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Abstract

Computational microscopy, as a subfield of computational imaging, combines optical
manipulation and image algorithmic reconstruction to recover multi-dimensional
microscopic images or information of micro-objects. In recent years, the revolution in
light-emitting diodes (LEDs), low-cost consumer image sensors, modern digital
computers, and smartphones provide fertile opportunities for the rapid development
of computational microscopy. Consequently, diverse forms of computational
microscopy have been invented, including digital holographic microscopy (DHM),
transport of intensity equation (TIE), differential phase contrast (DPC) microscopy,
lens-free on-chip holography, and Fourier ptychographic microscopy (FPM). These
computational microscopy techniques not only provide high-resolution, label-free,
quantitative phase imaging capability but also decipher new and advanced biomedical
research and industrial applications. Nevertheless, most computational microscopy
techniques are still at an early stage of “proof of concept” or “proof of prototype” (based
on commercially available microscope platforms). Translating those concepts to
stand-alone optical instruments for practical use is an essential step for the promotion
and adoption of computational microscopy by the wider bio-medicine, industry, and
education community. In this paper, we present four smart computational light
microscopes (SCLMs) developed by our laboratory, i.e., smart computational imaging
laboratory (SCILab) of Nanjing University of Science and Technology (NJUST), China.
These microscopes are empowered by advanced computational microscopy
techniques, including digital holography, TIE, DPC, lensless holography, and FPM,
which not only enables multi-modal contrast-enhanced observations for unstained
specimens, but also can recover their three-dimensional profiles quantitatively. We
introduce their basic principles, hardware configurations, reconstruction algorithms,
and software design, quantify their imaging performance, and illustrate their typical
applications for cell analysis, medical diagnosis, and microlens characterization.
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Introduction
The optical microscope is one of the most significant inventions in the history of
humankind that witnessed the fundamental revolution in biomedicine, chemistry, mate-
rial science, electronics, and other various fields of scientific society. During its four
centuries of development, it has evolved from a simple single lens device of van Leeuwen-
hoek’s day into a sophisticated instrument capable of observing micro-scale objects with
high resolution ranging from the scale between molecular machinery (nanometer) and
individual cells (micrometer), and now has become an essential visualization tool in
forefront researches and industrial applications [1].
One of the greatest challenges in light microscopy is “contrast” [Fig. 1]. In conventional

bright field microscopy, image contrast is generated based on scattering and absorbing of
the incident light. However, most biological specimens are inherently weakly absorptive
and scattering, thus are almost transparent in a conventional bright field microscope. A
number of approaches for increasing contrast have been developed, among which stain-
ing and fluorescence are possibly the most far-reaching development since the inception
of the light microscope [Fig. 1]. In the twentieth century, various fluorescence modalities,
e.g., fluorescence microscopy [2, 3], confocal microscopy [4–6], total internal reflection
fluorescence [7, 8], two/multi-photon microscopy [9, 10], and light-sheet microscopy
[11, 12], were developed that allow to detect very small signals and to reveal structural
and functional properties of a specimen with high specificity. In addition, based on the
inherent optical sectioning capability of confocal microscopy and light-sheet microscopy,
the fluorescence specimen can be imaged slice-by-slice to build a three-dimensional (3D)
reconstruction of biomolecules inside the specimen [5, 13]. The advent of new fluores-
cent molecular probes and single-molecule detection schemes opened up the possibility
to observe the behavior of individual biomolecules sequentially without ensemble averag-
ing [14, 15]. The Abbe diffraction limit, thought unbreakable for over one hundred years,

Fig. 1 The motivation and development trend of light microscopy for enhancing “contrast” – from
qualitative to quantitative, from interferometric to non-interferometric
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has been circumvented by ever more inventive far-field super-resolution fluorescence
techniques, including stimulated emission depletion microscopy (STED) [16, 17], (flu-
orescence) photo-activated localization microscopy (PALM) [18, 19], stochastic optical
reconstruction microscopy (STORM) [20, 21], and structured illumination microscopy
(SIM) [22, 23]. Despite the immense success of fluorescence microscopy, this technique
still suffers from several fundamental limitations. First, the exogenous contrast agents
could induce negative effects on cellular functions like cell viability, proliferation, differen-
tiation capacity. In addition, the photobleaching and phototoxicity of fluorescent agents
prevent long-term observation of live cells [24]. Finally, fluorescence techniques are ill-
suited for imaging non-fluorescent specimens or visualizing cellular components that
cannot be fluorescently tagged (such as small intracellular lipids).
An alternative contrast mechanism is to exploit phase (rather than amplitude) changes

in the incident light [Fig. 1]. In the 1930s, Zernike developed phase contrast microscopy
(PCM), in which the image contrast is produced by shifting the relative phase between the
unperturbed background light and the scattered light by a quarter of a wavelength [25].
PCM represents a major advance in endogenous (intrinsic) contrast imaging, as it signif-
icantly improves the contrast of transparent biological cells and tissues without staining
or tagging [26–28]. An alternative to PCM is differential interference contrast (DIC)
invented by Nomarski, which is based on the principle of polarization beam-splitting and
shear interferometry [29]. It records the phase contrast proportional to the phase gradient
of the specimen along the shear direction, giving the appearance of an illuminated relief
map highlighting the optical density variation of a specimen [30–32]. Nowadays, PCM
and DIC have developed into standard microscopic techniques for imaging unstained
biological specimens with exceptional ability to reveal cell boundaries and subcellular
organelles of unstained biological specimens that were nearly invisible before. However,
the resultant phase-contrast image is an intensity distribution, in which the phase infor-
mation is coupled nonlinearly, and the associated optical thickness, dry mass density, and
refractive index (RI) of the specimen cannot be retrieved quantitatively.
“Computational light microscopy” is a new terminology that emerged in the past

decade. It can be considered as a branch of “computational imaging” or understood as
an extension and application of “computational imaging” technology in the field of light
microscopy [33, 34]. Unlike conventional microscopy, in which an image is formed based
on direct point-to-point intensity sampling, computational light microscopy provides a
new way to overcome many physical limitations of microscopic imaging systems by indi-
rect image reconstruction based on an ingenious integration of optical manipulation and
image processing. Although the term terminology has not been around for long, the idea
of “computational imaging” has been permeating the field of light microscopy for several
decades, which arguably developed in parallel with “quantitative phase imaging” (QPI)
techniques [35–38]. It is not difficult to understand because the essence of computational
imaging is to characterize the optical field mathematically and then manipulate it digi-
tally, while “phase” is one of the most important components of an optical field (strictly
speaking, the monochromatic coherent optical field) which cannot be accessed directly.
The advent of computational light microscopy could be attributed to two revolutionary

inventions: first, the invention of laser marked the first time that such highly controlled
light became available as a physical medium in optical interferometry and holography
to measure the tiny optical path difference induced by the specimens, opening up new
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possibilities for phasemeasurement [39]. Second, the invention of charged coupled device
(CCD) cameras represented another important milestone: the compatibility of light with
electricity, making computational storage, access, analysis, and transmission of captured
data possible [40, 41]. Computer-based digital signal processing can be combined to auto-
mate the quantitative phase determination, eliminating the inconvenience associated with
the manual, labor-intensive, time-consuming evaluation of the fringe patterns. In such
a context, digital holographic microscopy (DHM) has emerged [42–45], which is essen-
tially a digitalized version of optical holography applied to the field of light microscopy.
By superimposing an additional coherent reference beam with the original object beam,
the invisible phase information can be encoded into the fringe pattern, which is recorded
as a digital image by a camera [46]. Fringe analysis, numerical propagation, and phase
unwrapping algorithms are then performed to demodulate the quantitative phase infor-
mation of the specimen [47–49]. Due to its unique advantages and flexibilities of digital
recording and numerical reconstruction, DHM (including its variants) has made remark-
able progress in the past two decades and now has become one of the most classic and
well-established computational light microscopies and QPI approaches [46, 50–54].
In the early 21st century, computational light microscopy has developed very rapidly

and made fruitful achievements, which closely followed the exponential growth in the
power of digital computers with image processing capabilities. Various wavefront sensing
and phase retrieval algorithms were introduced to the field of computational microscopy,
leading to a series of non-interferometric QPI approaches [55–61]. They can be divided
into three categories: wavefront sensing, iterative methods and deterministic methods.
Wavefront sensing is a major branch of non-interferometric phase measurement tech-
niques, such as Shack-Hartmann wavefront sensor [55, 62], pyramid wavefront sensor
[56, 63, 64], and model-based wavefront sensor [58, 65]. They reconstructed the wave-
front (phase) distribution based on the principle that the integrated gradient of the
wavefront across the light-field modulator is proportional to the displacement of the cen-
troid relative to the reference regular spacing spot array (ideal aberration-free case). The
iterative methods often consider phase retrieval as an optimization problem. Gerchberg-
Saxton (GS) is the most well-known iterative phase retrieval algorithms in which the
phase distribution within an object is found that is consistent with both an intensity image
of it and with its far-field diffraction pattern [66, 67]. Ptychography is another iterative
phase retrieval approach, which adopts a limited-size illumination probe to move sequen-
tially across an extended object, collecting the coherent diffraction patterns [68, 69]. With
sufficient data redundancy, both methods reconstruct the wavefront information (includ-
ing amplitude and phase) of the sample iteratively by alternating projection. In contrast to
iterative methods, the deterministic phase retrieval method uses propagation to recover
quantitative phase directly, in a non-iterative manner. Transport-of-intensity equation
(TIE) is arguably the first phase retrieval technique proposed following this idea. It allows
quantitative phase reconstruction from a series of intensity measurements taken at differ-
ent propagation distances [70, 71]. Such data- or computation-intensive algorithms can
be efficiently managed for processing in real-time by existing computermodernmulticore
and Graphic Processing Unit (GPU) processors. In particular, TIE has been increas-
ingly adopted as a promising QPI tool due to its unique advantages over interferometric
and iterative phase retrieval techniques: it is non-interferometric, non-iterative, phase-
unwrapping-free, easy to implement, and more importantly, compatible with the built-in
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Köhler illumination of a conventional bright field microscope [59, 72]. During the same
period, researchers engaged in interferometric QPI were increasingly aware of the impor-
tance of using low coherence illumination for improving the resolution and image quality,
making considerable efforts to reduce the dependence of illumination coherence, as rep-
resented by spatial light interference microscopy (SLIM) [73, 74], white-light diffraction
phase microscopy (wDPM) [75, 76], quadriwave lateral shearing interferometry (QWLSI)
[77, 78], and τ interferometry [79].
More recently, a further remarkable extension of computational light microscopy was

achieved by the applications of programmable light sources, e.g., wavelength-tunable
lasers [80] and light-emitting diode (LED) array [81] and tunable optical elements [e.g.,
electrically tunable lens (ETL) [82], liquid crystal display (LCD) [83], and digital mir-
ror device (DMD) [84]], complementing the digital processing with a matching optical
modulation capability. Such devices not only provide additional flexibilities of active illu-
mination and aperture control to realize multi-modal microscopy but result in a bunch
of new computational light microscopy approaches. Differential phase contrast (DPC)
microscopy is an alternative non-interferometric QPI approach based on asymmetric
illumination [85, 86]. It recovers high-resolution quantitative phase from intensity dif-
ferences captured with different illumination patterns created by programmable an LED
array. Fourier ptychographic microscopy (FPM) is a computational microscopy technique
for high space-bandwidth product [SBP, both high-resolution and large field-of-view
(FOV)] imaging by combining the advantages of ptychography, synthetic aperture, and
iterative phase retrieval [60, 87–89]. In FPM, the specimen is successively illuminated
by plane waves from different angles with a programmable LED array, and the cor-
responding low-resolution intensity images are synthesized in the Fourier domain to
reconstruct a high-resolution wide-field complex (both amplitude and phase) image.
Light field microscopy is a motion-free single-shot 3D microscopy technique, which is
achieved by inserting a microlens array in the intermediate image plane just before the
camera sensor, allowing for recording a four-dimensional (4D) light field containing both
the intensity and angular distribution of all rays [90–92]. During the reconstruction phase,
ray-tracing techniques can be used to reconstruct synthetic photographs, estimate depth,
and change focus or viewing perspectives. Programmable aperture microscopy is a multi-
modal microscopy technique by integrating a programmable light modulation device
[e.g., spatial light modulator (SLM) [93, 94] or programmable LCD [92]] into a con-
ventional wide-field microscope. By selectively modulating the light distribution at the
objective aperture plane, numerous imaging modalities, such as bright field imaging, dark
field imaging, DPC imaging, QPI, multi-perspective imaging, and full-resolution light
field imaging to be achieved and switched rapidly, without requiring specialized hardware
and any physically moving parts. Optical diffraction tomographic (ODT) microscopy,
which combines QPI with the computed tomography (CT) technique, is high-resolution
“true 3D” phase imaging technique by recovering the volumetric 3D RI distribution of
a weakly scattering specimen [95, 96]. By rotating the object or changing the illumina-
tion directions, a set of quantitative phase distributions is obtained to synthesize a 3D
tomographic image in the Fourier space with the Fourier slice theorem [97–99] or Wolf ’s
Fourier diffraction theorem [100–102]. Structured illumination microscopy is a super-
resolution microscopy technique based on Moiré effect, i.e., the specimen is excited by
a known spatially structured pattern of light to generate interference patterns contain
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information beyond the diffraction limit [22, 23]. As the illumination pattern with high
spatial frequency is close to the diffraction limit of the imaging system, the spatial infor-
mation encoded by the Moiré fringes increases up to a factor of 2, resulting in up to a
twofold gain in the resolution of the specimen.
In addition, the revolution in low-cost consumer image sensors, modern micro-

processors, and smartphones allowing computational light microscopy imaging sys-
tems to be designed in a miniaturized, lens-free, and cost-effective manner [103–109].
Such low-cost, portable microscopes may offer a promising solution for telemedicine
and point-of-care diagnostics in resource-limited environments. Finally, it has to been
mentioned that computational light microscopy is currently undergoing a fundamen-
tal transition due to the advent and development of artificial intelligence (AI) tech-
nologies, especially deep learning techniques [110, 111]. Deep neural networks can
“learn” to approximate solutions to inverse problems in computational imaging and
microscopy from the captured data with unprecedented performance [112–114]. Within
a few short years, deep-learning-based techniques, as evidenced by the ever-increasing
and respectable number of publications, has been gaining increasing attention and
demonstrating promising performance in various computational microscopy applica-
tions, including DHM [115–117], TIE phase microscopy [118, 119], DPC [120, 121],
lens-free on-chip holography [112, 122], FPM [123–125], light-field microscopy
[126–128], and SIM [129, 130].
To data, computational light microscopy has developed into an interdisciplinary field

of fundamental optics, optical engineering, light microscopy, image processing, and bio-
photonics. With the further emergence and development of new imaging principles
(e.g., quantum correlation imaging [131, 132] and imaging through scattering media
[133–135]), new optical modulation devices (e.g., diffractive optical elements [136, 137],
photonic integrated devices [138, 139], metamaterials [140, 141], metasurfaces
[142–144], and metalenses [145–147]), and new computational mechanisms (e.g., AI
[148, 149], quantum computing [150], and all-optical neural networks [151, 152]), com-
putational light microscopy now is ready to enter an explosive phase of development.
Nevertheless, we have to admit that in this field, these flamboyant concepts are not yet
matched by mature technologies and engineering applications. Computational optical
metrology is not able to (at least not yet) shaken the position of traditional microscopic
imaging techniques, failing to trigger expected technological revolutions. One of themain
reasons for this paradox is that most computational microscopy techniques are still at an
early stage of “proof of concept” or “proof of prototype” (based on commercially avail-
able microscope platform). Translating those concepts to stand-alone optical instruments
for practical use is an essential step for the promotion and adoption of computational
microscopy by the wider bio-medicine, industry, and education community.
Please note that this paper may be somewhat different from others in this field. The

authors of this article come from the Smart Computational Imaging Laboratory (SCILab)
of Nanjing University of Science and Technology (NJUST), China. As the name sug-
gests, our laboratory is devoted to exploring new science and technologies in the field
of computational imaging, especially computational light microscopy. More importantly,
we have also been working on the engineering and instrumentation of related technolo-
gies. Through nearly a decade of efforts, we developed four pioneeringmicroscopes based
on the principle of “computational imaging”, which we call “smart computational light
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microscopes (SCLMs)”. These SCLMs are empowered by advanced computational
microscopy techniques, including DHM, TIE, DPC, lensless holography, and FPM, which
not only enable multi-modal observation for unstained specimens, but also can recover
their 3D shapes quantitatively. We introduce their basic principles, hardware configu-
rations, reconstruction algorithms, and software design, quantify their imaging perfor-
mance, and illustrate their typical applications. Although some of these instruments are
not yet considered a completely commercial product, we believe that a detailed descrip-
tion of basic principles and technical details of these instruments will certainly bring some
“distinct” knowledge and “unique” information to this field, which may provide useful
insights into the future development of computational light microscopy, especially in the
perspective of engineering applications.
Are you ready for the remaining content? Just a friendly reminder that this article is a bit

long. The remainder content is organized as follows. In “Computational light microscopy:
concept” section, we start with the concepts related to computational microscopy,
illustrating the basic principles of computational imaging, including forward image for-
mationmodel, optical manipulationmechanism, and inverse reconstruction algorithm. In
“Computational light microscopy: paradigms” section, we introduce four SCLMs we have
developed in four paradigms, and their working principles, system configurations, imag-
ing algorithms, and typical applications are presented in detail. Then, some additional
information with respect to the “engineering”, including software, hardware, and optical
designs of SCLMs, are provided in “Computational light microscope: software develop-
ment and hardware implementation” section. Finally, the challenging problems, as well
as future directions of computational light microscopy, are outlined in “Conclusion and
discussion” section.

Computational light microscopy: concept
A typical light microscope consists of three main components: light source, imaging
system, and light detector. In conventional microscope, illumination emitted from the
light source interacts with the specimen, producing absorption, scattering, or fluores-
cence. The resulting light from the object is collected by the optical imaging system and
focused onto the image sensor, which is finally discretely sampled by the image sensor
and recorded as a magnified digital image [Fig. 2]. Limited by the intensity-only detection,
single-view observation, two-dimensional (2D) planar recording, spectral integration,
diffraction limits, optical aberrations, etc., this “point-to-point” direct imaging mecha-
nism generally results in a severe loss of high-dimensional information about the object.
In addition, traditional microscopes are often thought of as an organic combination of
precision optics and mechanics. However, increasingly complex, bulky, and expensive
optical lenses and mechanical systems have created the stereotype of the microscope as a
complex, clunky, difficult-to-maintain behemoth, limiting its use inmany scenarios where
miniaturized and portable devices are required.
Unlike conventional microscopy, computational light microscopy is based on an indi-

rect imaging scheme: “optical modulation, then image acquisition, and finally information
demodulation” [Fig. 2]. It provides a new way to overcome many physical limitations of
traditional light microscopy by ingeniously integrating optical modulation with image
processing. The hardware (illumination, optics, photodetector) and the image process-
ing algorithm are jointly designed and optimized, creating a kind of ‘hybrid optical-digital
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Fig. 2 Comparison of basic imaging concepts of conventional light microscopy and computational light
microscopy

microscopy mechanism’ [Fig. 2]. More specifically, in computational light microscopy,
there are three important aspects that need to be carefully considered:
(1) Forward image formation model
In computational light microscopy, a forward mathematical model describing the

image formation process is established with all its parameters, which is essential for
the subsequent image processing and analysis. The general physical imaging problem is
electromagnetic in its nature. In 1873, Abbe derived the first comprehensive theoreti-
cal description of optical image formation [153]. The image intensity is interpreted by
the interference of the coherent waves, which are formed by emission or diffraction at
the object, and transmitted and transformed by the optical imaging system. Since the
time of Abbe, the complexity of optical systems has increased considerably, and the level
of knowledge about them has improved a great deal. In computational microscopy sys-
tems, the use of laser or LED light sources makes it necessary to consider the questions
of coherence [154, 155]. Imaging at high numerical apertures, or the use of crystal mate-
rials, generates polarization effects [156]. Digital image detection with pixelated image
sensors involves the consideration of sampled images [157, 158]. The physical model
of microscopy imaging aims, whenever possible, to provide a linear system description.
In the most convenient description, the effective light source is described by incoher-
ent source points, and the object is illuminated by an assembly of incoherent plane
waves [159]. Diffraction is often taken into account by the thin object approximation (2D
specimen) [60], weak object approximation [160], slowly-varying approximation [85]. In
Table 1, we summarize the physical analysis model involved in the image formation and
the mathematical model considered for the computational microscopy. These theoretical
descriptions have been developed or adapted from other disciplines of optics.
(2) Optical modulation mechanism
Optical modulation is the core step in computational light microscopy, which is also the

key element that distinguishes computational imaging from traditional digital image pro-
cessing. According to the system component being modulated, optical modulation can
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be further divided into four types, i.e., illumination modulation, imaging system modu-
lation, specimen modulation, and detector modulation. The common methods of optical
modulation are also listed in the bottom row of Table 1.
With these optical modulation approaches in hand, the crux of problems of this stage

lies in how to control and manipulate the flexible parameters in the forward image for-
mation model so that the desired specimen information can be optimally encoded into
and decoded from the optical field with the highest possible precision and accuracy. In
addition, regarding different types of applications, specific imaging indicators, such as
spatial resolution, temporal resolution, FOV, measurement accuracy, and signal-to-noise
ratio (SNR), are also essential factors to be considered. The relation between specific
imaging indicators and optical modulation approaches should be analyzed by controlled
variable method (i.e., change only one adjustable parameter of the illumination, imag-
ing system, and detector), and explore the corresponding influence). And finally, the
optical modulation scheme should be carefully designed so that the key imaging indi-
cators for a specific application are fully optimized. For example, the spatial resolution
(mainly including lateral/axial resolution and de-pixelation) is associated with the illu-
mination wavelength, illumination angle, objective numerical aperture (NA), and the
pixel size of the detector. For phase retrieval, illumination wavelength [164, 182], angle
[85, 86], aperturemodulation [82, 92], sensor defocus [176] can all produce phase contrast
that allows for non-interferometric quantitative phase recovery. Therefore, if one wants
to design a quantitative phase microscopy system for high-resolution single-cell-level
label-free imaging, all these factors should be considered comprehensively to develop an
appropriate optical modulation scheme.
(3) Inverse reconstruction algorithm
Finally, the forward image formation model is inverted (by solving the correspond-

ing inverse problem) to reconstruct the specimen image and, importantly, additional
high dimensional information, such as phase, spectrum, polarization, optical field, coher-
ence, RI, and 3D profile, which cannot be directly acquired using traditional methods.
Such an inverse problem is usually solved by deterministic [70, 71] and iterative methods
[66, 67, 183].

• For inverse problems that can be linearized by invoking certain approximations, they
can be solved deterministically by thematrix inversion, deconvolution, and solving partial
differential equations, etc. For example, the phase retrieval problem under the parax-
ial approximation can be linearized by TIE [70, 71]. It can be conveniently solved by
multigrid or fast-Fourier transform (FFT)/discrete cosine transform (DCT) based Pois-
son solvers [184–186]. Under the 1st Born or Rytvo approximation, the inverse scattering
problems in ODT can also be solved linearly based on Fourier diffraction theorem with
simple Fourier domain filling [96, 98, 100, 187] or 3D deconvolution algorithm [188–190].

• For inverse problems that cannot be linearized (e.g., non-paraxial condition, gener-
ally phase retrieval problems including ptychography and Fourier ptychography), iterative
solutions based on alternating projection and gradient descent are often employed
[60, 68, 191, 192]. In general, the solution obtained by linearizable inverse problems based
on more restrictive assumptions can be used as the initial value for solving the corre-
sponding nonlinear version under more general conditions, allowing faster convergence
and the prospect of extrication from local minimums [193, 194]. Advanced numerical
reconstruction algorithms like compressive sensing and deep learning are well suited



Fan et al. PhotoniX            (2021) 2:19 Page 11 of 64

to solve such nonlinear optimization problems by introducing sparse representation
[195–197] and Low-Rank Regularization [198, 199], or directly establishes a “pseudo non-
linear forward model” from the rawmeasurement to the desired specimen information in
a data-driven manner [200].

Computational light microscopy: paradigms
In this section, we present four SCLMs developed in our lab that not only exemplify
the basic ideas of computational light microscopy presented in the previous section but
also demonstrate their potential impact on the function and performance of microscopic
instruments and the associated applications. They are shown in Fig. 3. These SCLMs are
empowered by advanced computational microscopy techniques, including DHM, TIE,
DPC, FPM, and lensless holography. Through proper optimization of optical modulation
and information processing mechanisms, different imaging functions and performance
suitable for different application scenarios can be achieved. The general design con-
cepts, imaging functions, performance indexes, and intended biomedical applications are
summarized in Fig. 4.
Digital holographic smart computational light microscope (DH-SCLM): DH-SCLM

[Fig. 4(a)] is based on a classic computational microscopy approach — digital hologra-
phy. By replacing the light source of a conventional microscope with a coherent laser
and introducing an additional reference beam path, the invisible phase information can
be modulated into the visible interference fringes, and then quantitatively reconstructed
based on Fourier fringe analysis techniques. In DH-SCLM, by rational design of the opti-
cal system and associated reconstruction algorithms, we have overcome several inherent
problems in holographic imaging, such as speckle noise, unreliability of phase unwrap-
ping, phase aberration, and sensitivity to environmental perturbation. The resulting
system has many unique features for micro-optics metrology and cell biology, including
nanometric optical path length resolution, full-field measurement, real-time QPI, digital

Fig. 3 Four SCLMs developed by our SCILab based on the principle of “computational imaging”. From left to
right are MQP-SCLM, DH-SCLM, MMC-SCLM, and HTL-SCLM
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Fig. 4 Design concepts, imaging functions, performance indexes, and intended biomedical applications of
four SCLMs

refocusing, automatic denoising, and aberration compensation. More details about DH-
SCLM will be presented in “Paradigm 1: digital holographic smart computational light
microscope (DH-SCLM)” section.
Multi-contrast quantitative phase smart computational light microscope (MQP-

SCLM): MQP-SCLM [Fig. 4(b)] is a powerful multi-contrast computational phase micro-
scope by combining illumination modulation (programmable LED illumination) with
imaging optics coding (an ETL). The RGB programmable LED array gives the microscope
additional flexibilities for illumination direction modulation and wavelength tuning. In
addition, the ETL makes fast, telecentric, motion-free focal plane adjustment of the
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microscope system possible. The combination of two tunable optical devices allows
MQP-SCLM to integrate seven different imaging modalities within a single microscopic
system, including bright field, dark field, light field, Rheinberg optical staining, DPC, TIE
quantitative phase microscopy, and FPM. In addition, the use of partially coherent LED
illumination endowsMQP-SCLMwith higher phase imaging resolution (up to incoherent
diffraction limit) and speckle-free image quality, which is extremely valuable for micro-
scopic imaging of unlabeled biological cells and tissues. More details about DH-SCLM
will be presented in “Paradigm 2: multi-contrast quantitative phase smart computational
light microscope (MQP-SCLM)” section.
Miniaturized multi-contrast smart computational light microscope (MMC-SCLM):

MMC-SCLM [Fig. 4(c)] is a miniaturized version of MQP-SCLM by removing the tun-
able lens and tailoring the optical system. The physical length of the optical imaging
system is significantly shrunk by using a customized and non-standardized microscope
objective lens, reducing the size of the entire microscope to 14×16.5 × 20cm3, mak-
ing it compact, portable, and easily be fitted into a cell culture chamber or apply to
telemedicine. In addition, the RGB programmable LED array also endow MMC-SCLM
with the multi-contrast imaging ability of bright field, dark field, Rheinberg optical
staining, DPC quantitative phase microscopy. More details about MMC-SCLM will
be presented in “Paradigm 3: miniaturized multi-contrast smart computational light
microscope (MMC-SCLM)” section.
High-throughput lensless smart computational light microscope (HTL-SCLM): HTL-

SCLM [Fig. 4(d)] is a minimalist microscope by discarding all lenses and other bulky
optical components of a conventional microscopic system. HTL-SCLM is composed of
just a color LED and an image sensor so that it is small enough to fit in the palm of the
hand. Based onmulti-wavelength phase retrieval, this microscope offers high-throughput
quantitative phase images with a pixel-super-resolved half-pitch imaging resolution of
870nm across a wide FOV of 29.8474mm2. Such a powerful and miniaturized imaging
device may offer a cost-effective tool for telemedicine applications or point-of-care diag-
nostics in locations where advanced laboratory facilities are unavailable. More details
about HTL-SCLM will be presented in “Paradigm 4: high-throughput lensless smart
computational light microscope (HTL-SCLM)” section.
We have developed specialized digital imaging microscope software for each sys-

tem to unleash all features of our SCLMs. They enable users to acquire, process, and
analyze images in multiple dimensions and over various timepoints. The optimized
algorithm implementation and non-destructive image handling specially developed for
SCLMs guarantee reproducible results for different application experiments. In addi-
tion, powerful analysis tools are developed to dynamically extract data from imagery for
precise experiment results. The design architecture of the software will be introduced
in “Computational light microscope: software development and hardware implementa-
tion” section. In each paradigm, we will describe the detailed features of the supporting
software.

Paradigm 1: digital holographic smart computational light microscope (DH-SCLM)

Our first microscope is based on a very classical computational microscope approach,
and it is called DH-SCLM. It is constructed as an off-axis interference system in which
removing the zero-order and twin-image is generally trivial [42, 43, 51, 53, 201–204].
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We optimally designed the optical system and associated reconstruction algorithms to
overcome the inherent problems in holographic imaging such as speckle noise, reliability
unwrapping, phase aberration, and sensitivity to environmental perturbation. In addi-
tion, several auxiliary functions, such as digital DIC (generate digital DIC image from
recovered quantitative phase image), 2D quantitative phase map/3D pseudo phase profile
display, morphological measurements, are integrated into the DH-SCLM system to pro-
vide powerful microscopic analysis tools for biological applications. In this subsection,
we present the system structure, software design, and implementing algorithms of DH-
SCLM. Diversified biological application experiments demonstrated that our DH-SCLM
achieves a lateral resolution of 409nm (half-pitch imaging resolution with 40× objective
lens) and an axial resolution of 10nm for quantitative phase measurement.

Optical configuration and software

Figure 5(a) shows the physical diagram of our DH-SCLM system, the hardware configura-
tion of our DH-SCLM is based on an off-axis interferometry system. As shown in Fig. 5(b),
we adopt a laser with a central wavelength of 532nm, a spectral width of 1nm as the coher-
ent illumination source. The emitted light is divided into two beams by the splitter prism
to generate object light wave and reference light wave. In order to separate the twin images
and the zero diffraction order automatically in the Fourier domain, these two waves inter-
fere in the camera plane at an angle of 2.45° apart. Finally, a series of interference fringes
are captured by a camera sensor (The Imaging Source, DMK 23U274, 1600×1200, with
the pixel size of 4.4μm), as shown in Fig. 5(c1). For different imaging applications, our
DH-SCLM is equipped four objective lenses withmagnification of 4×(0.13NA), 10×(0.25
NA), 20×(0.45 NA), and 40×(0.65 NA), providing multi-scale imaging capabilities. The
detailed performance indexes can be found in Fig. 4(a).
The supporting processing software is designed for DH-SCLM to perform numeri-

cal reconstruction of quantitative phase and multidimensional display. We defined four
functional modules containing imaging setting, camera control, view display, and data

Fig. 5 Schematic diagram of our DH-SCLM. (a) The hardware configuration of DH-SCLM. (b) Interference
optical path. (c1) Recorded interference hologram. (c2) Recovered quantitative phase distribution
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post-analysis to implement flexible digital operations. The imaging setting module is used
to determine the algorithm parameters for the phase reconstruction. First, the currently
used objective lens should be selected to update the objective parameters of the phase
reconstruction algorithm. Next, when the specimen cannot be focused by manual adjust-
ment, digital refocusing is performed to obtain a high-precision in-focus image of the
specimen by numerical propagation. In the phase reconstruction process, three phase
unwrapping algorithms, i.e., DCT unwrapping [48], branch cut unwrapping [49], and
quality-guided unwrapping [205], are provided for different observation specimens. In
addition, this module also provides error correction and compensation capabilities. Spec-
trum centering, sub-pixel shift, and principal component analysis (PCA) algorithms, are
flexibly worked to obtain highly robust reconstruction phases. The camera control mod-
ule integrates the software development kit (SDK) for the camera, which allows adjustable
settings of the brightness, contrast, exposure time, gain, and other parameters to meet
the imaging requirements. View display module contains four view windows for present-
ing the results of the software running. We provide digital DIC display, 2D quantitative
phase map, and 3D pseudo phase profile display to present the reconstruction results in
high contrast. Data post-analysis module is designed to highlight or numerically analyze
target regions or cells of interest for observers. On the one hand, the display contrast can
be processed by histogram filtering to highlight the desired information of the specimen.
On the other hand, the quantitative profile measurement can be performed for any cell
to extract its quantitative data, establishing an accurate database for biological analysis.
All implementation algorithms can be executed in real time so that the results will be
presented on the display window without delay.

Principle and algorithms

•Principle of DH-SCLM
DH-SCLM is an off-axis interferometry system in which separating the zero-order and
±1-order spectrums are generally trivial in the Fourier domain and one or the other can
be removed through a bandpass filter. Assuming a reference wave with a relative angular
shift θ , the reference light wave and object light wave interfere with each other, generating
a hologram with the intensity distribution of:

Ih(x, y) = |O|2 + |R|2 + |R|Oexp(−iksinθx) + |R|O∗exp(iksinθx) (1)

where R(x, y) and O(x, y) denote the reference and object waves, respectively, ∗ denotes
the complex conjugation. Taking Fourier transform on the hologram, the influence of the
two phase factors exp(±iksinθx) can be interpreted as the translations of the spatial fre-
quencies associated with the ±1-order spectrums from the center of the Fourier plane to
higher frequencies domain. The spatial frequencies of the 0-order or direct-current-term
(DC-term) are located in the center of the Fourier plane, producing the background dis-
tribution. While the spatial frequencies of the interference terms vary at different carrier
frequencies, which are located symmetrically with respect to the center of the Fourier
plane: −ksinθx for the +1-order image and ksinθx for -1-order image. This suggests
that the +1-order or -1-order spectrum can be extracted from the hologram spectrum
by selecting the appropriate bandpass filter, as shown in Step2 of Fig. 6. By performing
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Fig. 6 Technical roadmap of DH-SCLM

inverse Fourier transform for the extracted subspectrum, the wrapped phase distribution
of the specimen φw(x, y) can be obtained:

φw(x, y) = angle{F−1{F {Ih(x, y)} × H(u, v)}} (2)

where F and F−1 denote the Fourier transform and its inverse transform. The H(u, v)
is the filter function in Fourier domain, which should eliminate all spatial frequencies
except those of the +1-order interference term wanted. At this time, the retrieved phase
distribution φw(x, y) is wrapped to the values ranging between −π and π .
Phase unwrapping must be carried out in order to remove the discontinuities from

their wrapped values and to obtain an estimate of the true continuous phase map. We
achieve three phase unwrapping algorithms in our DH-SCLM, i.e., DCT unwrapping [48],
branch cut unwrapping [49], and quality-guided unwrapping [205], as shown in Step5 of
Fig. 6. They provide different imaging capabilities in algorithm complexity, noise robust-
ness, imaging efficiency, etc. DCT unwrapping is appropriate for dynamic specimens
due to its fewer computational time costs. The quality-guided unwrapping offers signif-
icantly improved imaging accuracy, which allows it to be used for high precision and
high accuracy 3D quantitative phase reconstruction. The branch cut unwrapping method
achieves a balance between imaging accuracy and resolution, thus it is suitable for general
specimens.
After we obtain the quantitative phase of the specimen, it can be post-processed to form

a digital DIC image, which displays the phase gradient of the specimen along an arbitrary
shear direction:

IDIC(x, y) = B
(
1 + cosα

dφ

dx
+ sinα

dφ

dy

)
(3)

hereB is a constant to generate a uniform background, α denotes the shear direction of the
phase gradient. dφ

dx and dφ
dy are phase derivatives along x and y directions. In conventional

DIC microscopes, the shear direction is often difficult to adjust, resulting in limited spec-
imen phase gradient information. In our DH-SCLM, α can be digitally selected, allowing
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the system to be adjusted more flexibly and provide richer visualized information for the
specimen.

• error correction algorithms

Due to the coherent nature of the laser sources, digital holograms of DHM are corrupted
by a mixture of coherent speckle and incoherent noise, which can severely degrade the
reconstruction quality [206–211]. Moreover, DHM is sensitive to mechanical vibrations
and air fluctuations that typically affect any interferometric systems. These challenges
restricted the wide usage of DHM in biological applications. In our DH-SCLM, we
carefully addressed the inherent problems of DHM in speckle noise, system aberration,
defocus error, and susceptibility by targeted compensation and correction algorithms on
a case-by-case basis (which are displayed in Step3 and Step4 of Fig. 6). In the following
presentation of this subsection, the compensation and correction algorithms used in our
DH-SCLM will be described in detail.
In the coherent imaging systems, speckle noise results from the coherent nature of the

light source, which may deteriorate the quality of the images/fringe patterns [212]. In
our DH-SCLM, the speckle noise is suppressed by means of weighted average superposi-
tion processing. Specifically, the captured holograms over a very small time interval are
superimposed and averaged with given weights. And the weights can be adjusted for dif-
ferent imaging speed requirements to optimize the degree of smoothing. In this method,
the resolution of the processed hologram is preserved because any pixel is combined
with the homologous pixels in the acquisition stack. In addition, an effective high-speed
phase reconstruction scheme obtains a single frame reconstructed phase by averaging
each acquired image with the adjacent images, then the final reconstruction rate remains
consistent with the limit-frame rate of the camera.
The system aberrations of DHM generally include off-axis tilt aberrations and quadratic

wavefront distortion, and they are compensated by different numerical approaches in our
DH-SCLM. Off-axis tilt aberration roots in the incorrect selection of +1-order spectrum
center, which introduces a linear phase factor in the virtual image terms. Thus, the spatial
frequencies associated with the ±1-order spectrums are translated from the center of the
Fourier plane to the higher frequencies domain. In our DH-SCLM, the off-axis tilt aber-
ration is corrected by a simple spectrum centering procedure. Its realization begins with
the 2D surface fitting for the extracted +1-order spectrum, whose maximum point coor-
dinates are searched and locked as +1-order spectrum zero frequency. Then, the sub-pixel
displacement of the spectrum is realized bymultiplying the phase shift factor in the spatial
domain, achieving the high accuracy of spectrum center alignment. Quadratic wavefront
distortion is induced by the mismatch of interference optical paths because the objective
lens is involved only in the object light wave, and it results in concentric circular patterns
(introduced by the quadratic phase factor) in the reconstructed phase. PCA algorithm is a
simple and effective numerical phase aberration compensationmethod to correct for both
quadratic wavefront distortion and tilt aberration [213, 214]. It decomposes the phase
map into a set of values of uncorrelated variables called principal components and then
extracts the aberration terms from the first principal component. Finally, the estimated
aberration is removed by subtracting the estimated aberrations from the reconstructed
phase, only leaving the phase of the specimen.
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OurDH-SCLM corrects the defocus error by seeking the precise defocus distance based
on numerical propagation and the Laplace operator. As shown in Step4 of Fig. 6, the com-
plex amplitude distribution of the extracted +1 spectrum is propagated to acquire the
complex field distribution with defocus distance �z. Then, the overall image clarity of
the phase distribution at different defocus distances can be evaluated by the variance of
the edge image extracted by the second-order Laplace operator. In order to locate the
focus plane quickly, we adopt the dichotomy method to speed up the search. The post-
processing digital focusing process is integrated into the software’s defocus correction
module, and only one button is needed to get the precise defocus distance.

Experiments results

• error correction

In order to demonstrate the effectiveness of error correction of our DH-SCLM, we con-
ducted several experiments on different specimens. Figure 7 displays the imaging results
of pollen cells to compare the reconstructed phase without and with correcting off-axis
tilt distortion and quadratic wavefront distortion. The recorded interference hologram
can be seen in Fig. 7(a), and its spectrum is shown in Fig. 7(b). The incorrect center-
ing of the zero frequency usually extracts shifted +1-order spectrum, as shown in the
solid white box in Fig. 7(c). As a result, an extra low-frequency phase is attached in the
phase of the specimen, overwhelming the phase information of the specimen [Fig. 7(d)].
In contrast, our correction method achieves the high-precision spectrum centering so
that all phase information of the specimen is clearly visible in the aberration-corrected
image [Fig. 7(e)]. Three areas of interest are extracted and amplified to compare the
imaging performance without and with aberration correction. From Fig. 7(f1)-(f3) [with-
out aberration correction] and Fig. 7(g1)-(g3) [with aberration correction], the specimen
information is correctly recovered with aberration correction, providing a quantitative
phase distribution that can be used for analysis.
HeLa cells were then imaged as specimens to compare the imaging results without and

with defocus correction to verify the performance of the defocus correction. Figure 8(a)
shows the reconstructed phase without defocus correction, which exhibits the serious
detail loss of the reconstructed phase. The defocus distance obtained from the numerical
propagation was applied for compensation of the defocus error, and the results shown in
Fig. 8(b) can be obtained. The defocus artifacts are effectively suppressed so that detailed
information of the subcellular structure is extracted correctly. We selected two enlarged
areas of interest from Fig. 8(a) and (b), and then enlarged them in Fig. 8(c1), (d1), (e1), and
(f1). It can be seen that in the defocus-uncorrected image, the phase artifacts distort the
contour and internal structure of the specimen. Defocus correction compensates for the
loss of resolution, provides clearer image detail information, and the vesicles and profile
of the cell are clearly distinguished. Also, these reconstructed phases generate the phase
gradient images of the specimen by digital DIC, and they are shown in Fig. 8(c2), (d2),
(e2), and (f2).

• quantitative phase imaging and analysis

We demonstrated the imaging resolution of the DH-SCLM by the experiment on stan-
dard phase resolution targets (QPTTM, Benchmark Technologies Corporation, USA, RI
n=1.52). This target contains seven sub-targets of varying heights (from 50 ∼ 350nm in



Fan et al. PhotoniX            (2021) 2:19 Page 19 of 64

Fig. 7 Comparison of reconstructed phase without and with correcting the off-axis tilt aberration and
quadratic wavefront aberration. (a) Recorded hologram. (b) Spectrum of the hologram. (c) Extracted +1-order
spectrum. (d) Reconstructed phase without correcting the off-axis tilt aberration and quadratic wavefront
aberration. (e) Reconstructed phase with correcting the off-axis tilt aberration and quadratic wavefront
aberration. (f1)-(f3) The selected subregions in (d). (g1)-(g3) The selected subregions in (e)

50nm increments), each of which is a USAF resolution target consisting of several steps
with equal height. In this experiment, the structure with a height of 100nm was imaged
by an objective lens with 10×, 0.25NA, and the reconstructed phase is shown in Fig. 9.
Figure 9(a) shows the interference hologram captured by the camera sensor. The clear
interference fringes can be observed from the magnified hologram shown in Fig. 9(d),
which ensures high accuracy and SNR for the measured phase. According to the NA of
the objective lens and illumination wavelength, the appropriate spectrum bandwidth fil-
ter is automatically selected to recover the quantitative phase of the specimen, and the
result shown in Fig. 9(b) directly appeared on the software interface.
Interferometric holography provides the imaging resolution of the diffraction limit of

the objective lens, corresponding to the half-pitch resolution of 1.064μm (10× objective
lens, 0.25NA). We zoomed in on the high-resolution group in Fig. 9(b) to demonstrate
the highest achievable resolution. It can be seen that our DH-SCLM system recovers the
quantitative phase correctly and reaches its theoretical maximum resolution of Group 8,
element 6 (half-pitch resolution of 1.096μm).We then extracted the phase profile line and
plotted the curve to quantitatively analyze the image resolution. As shown in Fig. 9(f ), all
the unit details of Group 8 are clearly resolved. Furthermore, the reconstructed phase in
Fig. 9(b) can be used to achieve DIC imaging and obtain the phase gradient results of the
specimen, as shown in Fig. 9(c). Compared with traditional DIC imaging, we can flexibly
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Fig. 8 Comparison of reconstructed phase without and with correcting defocus aberration. (a) Reconstructed
phase without correcting defocus aberration. (b) Reconstructed phase with correcting defocus aberration.
(c1), (e1) Selected enlarged regions of interest of (a) [without correcting defocus aberration]. (c2), (e2) Digital
DIC results corresponding to quantitative phase in (c1), (e1) [without correcting defocus aberration]. (d1), (f1)
Selected enlarged regions of interest of (b) [with correcting defocus aberration]. (d2), (f2) Digital DIC results
corresponding to quantitative phase in (d1), (f1) [with correcting defocus aberration]

adjust the direction and degree of the phase gradient to achieve more comprehensive
observation and analysis.
Morphological measurement and analysis is an important approach to early diagnosis

of cancer because cancer cells often have obvious structural andmorphological changes in
the early stage [215–217]. Our DH-SCLM system can achieve high-precision, high-speed
QPI, providing high-resolution quantitative morphological information of cancer cells.
As shown in Fig. 10, the experiments on a static HeLa cell slide and living HeLa cells cul-
tured in vitro were conducted in our DH-SCLM system. We used an objective lens with
20×, 0.4NA to imaging the specimen, and the corresponding highest theoretical half-
pitch resolution is 665nm. As shown in Fig. 10(b), our system restored high-resolution
detail of the HeLa cell correctly, which can also tbe used to generate the high-quality
DIC result [Fig. 10(c)]. The microstructures of cells of Area1 and Area2 were extracted
to analyze their subcellular morphology, as shown in Fig. 10(d1)-(d2), and 10(e1)-(e2).
The complete morphology and subcellular structure of HeLa cells are clearly displayed,
providing abundant data for quantitative research applications. In addition, the quanti-
tative phase distribution can be further shown as a 3D pseudo-color rendering image in
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Fig. 9 Experiment for imaging resolution verification by standard phase resolution targets [Quantitative
Phase Microscopy Target (QPTTM), Benchmark Technologies Corporation, USA]. (a) The captured hologram.
(b) Reconstructed quantitative phase. (c) The phase gradient image generated from reconstructed
quantitative phase by digital DIC method. (d) The enlarged sub-region of interest of the reconstructed
quantitative phase in (a). (e) The enlarged sub-region of interest of the reconstructed quantitative phase in
(b). (f) The quantitative profile of quantitative phase along the red line in (e)

Fig. 10(f ) so that the different phase distributions can be displayed more clearly. Then,
we demonstrated the imaging capability of our DH-SCLM to cell growth in the culture
dish. The experiment was carried out on HeLa cells cultured on Petri dishes in 10% fetal
bovine serum and 90%Dulbecco’s modified eagle medium. Figure 10(g) displays the time-
lapse results of the HeLa cell division process. These high-resolution phase images clearly
reveal the cell morphological changes during different mitosis phases.

Paradigm 2: multi-contrast quantitative phase smart computational light microscope

(MQP-SCLM)

Non-interferometric QPI is a new trend of the phase imaging to overcome the limita-
tion of interferometric QPI approaches, providing the unique advantages of high quality
image, high resolution, high robustness towards variant disturbance, and not needing
phase unwrapping. Among the various non-interferometric QPI methods, the determin-
istic QPI methods often require only a few intensity images to achieve phase retrieval,
which makes them superior for practical label-free imaging applications. We exhibited
a revolutionary multi-contrast non-interferometric quantitative phase microscope con-
taining seven imaging approaches for the first time, which was called MQP-SCLM.
Instead of the traditional illumination source, a programmable LED array source is
employed to flexibly switch the illumination patterns of bright field, dark field, light field,
Reinberg optical staining, DPC, QPI (TIE-based), and FPM in a fixed microscope con-
figuration. All imaging algorithms are integrated with a user interface by corresponding
unified hardware platform and software framework. Furthermore, we step forward the
widely spread biomedical applications with reducing significant expense and complexity
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Fig. 10 Quantitative phase of HeLa (human cervical cancer) cells. (a) A recorded hologram. (b) Quantitative
phase reconstructed by DH-SCLM. (c) Phase gradient images generated from quantitative phase by digital
DIC method. (d1), (e1) The sub-regions of interest of quantitative phase in (b). (d2), (e2) The sub-regions of
interest of phase gradient images in (c). (f) 3D pseudo-color rendering image of the reconstructed
quantitative phase. (g) The time-lapse video of dynamic division of HeLa cells in vitro

of the related optical hardware and explore the potentially possible instrumentation tech-
niques for MQP-SCLM. The investigations of various stained and unstained biological
specimens using different types of objectives are presented in “Experiments” subsec-
tion, and results show the new possibility of widespread adoption of MQP-SCLM in the
morphology study of cellular processes and the biomedical community.

Optical configuration and software

The physical diagram of MQP-SCLM is shown in Fig. 11(a), and Fig. 11(b)-(c) illustrate
the photograph of key parts of the system hardware. Our system is equipped with an elec-
tronic platform whose displacement in all three directions x, y, z can be precisely adjusted
by an external control handle [Fig. 11(b)] or software control. As depicted in Fig. 11(d),
the optical path of MQP-SCLM is a standard 4-f optical system. The existing condenser-
based illumination diagram is replaced with a programmable LED array, which is placed
54mm away from the specimen, and the center of the LED array is aligned with the opti-
cal axis of the microscope. The LED illumination array is a 64×64 pixels commercially
available product with the pixel size of 2mm. Thus, this illumination module can provide
an illumination NA up to 0.78 and sufficient illumination uniformity. The RGB LED array
has central illumination wavelengths of 623nm, 530nm, and 470nm, and the brightness of
a single LED is greater than 2000cd/m2. The programmable LED array is controlled by a
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Fig. 11 Schematic diagram of MQP-SCLM. (a) Physical diagram of MQP-SCLM. (b) External control handle for
precise adjustment of the displacement of the electronic platform in all three x, y, z directions. (c) ETL for
automatic control of defocusing distance. (d) Optical path diagram of the MQP-SCLM

custom-designed field-programmable-gate-array-based (FPGA-based) controller (Altera
EP4CE10E22C8N), providing a high LED illumination pattern refresh rate (>1kHz) and
high display color-scale (8-bit grayscale for RGB channels). High refresh rate refresh fre-
quency can effectively improve the uniformity of the bright field image and eliminate
the image blurring caused by the camera global exposure or the light and dark stripes
caused by the rolling exposure. The objective lens with several different NAs (4×0.1NA,
10×0.25NA, 20×0.4NA, 40×0.65NA, 60×0.8NA) and tube lens with different magnifi-
cations are equipped in MQP-SCLM for most biomedical observation and measurement
applications. Moreover, the objective indicator is used to monitor the state of the objec-
tive, and all system parameters will be matched by the circuit board according to the last
used objective lens. Unlike conventional systems withmechanical defocus adjustment, we
adopt an ETL [as shown in Fig. 11(c)], which can be controlled by a hardware circuit board
to realize the automatic control of defocus distance. It brings faster adjustment speed
and higher focusing accuracy so that defocusing images required by TIE algorithm can
be quickly and stably collected. A complementary metal oxide semiconductor (CMOS)
camera (Basler, MED ace 5.1, 2448×2048, 2.2μm pixel size) placed on top of the micro-
scope is synchronized with the control board for image acquisition, and universal serial
bus (USB) 3.0 is used to transfer data to the computer with the limited frame rate of
75FPS. When the objective is rotated, the FPGA reports the current objective position
to the computer and sets the appropriate system parameters. The FPGA controller also
provides a synchronization mechanism for the LED array and camera. It communicates
with the computer via USB-to-serial and accepts command parameters from the com-
puter, such as the radius of the display aperture, the color, and the position of the pattern.
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Next, it reads the bitmap of the display pattern stored in the on-chip random access mem-
ory (RAM) and then drives the programmable LED array to display the pattern at high
speed. To simplify the microscope interface, we used a USB Hub to combine the USB of
the camera and USB-to-serial into one interface. The bandwidth required for serial com-
munication is extremely small, which does not affect the transmission of camera image
data, ensuring that the camera works at the highest rate.
The supporting software of MQP-SCLM provides the capabilities of smart control,

multi-contrast imaging, and powerful processing and analysis, enabling seven imaging
functions to be implemented through the same software system. Four functional modules
are defined to coordinate to easily control the system, providing users with high-quality
observation images and accurate analysis data. First, the illumination module is used to
flexibly adjust the LED illumination pattern to match different imaging modes. Common
illumination adjustments such as pattern and color adjustments are provided to tailor
the function precisely to the user’s requirements. Also, we defaulted the optimal illumi-
nation pattern for each imaging mode in advance to enable the software to acquire a
high-quality image for observation. In the camera settings module, we redeveloped the
camera’s SDK so that users can easily set the camera exposure time, white balance, gain,
and other parameters. According to the used objective lens and illumination parame-
ters, all camera parameters are also optimally preset in our software to provide superior
images for display and subsequent computational reconstruction. The display view mod-
ule is used to present all direct visualized observation images and post-recovery results.
The multi-window display function is designed to monitor simultaneous multi-contrast
images in a software interface for in-depth analysis of the specimen. In the smart pro-
cessing and analysis module, our MQP-SCLM also provides important information on
specimens interactively or fully automatically. With powerful image processing functions
we can display specimen signals with even greater contrast or SNR. At the same time,
besides size and volume information, the detailed data on cell physiological processes,
can be extracted from the imaging result for quantitative analysis.

Principle and algorithms

•multi-contrast microscopic imaging

Phase contrast approaches, such as dark field imaging [81, 218], Rheinberg imaging [219,
220], DPC imaging [27, 29, 218, 221], which obtain diversified 2D structural information
of the specimen, are established as widely and commonly configured label-free tech-
nique for microscope to visualize transparent specimens. However, all of these methods
require spatially-modulated illuminations by introducing additional physical masks and
optical filters before the condenser lens of the microscope. For example, a spider stop is
inserted into the aperture focal plane of the condenser to create a hollow cone of illumi-
nation with larger NA compared to that of the objective lens, extracting high-resolution
detailed information of the specimen. Computational light microscopy brought a revolu-
tion of the microscope in diversification, flexibility, and convenience of imaging methods.
The active illumination control (LED or LCD) were introduced into the microscope sys-
tem to replace the traditional aperture diaphragm, realizing so-called “computational
illumination” that gains the flexibility to produce sophisticated illumination patterns or
dynamically switchable illumination sources with no physically moving parts [81, 83, 84,
92, 109, 222, 223].
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In a microscopic system, the NA of the objective lens is a very important parameter
because it determines the maximum diffraction angle that the microscope can receive. In
our MQP-SCLM, the illumination patterns corresponding to seven imaging approaches
are accurately set according to the NA of the objective lens. Specifically, the illumination
NA of ith LED can be calculated:

NAi
ill = sin(θi) = sin

⎡
⎢⎣arctan

⎛
⎜⎝
√

|xi�d|2 + ∣∣yi�d
∣∣2

h

⎞
⎟⎠
⎤
⎥⎦ (4)

where �d is the pixel pitch of LED array, xi and yi are location coordinates of LED
units, and h is the distance between the LED array and specimen. And also, the angle of
illumination θi = (θix, θiy) can be defined as θix = arctan (xi�d/h) , θiy = arctan (yi�d/h).
As shown in Fig. 12(a), bright field imaging is the simplest illumination technique, and

the bright field image corresponds to illumination by LEDs that lies within the cone of
angles described by the objective NA, i.e., NAi

ill ≤ NAobj. Bright field imaging collects
the most of directly transmitted light, thus, it is mostly suitable to visualize amplitude-
contrast, e.g., absorptive structures of a specimen. While the dark field method excludes
the unscattered beam from the image, and the dark field image is obtained by illuminating
the specimen from angles beyond the angular acceptance of the objective (NAi

ill > NAobj).
To achieve bright field and dark field imaging, we provide different LED patterns to match
the NA of the objective lens. Besides, the Rheinberg illumination, known as optical stain-
ing with color patterns, can also be implemented by displaying different patterns on the
central cone region (bright field) and the surrounding hollow cone region (dark field)
of LED array simultaneously for more complicated color phase-contrast imaging. As a
classic form of optical staining, Rheinberg illumination can render the normally color-
less specimen with rich color against a contrasting background. Moreover, ZPC can be
realized by displaying a ring-type pattern that matches the annular phase plate in the
back focal plane of the phase contrast objective lens, and a phase-contrast image can be
recorded without using any physical diaphragm.
DPC is a label-free phase contrast imaging based on asymmetric illumination, which

only needs to collect several intensity images, achieving twice the imaging resolution of
coherent imaging [27, 160, 224]. In contrast to DIC based on interferometric imaging,
it provides a flexible, low-cost alternative which only need to replace the light source of
commercial bright field microscopes with the LEDs. Our system realizes DPC imaging
using the same system configuration. By controlling the LED to produce asymmetrical
half-circular illumination patterns, the phase-contrast images of the specimen along the
asymmetry axis are recorded. Then, a simple differential algorithm is used to calculate
the phase gradient distribution of the specimen:

IDPClr (x) = Il(x) − Ir(x)
Il(x) + Ir(x)

(5)

where Il(x) and Ir(x) represent the captured images in the left and right illuminations,
respectively. IDPClr (x) is the phase gradient distribution of the specimen along the left-
right shearing direction. By adjusting the illumination angle of the asymmetric axis, the
phase gradient of the specimen along arbitrary shearing directions can be established.
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Fig. 12 Technical roadmap for MQP-SCLM. (a) Multi-contrast imaging including bright field, dark field,
Rheinberg optical staining, DPC, and ZPC. (b) High-throughput imaging based on FPM. (c) QPI based on TIE

Furthermore, our previously published results have suggested that the optimized asym-
metric annular pattern makes it impossible to enhance the contrast of phase gradient
images [86].

•wide field and high resolution imaging based on FPM

FPM is a recently developed technique that overcomes the physical SBP limit of a bright
field microscope by iteratively stitching together a number of variably illuminated, low-
resolution intensity images in Fourier space [60, 194, 225, 226]. Instead of starting with
a high-resolution objective lens and stitching together a larger FOV, FPM uses a low NA
objective lens to take advantage of its innate wide FOV to recover high-resolution com-
plex distribution (both amplitude and phase) of the specimen. As shown in Fig. 12(b), by
invoking the LED array, each LED provides a plane wave of unique angle to illuminate
the sample, recording a series of low-resolution images. In Fourier space, the sequential
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scanning illumination angles shift different amounts of high spatial frequency informa-
tion into the low NA objective lens. These raw images are stitched together in Fourier
space to generate a bandwidth-extended, high-resolution spectrum, thus achieving wide-
field and high resolution imaging. For the problems in positional misalignment and noise
that affect the accuracy of FPM reconstruction, we have proposed several effective cor-
rection and optimization methods [89, 227]. In our MQP-SCLM, the LED positional
misalignment correction and adaptive step-size strategy are combined for FPM recovery
processing to improve the imaging quality of FPM.

• quantitative phase imaging based on TIE

Without the need for a separate reference beam, non-interferometric QPI is another
developed technique, which directly retrieves phase from intensity measurements [55–
58, 61]. The phase retrieval from the recorded intensity is considered as solving a
mathematical “inverse problem” [66, 67]. Such kind of problem can be solved by the deter-
ministic algorithm and iterative algorithm [185, 228–232]. Generally, the deterministic
algorithm recovers phase from several intensity measurements of the specimen under
partially coherent illumination [71, 86, 229, 233–237], and it has higher stability and
achieves twice the lateral resolution of the coherent diffraction limit [165, 176, 238, 239].
Defocusing acquisition is the effective method to produce an intensity image of the phase
contrast of the specimen, and the developed QPI approach is called TIE. In essence, TIE
is a second-order elliptic partial differential equation, outlining the quantitative relation-
ship between the variation of intensity along the optical axis to the phase of the optical
field at the plane perpendicular to the optical axis [70]:

−k
∂I(x, z)

∂z
= ∇ · [I(x, z)∇φ(x)] (6)

where k is the wave number 2π/λ; x is the transverse coordinates x = (x, y); I(x, z) is
intensity distribution at the plane located at the propagation distance z. Under the appro-
priate boundary condition (the Neumann boundary condition), this second-order elliptic
partial differential equation is solved by FFTmethod [185, 240–242], thus the phase infor-
mation of object can be easily obtained through intensity derivative on the in-focus plane
[243–245].
Recently, another deconvolution solution is put forward based on the derivation of defo-

cus phase transfer function (PTF) under weak phase approximation [231, 246], which lays
a theoretical foundation for improving TIE imaging performance by optimizing illumina-
tion. In our published work, annular illumination has been proved to provide an optimal
illumination scheme for TIE which enhances imaging contrast within the whole theoreti-
cal bandwidth of partially coherent imaging [246, 247]. In ourMQP-SCLM system, we use
annular illumination that matching the objective NAobj (NAill equals to NAobj) to collect
three defocus images and recover quantitative phase distribution of specimens by one-
step deconvolution [Fig. 12(c)]. The captured three images first are calculated to eliminate
the background term, leaving only phase term [248, 249]:

I�z(u) − I−�z(u)

4I0(u)
= Im[PTF(u)φ(u)] (7)

Then, the PTF of the system can be calculated by the following formula:

PTF(u) =
∫∫

S(u′)|P(u′)||P(u′ + u)|eik�z
(
−
√

1−λ2|u′|2+
√

1−λ2|u+u′|2
)
du′ (8)
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Finally, quantitative phase information can be reconstructed by Fourier space de-
convolution in one-step [234, 246, 248]:

φ(x) = F−1
{
I�z(u) − I−�z(u)

4I0(u)

Im[PTF(u)]
|Im[PTF(u)]|2 + β

}
(9)

here β is the Tikhonov regularization term used to avoid excessive amplification of noise
during deconvolution [250].

Experiments

•multi-contrast microscopic imaging

We first demonstrated the multi-contrast imaging capabilities of MQP-SCLM by realiz-
ing several classical microscope techniques such as bright field, dark field, ZPC, DPC,
and Rheinberg optical staining. All these multi-contrast imaging modes can be achieved
in a single-shot image by switching the illumination patterns. The experiments were con-
ducted on the unstained single diatom microalgae cell and the unstained spiral algae
(S68786, Fisher Scientific). A 40×, 0.65NA Planmicroscope objective (40×0.45NA phase-
contrast objective for ZPC) and a 10×, 0.25NA objective (10×0.25NA phase-contrast
objective for ZPC) were used to observe the specimens. Figure 13 shows the multi-
contrast imaging results of a small single diatom microalgae cell and spiral algae with
different objective lenses.
As shown in Fig. 13(a)-(b), bright field images of two different algae specimens present

the highly absorbing features (e.g., chloroplasts) while dark field images give more high-
resolution details corresponding to the highly scattering information of diatom frustule
shell. In DPC and ZPC, the experimental images provide more information about phase
features (e.g., filaments and silica cell wall structures) and the internal structure is much
better contrasted and can be well resolved, as illustrated in Fig. 13(c)-(e). Up-down and

Fig. 13 Multi-contrast microscopic imaging results of a small single diatommicroalgae cell and spiral algae
with different objective lenses, including bright field, dark field, DPC, ZPC, Rheinberg optical staining. (a), (b)
Observation results under bright field and dark field imaging. (c), (d) Observation results under DPC imaging
along the left-right and up-down shearing directions. (e) Observation results under ZPC. (f)-(h) Observation
results under Rheinberg optical staining imaging with different color configurations
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left-right phase-contrast images enhance the internal features from two shearing direc-
tions, and any desired direction of asymmetry can be used to highlight features of interest
with the flexibility of the LED array patterning designed by the user through the software
interface. In the Rheinberg optical staining imaging mode [Fig. 13(f )-(h)], we provide the
experimental results of algae specimens with different color configurations. The central
circle illumination pattern (bright field) determines the captured intensity background,
while the outer ring illumination pattern (dark field) will stain the highly scattering details
of the specimen with different colors. Not only the marginal contours of the diatom
are visualized in a distinct manner, but the small pores on the frustule appear sharply
demarcated in Rheinberg illuminations. High angle incident illumination will increase
the contrast of small features of the specimen which corresponds to the high-frequency
details in the spectrum domain. It is worth noting that in Rheinberg filter, the transmit-
tance of the central circle should be much darker than the outer ring in order to enhance
the overall contrast and the visibility of the detailed structure. Otherwise, the contrast of
the dark field scattering component on the resultant image will be swamped out by the
background signal.
Then, we employed a mosquito mouthpart specimen for multiplane refocusing under

different contrast imaging modalities. In this experiment, the specimen was imaged by an
objective lens of 10×0.25 NA, a tube lens of 0.25×. The ETL can be automatically con-
trolled by the software to focus on different planes of the specimen. Figure 14 shows its
refocusing stack images, and the main structures of the mouthpart are clear and distin-
guishable on four different focus planes. From bright field refocusing images in the first
row, the mosquito head and compound eye provide relatively intensity contrast due to the
strong absorption. The structures of antennae, maxillary palps, proboscis (include labella
and labium), and labrum with high-resolution information is focused on different planes,
and the features of large bushy antennae aremarked with solid red circles and dash circles.
Moreover, the dark field refocusing images enhance small details of antennae structure
with highly scattering, and the hairy antennae feature with high resolution (marked with
white circles) can be resolved axially. In the last row, the DPC images at different depths
show the high-resolution phase features of mouthpart structure and provide phase gradi-
ent maps of antennae and maxillary palps across multiple axial slices (marked with white
arrows and red arrows).

•wide field, high resolution imaging using FPM

We demonstrated the wide field, high resolution imaging capability of our MQP-SCLM
for its intended high-throughput biomedical observation experimentally. The USAF tar-
get, human lung tissue section, and human kidney vessel cells were employed as the
observation specimens to achieve FPM. We employed an objective lens with 4×, 0.1NA
and tube lens with 0.5×, and collected a set of 225 low-resolution intensity images from
different incident angles. Before the FPM reconstruction process, the brightness and
the position of LED illumination have been calibrated. Figure 15 shows the FPM recon-
structed results of these specimens. The full FOV raw low-resolution intensity image
of the USAF resolution target is presented in Fig. 15(a), and the region of interest is
marked and enlarged by a white box. Figure 15(b1) and (b2) present the recovered high-
resolution intensity images of the corresponding central region of interest of the USAF
target. As can be seen, the highest distinguishable resolution target elements in Fig. 15(b2)
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Fig. 14 Refocusing results of mosquito mouthpart specimen in bright field, dark field, DPC at z = −60μm,
z = −20μm, z = 20μm, z = 60μm

is Element 5 in Group 10 (corresponding to the half-pitch resolution of 274nm), and the
intensity line-scan profile of Group 10 in Fig. 15(b3) shows the verified results. More-
over, we also provide high-resolution measuring specimens of the stained human lung
tissue section and human kidney vessel cells. Figure 15(c) and (f ) present the FOV of
these two specimens, respectively. Figure 15(d1), (e1), (f1), (g1) and (d2), (e2), (f2), (g2)
illustrate the comparisons of low-resolution and high-resolution image in the FOV of dif-
ferent enlarged regions. Significantly enhanced resolution in FPM reconstruction results
demonstrates more detail in the pathological tissue than the conventional microscope.

• quantitative phase imaging using TIE

In order to validate the QPI of MQP-SCLM, two different specimens were used for
the quantitative phase characterization. First, a quantitative phase target QPTTM with a
height of 100nm was used for the quantitative investigation of achievable imaging resolu-
tion, and the reconstructed result is shown in Fig. 16(a1). As shown in Fig. 16(a2)-(a3), the
resolution element Group 10 is enlarged and displayed, and the line profile of resolution
elements in Group 10 is plotted in Fig. 16(a4). We can clearly distinguish these resolution
bars up to Element 4, which means that achievable imaging resolution of MQP-SCLM
under 0.4NA objective is 345nm.
Then, a standard plano-convex microlens array (SUSS, pitch 250μm, fused silica, RI of

1.46 at 507nm) was measured using 0.25NA objective with 0.45× tube lens. Figure 16(b1)
shows the reconstructed quantitative phase. Overall, the distribution of the lens array
is clearly reflected in the quantitative phase map. In order to assess the accuracy of
the phase measurement, the measured thickness profiles of microlens taken from the
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Fig. 15 High-throughput (wide field and high resolution) imaging results of USAF absorption target and
stained tissue sections (human lung tissue section and human kidney vessel cells) reconstructed by FPM. (a)
Full FOV low-resolution image of USAF target under bright field. (b1), (b2) The sub-region images of
reconstructed high-resolution image. (b3) The intensity quantitative profile of the red line in (b2). (c), (f) Full
FOV low-resolution image of stained human lung tissue section and human kidney vessel cells under bright
field. (d1), (e1), (g1), (h1) The sub-region images of low-resolution image. (d2), (e2), (g2), (h2) The sub-region
images of high-resolution image reconstructed by FPM

solid yellow square in Fig. 16(b1) and theoretical profile line are compared quantita-
tively in Fig. 16(b3), showing a reasonable agreement. The pitch of microlens is measured
to be 252μm, which is slightly larger than the nominal pitch of 250μm. The height of
the measured microlens is about 25μm, which is consistent with the nominal value.
The small discrepancy may be attributed to the imperfect boundary condition in the
phase reconstruction process and the imperfection profile of each lens on the microlens
array.
Additionally, the reconstructed quantitative phases of unstained biological specimens

are provided to demonstrate the imaging ability of MQP-SCLM on clusters of unstained
cells distributed on a glass specimen slide. In this experiment, only three defocus intensity
images were captured with 50ms exposure time, enabling the high-speed QPI of MQP-
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Fig. 16 QPI experiment results on standard phase resolution targets QPTTM and microlens array. (a1)-(a3)
Reconstructed quantitative phase and its sub-region images. (a4) The quantitative profile along the red line
in (a3). (b1) Reconstructed quantitative phase of the microlens array. (b2) The quantitative profile along the
red line in (b1). (b3) Comparison of quantitative profile of reconstructed phase and nominal profile

SCLM. Figure 17 gives a comparison of theQPI performances under conventional circular
illumination and our optimized annular illumination apertures (with the same objective
lens of 40×, 0.65 NA). As shown in Fig. 17(a) (conventional circular illumination aper-
ture) and 17(c) (our optimized annular illumination aperture), due to the poor transfer
response of the PTF at the central low frequency and high frequency approaching 2NAobj,
the low-frequency cloud noise is included in the reconstructed phase in Fig. 17(a) while
the high-resolution details are not reconstructed clearly. These deficiencies are avoided
under annular illumination aperture, and the reconstructed phase exhibits high robust-
ness and enhanced resolution. Two enlarged sub-areas are selected by dotted rectangular
shape to compare phase details. As can be seen in Fig. 17(b1)-(b2) and (d1)-(d2), the
morphological shape and internal details of the HeLa cells are clearly visible, and the
tiny phase features (e.g., grains and fibers) are well resolved, demonstrating the near-
diffraction-limited lateral resolution and high-frequency features in the cell can still be
distinguished.
Further, we imaged unstained MCF-7 breast cancer cell and HepG2 living carcinoma

cells fixed in formaldehyde solution using the 20×0.4NA and 40×0.65NA objective lens
with 1× tube lens, respectively. Figure 18(a) is the full FOV quantitative phase image of
MCF-7 cell, and we enlarge four sub-regions of the reconstructed phase in Fig. 18(b1)-
(b4) to highlight our high quality phase reconstructions. Subcellular tiny grains feature
(nuclei and organelle) are correctly reconstructed, and features with higher RI values in
the cytoplasm appear brighter contrast in quantitative phase image are reconstructed. As
shown in Fig. 18(c), the experimental image of HepG2 also gives the high-resolution quan-
titative phase distribution. The fine structures and subcellular structures are also visible
and resolved. The recovered quantitative phase distributions of cellular features enable
the calculation of dry and buoyant mass, sphericity, and other morphometric descriptors
used for cell profiling.
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Fig. 17 The comparison of reconstructed quantitative phase of HeLa cell under circle and annular illumination
apertures. (a) The reconstructed phase of HeLa cells under circle illumination aperture. (b1)-(b2) The enlarged
images of the sub-region of Area1 and Area2 in (a). (c) The reconstructed quantitative phase of HeLa cells
under annular illumination aperture. (d1)-(d2) The enlarged images of the subregion of Area1 and Area2 in (c)

Paradigm 3: miniaturized multi-contrast smart computational light microscope

(MMC-SCLM)

With telemedicine applications, microscope is required to be as compact and light-weight
as possible to provide cost-effective solution for health care especially in the developing
world where medical facilities and infrastructure are extremely limited. Computational
imaging allows microscope to tailor the optical system to become miniaturized and
portable. We developed a miniaturized, low-cost, and portable multi-contrast unlabeled
microscope, which is named as MMC-SCLM. In this system, a highly integrated optical
path using a miniaturization lens is adopted to replace the complex optical system of tra-
ditional microscopes, thus reducing the size of the wholemicroscope to 14×16.5×20cm3.
We are compatible with five imaging modes in this system to produce multi-contrast
images of bright field, dark field, Rheinberg optical staining, DPC, QPI (DPC-based)
for living cells. All imaging modes can be flexibly switched and operated through our
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Fig. 18 The reconstructed quantitative phase of unstained MCF-7 Breast Cancer Cell and HepG2 living
carcinoma cells. (a) Full FOV quantitative phase image of MCF-7 cell. (b1)-(b4) Enlarged images of the
sub-region of interest in the red, wathet, blue, and yellow boxes. (c) The reconstructed quantitative phase of
HepG2

designed software. In addition, cell analyzing functions are also added to our system,
which can realize cell counter and 3D profile measurement. In this subsection, we demon-
strated the multi-contrast imaging and QPI capabilities of MMC-SCLM by multiple
observation and detection experiments with different specimens.

Optical configuration and software

Figure 19(a) displays the physical diagram of our MMC-SCLM, and it is designed as the
inverted microscope system. As shown in Fig. 19(b), a commercial full-color LED array
with a unit size of 2mm is placed at the top of the entire system, and its center aligned
with the optical axis of the microscope system. The complex optical path of traditional
microscopes is replaced by a miniaturization lens with NA of 0.14 (6.4×), a focal length
of 4.25mm, a lens distortion within 1%. This miniaturization lens can image the speci-
men between its one and two times the focal length directly onto the CCD target. Thus,
the working distance of the optical system was reduced to less than 20mm. At the bot-
tom of the whole system, a high-performance color CCD industrial camera (the imaging
source DFK 23U445, 1280×960, pixel size of 3.75μm) is used to capture the intensity
image for observation and other recovery algorithms. The command interaction between
the software system and hardware system is implemented by an independently designed
hardware control circuit board, and it is embedded into the back of the microscope, as
shown in Fig. 19(c).
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Fig. 19 Schematic diagram of MMC-SCLM. (a) Physical diagram of MMC-SCLM. (b), (c) Internal structure
diagrams from different angles. (d) Hardware system interactive control diagram

Figure 19(d) displays the interactive flow of the whole system. The hardware circuit
board is the core of the control, which accepts instructions from the software operat-
ing system and controls the hardware to implement response operations. All control
instructions are performed through a set serial communication protocol within 1ms. It
should be noted that due to the LED array lighting at a certain refresh frequency, the
camera exposure needs to be synchronized with the light source to ensure the unifor-
mity and accuracy of the whole image exposure. Therefore, USB 3.0 data transmission
protocol is adopted in image acquisition, connecting with the external trigger of the cam-
era to realize the rapidity and stability of image acquisition and transmission. Under
such a hardware configuration, the size of the entire microscope system was reduced to
14 × 16.5 × 20cm3.
In order to ensure the implementation of multi-contrast imaging and smart analysis,

we developed an operating software forMMC-SCLM. Similar to theMQP-SCLM system,
the operating software is designed as four modules to realize illumination control, camera
setting adjustment, result display, and smart processing and analysis. A detailed descrip-
tion of each module can be found in the “Optical configuration and software” subsection
in “Paradigm 2: multi-contrast quantitative phase smart computational light microscope
(MQP-SCLM)”. These modules are managed by flexible layout and collaborate for diverse
imaging and data analysis. As a result, the specimen can be observed in five imag-
ing modes, including bright field, dark field, DPC, Rheinberg optical staining, and QPI
(based-DPC), get continuous data.
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Principle and algorithms

•multi-contrast microscopic imaging

MMC-SCLM achieves five imaging approaches, including bright field, dark field, DPC,
Rheinberg optical staining, and QPI (based-DPC), as shown in Fig. 20. As described in
“Principle and algorithms” subsection in “Paradigm 2: multi-contrast quantitative phase
smart computational light microscope (MQP-SCLM)”, bright field imaging requires the
illumination NAill of all lit LED units are less than NAobj (transmitted light), and whereas
dark field imaging requires all NAill are greater than NAobj (diffraction or scattered light).
Rheinberg imaging realizes optical staining through a combination of different colors for
bright field and dark field illumination to mark different spatial frequency information of
specimens, enhancing the imaging contrast.
MMC-SCLM is also capable of phase gradient imaging by DPC. As can be seen from

Step1 and Step2 in Fig. 20(b), DPC records the phase contrast images of the specimen by
asymmetric illumination, and the phase gradient information of the specimen is further
obtained by a simple differential calculation of Eq. (5). However, the compact optical sys-
tem has a limited distance between the LED and the sensor, which may lead to uneven
background under asymmetric illumination. Especially in the DPC-based QPI method,
such background unevenness will cause serious reconstruction errors. In order to avoid
the imaging error caused by the uneven background, we adopt a correction and com-
pensation method to improve the imaging quality and phase accuracy while ensuring the
imaging speed of the DPC imaging microscope system.
The background correction and compensation method is based on PCA and plane fit-

ting. Performing PCA on the recorded phase gradient image and then extracting the

Fig. 20 Technical roadmap of MMC-SCLM. (a) Multi-contrast imaging including bright field, dark field, DPC,
and Rheinberg optical staining. (b) QPI based on DPC
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first principal component and its corresponding coefficient to fit the plane distribution
as image background. The fitted background is then removed from the captured image
to obtain the corrected image. When removing the background distribution, a uniform
intensity distribution with the fitting background means should be added to the recorded
image to compensate for the phase gradient.

•QPI based on DPC

Asymmetric illumination is one of the key approaches to produce phase contrast inten-
sity, and the derived QPI method is called DPC QPI. This method was first proposed
to establish a linear relationship between the image intensity and the specimen’s phase
gradient [85, 86, 228]. Subsequently, slow-varying object approximation and weak object
approximation are introduced to simplify imaging process, thus two quantitative phase
inversion solvers were developed [228]. Under slow-varying specimen approximation, the
phase gradient transfer function (PGTF), which relates the phase gradient and the cap-
tured intensity in the sense of a look-up table, was extracted from the partially coherent
transfer function. Thus, the measurement of phase gradient along two orthogonal direc-
tions allows retrieval of phase distribution [85, 251]. Under weak phase approximation,
PTF, which establishes a quantitative relationship between the object phase and the cap-
tured intensity, was derived by linearizing partial coherent imaging process [61, 165]. A
one-step deconvolution solver was developed to recover the quantitative phase of the
object in this approximation. In our recent advances, annular illumination whose illu-
mination NAill equal to the objective NAobj and brightness varies with angle as a cosine
function, maximizes the response at almost all frequencies of the theoretical bandwidth
of the entire partially coherent imaging (from 0 to 2NAobj

λ
) [86, 165]. Such an annular illu-

mination is used in our MMC-SCLM to optimize the imaging resolution and imaging
contrast. In this case, the PTF is solved by:

PTFlr(u) =
∫∫

Slr(uj)
[
P∗(uj)P(u + uj) − P(uj)P∗(u − uj)

]
d2uj∫∫ |Slr(uj)||P(uj)|2d2uj (10)

here Slr(uj) is the illumination function, uj is the frequency shift corresponding to the
illumination angle. P(u) is the pupil function of the objective lens, which is a low-pass fil-
ter with cut-off frequency of NAobj

λ
. In our system, the PTF is solved and saved in the local

folder of the operating software. When recovering the quantitative phase of the speci-
men in our system, only the PTF is read to implement one-step deconvolution with phase
gradient images, as shown in Step4 in Fig. 20(b) [160, 250]:

φ(x) = F−1
{∑

i
[
PTF∗

i (u)·IDPCi (u)
]

∑
i |PTF∗

i (u)|2 + β

}
(11)

where ∗ represents the complex conjugate item, and i denotes the asymmetric axis
direction of illumination. β is the Tikhonov regularization term used to avoid excessive
amplification of noise during deconvolution.

Experiments

•multi-contrast microscopic imaging

To demonstrate the multi-contrast microscopic imaging capability of MMC-SCLM, we
observed different specimens under bright field, dark field, rainbow dark field, and Rhein-
berg optical staining imaging. Figure 21 shows the multi-contrast visualized results on
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Fig. 21 The muli-contrast visualization results of bird feather, spirogyra communis, lily anther, ant, and dicot
under bright field, dark field, rainbow dark field and Rheinberg optical staining imaging

the specimens of bird feather, spirogyra communis, lily anther, ant, and dicot. As we can
see from the first row, the bird feather can be observed clearly under bright field imag-
ing due to its strong absorption. The scattered light imaging of the dark field provides
more detailed information, and the structure of the feather rachis and barbules are clearly
displayed. For arbitrary specimens, such as spirogyra communis, lily anther, ant, and
dicot, the bright field and dark field imaging compensate each other to acquire the overall
structure and high-resolution details of the specimen. In the third column, we show the
imaging results of these specimens under rainbow dark field imaging. The spatial struc-
tures along different directions are marked with variable colors, which provides intuitive
images for distinguishing wispy structures in the specimen. Rheinberg imaging achieves
optical staining for different structures of the specimen by flexible, customized illumina-
tion pattern (color and shape) to highlight the high-resolution details of the specimen,
and the results are shown in the last column. The integration of these imaging methods
allows for a diverse view of the specimen without replacing any hardware.
We also employed several of the above specimens to verify the imaging effectiveness

of MMC-SCLM for DPC. Figure 22 displays the observation results of bird feather, spir-
ogyra communis, and ant under DPC imaging without and with removing tilt phase
gradient. In the blue dotted box on the left, we show the uncorrected DPC results along
the left-right and up-down shearing directions. The inhomogeneity of the illumination
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Fig. 22 Comparison of phase gradient results of bird feather, spirogyra communis, and ant under DPC
imaging without and with removing tilt error

introduces an undesired tilted phase gradient with respect to the shear direction over
the phase gradient of the specimen. The PCA method was executed to remove the tilted
phase gradient, and their resulting phase gradients are shown in the red dotted box on
the right, demonstrating improvement in smoothness compared with the raw phase gra-
dients. The sub-structural features, as well as the thin borders of the specimens, can be
clearly observed without any tilted background perceivable.
In addition, multi-contrast imaging ofMMC-SCLM allows the comparison of specimen

details through flexible sub-window segmentation displays or multi-window full FOV
tiled display. As shown in Fig. 23, we show several examples of multi-contrast display
views of our system. Figure 23(a) is the stitching display view of two contrasts imaging
results on maize slitting, that is, the left and right (or the upper and lower) sub-regions
display the visualized results from different imaging modes. In the same view of the soft-
ware interface, two phase-contrast images (Rheinberg optical staining imaging in the left
sub-region and dark field imaging in the right sub-region) are presented to distinguish dif-
ferent visualization information of a specimen. Both images can be displayed and saved in
full view to compare the microstructure detail of any sub-region, as shown in Fig. 23(b1)
and (b2). Furthermore, the full FOV can be split into more sub-areas to display more
phase contrast observations simultaneously. As shown in Fig. 23(c), four images of the
pathology specimen are displayed on the same interface forming a full FOV image so that
significant differences can be found from one observation. Alternatively, multiple obser-
vations can also be displayed simultaneously on the interface at full FOV size, as shown in
Fig. 23(d1)-(d4). These multi-contrast observation tools effectively avoid the instrument
modification, complex observation recording and comparison required by conventional
multi-contrast imaging, providing a simple, straightforward, and efficient observation
means.
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Fig. 23 Multi-contrast visualization results through sub-window segmentation displays or multi-window full
FOV tiled display. (a) Stitching display view of two contrasts imaging results on maize slitting. (b1), (b2) The
enlarged images of the Rheinberg and dark field results of the region of interest within the white dotted box
in (a). (c) Stitching display view of four contrast imaging results on pathology specimen. (d1)-(d4) Four full
FOV of multi-contrast images on pollen specimen

• quantitative phase imaging using DPC

We validated the fast and highly robust quantitative phase reconstruction ofMMC-SCLM
through several experiments on unlabeled specimens. First, to verify the achievable imag-
ing resolution of our MMC-SCLM, we measured a pure phase resolution target QPTTM

with the height of 100nm, and the experimental results are shown in Fig. 24. Figure 24(a)
shows the observed image of this specimen in bright field microscope, which has a weak
contrast and is almost invisible due to its weak absorption. The phase gradient images
after background correction (the up-down shearing direction) are shown in Fig. 24(a2),
and it is used to perform deconvolution to avoid the low-frequency tilt phase error.
Figure 24(c) displays the reconstructed phase. The quantitative profile along the red line
is then extracted and plotted in Fig. 24(d) to reveal the highest achievable resolution. It
can be seen that Group 9, Element 1 can be recovered correctly, which indicates the the-
oretical realizable resolution of our MMC-SCLM is 970nm (half-pitch resolution). Then,
we measured a 250μm pitch plano-convex quartz microlens array (SUSS MicroOptics,
lens diameter 240μm, hex-packed) by our MMC-SCLM. A microlens element in a solid
white frame of Fig. 24(e) is selected as the target for quantitative phase measurement,
and the reconstructed quantitative phase is shown in Fig. 24(f ). The accuracy of this
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Fig. 24 Experiment for imaging resolution verification by standard phase resolution targets QPTTM and
microlens array. (a) Bright field image of QPTTM . (b) Phase gradient image obtained by DPC. (c) Reconstructed
quantitative phase. (d) Quantitative profile along the red line in (c). (e) Bright field image of the microlens
array. (f) Reconstructed quantitative phase of a selected microlens element. (g) Comparison of quantitative
profile of reconstructed phase and nominal profile, and 3D pseudo-color phase profile of the selected
microlens element

reconstructed phase is demonstrated by quantitatively comparing their differences to the
nominal values. As shown in Fig. 24(g), the profile of the reconstructed phase is basi-
cally consistent with the nominal value (except that the measured value of 19.52μm at
the extreme value is slightly smaller than the standard value of 20μm). In addition, the
validated quantitative phase can be displayed with a 2D quantitative phase map or a 3D
pseudo-color phase profile in our MMC-SCLM to provide a high-contrast view of the 3D
structure.
Due to the advantages of miniaturization, low cost, and portability of MMC-SCLM,

it provides a powerful means for telemedicine diagnostic tests, which yields immediate
acquisition of information on an individual’s condition to facilitate treatment decisions or
further extensive testing, offering the advantages of widening accessibility to diagnosis,
minimal sample volumes, reduced costs, and rapid analysis times. We demonstrated the
imaging capability of MMC-SCLM by imaging a specimen of HeLa cells prepared in situ,
and the experimental results are shown in Fig. 25. Figure 25(a) shows the reconstructed
quantitative phase of unlabeled HeLa cells. Figure 25(b) and (c) exhibit the observed
images in dark field and phase gradient image in DPC. From these results, dark field and
DPC give conspicuous phase-contrast information of the unlabeled sample, while QPI
further provides quantitative, high-resolution details. In addition, the unlabeled cell sam-
ples can be presented in a high-contrast pseudo-color profile, providing a direct visualized
3D structure of the sample, as shown in Fig. 25(e). Furthermore, the cell counter was
developed inMMC-SCLM as an auxiliary function, and the result is shown in Fig. 25(d). It
can be seen that the exact number of the HeLa cells in the full FOV is accurately counted
as 120.

Paradigm 4: high-throughput lensless smart computational light microscope (HTL-SCLM)

Computational imaging allows the microscope to be simplified as much as possible or
even remove the necessary objective lens of conventional microscopes. Such a lensless
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Fig. 25 Reconstruction quantitative phase of HeLa cells. (a) Reconstruction quantitative phase and
quantitative profile of HeLa cells. (b) Dark field visualization image. (c) Phase gradient image under DPC
imaging. (d) Cell counting display (120 cells in full FOV). (e) 3D pseudo-color phase profile display of HeLa cells

microscope structure maintains the imaging FOV and provides pixel super-resolution
specimen information by implementing computational reconstruction algorithms on its
acquired images. In this paradigm, we exhibited a lensless QPI microscope, termed
HTL-SCLM, which only contains a camera sensor and illumination source, providing a
portable, low-cost, stable, and high-throughput imaging tool. A multi-wavelength illu-
mination scheme is utilized to record three raw images without mechanical moving
adjustment. According to diffraction propagation theory, these images can be con-
verted to multi-depth images at three defocusing distances. GS iteration is then per-
formed to recover the high-resolution information of the specimen across full FOV of
the sensor size [66, 67]. High-throughput experimental results for different specimens
demonstrated that our lensless microscope achieves the high-throughput imaging with
a wide FOV of 29.8474mm2 and imaging resolution (half-pitch imaging resolution) of
870nm.

Optical configuration and software

Figure 26 shows the schematic diagram of our HTL-SCLM. It does not contain any
moveable mechanisms, and the two essential components are a color LED unit and a
monochrome CMOS sensor, as shown in Fig. 26(a) and (b). Thus, the size of the whole
imaging system was shrink to one-tenth of the conventional microscope. The LED is
employed as a coherent illumination source instead of a laser source to produce approxi-
mately spatially coherent illumination with the center wavelength of 631nm (red), 522nm
(green), and 465nm (blue) (∼ 10nm bandwidth, ∼ 100μm size). The use of such a LED
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Fig. 26 Schematic diagram of HTL-SCLM system. (a) Physical diagram of HTL-SCLM system. (b) Hardware
system interactive control diagram. (c) Multi-wavelength illuminations generated by a color LED unit. (d)
Stage and CMOS sensor

not only effectively suppresses the speckle noise and distortions caused by parasitic reflec-
tions in the optical setup but also provides a simple and cost-effective implementation
for lensless microscope. In our HTL-SCLM setup, the LED unit is placed at 80mm away
from the specimen plane to sequentially produce red, green, and blue light to illumi-
nate the sample. An industrial camera (The Imaging Source, DMK-24UJ003, 3872×2764)
with a pixel size of 1.67μm is used to capture images, thus it can achieve a full FOV of
29.8474mm2. The specimen could be placed as close to the sensor surface as possible
[typically less than 1mm, see Fig. 26(d)] so that the spatial incoherence gating effect will
minimize for high-resolution phase imaging. Under the above configurations, the lensless
system is integrated in a size of 130 × 80 × 75mm3.
The operating software of HTL-SCLM provides a friendly interface and versatile func-

tions, which can be started quickly without complicated training for users. Four modules
were developed to implement the algorithm preset, camera control, view display, and data
analysis. Algorithm preset module must be performed prior to reconstruction to seek
the accurate defocus distance and to select the appropriate image acquisition mode and
reconstruction mode. Due to the absence of the objective lens, it is difficult for a lensless
microscope to acquire an in-focus image. We overcome this problem by estimating the
defocus distance through numerical propagation. In the subsequent reconstruction, the
estimated defocus distance will be automatically applied to compensate for the phase arti-
facts caused by defocus and improve the resolution of phase reconstruction. The image
acquisition settings provide two options for reconstruction, i.e., single image acquisition
mode for one reconstruction and continuous image acquisition mode for multiple recon-
structions. The single image acquisition mode captures only three images needed for
single quantitative phase reconstruction and is suitable for a static specimen. The con-
tinuous acquisition mode, on the other hand, continues to acquire images to perform
quantitative phase reconstruction, providing time-lapse imaging results of dynamic speci-
mens. In reconstructionmode settings, twomodes of the region of interest reconstruction
and full FOV reconstruction can be selected alternatively. Current window reconstruction
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is required when the reconstruction result needs to be previewed, while full-field recon-
struction should be selected after all parameters have been properly set. The other three
modules are similar to several of the systems mentioned above. The camera control mod-
ule enables flexible adjustment of camera parameters, such as frame rate, exposure time,
gain. The view display module is used to display the visualized results and reconstructed
phases directly in the software interface with 2D phase map, 3D pseudo phase profile,
providing high-throughput imaging data. Besides, the data analysis module can afford
quantitative and statistical analysis data by analysis tools of cell counting, cell profile
analysis, automatic digital refocusing function. Combined with this operating software,
our HTL-SCLM is a new generation of label-free high-throughput imaging tool, enabling
smart and automatic microscopic imaging.

Principle and algorithms

Lensless holography is a promising high-throughput QPI method, which bypasses the
intrinsical trade-off between the spatial resolution and FOV of conventional microscopes
[170, 252–256]. It removes all lenses of themicroscopic optical path, thus the light passing
through the specimen is directly received with a wide FOV of the sensor surface. How-
ever, by use of a small object-to-sensor distance, the collection NA at the detection plane
approaches 1, resulting in the imaging resolution limited by the sensor pixel size. Several
pixel-super-resolution algorithms were developed to overcome this limitation in which a
smaller effective pixel-size is synthesized from a series of low-resolution images captured
by sub-pixel shifting or wavelength scanning through specific computational algorithms
[182, 257–260]. However, all these methods require extra controllable mechanical devices
or extra wavelength calibration and dispersion compensation processes, resulting in a
significant increase in the complexity and cost of the whole system.
We combined phase retrieval (TIE-based) and pixel super-resolution (GS iteration) in

our system to deliver super-resolved reconstructions with significantly reduced the num-
ber of raw measurements. The LED is used to achieve multi-wavelength illumination
in a cost-effective manner, thus three intensity images with different wavelengths (red,
green, blue) are captured. According to diffraction propagation theory, wavelength and
propagation distance always appear in pairs, which means that a change in wavelength
demonstrates an equivalent effect on the field propagation as a change in propagation dis-
tance [261, 262]. Thus, the captured images under multi-wavelength illuminations can be
converted to multi-depth images, as shown in Fig. 27(a).
First, the phase retrieved by the TIE is performed to give an initial input for the GS itera-

tive phase refinement. The green wavelength is set as the normalized wavelength because
it has forward and backward propagation defocusing images. Then, the longitudinal
intensity derivative ∂I/∂z can be estimated through the following equation:

∂I
∂z

= (�zb)2
(
Ir − Ig

) − (�zr)2
(
Ib − Ig

)
�zr�zb (�zb − �zr)

(12)

where �zr,b=zr,b − zg are equivalent propagation distances from the red/blue channel
image to the green channel image. The form of wavelength and defocus distance of the
same complex amplitude distribution can be expressed as zr

λr
= zg

λg
= zb

λb
. Thus, once three

diffraction patterns at different illumination wavelengths (red, green, blue) are captured,
the effective defocus distances of the red and blue channel images are converted accord-
ing to zr,b = zgλr,b/λg . It should be noted that there is a tiny distance between the red,
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Fig. 27 Technical roadmap of HTL-SCLM with multi-wavelength illumination

green, blue units of a LED, the recorded intensity under different wavelength illumination
appears translation deviation. In order to address this problem, Ir and Ib are registered
with the reference image Ig via computing the upsampled cross correlation through the
FFTmethod and locating its peak [263]. We use the FFT-based solver to restore the phase
distribution of the specimen due to its simplicity, efficiency, and applicability for the case
of non-uniform intensity distribution [185], and the phase can be presented as:

φ (x) = −kg∇−2∇ ·
[
I−1
g (x)∇∇−2 ∂I (x)

∂z

]
(13)

where kg indicates wave number (kg = 2π/λg), Ig is the intensity with green wavelength,
and x = (x, y) is the lateral 2D spatial coordinate. ∇−2 is the inverse Laplacian oper-
ator, denoting a simplified representation of the solution to the corresponding Poisson
equation.
GS iterative phase retrieval algorithm starts from the retrieved phase of TIE, then the

complex field is propagated back and forth between different planes, replacing the ampli-
tude with the measurement amplitude

√
Ir,g,b until the whole process converges, as shown

in Fig. 27(d). In order to avoid the convergence of the algorithm stagnates after early iter-
ations or even get trapped into local optima, the incremental gradient method can be
used for the iteration process to improve the stability and robustness of the reconstruc-
tion towards noise by adopting the adaptive step-size strategy [227]. Finally, the complex
amplitude retrieved from iterative refinement is propagated back to the object plane to
produce the image back into focus, leading to sharp in-focus intensity and phase with all
out-of-focus blurring effectively removed. Similarly, the reconstructed phase can also be
used to generate digital DIC results showing the phase gradient image of the specimen.

Experiment results

• high-throughput quantitative phase imaging

In order to verify the imaging resolution of our HTL-SCLM, a phase resolution target
QPTTM with the height of 350nm was measured as a specimen, and the experimental
results are shown in Fig. 28. Figure 28(a) shows the intensity pattern directly captured
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Fig. 28 Experiment for imaging verification by standard phase resolution targets QPTTM . (a) Original
captured image. (b) The enlarged image of the sub-region of interest in original captured image. (c) Phase
gradient image generated from reconstructed quantitative phases by digital DIC method. (d), (e)
Reconstructed quantitative phase and the enlarged phase of the sub-region. (f) Quantitative phase profile
along the red line in (e)

by the sensor. Though the object to sensor distance is relatively small, the defocus blur-
ring can be easily observed in the magnified regions of the raw images. The precise
defocus distance can be determined by the digital refocusing function of the software
and applied for iterative reconstruction. After the TIE phase retrieval and several itera-
tions phase refinement, the reconstructed quantitative phase shown in Fig. 28(d) can be
obtained. Compared to the severe defocus artifacts in direct image acquisition, the recon-
structed complex field leads to a sharp in-focus image with all defocus blurring effectively
removed. The small group corresponding to the blue box in Fig. 28(d) is enlarged to dis-
play the distinguishable resolution element. As shown in Fig. 28(e), our imaging system
correctly recovered the unit of Group 9 Element 2, which corresponds to the highest
achievable resolution of 870nm (half-pitch resolution), exceeding the resolution-limited
by the pixel size 1.67μm. The phase values along the red line are then extracted and plot-
ted in Fig. 28(f ) to quantify the lateral resolution, which gives a direct demonstration
of the achievable resolution of our HTL-SCLM system. In addition, this high-resolution
quantitative phase can be further used to generate phase gradient images of the specimen
along an arbitrary shearing direction by digital DIC, as shown in Fig. 28(c).
Our HTL-SCLM achieves both a wide FOV and high imaging resolution, which pro-

vides an effective means for high-throughput imaging of label-free cells. To demonstrate
the imaging performance of our HTL-SCLM system on biological specimens, we con-
ducted an experiment on unlabeled HeLa cells. Figure 29(a) shows the reconstructed
quantitative phase of HeLa cells with a full FOV of 29.8474mm2. A region of interest
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Fig. 29 High-throughput reconstructed quantitative phase of HeLa cells. (a) Reconstructed quantitative
phase of HeLa cells in full FOV of 29.8474mm2. (b) The enlarged image of Area5 in (a) and the quantitative
profile of cells. (c1)-(c4) The enlarged images of Area1, Area2, Area3, Area4 in (a). (d1)-(d4) Phase gradient
images of Area1, Area2, Area3, Area4 generated from reconstructed quantitative phase by digital DIC method

[within the yellow dashed box in Fig. 29(a)] is selected and enlarged for quantitative anal-
ysis of the cells, as shown in Fig. 29(b). Our system allows users to extract the quantitative
data of the specimen (along the red line) and drawing its profile, thus we can get quantita-
tive data on the morphology of cells. Any area within the wide FOV can be magnified for
further observation and detection of cells. As shown in Fig. 29(c1)-(c4) and 29(d1)-(d4),
we extracted four sub-areas of reconstructed phase marked by four blue dashed boxes to
display their enlarged versions and phase gradient images. It can be seen that the structure
details of HeLa cells can be clearly observed. Due to the advantages of the quantitative
phase in high contrast and high resolution, it also provides an effective data source for
cell counting. From Fig. 29(a), a total of 8707 cells are presented in the full FOV.

• digital refocusing

In the absence of imaging optics, we can not acquire in-focus intensity images of the
specimen in lensless microscope. To overcome this problem, an indispensable step for
image reconstruction is to back propagate the acquired wavefront from sensor plane to
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Fig. 30 Comparison of reconstructed intensities of soybeans stem crosscut and dicot root without and with
digital refocusing. (a) The raw captured diffraction image over the full FOV of soybeans stem crosscut without
digital refocusing. (b1) The sub-region image of the raw captured image in (a). (b2) The sub-region image of
the reconstructed intensity of soybeans stem crosscut with digital refocusing. (c) The raw captured diffraction
image of dicot root over the full FOVwithout digital refocusing. (d1) The sub-region image of the raw captured
image in (c). (d2) The sub-region image of the reconstructed intensity of dicot root with digital refocusing

object plane to get a sharp in-focus image. We employed the soybeans stem crosscut and
dicot root to demonstrate the reconstruction results with and without digital refocus-
ing, and the reconstructed intensities are displayed in Fig. 30. Compare Fig. 30(b1), (d1)
and 30(b2), (d2), the reconstructed results with digital refocusing have clearer edges and
details than those of without digital defocusing. This flexible ability to digitally adjust
the ‘z’ parameter significantly extends depth-of-field (DOF) of our platform compared to
other imaging systems where conventional microscope objectives are used.

Computational light microscope: software development and hardware
implementation

Software development

Microscope software of SCLMs combines microscope, digital camera and accessories
into one fully integrated solution. With an intuitive user interface, it guides the user
through any workflow, whether fast image acquisition, computational reconstruction, or
sophisticated analysis.

• software architectural pattern

We exploit the Model-View-ViewModel (MVVM) architectural pattern (as shown in
Fig. 31) to separate data algorithm and display view, thus the low coupling allows us
to modify either of these independently without recompiling other module code. View-
Model realizes bidirectional binding of the data algorithm and display view, and it can
catch operation changes of the view interface through data monitoring and then inform
the data algorithm to respond. Besides, it can inform the interface view to update when
the data changes. User settings are transmitted to the Model as input of the View-
Model through the event loop, and corresponding algorithm instructions are performed
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Fig. 31 Model-View-ViewModel (MVVM) framework mode

to achieve serial port transmission, data readout, phase calculation, cell segmentation,
graphical user interface (GUI) thread, etc. The resulting algorithm results and data are
saved in memory and are transmitted as updated data to the ViewModel and notice View
to display the corresponding results.

• software development framework

The Windows operating system C++ graphical user interface application development
framework QT is used to build the user interface, at the same time combined with the
Open Source Computer Vision Library (OpenCV) for algorithm implementation and
image processing and the Open Graphics Library (OpenGL) for 2D/3D rendering graph-
ics.When running the software, the human-computer interaction can be realized through
the interface operations, and the information interaction between the software and the
algorithm is implemented through the signal slot function. The software refreshes the cal-
culation data in a continuous event loop, thus the high-speed refresh enables the software
system to shoot and execute algorithms in real-time. In addition, GPU, which is a highly
parallel, multi-threaded, multi-core processor with powerful computing power and very
high memory bandwidth, is adopted to performmany time-consuming calculations, such
as unwrapping, discrete Fourier transform, etc.
The GPU accelerator is implemented through the language editing model of the Com-

pute Unified Device Architecture (CUDA), which is a parallel computing platform and
programming model. Figure 32 shows the schematic diagram of calculation process of
CUDA. It provides programming interfaces for other programming languages, includ-
ing C, C++, Java, Python, etc. The organization of threads in CUDA is in the form of
blocks, each of which can have up to 1024 threads, with several blocks forming a grid.
In the actual execution, the CUDA device assigns blocks to different streaming multipro-
cessors (SM) for parallel computation. From Fig. 32, all threads in a block will distribute
into the basic execution unit of the wrap. In CUDA, the size of the wrap is specified as
32, which indicates 32 threads are grouped into a single warp to be executed together.
And all threads in a warp execute the same instructions but process different data. In SM,
multiple streaming process (SP) is employed to execute different threads in parallel. In
order to take full advantage of the parallel performance of the GPU to maximize accel-
eration of algorithms, our software adopted some optimization strategies: (a) excessive
data transfer between host and device is avoided as much as possible; (b) the number of
threads in a block is set to an integer multiple of 32; (c) shared memory is preferred for
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Fig. 32 The schematic diagram of calculation process of Compute Unified Device Architecture (CUDA)

communication between threads in the same block. Besides, to make it compatible with
non-NVIDIA GPU devices, the software also uses Open Computing Language (OpenCL)
to achieve parallel acceleration of the algorithm.

• software functional modules

All softwares of our four SCLMs are designed to be the same user interface style. The
software of MQP-SCLM is taken as an example to introduce their functional modules. As
shown in Fig. 33, we marked the functional modules of the interface using a numerical
sequence, and they will be introduced in the following.
① The imaging module provides the flexibility to switch between multiple imaging
modes. The different imaging approaches are switched by selecting different buttons to
achieve bright field, dark field, DPC, QPI, etc., while the parameter adjustment interface
of the illumination module changes in response.
② The objective selection module is used to indicate the currently used objective and to
provide the imaging algorithm with the accurate parameters of the objective lens. Once
the objective is selected, its parameters will be automatically rewritten and transmitted to
the imaging algorithm.
③ The illumination setting module automatically switches with the conversion of the
imaging modes. According to the illumination requirements of different imaging modes,
several customized illumination adjustments are set in the panel. The microscope illumi-
nation parameters (such as illumination aperture, illumination color, etc.) can be flexibly
adjusted with one button.
④ The middle of the interface is the image display module that shows the results of
microscopic imaging in real-time and provides measurement and editing functions. It can
realize multimodal imaging display, that is, simultaneously display a plurality of different
sub-windows whose image source from different imaging modes, and can be controlled
to display dynamically or statically. Each sub-window can be independently controlled to
realize real-time display, image saving, profile extraction, image interception display, and
other functions.
⑤ The diverse adjustment and post-processing functions are included in the software to
assist in denoising or enhancing the display of the imaging results.
⑥ When the software starts, the software automatically identifies the connected serial
port and opens it to realize the interactive control between the software command and
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Fig. 33 Software interface, module, and functions

the hardware FPGA.
⑦ After selecting the imaging mode, the rightmost of the interface shows the camera
parameter setting docking window, which provides basic parameter settings such as expo-
sure, white balance, and external triggering. It also supports the automatic loading of
camera parameters and resets.
⑧ Some auxiliary detection functions, such as drawing quantitative phase profile, cell
counting, are placed in the lower right corner of the software interface.

Hardware design implementation

Drive control circuit

The computational microscopes acquire images with different imaging modes by pre-
cisely adjusting the illumination patterns and further reconstruct the required informa-
tion of the specimen based on specific imaging algorithms. To provide high-quality record
images, our SCLMs employ small-size, high-power programmable full-color LED as illu-
mination sources to obtain uniform images under a short exposure. Normally, we need
to implement various structured patterns as the light source and control the camera to
capture the images under certain illumination situations in an orderly manner.
To realize the goal mentioned above, it is inseparable from designing a general-purpose

control unit for SCLMs. The control unit needs to drive the LED array to generate specific
illumination patterns and ensure that functions such as defocus control, image trans-
mission, and microscope system parameter settings can be stably and collaboratively
performed. The composition framework of the circuit is shown in Fig. 34. The printed
circuit board (PCB) adopts a double-sided and four-layer design. The power interface is
connected to a 5V DC power and is responsible for the entire circuit’s power supply. The
logic circuit part includes the USB Hub circuit and the FPGA circuit.
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Fig. 34 The control unit for SCLMs. (a) The components of the control unit PCB. (b) The resistor transistor
logic circuit for LED array driving. (c) Control sequence of an LED array

The USB Hub circuit’s function is to simplify the link between the microscope and the
host computer, and all the parts of the microscope can be controlled through the PCB
by only a USB cable. The USB hub has three sub-interfaces on the control unit side.
The first sub-interface is connected to the FPGA through a USB-to-serial module and
transmits commands based on the serial port protocol. The second sub-interface is con-
nected to an ETL drive to adjust the defocus distance in TIE-associated applications. The
third sub-interface is directly connected to an industrial camera, which builds an image
transmission link from the camera to the host computer.
The FPGA works as the central controller of the PCB, and its logic function is

implemented based on the Verilog language. Once the power is turned on, the FPGA
automatically reads the configuration data stored in a flash and renders the FPGA to build
a register transfer level (RTL) circuit architecture as shown in Fig. 34(b). The input of the
framework contains the objective switch, serial command receiver, and the system clock.
The framework’s output contains a serial command sender, a camera trigger, and an LED
driver. The internal circuit runs the following functions: decode the serial command sent
by the host computer based on a self-defined protocol, generate the pattern for LED array
to display, synchronously trigger capture signal for the camera, drive the LED array dis-
play generated pattern according to the signal sequence diagram in Fig. 34(c), and switch
the objective according to the user’s command. Each module operates in the same clock
domain, executes in parallel, and responds in real-time.

Telecentric axial scanning system

In the MQP-SCLM, the ETL is used to construct a telecentric axial scanning system to
automatically control the defocus distance to acquire images at multi planes. Essentially,
the telecentric axial scanning system is a telecentric relay optical path, which consists of
a pair of relay lenses L1, L2, and ETL. It is located after the primary imaging plane of
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Fig. 35 Optical design of the MQP-SCLM. (a) Optical path of the MQP-SCLM. (b) General light tracing
diagram of the system. (c) Light tracing diagram of the system

the infinite correction light microscope system to switch the focal length quickly without
mechanical adjustment. As shown in Fig. 35(b), the ETL is located in the Fourier plane of
L1 and L2 to form 4-f imaging system. The advantage of the 4-f configuration is that this
arrangement does not produce optical scaling, that is, the scanning of the focal plane posi-
tion of the object can be realized by changing the focal length of the ETL. From Fig. 35(c),
L1 relays the back focal plane of the objective lens to the through aperture of the ETL
to adjust the focal length, and then L2 restores the final image to the secondary imaging
plane.
In the hardware configuration, we employ an ETL (Optotune AG, EL-16-40-TC) with a

diopter adjustable range from -2D to 3D and an aperture of 16mm to achieve bidirectional
defocus. It is driven by the ADN8810 programmable precision current source embedded,
which is embedded with a precision 12-bit digital to analog convertor (DAC), one preci-
sion V/A converter, and a high precision current output. Such a current drive circuit is
compatible with the control circuit. The ADN8810 source is connected to the computer
through a serial interface, and its current is controlled by the computer. Due to the capa-
bility of backhaul scanning, there is no step in the current control process. The ETL can
switch to the next axial position only with a response time of 5ms. Thus, high precision
and fast axial scanning can be realized by strictly calibrating the current/diopter.

Conclusion and discussion
By now, we believe the readers should have a more in-depth understanding of “com-
putational light microscopy”. Of course, only through written text and figures, one may
not be able to perceive the charm of these computational light microscopes comprehen-
sively. Therefore, at the end of this article, we further provide a supplementary video
(see supplementary information) to visualize the principles and configurations of these
four microscopes, and meanwhile, to demonstrate their functions and performance more
intuitively. By dragging the sliding bar on the software control panel, one can flexibly
adjust the focus of the digital holographic microscope through the numerical refocusing
algorithm. With a simple mouse click, subcellular details almost invisible in bright field
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illumination can be clearly visualized in dark field imaging mode. By rotating the rainbow
ring on the software control panel, the specimen is optically stained in brilliant colors by
the iridescent Rheinberg illumination. Under the rapid axial scanning of the electronically
tunable lens, the high-resolution phase distribution of unstained cells is accurately repro-
duced by the annular-illumination TIE, and their 3Dmorphology instantly appears on the
screen. Bymoving the light source pattern on the illumination panel, the spine and burr on
the fly’s wings can be observed from different perspectives in the light field imagingmode.
Under the sequential illumination of the tricolor LEDs, tens of thousands of unstained
HeLa cells are clearly revealed in a FOV of 30mm2, just like infinite stars dotting the vast
night sky. We are sure one will be impressed with the functions and performance of these
microscopes through the video demonstration. The marriage between computational
imaging and light microscopy brings unprecedented enhancements in their functions
and performance, such as flexible multi-mode imaging, non-interferometric quantita-
tive phase imaging, and high-throughput giga-pixel imaging capabilities that were never
achieved before. These smart computational optical microscopies are expected to pro-
vide high-resolution, high-sensitivity, and convenient label-free tools for life sciences,
medical diagnosis, drug development, pathology, industrial inspection, etc. The lensless
microscope may provide a convenient and inexpensive POCT tool in resource-limited
areas, significantly reducing the threshold of medical diagnosis. However, it has to be
acknowledged that computational light microscopy still faces a number of problems and
challenges that need to be solved. Due to space limitations here, we list the four most
critical aspects below:

(1) Difficulties in accurate image formation modeling
In a microscopic system, the image field is generally formed as electromagnetic
waves or a wavefront, transmitted by an optical system, which can be accurately
described by wave optics. However, a full wave optical treatment of physical image
formation is rarely possible. The high dimensions of specimen information and the
complexity of optical systems typically do not allow for a rigorous solution of
Maxwell’s equations. Therefore, the image formation is typically modeled based on
certain levels of approximations [251, 264]. However, such an approximated
formulation may not be able to cover all the effects that take place. Moreover, there
are various measurement uncertainties (noise, vibration, etc.) that can affect the
image formation process, leading to additional model mismatches. Even with full
knowledge of these influential factors, one may still face the challenge that a
simplified model may not be able to produce accurate results, while a more realistic
model may involve a large number of system parameters, making their solution an
impossible task.

(2) Bottleneck in optical modulation device
Although termed as “computational” light microscopy, the recent and rapid
progress of this area has been driven by the advent and development of “physical”
light modulation devices. While currently available programmable optics, such as
LCDs, DMDs, and LEDs, have made flexible spatial/angular light modulation
possible, the “tunable parameters” they have enabled so far are only the tip of the
iceberg of all possible light parameters that can be modulated. Further development
of computational light microscopy relies on more sophisticated optical modulation
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mechanisms to acquire multi-parameter, multi-dimensional data, which also
requires more sophisticated and powerful optical modulation devices. However,
most of the existing light modulation devices can only realize single-parameter,
low-dimensional optical modulation and cannot realize high-dimensional multi-
parameter joint modulation (such as amplitude-phase-wavelength-polarization
joint modulation). Their optical modulation quality factors (e.g., resolution,
contrast, fill factor, diffraction efficiency, response speed, linearity, etc.) is also
limited by the current semiconductor manufacturing process. In addition, the size,
weight, and cost associated with the optical modulation devices [e.g., liquid crystal
on silicon (LCOS) and DMD] prevent their wide adoption in many applications.
Recent rapid progress in optical metasurfaces provides a thin and light-weight
alternative to conventional bulky optical elements by manipulating light scattering
via resonant nanostructures [265, 266]. They are designed as a new type of optical
modulation device that allowing to modify different characteristics of light such as
its wavefront, polarization, intensity, or spectrum. However, the inherent diffractive
nature of metalenses induces severe chromatic aberrations when imaging under
broadband illumination. Despite several attempts at realizing achromatic and
dispersion-engineered metasurfaces, the operation bandwidths, sizes, and
numerical apertures of such devices are still quite limited. As a result, there is still a
long way for metasurface optical components toward industrial realization.

(3) Fidelity of image reconstruction algorithms
In computational light microscopy, the final image is indirectly reconstructed from
the raw intensity measurements using computational reconstruction algorithms,
which raises questions about the validity and reliability of reconstructed images.
Experimental results among the literature reveal that there is still a gap in image
quality and fidelity between the images reconstructed by computational imaging
algorithms and those captured directly by conventional microscopes. The
fundamental reason lies in the fact that computational light microscopy requires
that the mathematical model of the optical system can describe the actual physical
imaging process in a realistic and comprehensive manner. If the model fails to
reflect the properties and complexities of the optical system realistically,
computational light microscopy may not yield valid and reliable reconstruction
results. This issue may be critical in many applications such as industrial
inspection, medical diagnosis, and scientific research: it is not only necessary to get
a good-looking result, but also need to make sure that the result is accurate,
reliable, repeatable, and traceable. Consequently, when designing a computational
imaging algorithm, the establishment conditions of the forward image formation
model, the complexity of the inverse reconstruction algorithm, the sensitivity of
the measurement process to noise and environmental perturbations, and the level
of introduced artifacts need to be considered in a comprehensive manner.

Recently, the rapid development of deep learning technology has opened a
new window for the development of computational light microscopy [110, 113,
115, 122, 267]. Different from the traditional method of “forward modeling and
then solving the inverse problem”, deep learning directly establishes a “pseudo
forward model” from the image to the desired specimen information, taking the
original images as the “network input” and the expected information as the



Fan et al. PhotoniX            (2021) 2:19 Page 56 of 64

“network output”. Consequently, the obstacle of “solving nonlinear ill-posed
inverse problems” can be bypassed, and information extraction and reconstruction
can be realized directly. However, the success of the deep learning technology
depends on the “common” features learned from a large number of training
samples, which may lead to poor results when facing “rare samples”. Though
everyone hopes that deep learning approaches can produce a provably correct
solution, no one can guarantee at present, at least not yet. Therefore, when we
embrace the great success of the current deep learning technology, we should keep
a clear and rational attitude towards its applications in “high-risk” scenarios.

(4) Challenges in data volume and computing power
As the saying goes, “there is no free lunch”, there are two sides to everything, and
the same is true for computational light microscopy. The improvement in function
and performance that can be achieved with computational light microscopy often
comes at the cost of complicated system hardware, extensive additional data
acquisition, and complex and time-consuming data processing. From the
perspective of information theory, computational light microscopy follows the law
of information conservation. The post-processing algorithm is essentially a kind of
information extraction and re-integration, with the gain in additional information
and imaging performance coming from the diversity and multi-dimensionality of
the acquired data. Many of the current problems in computational light
microscopy are essentially high-dimensional information retrieval from a large
number of low-dimensional raw measurements. The continuous pursuit of high
resolution, deep penetration, wide FOV, and fast imaging speed in
high-dimensional computational light microscopy methods such as 3D
tomography, 4D coherent retrieval, and full-resolution light-field imaging, has
produced an overwhelming volume of data, exceeding the ability of the imaging
system and computing platforms for data generation, capture, processing, analysis,
and storage rapidly and efficiently. Emerging scalable storage and computing
architectures, including parallel computing [268, 269], distributed computing [270,
271], and cloud computing [272, 273], may provide promising solutions for tackling
these challenging problems in data volume and computing power.

Can computational light microscopy overturn the traditional microscopic imaging
mode of “What You See Is What You Get (WYSIWYG)” and open a new door for future
light microscopy? Even if we cannot say that this is an inevitable development of light
microscopy, at least from our bold attempt shown here, the results are auspicious, and we
are fully confident about its future. We expect that through the joint efforts of academia
and industry, in the near future, computational lightmicroscopy will play an indispensable
role in life science, biomedicine, and industrial applications, producing more substantial
and significant impacts on the surrounding areas.
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