ence tends to diminish the phase contrast, resulting in compro-
mised imaging resolution [9].

To achieve high-resolution and high-contrast QPI, the an-
nular illumination (AI) matching objective numerical aperture
(NA) has been employed in deconvolution-based TIE, referred
to as AI-TIE [10]. AI-TIE strongly boosts the phase contrast
and significantly improves the practical imaging resolution to a
2-fold objective NA. The strong phase contrast is ultimately
transformed to the quantitative phase images by WOTF (weak
object transfer function) inversion, yielding high-quality results
with enhanced resolution. However, AI-TIE is usually limited
to weak scattering samples since it linearizes the image forma-
tion model by invoking weak object approximation with ignor-
ing higher-order terms in the complex transmittance of the
sample. In addition, WOTF is a function directly related to
the light source distribution, objective pupil function, and de-
focus distance. Once WOTF is determined, AI-TIE is not
capable of adaptively adjusting optical parameters such as the
defocus distance during the imaging process. Therefore,
such TIE-based methods may result in degraded quality of
phase retrieval due to the inaccurate inverse reconstruction
for nonweak objects or cases where optical parameters are
incorrect.
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In contrast to the aforementioned physics-based approaches
[6,10], data-driven deep learning methods can establish the
nonlinear pseudo-inverse mapping relation between the defo-
cused intensity and the object phase [11–14], bypassing the
obstacle of “solving nonlinear ill-posed inverse problems.”
Essentially, the major reason for the success of deep learning
is the abundance of training data and the explicit agnosticism
from a priori knowledge of how such data are generated [15].
However, high-quality paired data acquisition in experiments
requires professional supervision and extensive labor. Further-
more, the lack of data diversity will restrict its generalization to
out-of-domain cases with dissimilar optical parameters. Thus,
the data-driven deep learning methods tend to fail in situations
where it is difficult to obtain a large amount of high-quality
paired data from a variety of different imaging systems.

To overcome the above limitations, researchers have devel-
oped untrained network approaches by incorporating physical
priors into deep neural networks, such as the deep phase
decoder [16] and PhysenNet [17]. These methods aim to
achieve nonlinear optimization by minimizing the error be-
tween the prior model-generated image and the actual measure-
ment. Their superiority lies in introducing neural networks as
advanced regularization for automatic tuning. For instance,
deep image prior (DIP) method can use a randomly initialized
neural network as a prior to solve inverse problems such as pixel
super-resolution [18]. Especially, the BlindNet method takes
distance uncertainty into account and further addresses the
phase retrieval problem with unknown defocus distance
[19]. Additionally, we have witnessed the rise of neural field
(NF), which has become a prominent self-supervised learning
method [20]. NF can represent a three-dimensional (3D) scene
as a continuous field, which is parameterized by a lightweight
multilayer perceptron (MLP, i.e., fully connected network) and
trained without ground truth data. In conjunction with com-
putational imaging techniques, NF typically dispenses with
training on a dataset and iterates the MLP network directly
on the test data until the desired physical quantities are recov-
ered, similar to physics-driven untrained network approaches.
For example, NF can be incorporated into 3D diffraction
tomography [21] or two-dimensional (2D) microscopy such
as lensless microscopy [22] and Fourier ptychographic imaging
[23]. However, these physics-driven deep learning methods
only involve coherent imaging and are unsuitable for partially
coherent imaging scenarios. In fact, considering partial coher-
ence in phase retrieval helps to yield accurate results thanks to
its better alignment with the actual situation [24]. Nevertheless,
it needs to introduce additional parameters (such as coherence
parameter) to establish a more complete forward model.
Consequently, it remains a challenge to achieve stable partially
coherent QPI under varying optical parameters.

In this work, we present a partially coherent QPI approach
by using a neural field and taking the Abbe imaging model
[25] as the physical prior. The proposed method, termed
neural-field-assisted transport-of-intensity phase microscopy
(NFTPM), is actually a gradient-based iterative algorithm. It
drives a coordinate-based MLP through the physical prior to
represent the phase distribution as a neural field and optimizes
the MLP using the gradient computed by backpropagation in

both the physical model and the MLP model. This framework
empowers NFTPM to concurrently adjust the defocus distance
of the physical model by introducing a tunable defocus param-
eter, enabling stable QPI under unknown defocus distance.
Moreover, NFTPM is applicable to non-weak phase objects,
since the weak object approximation is not applied to the for-
ward image formation. Instead of an image-to-image 2D CNN,
NFTPM forms a point-to-point mapping function from spatial
coordinates to phase values, which effectively constrains the sol-
ution space and renders single-shot QPI possible. Unlike un-
trained networks based on coherent imaging systems, NFTPM
can adapt to various partially coherent illuminations, which
is validated by simulations under circular illumination and
annular illumination. Furthermore, based on a bright-field mi-
croscope equipped with annular NA-matched illumination
[26,27] formed by sparsely distributed light-emitting diode
(LED) elements, we realize stable QPI of unstained Henrietta
Lacks (HeLa) cells, demonstrating that NFTPM is a valid
approach for adaptive correction of defocus aberration during
the long-term phase microscopy. Given the simplicity and ef-
fectiveness of the NFTPM method, it promises to advance the
integration of partially coherent imaging with physics-driven
deep learning and open new possibilities for robust non-
interferometric QPI in dynamic optical environments.

2. METHODS

A. Reconstruction Algorithm of NFTPM
The schematic diagram of NFTPM is outlined in Fig. 1(a), and
Fig. 1(b) illustrates the image formation process in a partially
coherent microscope, which corresponds to the physics prior
used to drive NFTPM to perform phase recovery. The pipeline
of NFTPM comprises a radial encoding module [21] and a
5-layer MLP (W is the weights) that maps 2D spatial coordi-
nate r � �x, y� to phase value ϕ�r�, which can finally represent
the phase as a neural field ΦW�r�. We adopt M × N grid co-
ordinates R � f�xi, yi�gM×N−1

i�0 for the field of view (FOV) of
interest (generally −1 ≤ x ≤ 1, − 1 ≤ y ≤ 1), and the coordi-
nates correspond to pixels on the image sensor. Initially, we
utilize the radial encoding module to map densely distributed
two-dimensional coordinate points to sparsely distributed
high-dimensional space, thus allowing the MLP to better
discriminate between different coordinate positions in order
to characterize high-frequency information. For r � �x, y� ∈
R1×2, radial encoding can be expressed as

rrad � T f fcos�TLrTR�, sin�TLrTR�g, (1)

where rrad is the encoded feature, and TL is the transformation
matrix used for frequency expansion, which can be defined as

TL � �20π; 21π, � � � ; 2L−1π�T, (2)

where L is the number of the expanded frequencies. The pur-
pose of introducing L frequencies is to characterize features at
various scales in the radial positions. TR contains multiple
rotation matrices, and it can be specified as

TR �
�
1 0
0 1

� � � cos θi sin θi
− sin θi cos θi

� � �
�
, (3)
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where θi � 2πi∕N θ �i � 0,1,…,N θ − 1�, and N θ is the
number of rotation intervals. The rotation θi further enables
the MLP to respond to features at diverse orientations, allowing
for better feature representation and avoiding noise [21]. T f f·g
is applied to flatten concatenated matrices into a vector, which
for matrices A and B can be defined as

T f f�A,B�g � T f

8>>><
>>>:

2
6664
a11 a12 � � � a1N b11 b12 � � � b1N
a21 a22 � � � a2N b21 b22 � � � b2N
..
. ..

. . .
. ..

. ..
. ..

. . .
. ..

.

aM1 aM2 � � � aMN bM1 bM2 � � � bMN

3
7775

9>>>=
>>>;

� �a11, a12, � � � , a1N , b11, b12, � � � , b1N , � � � , aM1, aM2, � � � , aMN, bM1, bM2, � � � , bMN�:

(4)

Here, we simplify the radial encoding module by replacing Eq. (3) with

TR �
�
1
0

� � � cos θi
sin θi

� � �
�
, (5)

and including r � �x, y� into the encoded feature. Hence, r � �x, y� can be processed like the 2D Fourier series expansion

rrad � �x, y, � � � cos�2π�ul ,ix � vl ,iy��, sin�2π�ul ,ix � vl ,iy��, � � ��l :0≤l≤L−1, (6)

where rrad ∈ R1×�2�2LN θ�, ul ,i � �2l−1 cos�θi��i:0≤i≤N θ−1, and
vl ,i � �2l−1 sin�θi��i:0≤i≤N θ−1. To retrieve the phase distribu-
tion, we input rrad into the K -layer MLP of the neural field
ΦW (K � 5), incorporating the following processing modules.
(1) Linear moduleW0 ∈ R�2�2LN θ�×C , converting rrad into hid-
den features with C channels (C � 128). (2) Linear module for
hidden features W i ∈ RC×C (i � 1, 2,…,K − 2). (3) The last
linear transformation WK −1 ∈ RC×1. (4) Leaky rectified linear
unit (LeakyReLU) σi (i � 0,…,K − 2). (5) Sigmoid activation

function σK −1. Specifically, let the ith feature be denoted as f i,
and then the �i � 1�th feature is given by

f i�1 � σi�f iW i�, (7)

where i � 0,…,K − 1, and f 0 � rrad. The phase value can be
represented as ϕ�r� � ΦW�r� � 2πfK (fK is the output of the
K -layer MLP), and ϕ�R� can be reshaped as an image of phase
distribution. For most biological samples, the complex trans-
mittance can be expressed as t�r� � ejϕ�r�. In a typical 6f op-
tical imaging system, the source with distribution Spc�u� at the
aperture diaphragm plane (u corresponds to the 2D coordinates
in Fourier space) provides partially coherent illumination, re-
sulting in an image captured at the image plane,

I�r� �
ZZ

T �u1�T 	�u2�TCC�u1, u2�ej2πr�u1−u2�du1du2,

(8)

where T �u� is the Fourier transform of t�r�, and TCC (trans-
mission cross-coefficient) [10,28] satisfies the following rela-
tion:

TCC�u1, u2� �
Z

Spc�u�P�u� u1�P	�u� u2�du, (9)

where P�u� � jP�u�jejkz
ffiffiffiffiffiffiffiffiffiffiffiffi
1−λ2juj2

p
represents the complex pupil

function of the imaging system, z is the defocus distance along
the optical axis, k is the wavenumber, and jP�u�j is a circular
function determined by the objective NA and wavelength λ.
The TCC formula is an abstraction for the spectral coupling
of a light source to an objective pupil, intrinsically character-
izing the imaging system compatible with partially coherent il-
lumination. When the illumination distribution Spc�u� of the

imaging system is specified, the captured image is determined
by the sample’s inherent property (phase delay ϕ) and the de-
focus distance z. Therefore, we can use a function Hfϕ, zg to
represent the image formation model of I .

In order to achieve phase retrieval with defocus distance pre-
diction, the uncertain defocus distance can be incorporated into
the computational graph as a tunable parameter z to be opti-
mized along with the MLP. The trade-off in determining the
optimal solution of NFTPM is to ensure the accuracy of the

Fig. 1. (a) Schematic diagram of our proposed NFTPM method.
(b) The physics prior (forward image formation model) of NFTPM.
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predicted defocus distance while minimizing the error between
the generated intensity image and the measurement. Given a
captured intensity I, the spatial coordinates R � frigM×N−1

i�0

are fed into ΦW to obtain the phase, which is then processed
through the physical model Hfϕ, zg to generate intensity Ĩ for
comparison with I using the mean square error (MSE) loss
function. The above operations can be abstracted into an opti-
mization problem

W†, z† � arg min
W, z

X
r∈R

���HfΦW�R�, zg − I
���2
2
, (10)

where ΦW†�R� is the retrieved phase, and z† is the predicted
defocus distance. The optimization is executed based on back-
propagation and the gradient descent algorithm [29], and the
specific optimization process is described in Section 7 of
Ref. [30]. It is worth mentioning that the samples are assumed
as pure phase objects in NFTPM, so the phase contrast pro-
vided by a single-shot defocused intensity is sufficient for pre-
cise phase recovery based on the principle of deep image
prior [18,31].

B. Experimental Setup
Neural-field-assisted transport-of-intensity phase microscopy
can be easily implemented on a commercial inverted
bright-field microscope (IX83, Olympus, Japan) assisted by
programmable LED array illumination due to the advantage
of non-interferometric measurements. The LED array provides
quasi-monochromatic illumination with a center wavelength of
525 nm and spectral bandwidth of 20 nm. These LED ele-
ments can be controlled to turn on to form point, circle, or
annulus patterns by a field-programmable gate array (FPGA)
unit (EP4CE10E22C8N, Intel, US). Twelve annularly distrib-
uted LED elements were selected in the array, with the center of
the circle coinciding with the optical axis to provide matched
annular illumination with a maximum illumination NA of 0.4.
We utilized a Bertrand lens, positioned in an eyepiece obser-
vation tube in place of the normal eyepiece, to examine the rear
focal plane of the objective lens. This examination is crucial for
confirming that the circular illumination is centered precisely in
the field of view or that the annular illumination is accurately
inscribed within the objective lens’s pupil. A CMOS camera
(Hamamatsu ORCA-Flash 4.0 C13440) with a resolution of
2048 × 2048 and a pixel size of 6.5 μm was used to record
the intensity information under a detection objective (10×/
0.4 UPLSAPO, Olympus). This study was conducted on a
workstation equipped with an Intel i9-10900K 3.70 GHz CPU
and an NVIDIA GeForce RTX 3090 GPU. The proposed
algorithm was operated by Python 3.7.16 and PyTorch 1.12.1.

3. RESULTS

A. Comparison with TIE, AI-TIE, BlindNet, and GS
Algorithms
To validate the effectiveness of NFTPM in partially coherent
QPI, we conducted simulations to compare the proposed
NFTPM with TIE, AI-TIE, BlindNet [19], and GS algorithms
[4,5] under both coherent illumination and circular illumina-
tion with a coherence parameter (denoted by S, illumination
NA/objective NA) of 0.85. It is noteworthy that AI-TIE here

refers to all deconvolution-based TIE methods, adapted to
coherent (point), partially coherent illuminations and not lim-
ited to annular illumination case. As shown in Figs. 2(a1) and
2(b1), the phase distribution of a HeLa cell (0–1 rad) was used
to simulate an intensity image at a defocus distance of 5 μm,
defined within a grid of 256×256 pixels (pixel size is 6.5 μm).
The objective NA is 0.4 (20× magnification), and the wave-
length of monochromatic illumination is 550 nm. The compre-
hensive comparison under coherent illumination is detailed
in Figs. 2(a2)–2(a6). Except for BlindNet and NFTPM
(randomly given an initial value as the defocus distance,
e.g., z � 2 μm), other methods were provided with the correct
defocus value (z � 5 μm). It can be observed that all methods
achieve accurate phase recovery due to the exact match of
the physical model and the optical parameters. Specifically,
NFTPM and BlindNet show the ability to correctly predict
the defocus distance, enabling robust QPI even with incor-
rect initialization of the defocus parameter. However, since
BlindNet, TIE, and GS methods ignore the effect of partial co-
herence on the forward image formation process, the physical
priors used by these methods do not accurately apply to the
circular illumination situation, leading to a significant loss of
high-frequency information in the partially coherent QPI
[Figs. 2(b2)–2(b4)].

In contrast, AI-TIE and NFTPM demonstrate better perfor-
mance at S � 0.85 [Figs. 2(b5) and 2(b6)], as they establish a
nonlinear forward model that conforms to partially coherent
illumination by considering illumination distribution in mod-
eling. Besides, we extended the simulated phase range to
0–6 rad (non-weak object) to validate that NFTPM is beyond
weak object approximation. The results in Fig. 2(c) show
that AI-TIE suffers from low-frequency underestimation,
and Fig. 2(e) quantitatively reflects the inaccuracy of the phase
image recovered by AI-TIE, while the result of NFTPM is
consistent with the ground truth. It is worth noting that
NFTPM, with a parameter count of 6 × 104 (MLP) and the
inference time of 3 × 10−4 s, outperforms BlindNet in terms
of speed, which requires a much larger parameter count of
3.0063 × 107 (UNet) and a comparatively longer inference
time of 5.8 × 10−3 s. Furthermore, when the network size is
reduced (fewer channels C per layer), the representational
capacity of 2D UNet (1.786 × 106) is significantly weaker, re-
sulting in the deterioration of phase retrieval in BlindNet
[Fig. 2(d)] and the mismatch profile [Fig. 2(f )], while
NFTPM (6 × 103) remains robust. In addition, as shown in
Fig. S1 in Ref. [30], we also discuss the impact of hyperpara-
meter tuning (K , L,N θ) on NFTPM, elucidating the stability
of NFTPM against the layer changes in the MLP as well as the
significance of radial encoding for the high-frequency charac-
terization (see Section 1 in Ref. [30] for detailed analysis).

B. Verification of QPI at Unknown Defocus
Distances for Different Illuminations
Further simulations are shown to verify that NFTPM can ac-
curately recover the phase without prior knowledge of the de-
focus distance in different partially coherent illuminations. In
Figs. 3(a1)–3(a4), we simulated intensity images at z � 7 μm
under circular illuminations (S � 0.10, 0.40, and 0.75) and
annular NA-matched illumination. We randomly provided
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an incorrect initial value of the defocus distance (10 μm) for the
AI-TIE and NFTPM (the robustness of NFTPM to defocus
distance initialization is verified in Fig. S2 and Section 2 of
Ref. [30]) and evaluated the quality of the retrieved phase using
the root mean square error (RMSE). In Figs. 3(b1)–3(b4), se-
vere artifacts appear in the results of AI-TIE, as the phase trans-
fer function (PTF) is mis-estimated due to the uncorrected z
value. In contrast, NFTPM achieves high-precision phase
retrieval (RMSE < 0.06) in diverse illuminations and accu-
rately predicts the defocus value based on the tunable defocus
parameter z. We also supplement simulations under other spe-
cial illuminations (e.g., asymmetric semicircular illumination)
to display the adaptability of NFTPM to arbitrary source dis-
tribution (see Fig. S3 and Section 3 of Ref. [30] for details). As
depicted in Figs. 3(c1)–3(c4), the RMSE of the phase recovered
by NFTPM progressively decreases with the increasing maxi-
mum illumination angle, demonstrating that NFTPM has
higher imaging accuracy at large illumination angles in the ab-
sence of noise. However, under noisy conditions (Gaussian
noise with a standard deviation of 0.005), as the increase in
the illumination angle reduces the response amplitude of the
PTF [see Figs. S4(a)–S4(c) in Ref. [30]], the sensitivity to noise

instead leads to an escalation in the RMSE, as illustrated in
Figs. 3(d1)–3(d3). Although the annular NA-matched illumi-
nation has a larger illumination angle compared to the circular
illumination with S of 0.4 and 0.75, it has a relatively smaller
RMSE in the presence of noise [Fig. 3(d4)], owing to its im-
proved spatial frequency response that allows for higher robust-
ness to noise [see Figs. S4(e) and S4(f ) in Ref. [30]]. Essentially,
NFTPM can be regarded as an iterative process that simultane-
ously seeks the optimal solutions for defocus distance prediction
and phase retrieval. As shown in Figs. 3(f1)–3(f4), the loss func-
tion exhibits a steady decline along with a converging trend of
defocus distance z (towards 7 μm in all cases), indicating
the parallel optimization of the model parameters and the defo-
cus parameter. Additionally, simulations under annular illumi-
nation for various z (5 μm, 8 μm, 12 μm, and 17 μm) in Fig. 3(g)
validate the stability of NFTPM for defocus distance prediction.

C. QPI Experiments for Live HeLa Cells
In the actual experiment, the long-time imaging of living HeLa
cells [Fig. 4(a)] was performed using the inverted microscope
(IX83) without motor drive adjustment or manual correction.
Under the influence of temperature fluctuation and other

Fig. 2. Comparison of phase (0–1 rad) reconstruction results of a simulated cell sample using NFTPM, BlindNet, TIE, AI-TIE, and GS methods
under different illumination settings and a defocus distance of 5 μm. (a) Results under coherent illumination. (b) Results under partially coherent
illumination (S � 0.85). (c) Comparison between AI-TIE and NFTPM for the large phase (0–6 rad) under partially coherent illumination
(S � 0.85). (d) Comparison between BlindNet and NFTPM after downsizing the network under coherent illumination. (e), (f ) Phase line profiles
corresponding to (c), (d).
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factors that lead to focal drift, NFTPM shows its stability of
phase recovery by correctly predicting the unknown defocus
distance. Figure 4(b) demonstrates the iterative process of pre-
dicting the defocus distance using the NFTPM in Area 1 and
Area 2 at different moments. Taking 1 μm as the initial value,
we recovered the phase of the first frame measurement by
NFTPM with the predicted defocus value of 6.522 μm and
adopted 6.5 μm as the defocus distance for AI-TIE. Since
the defocus distance was fixed at all moments, the retrieved re-
sults of AI-TIE, as depicted in Figs. 4(c1) and 4(c2), gradually
deteriorated over time due to the model mismatch induced by
the time-varying defocus distance. On the contrary, NFTPM
dynamically reconstructed the phase information at different
moments through adaptive defocus parameter correction,
revealing distinct subcellular details such as nuclei and lipid
droplets [Figs. 4(d1) and 4(d2)]. Once NFTPM reconstructs
the phase for the measurement at a given moment using ran-
dom initialization, the QPI of subsequent frames can be accel-
erated by initializing NFTPM with the MLP model and the
predicted z corresponding to the present frame, which utilizes
the correlation between frames in the same FOV. Additionally,
the efficiency of full FOV phase retrieval can be improved

fivefold by utilizing the pre-iterated model of the subregion
to initialize the neural field.

4. DISCUSSION AND CONCLUSION

In summary, we have proposed a new partially coherent QPI
method called NFTPM using the neural field. NFTPM, a
single-shot non-interferometric iterative method, employs a
straightforward MLP model for continuous phase representa-
tion and can accurately predict the defocus distance without
prior knowledge, which eliminates the necessity for precise
motor drive adjustment or manual correction for focus drift.

The rough defocus distance provided by the focusing device
can be manually adjusted to reduce the WOTF error and thus
improve the reconstruction results of AI-TIE. But with the lim-
ited time and manpower required, AI-TIE still cannot be ap-
plied as an effective method for long-term live cell imaging.
In contrast, NFTPM replaces the costly manual operation
with gradient-based tuning, which is based on the backpropa-
gation algorithm in the prior model and the MLP. Therefore,
NFTPM can adaptively obtain reconstruction results without
defocus artifacts.

Fig. 3. Comparison between AI-TIE and NFTPM with an incorrect initial value of the defocus distance in various illuminations. (a) Intensity
images under circular illuminations (S � 0.10, 0.40, and 0.75) and annular NA-matched illumination. (b) The results of AI-TIE. (c) The results of
NFTPM. (d) The results of NFTPM in the presence of noise. (e) Ground truth. (f ) Convergence curves of the defocus value and loss value (in
logarithmic form). (g) The defocus distance prediction process of NFTPM for intensity images simulated at other defocus distances under annular
illumination.
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For circular illumination, high-resolution reconstruction
results from large-angle illumination, providing more high-
frequency information. However, this comes at the expense
of a steadily diminishing PTF response with increasing illu-
mination angle, making noise more detrimental to the phase
reconstruction of NFTPM. In contrast, annular illumination
exhibits strong noise immunity due to a uniformly high re-
sponse in its pass-band over a large illumination angle. To
obtain high-quality QPI results, the defocus distance also
needs to be selected appropriately. The low-frequency re-
sponse of the PTF becomes weak when the defocus distance

is too small, which is not conducive to the recovery of low-
frequency information. Besides, the PTF obtained at excessive
defocus distance has a low response in its pass-band and con-
tains multiple deep dips and zero-crossings, rendering this
part of information susceptible to noise (see Figs. S5 and
S6 in Section 4 of Ref. [30]). Remarkably, NFTPM can also
be applied in pixel-aliasing conditions by additionally intro-
ducing pixel binning as a prior. Its capability of pixel super-
resolution QPI is validated in Fig. S7 (Section 5 of Ref. [30])
by simulating a pixel-aliased defocused intensity of a USAF
resolution test target.

Fig. 4. Experimental observation of HeLa cells via NFTPM under annular NA-matched illumination (see Visualization 1). (a) The full FOV of
the reconstruction result of NFTPM. (b) The defocus distance prediction process. (c1), (c2) The phase retrieved by AI-TIE. (d1), (d2) The phase
retrieved by NFTPM.
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Although our method incorporates partially coherent illumi-
nation into the forward image formation model, other optical
parameters that are beneficial for improving reconstruction
quality are still overlooked. Therefore, in the future, more op-
tical parameters will be considered in the physical model to fur-
ther promote the quality of phase reconstruction. For instance,
it is possible to achieve prediction of unknown illumination by
a grid search in a preset series of coherence parameters.
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