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Physics-informed deep learning for fringe
pattern analysis
Wei Yin1,2,3†, Yuxuan Che1,2,3†, Xinsheng Li1,2,3, Mingyu Li1,2,3, Yan Hu1,2,3,
Shijie Feng1,2,3*, Edmund Y. Lam4*, Qian Chen3* and Chao Zuo1,2,3*

Recently, deep learning has yielded transformative success across optics and photonics, especially in optical metrology.
Deep neural  networks (DNNs) with a fully  convolutional  architecture (e.g.,  U-Net and its derivatives) have been widely
implemented in  an end-to-end manner  to  accomplish various optical  metrology tasks,  such as fringe denoising,  phase
unwrapping, and fringe analysis. However, the task of training a DNN to accurately identify an image-to-image transform
from massive input and output data pairs seems at  best naïve, as the physical  laws governing the image formation or
other domain expertise pertaining to the measurement have not yet been fully exploited in current deep learning practice.
To this end, we introduce a physics-informed deep learning method for fringe pattern analysis (PI-FPA) to overcome this
limit by integrating a lightweight DNN with a learning-enhanced Fourier transform profilometry (LeFTP) module. By para-
meterizing conventional phase retrieval methods, the LeFTP module embeds the prior knowledge in the network struc-
ture and the loss function to directly provide reliable phase results for new types of samples, while circumventing the re-
quirement of collecting a large amount of high-quality data in supervised learning methods. Guided by the initial phase
from LeFTP, the phase recovery ability of the lightweight DNN is enhanced to further improve the phase accuracy at a
low computational cost compared with existing end-to-end networks. Experimental results demonstrate that PI-FPA en-
ables  more  accurate  and  computationally  efficient  single-shot  phase  retrieval,  exhibiting  its  excellent  generalization  to
various unseen objects during training. The proposed PI-FPA presents that challenging issues in optical metrology can
be potentially  overcome  through  the  synergy  of  physics-priors-based  traditional  tools  and  data-driven  learning  ap-
proaches, opening new avenues to achieve fast and accurate single-shot 3D imaging.
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 Introduction
Optical metrology, as a general-purpose metrology tech-
nique that uses light as information carriers for non-con-
tact  and  non-destructive  measurement1,  is  fundamental
to manufacturing,  basic  research,  and  engineering  ap-

plications.  With  the  invention  of  the  laser2 and  charge-
coupled  device  (CCD)3, many  optical  metrology  meth-
ods  and  instruments  are  employed  in  state-of-the-art
manufacturing  processes,  precision  positioning,  and
quality  assessment  because  of  their  advantages  in  terms 
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of accuracy, sensitivity, repeatability, and speed. In optic-
al  metrology,  based  on  physical  models  of  the  image
formation,  the  observed  measurements  (e.g.,  deformed
fringe/speckle images)  can  be  transformed  into  the  de-
sired physical  properties  of  the  objects  (the  profile,  dis-
tance, strain,  etc.).  For many optical  measurement tech-
niques  such  as  interferometry4,  digital  holography5,  and
fringe projection profilometry (FPP)6,7, the accuracy and
efficiency of phase retrieval from the recorded fringe im-
ages  are  essential  to  reconstruct  various  underlying
quantities  dynamically.  The  most  efficient  method  for
phase  measurement  is  recovering the  phase  distribution
from a single fringe image, but as a typical case in optical
metrology, it is an ill-posed inverse problem. The spatial
phase-demodulation (SPD) methods  can achieve  single-
frame fringe  analysis  by  imposing  some  prior  assump-
tions  on  the  recovered  phase  (spatially  smooth,  limited
spectral extension, piecewise constant, etc.)8−10, but at the
cost  of  accuracy and resolution.  Since optical  metrology
experiments are  generally  carried  out  in  highly  custom-
ized systems and stringent environments,  phase-shifting
(PS) methods  can  provide  a  deterministic  and  straight-
forward solution to the phase retrieval problem by addi-
tionally capturing multiple fringe patterns11. PS methods
have obvious advantages in terms of speed, accuracy, and
repeatability, which have brought up many high-end op-
tical  metrology  instruments.  However,  when  the  optical
system  is  under  harsh  measurement  conditions  or  the
state of the object changes dynamically, PS methods will
be  severely  limited  and  cannot  provide  accurate  phase
recovery results for dynamic measurements.  Despite ex-
tensive research efforts for decades, how to achieve phase
measurement  with  the  highest  possible  accuracy  from
the  minimum  number  (preferably  single  shot)  of  fringe
patterns  remains  one  of  the  most  challenging  problems
in optical metrology.

With the explosive growth of available data and com-
puting resources,  deep learning,  as  a  “data-driven”  ma-
chine learning  technique,  has  achieved  impressive  suc-
cess  in  numerous  fields,  such  as  computer  vision  and
computational  imaging12. Deep  learning  pervades  al-
most  all  aspects  of  optical  metrology13,  and  provides
solutions  to  many  challenging  problems,  such  as  fringe
denoising14,15,  fringe  analysis16,  and  digital  holographic
reconstruction17−19.  Feng  et  al.16 proposed a  deep  learn-
ing method for fringe pattern analysis that establishes an
inverse mapping between single-frame fringe and the la-
bel phase obtained using 12-step PS method. The trained

network can  directly  estimate  the  sine  and  cosine  com-
ponents of  fringes,  enabling  single-shot  phase  recon-
struction with  higher  accuracy  than  SPD  methods.  Re-
cently,  phase  retrieval  methods  based  on  deep  learning
have  been  applied  to  ultrafast  3D  imaging  (speed  up  to
20  kHz)20,  phase  measuring  deflectometry21,  and  single-
frame  absolute  3D  measurement22 by  adopting  diverse
deep neural networks (DNNs) with a fully convolutional
architecture23,24 or combining the predictions of multiple
networks with ensemble learning25. However, these deep
learning approaches focus mainly on training a DNN to
accurately  identify  an  image-to-image  transform  from
massive input and output data pairs  of  training datasets
without considering the physical laws governing the im-
age  formation  or  other  domain  expertise  pertaining  to
the  measurement.  Consequently,  the  performance  of
deep  learning  approaches  in  solving  complex  physical
problems relies heavily on the underlying statistical char-
acteristics within  the  dataset.  To  improve  the  perform-
ance of the network under real experimental conditions,
it  is  necessary  to  pay  a  high  price  for  collecting  a  large
amount  of  high-quality  data.  In  addition,  due  to  the
highly  customized  nature  of  optical  metrology  systems,
networks  trained  on  one  system  may  not  be  directly
transferable to another system of the same type. Once the
new  input  is  different  even  slightly  from  the  training
data, data-driven  DNNs  may  exhibit  a  poor  generaliza-
tion under diverse measurement conditions, and cannot
ensure the  interpretability  and  traceability  of  their  out-
put  results.  On the contrary,  based on accurate  physical
models of the image formation and its inverse solutions,
traditional  SPD  methods  can  achieve  reliable  phase
measurements  for  different  types  of  samples26,  but  their
measurement precision is limited. If the forward physic-
al models of the image formation or traditional solvers of
the inverse problem are incorporated into the DNN, it is
expected  to  enhance  the  performance  of  deep  learning
methods  while  utilizing  fewer  network  parameters.  Goy
et al.27 proposed a physics-informed deep learning meth-
od for  phase  retrieval  at  low  photon  counts  that  lever-
ages physical  priors  to  convert  the  raw  intensity  meas-
urement with noise into an initial estimate of the object,
thereby significantly  improving  the  phase  reconstruc-
tion  accuracy  by  using  deep  learning.  Wang  et  al.28

demonstrated an  unsupervised  single-beam  phase  ima-
ging  network  to  reconstruct  the  phase  of  the  measured
diffraction pattern  by  integrating  a  numerically  propag-
ated  diffraction  model.  Saba  et  al.29 proposed  a  physics-
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informed neural  network  for  tomographic  reconstruc-
tions of biological samples, which minimizes the physic-
al  loss  based on the Helmholtz  equation,  accurately and
quickly  retrieving  the  refractive  index  distribution  from
the scattered fields of the sample collected by different il-
lumination directions.

For  the  limited  ability  of  fringe  analysis  networks
without  physics  priors,  we  present  a  physics-informed
deep  learning  method  for  fringe  pattern  analysis  (PI-
FPA). A  learning-enhanced  Fourier  transform  profilo-
metry (LeFTP) module with the prior knowledge of SPD
methods is embedded in the DNN to directly provide ac-
curate  and  reliable  phase  recovery  results  for  new  types
of samples, while circumventing the requirement of col-
lecting a large amount of high-quality data in supervised
learning methods. The phase results are then refined us-
ing  a  lightweight  DNN to  further  improve  the  accuracy
and computational  efficiency  of  single-shot  phase  re-
trieval.  Experimental  results  show that the proposed PI-
FPA exhibits  superior  single-shot  fringe  analysis  per-
formance in speed, accuracy, repeatability, and generaliz-
ation to various unseen objects during training.

 Principle

 Phase retrieval from fringe images

I(x, y)

Phase retrieval from fringe images is a fundamental task
and  a  representative  case  among  many  applications  of
deep  learning  in  optical  metrology.  The  fringe  image

 is expressed as30,31
 

I(x, y) = A(x, y) + B(x, y)cos[ϕ(x, y)] , (1)

A(x, y) B(x, y)
ϕ(x, y)

ϕ(x, y)
I(x, y)

A(x, y) B(x, y)

where  and  are  the  background  intensity
and the fringe amplitude, and  is  the phase of the
tested object. Retrieving the desired  from only one
fringe image  is an ill-posed inverse problem due to
two unknown parts  and . In FPP, PS meth-
ods11 transform  the  original  ill-posed  problem  into  a
well-posed and solvable one by projecting a set of PS pat-
terns to obtain additional observations of the target object: 

In(x, y) = A(x, y) + B(x, y)cos[ϕ(x, y)− 2πn/N] , (2)
 

ϕ(x, y) = arctan

∑N−1

n=0
In(x, y)sin(2πn/N)∑N−1

n=0
In(x, y)cos(2πn/N)

, (3)

In(x, y) N ϕ(x, y)where  represents -step PS images,  can be
obtained by the least-squares algorithm. However, when
the measured object is under harsh measurement condi-
tions, the relative motion between the object and PS pat-

I(x, y)

terns will  introduce non-negligible  errors  into phase re-
trieval results32,33.  Unlike PS methods, SPD methods can
realize  single-shot  phase  retrieval  using  different  spatial
transform  techniques  (such  as  the  Fourier  transform
(FT)9 and the windowed Fourier  transform10)  under  the
local smoothness assumption. In Fourier transform pro-
filometry  (FTP),  the  Fourier  transform  of  in Eq.
(1) gives 

FI(fx, fy) = FA(fx, fy) + FC(fx, fy) + FC∗(fx, fy) , (4)
 

C(x, y) = 1
2
B(x, y)exp{i2πf0x}exp{ϕ0(x, y)} , (5)

FA FC A(x, y)
C(x, y) ϕ(x, y)

ϕ0(x, y)
2πf0x
FA FC FC∗

FC

where  and  are  the  Fourier  transform  of 
and .  is taken as the sum of two independ-
ent  parts:  the  object  component  and  the  carrier
frequency . Based on the Fourier shift theorem, the
zero order  is separated with ±1 orders  and , so

 can be extracted by a band-pass filter and converted
inversely to the retrieved phase, 

ϕ(x, y) = arctan
Im{C(x, y)}
Re{C(x, y)}

. (6)

However,  when  the  measured  surface  contains  sharp
edges  or  discontinuities,  the  support  of  the  zero  order
and  ±1  orders  will  be  extended  to  cause  the  spectrum
overlapping, precluding  high-accuracy  phase  measure-
ment of complex objects.

I(x, y)

Unlike traditional methods that focus on understand-
ing  the  image  formation  and  solving  inverse  problems,
Feng  et  al.16 utilized  DNNs  to  directly  estimate  the  sine
and  cosine  components  of  for  single-shot  fringe
analysis: 

ϕ(x, y) = arctan
M(x, y)
D(x, y)

= arctan
ρB(x, y)sinϕ(x, y)
ρB(x, y)cosϕ(x, y)

,

(7)
ρ

ρ = 0.5 ρ = N/2
N

where  is  a  constant  that  depends  on  phase  retrieval
methods,  e.g.,  for  FT methods  and  for

-step PS methods. However, the performance of phase
retrieval  networks  relies  heavily  on  a  large  amount  of
high-quality  data.  Once  the  new  input  is  different  from
the  training  data,  the  reliability  of  phase  reconstruction
results output by data-driven DNNs cannot be guaranteed.

 Physics-informed deep learning method for fringe
pattern analysis (PI-FPA)
As  shown  in Fig. 1,  different  from  traditional  physics-
driven  methods  (FT  methods)  and  data-driven  deep
learning approaches  (e.g.,  U-Net  and its  derivatives)  for
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fringe pattern analysis, the proposed PI-FPA mainly con-
tains a  LeFTP  module  with  physics  priors  and  a  light-
weight network.  The  LeFTP  module,  which  parameter-
izes  the  phase  retrieval  process  of  FT  methods,  utilizes
the  learnable  filters  operating  in  the  Fourier  transform
domain to directly output initial phases in the manner of
FTP in Fig. 1(a, b). Physics-driven  LeFTP is  highly  gen-
eralizable to provide reliable phase results for various un-
seen objects during training. The lightweight network re-
fines the  initial  phase  to  further  improve  the  phase  ac-
curacy at a low computational cost,  compared with uni-
versal end-to-end image transform networks (U-Net and
its derivatives).

FA

+1 FC

w1 K1 ×H1 ×W1

Fin

The  schematic  diagram  of  the  proposed  PI-FPA  is
shown in Fig. 2. First, a net head with a simple convolu-
tional structure  is  adopted  to  extract  rich  low-level  fea-
tures of  the input single-frame fringe,  which can reduce
the effect of the zero order  of the fringe after training.
For the LeFTP module in Fig. 2(c), similar to traditional
FT  methods,  the  input  tensor  is  transformed  into  the
Fourier domain  through  Fourier  transform  and  spec-
trum centering. Instead of the simple filtering operation
of  FTP,  two  learnable  filters  with  multiple  channels  are
utilized to adaptively extract the  order  closely re-
lated  to  the  desired  phase.  Specifically,  a  learnable  filter

 with  size is  applied to weaken the zero
order located at the center C1 by weighting each feature
of the input spectrum  pixel by pixel: 

FK1×H×W
1 = wK1×H1×W1

1 ◦ FK1×H×W
in , (8)

◦where  is the  Hadamard  product.  Note  that  the  un-

w2

K2 ×H2 ×W2

filtered high-frequency component is kept to avoid miss-
ing details,  and  the  redundant  negative  Fourier  spec-
trum  is  removed.  Then,  a  series  of  filtering  operations
are  implemented  to  extract  delicately  the  +1  order  in
various  ways  using  another  learnable  filter  with

 size: 

FK2×H×W
2 = wK2×H2×W2

2 ·
∑K1−1

k=0
F k×H×W

1 , (9)

w2 N

F2

w1

where  the  center  of  is  set  as  C2 estimated  by -step
PS. Due to the asymmetry of the spectrum, a large num-
ber of  reliable  and  initial  phases  can  be  recovered  in-
versely  from  the  filtered  spectrum  according  to Eq.
(6). Further, to optimize the phase retrieval performance
of LeFTP, a priors-based initialization strategy for the fil-
ter  weights  is  adopted  to  facilitate  its  efficient  learning
and avoid anchoring in local minima during the training
phase  by  following  background-normalized  Fourier
transform  profilometry  (BNFTP)34.  The  filter  is ini-
tialized  as  an  inverse  Hanning  window  for  filtering  the
zero-order  component  of  the  input  spectrum  centered
on C1: 

winit
1 (k, fx, fy) = 1− cos

2πfx
W1

. (10)

w2

In addition, the +1 order of the spectrum centered on
C2 is strengthened using another Hanning filter : 

winit
2 (k, fx, fy) = cos

2πfx
H2

cos
2πfy
W2

. (11)

At present, mainstream fringe analysis approaches us-
ing deep learning exploit end-to-end fully convolutional
networks in a naïve manner to build an image-to-image

 

Physics-driven method

Fourier transform profilometry

(high generalization, low accuracy)

Physics-informed deep learning Data-driven deep learning

U-Net and its derivatives

(low generalization, high accuracy)

Physics-informed fringe pattern analysis

(high generalization, high accuracy)

2D FFT

2D IFFT

Band-pass

filtering
Lightweight 

network 

LeFTP

Output phase Ground truth

Initial phase

Filtered spectrum

Frequency spectrum Input fringeInput fringe

Output phase

Physics priors

Output phase Ground truth

Input fringe

Loss Loss

Loss U-Net

a b c

Fig. 1 | Diagrams of the physics-driven method, physics-informed deep learning approach, and data-driven deep learning approach for
fringe pattern analysis.
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inverse mapping between single-frame fringe and the la-
bel  phase  using massive  network parameters.  Thanks  to
robust  phase  estimation  of  LeFTP,  it  not  only  helps  PI-
FPA to circumvent the requirement of collecting a large
amount  of  high-quality  data  in  supervised  learning
methods, but  also  relieves  the  burden  of  phase  refine-
ment  for  lightweight  DNNs.  The  lightweight  network,
consisting of the context path and the spatial path inspired
by  BiSeNet35,36 in Fig. 2(a) (see Supplementary  informa-
tion for  detailed analysis),  is  utilized to  further  improve
the phase  accuracy  at  a  low  computational  cost  com-
pared with  universal  end-to-end  image  transform  net-
works (U-Net and its derivatives). Instead of configuring
more channels for higher-level layers as U-Net, the con-
text  path  aims  at  collecting  the  fringe  and  initial  phase
features with  a  large  receptive  field  through  fast  down-
sampling  and  encoding  global  context  information  to
guide  the  refined  high-level  features  for  learning,  while
the  spatial  path  captures  spatial  information  encoding
rich detail information and outputs low-level features. In
the encoder  part  of  the  context  path,  a  fast  down-
sampling  strategy  with  several  ConvX  blocks  and  the
Short-Term Dense Concatenate (STDC) module is  used
to extract the feature information with scalable receptive
field and multi-scale  information.  In the decoder phase,
the  attention-based  feature  refinement  (AFR)  module

M(x, y) D(x, y)

and the fast  upsampling operation based on bilinear in-
terpolation are utilized to improve the feature resolution
progressively. In the spatial path, its encoder part shares
the same parameters with the context path, and captures
the spatial  information  encoding  rich  detailed  informa-
tion  and  outputs  low-level  features.  The  features  from
the context path and the spatial path are concatenated by
Feature Fusion  module  (FFM),  and  upsampled  to  out-
put  final  phases  using the predicted  and 
in Eq.  (7).  The  objective  of  PI-FPA  is  to  minimize  the
joint loss of the phase and its Fourier domain: 

Loss = Lossphase + LossFourier , (12)
 

Lossphase =
α1|Y− YGT|2 + α2|N · YLeFTP − YGT|2

HW
, (13)

 

LossFourier =
β1|FY −FYGT |+ β2|N · FYLeFTP −FYGT |

HW
,

(14)

YGT = (MGT,DGT)

N Y = (M,D)
YLeFTP = (MLeFTP,DLeFTP)

FY FYGT FYLeFTP

Y YGT YLeFTP

where  is the ground truth obtained us-
ing -step  PS,  is  the  network’s  output,

 is  the  LeFTP  module’s  output,
and , ,  and  are  the  2D  Discrete  Fourier
Transform of , , and .

 Experiments
In  order  to  verify  the  proposed  PI-FPA  under  the

 

Fourier spectrum Filtered spectrum Initial phases
Filter1

2D FFT

Learning-enhanced Fourier transform profilometry (LeFTP) module

2D IFFTC1 C2

Input fringe

Lightweight network

ConvX

Conv2d

ReLU

Res-block

ConvX

STDC1

STDC2

STDC3

AFR

AFR

1/2

1/4

1/8

1/16 1/16

1/32

FFM

Input

1/8

Upsampling

1/4

1/2

Res-block

Conv2d

ReLU

Conv2d

Net tailNet head

Output phase

Context path

Spatial path

Upsampling

Upsampling

Upsampling

Conv2d

C1 C2

Filtered spectrum
Filter2

fy

fx

k
1=ω1in 2=ω2· ∑1

y
k

x

(b) Net head (c) LeFTP (b) Net tail

a

b

c

Fig. 2 | Overview of the proposed PI-FPA. (a) PI-FPA including a LeFTP module and a lightweight network. (b) Net head and Net tail. (c) The

phase retrieval process of the LeFTP module.
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scenario  of  FPP,  we  built  a  multi-view  structured  light
system  that  consisted  of  a  projector  (LightCrafter
4500Pro,  Texas  Instruments)  and  three  cameras
(acA640-750um, Basler)  (see  Supplementary  informa-
tion  for  detailed  analysis).  To  collect  fringe  data  for
training,  the  projector  projects  three  sets  of  PS  patterns
with  different  periods  (including  1,  8,  and  64)  onto  the
test  objects.  The  captured  64-period  fringe  image  is  the
input  of  PI-FPA,  and the  label  phase  is  obtained by  12-
step PS.  In  the  experiment,  we  collected  the  dataset  in-
cluding 1200 image pairs, which are divided into 800 im-
age pairs for training, 200 image pairs for validation, and
200 image pairs for testing. The proposed PI-FPA is im-
plemented  using  Pytorch  framework  (Facebook)  and  is
computed on an NVIDIA GeForce RTX2080Ti graphics
card.  The  composite  loss  function  consists  of  mean
square  error  (MSE)  and  mean  absolute  error  (MAE)  in
Eq. (12). The optimizer is Adam, and the training epoch
is set as 300.

First,  a  David  plaster  was  measured  to  reveal  single-
shot phase retrieval process of PI-FPA, and FTP, LeFTP,
Net  head  +  LeFTP,  and  U-Net  were  implemented  for
comparison.  In Fig. 3(a, b),  LeFTP  makes  use  of  two
learnable filters operating in the Fourier domain and re-

duces the MAE of phase errors by about 18% compared
with FTP.  By  visualizing  the  filter  weights,  it  demon-
strates that  LeFTP  facilitates  adaptive  spectrum  extrac-
tion through learning-enhanced filtering, which provides
an interpretable guide for parameter optimization of FTP
to  improve  the  phase  accuracy.  In  addition,  due  to  the
removal of redundant negative Fourier spectra in LeFTP,
the left  half  of  the filter  weights  is  the same as its  initial
state,  which is  not  updated during network training.  To
further speed up the LeFTP module, it is optional to cut
down the size of two learnable filters in half to reduce the
total parameters  of  the  network  and  improve  the  infer-
ence speed of the network. Further, the Net head in Fig.
3(c),  taken  as  the  filtering  operation  in  image  pre-pro-
cessing, is embedded in the front of LeFTP to extract rich
low-level  fringe  features  for  removing  the  zero  order,
further reducing the phase errors by about 40%. It proves
that  LeFTP  is  plug-and-play  to  significantly  boost  the
performance of single-frame fringe pattern analysis.

Different from these methods above,  U-Net automat-
ically  exploits  massive  low-level  and  high-level  features
to optimize the phase accuracy as shown in Fig. 3(d), but
at  the  cost  of  computational  overhead.  Specifically,
U-Net  needs 3.5  GB of  GPU memory to process  single-
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frame fringe and takes a runtime of 65.02 ms on Nvidia
RTX  2080Ti.  Guided  by  reliable  phase  results  provided
by  Net  head  +  LeFTP,  in Fig. 3(e),  PI-FPA  refines  the
phases  through  a  lightweight  DNN,  which  reduces  the
GPU memory to 1.5 GB and improves the speed to 53.23
FPS while decreasing the MAE by about 20%. The mag-
nified  maps  of  phase  errors  in Fig. 3 indicate  that  the
trained PI-FPA is able to reconstruct high-quality phase
information for local fine details of objects with complex
surfaces.  In  addition,  the  results  of  U-Net  and  PI-FPA
using different amounts of training images are presented
in Fig.  S5 (see  Supplementary  information  for  detailed
analysis). Compared  with  U-Net  with  800  training  im-
age  pairs,  PI-FPA  reduces  the  MAE  of  the  phase  errors
by  about  13%  while  requiring  only  400  training  image
pairs, which demonstrates its good generalization.

To  verify  the  generalization  of  PI-FPA  for  complex
surfaces, we tested an industrial part, and fringe analysis
results using  different  methods  show  that  the  phase  er-

rors are smaller in smooth cylindrical regions but larger
in sharp edges, while PI-FPA brings better phase quality
among  these  methods  as  shown  in Fig. 4(a, b).  Further,
we adopted stereo phase unwrapping37 to achieve single-
shot 3D imaging in Fig. 4(c) (see Supplementary inform-
ation  for  detailed  analysis).  As  the  magnified  regions  in
Fig. 4(d), the screw thread of the workpiece, which is rel-
atively rare in the training dataset, causes significant de-
gradation in the performance of U-Net, precluding high-
precision  reconstruction  of  complex  surfaces.  The  line
profiles in Fig. 4(e) prove that the proposed PI-FPA with
physics-driven  LeFTP  can  successfully  recover  the  fine
profiles of the threads and provide accurate and physic-
ally  consistent  3D  imaging  results  to  approach  the
ground  truth  (GT),  even  though  the  network  has  not
seen such experimental data during the training phase.

To quantitatively  analyze  the 3D imaging accuracy of
PI-FPA, our system was applied to measuring a dynamic
scene at the camera speed of 100 Hz: a ceramic plane and
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a  standard  sphere  moving  along  the Z axis, and  3D  re-
construction results at different time points are shown in
Fig. 5(a).  The  error  distributions  of  the  moving  sphere
are obtained by sphere fitting at T = 0 s, 0.81 s, and 1.62
s,  where  major  measured  errors  are  less  than  100  μm
with the  RMS of  52.198 μm,  42.112 μm,  and 53.295 μm
as  shown  in Fig. 5(b).  Similarly, Fig. 5(c) shows  the
measured RMS of the moving plane is 51.425 μm, 38.922
μm,  and  37.183  μm.  In Fig. 5(d, e),  we  further  perform
temporal precision analysis by collecting long-term data
over a 1.62 s period using 3-step PS, FTP, U-Net, and PI-
FPA. In Table 1, quantitative analysis results of the mov-
ing plane and sphere for different methods show that the
measured  results  obtained  by  PI-FPA  exhibited  higher
3D reconstruction accuracy with a lower temporal stand-
ard deviation (STD) of 43 4.1 μm and 47 5.1 μm.

In Fig. 5(f–i), we  additionally  provide  the  measure-
ment results of the moving plane and sphere at T = 0.81 s
using  different  methods.  Different  from FTP for  single-
shot  phase  retrieval,  PS  methods  can  realize  pixel-by-
pixel phase measurements with higher accuracy for com-
plex  shapes,  but  it  needs  to  project  at  least  three  fringe
patterns to obtain a phase map theoretically. As the most
common and efficient case in N-step PS methods, 3-step
PS  is  implemented  for  comparison.  When  dynamic
scenes are measured, the relative motion between the ob-
ject  and  the  phase-shifting  fringe  patterns  sequentially
projected will  cause motion artifacts  and thus introduce
non-negligible  phase  errors  into  the  phase  map.  As  a
consequence,  there  are  severe  measurement  errors  with
the RMS of 196.101 μm and 179.681 μm in the measure-
ment  results  of  3-step  PS  in Fig. 5(f).  In  addition,  for
real-time 3D measurement based on 3-step PS, the whole
procedure of 3D reconstruction is composed of phase re-
trieval,  stereo  phase  unwrapping,  and  phase-to-height
mapping, which  is  implemented  with  a  graphics  pro-
cessing  unit  (GPU)38 and  several  look-up  tables39 to
speed up the 3D reconstruction. The 3D imaging speed is
determined by the maximum between the image acquisi-
tion  time  and  the  runtime  of  3D  reconstruction.  The

640× 480

×10−3

×10−2

runtime  of  stereo  phase  unwrapping37 and  phase-to-
height mapping for processing the images with the resol-
ution  of  pixels  is  less  than  5  ms  on
RTX2080Ti. Since 3-step PS needs to capture three fringe
images and  its  runtime  of  the  phase  retrieval  is  negli-
gible (5.22  ms) in Table 1, its 3D imaging speed is
limited  to  33.33  FPS.  On  the  contrary,  the  single-frame
fringe analysis  capability  of  FTP  can  significantly  im-
prove the accuracy and repeatability of fast 3D measure-
ment  to  reduce  the  RMS  to  75.417  μm  and  71.715  μm,
while its runtime (2.06  ms) promotes the speed of
3D  measurement  to  100  FPS  in Fig. 5(g).  This  result
proves  that  single-frame  fringe  analysis  methods  are
more suitable for dynamic scene measurement when the
target's movement  speed  is  in  the  same  order  of  mag-
nitude  as  the  3D  imaging  speed.  Then,  in Fig. 5(h),  the
RMS of the measurement error can be further decreased
to 53.361 μm and 60.129 μm thanks to the powerful fea-
ture  extraction  capability  of  U-Net,  but  at  the  cost  of
lower  inference  speed  (65.02  ms),  precluding  real-time
3D measurement.  Finally,  benefiting  from the  proposed
LeFTP module and the lightweight DNN, PI-FPA takes a
runtime of 18.78 ms to achieve fast single-shot phase re-
construction with higher accuracy in Fig. 5(i).  However,
PI-FPA only retrieves the phase of the first in the three-
step  PS  images  and  reduces  the  3D  imaging  speed  to
33.33 FPS. 3D measurement results in Fig. 5 confirm that
PI-FPA, whether measuring the moving plane or sphere,
achieves successfully single-shot 3D shape measurement
with higher accuracy and good repeatability for multiple
moving objects simultaneously.  The whole 3D measure-
ment results can refer to Supplementary Video S1.

Last, to further demonstrate the advantages of PI-FPA,
we applied our single-shot 3D imaging system to 360-de-
gree reconstruction of a workpiece model and non-rigid
dynamic face measurement as  shown in Fig. 6 and Sup-
plementary  Video  S2–S3. Fig. 6(a, b) show  the  captured
fringe images of the rotated workpiece and non-rigid dy-
namic face at different time points and the corresponding
color-coded  3D  reconstruction  results  using  different

 
Table 1 | Quantitative analysis results of the moving plane and sphere for different methods.

 

Method Time (ms)
RMS (μm)

Plane Sphere

3-step PS 5.22×10−3 188±29.8 179±19.9

FTP 2.06×10−2 77±6.8 81±7.4

U-Net 65.02 56±4.9 59±6.6

PI-FPA 18.78 43±4.1 47±5.1
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Fig. 6 | Fast 3D measurement results using different fringe pattern analysis methods. (a) The representative fringe images at different time

points and the corresponding color-coded 3D reconstructions results for the rotated workpiece model using 3-step PS, FTP, U-Net, and PI-FPA.

(b) The representative fringe images at different time points and the corresponding color-coded 3D reconstructions results for non-rigid dynamic

face using 3-step PS, FTP, U-Net,  and PI-FPA. (c)  360-degree 3D reconstruction of  the workpiece model using PI-FPA. (d)  3D measurement

results of non-rigid dynamic face using PI-FPA.

Yin W et al. Opto-Electron Adv  7, 230034 (2024) https://doi.org/10.29026/oea.2024.230034

230034-10

 



methods. For  the  rotated  workpiece,  the  highlighted  re-
gions in Fig. 6(a) show that 3-step PS cannot recover the
fine  shapes  of  smooth  surfaces  due  to  the  phase  errors
introduced  by  motion  artifacts.  For  single-frame  fringe
analysis,  FTP  is  suitable  for  dynamic  3D  measurement,
but yields coarse 3D results with low quality in terms of
accuracy and  resolution  due  to  the  spectrum  overlap-
ping. U-Net can further improve the quality of 3D recon-
struction, but it  cannot reliably retrieve the phase of the
object with metal materials which is relatively rare in the
training dataset, precluding the recovery of fine surfaces.
This experiment demonstrates that the proposed PI-FPA
can be  applied  for  high-quality  and  efficient  3D model-
ing of complex structure parts as shown in Fig. 6(c). Sim-
ilarly,  for  non-rigid  dynamic  face,  there  are  inevitably  a
large  amount  of  ripple-like  measurement  errors  in  3D
results  of  3-step  PS  due  to  motion  artifacts.  And  then,
FTP  is  performed  to  significantly  reduce  measurement
errors, but is unable to recover high-quality local details
of the face.  Due to the smooth and diffuse properties of
faces,  both  PI-FPA  and  U-Net  provide  acceptable  3D
face measurement results. Because of the lack of 3D label
data for the tested face, it cannot identify precisely which
of these  two  results  is  better,  but  there  are  slight  differ-
ences in some local details, such as the left cheek and the
tip of the nose in Fig. 6(b). In the whole measuring pro-
cedure, the reconstructed dynamic face at different time
points  verified  the  reliability  of  PI-FPA  to  perform  fast
3D  shape  measurement  with  high  completeness  as  well
as  see  Supplementary  Video  S3.  These  results  suggest
that PI-FPA is a promising tool for fast 3D measurement
and reverse  modeling  with  high  quality  for  objects  with
complex shapes.

 Conclusions and discussion
In  summary,  we  have  demonstrated  a  physics-informed
deep  learning  method  for  fringe  pattern  analysis  (PI-
FPA) that  is  able  to  achieve  accurate  and  computation-
ally efficient single-shot phase reconstruction and exhib-
its  strong  generalization  capability  to  new  types  of
samples. By introducing the LeFTP module with the pri-
or knowledge  of  traditional  phase  demodulation  meth-
ods, PI-FPA circumvents the requirement of collecting a
large amount of high-quality data, while overcoming the
degradation of reconstruction quality for rare samples or
structures in supervised learning methods. Utilizing reli-
able phase results from LeFTP as the network input, PI-
FPA  strengthens  the  ability  of  the  lightweight  DNN  to

further  improve  the  phase  recovery  accuracy  at  a  low
computational  cost  compared  with  existing  end-to-end
networks.  The effectiveness  of  PI-FPA has  been verified
by  several  experiments  for  measuring  various  types  of
static and dynamic scenes. The single-shot phase retriev-
al results of the David plaster confirmed that PI-FPA can
reconstruct  high-quality  phase  information  for  objects
with complex surfaces, while also achieving an improve-
ment  of  3.46× in  its  network  inference  speed  compared
with  U-Net.  By  adopting  stereo  phase  unwrapping,  PI-
FPA  has  the  capability  of  single-frame  3D  imaging  to
successfully recover the fine profiles of the industrial part
with  the  threads,  exhibiting  its  good  generalization  to
rare samples never seen by the network. Temporal preci-
sion analysis results verified the high accuracy and excel-
lent repeatability of PI-FPA for measuring multiple mov-
ing objects  simultaneously.  Finally,  360-degree  recon-
struction  of  a  workpiece  model  and  non-rigid  dynamic
face  measurement  revealed  the  applicability  of  PI-FPA
for  fast  3D  measurement  with  high  quality  for  objects
with complex  shapes  and  different  materials.  In  the  fu-
ture, the performance of PI-FPA for phase retrieval from
various  types  of  fringe  images  will  be  investigated.  We
wish that  PI-FPA can be  applicable  to  other  fringe  ana-
lysis  applications  in  optical  metrology,  further  pushing
the  limits  of  fringe  pattern  analysis  in  speed,  accuracy,
repeatability, and generalization.
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