Optics and Lasers in Engineering 121 (2019) 416-427

Contents lists available at ScienceDirect :
OPTICS and LASERS

in ENGINEERING

Optics and Lasers in Engineering

journal homepage: www.elsevier.com/locate/optlaseng

Micro deep learning profilometry for high-speed 3D surface imaging R

Check for
updates

Shijie Feng ", Chao Zuo®>%*, Wei Yin®", Guohua Gu®", Qian Chen®"*

aSchool of Electronic and Optical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing, Jiangsu Province 210094, China
b Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
¢ Smart Computational Imaging Laboratory (SCILab), Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China

ARTICLE INFO ABSTRACT

Keywords:

Deep learning

3D surface imaging
Structured light

How to obtain object information as rich as possible, with the highest possible speed and accuracy from recorded
optical signals, has been a crucial issue to the pursuit of powerful imaging technologies. Nowadays, the speed of
ultra-fast photography can exceed one quadrillion. However, it can record only two-dimensional images which
lack the depth information, greatly limiting our ability to perceive and to understand the complex real-world
objects. Inspired by recent successes of deep learning methods in computer vision, we present a novel high-speed
three-dimensional (3D) surface imaging approach named micro deep learning profilometry (uDLP) using the
structured light illumination. With a properly trained deep neural network, the phase information is predicted
from a single fringe image and then can be converted into the 3D shape. Our experiments demonstrate that yDLP
can faithfully retrieve the geometry of dynamic objects at 20,000 frames per second. Moreover, comparative
results show that yDLP has superior performance in terms of the phase accuracy, reconstruction efficiency, and
the ease of implementation over widely used Fourier-transform-based fast 3D imaging techniques, verifying that
uDLP is a powerful high-speed 3D surface imaging approach.

1. Introduction

It is usually said that the first instance of what we would call high-
speed photography nowadays was to settle the hot dispute “is there a
moment in a horse’s gait when all four hooves are off the ground at
once?” in 1872 [1]. Eadweard Muybridge, a pioneer in the field of mo-
tion study, developed an imaging system that involved 12 cameras trig-
gered by the legs of the horse through tripwires, successfully capturing
photos on photographic glass plates at the shutter speed of near 2000
frames per second (fps) [2]. After that, the major development for high-
speed photography came, as with scientific purposes, in the wake of the
researches on nuclear weapons during the cold war. With applications
of rotating mirror technologies, streak cameras, and rotating prism cam-
eras [3], the imaging speed soared up to 100 million fps, i.e., Mfps. In
the late nineteenth century, the high-speed imaging underwent a further
advancement owing to the great breakthrough in electronic semiconduc-
tor devices, leading to film-based cameras replaced gradually by CCD or
CMOS based cameras [4]. Nowadays, with the assistance of laser, e.g.,
the femtosecond laser pulse [5], the imaging speed can even exceed one
quadrillion, i.e., 101> fps. Benefiting from the ever-increasing power of
the high-speed photography, many transient events, which happen at
femtosecond to nanosecond time scale and reflect significant fundamen-
tal mechanisms, can be analyzed in-depth [6-11].

* Corresponding authors.

However, most high-speed cameras or imaging systems can record
only two-dimensional (2D) images which lack the depth information.
This fundamental restriction greatly limits our ability to perceive and to
understand the complex real-world objects. The past several decades
have witnessed tremendous development in three-dimensional (3D)
imaging technologies in many fields including biomechanics [12], ge-
omaterials [4], industrial manufacturing [13-15], driven by the rapid
advances in sensors, optical engineering and computer vision [16-21].
In general, optical 3D surface imaging techniques can be classified into
two categories: the passive approaches and the active ones. Stereo vi-
sion techniques, as the representative passive methods, capture inherent
surface textures from two or more viewpoints and calculate 3D shapes
through triangulation [22]. However, they are susceptible to uniform
or periodic textures. Compared with the passive sensing, active meth-
ods encode test objects with predesigned signals, thus reducing the de-
pendence of the object textures and increasing the accuracy of 3D re-
constructions. Time-of-flight (ToF) techniques emit a modulated light
ray onto test objects and collect the light scattered back. The distance
is then estimated via multiplying the speed of light by the time delay
of the light pulse [23]. As the 3D reconstruction of ToF is not based
on triangulation, the system can be made very compactly for appli-
cations where portable equipment is preferred. Microsoft Kinect 2 ex-
ploits this technique for real-time 3D imaging and finds applications for
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human-computer interactions [24]. But, the depth precision of ToF is
generally not high for short-range inspections as light travels too fast.
As another extensively used active methods, the structured light tech-
niques illuminate test scenes with 2D spatially varying intensity pattern.
The 3D shape is extracted based on the information from the distortion
of captured structured light patterns. Because of the advantages of favor-
able flexibility and versatility, 3D surface imaging based on the struc-
tured light illumination is receiving increasing attention, and becoming
more and more important. The commercial success of these techniques
includes Microsoft Kinect 1 [25], Intel RealSense [26], Apple iPhone X
[27], and OPPO Find X [28]. Owing to advances of intelligent manu-
facturing, pilotless vehicle, and cloud imaging, the desire to developing
real-time ( ~ 30 fps) or high-speed (> 10,000 fps) 3D imaging techniques
has never been more apparent [29,30].

Rapid developments in high-frame-rate imaging sensors and digital
projection technology are providing new avenues for the generation of
powerful high-speed 3D surface imaging systems. Compared with high-
speed cameras running at tens of thousands fps or even faster, how-
ever, projectors normally operate at a much lower rate that is often
around 120 fps when gray-scale patterns are projected. Therefore, the
defocusing techniques are developed, with which quasi-sinusoidal fringe
patterns can be projected at the maximum allowed frame rate (typi-
cally more than 1000 fps) with binary dithering techniques and lens-
defocused digital light processing projectors [31,32]. Once the limita-
tion of the system hardware is overcome, the major concern focuses
on the imaging theory, for which the key is to reduce the number
of images required for a single 3D reconstruction. Intuitively, spatial-
multiplexing or one-shot techniques, e.g., Fourier transform based pro-
filometry (FT) [33-36], windowed Fourier transform technique (WFT)
[37], wavelet transform technique [38], and intensity-correlation-based
methods [39,40], are very suitable for scanning moving objects. As the
codification can be condensed into a single pattern, these methods have
ideal efficiency for high-speed 3D surface imaging. However, their spa-
tial resolution and depth accuracy are not high for discontinuities, e.g.,
object edges, due to the inherent hypothesis of the continuity and the
smoothness for local areas in these methods.

For high-accuracy 3D surface imaging, researchers typically prefer
time-multiplexing or multi-shot techniques that can benefit from abun-
dant information collected temporally. Some techniques project many
patterns of random intensity to implement active high-speed stereo-
vision 3D measurements [41,42]. However, the 3D reconstructions tend
to compromise for rapidly moving objects since a relatively long se-
quence of images (usually > 9 frames) is required to extract a single 3D
frame. In contrast, the phase-shifting profilometry (PSP) [43], which is
one of the most widely used multi-shot approaches, can produce accu-
rate 3D reconstructions by projecting a small-scale set of phase-shifting
fringe images (minimum three images). Nevertheless, it is still sensitive
to motion even with the minimum images. The reason is the object mo-
tion violates the nominal phase shifts of the raw fringe patterns, leading
to artificial ripples on reconstructed surfaces [44]. Besides, the motiva-
tion to remove the phase ambiguity due to the periodic nature of sinu-
soids is also a challenge for time-critical PSP applications, which can
easily double or even triple the size of the image sequence [45].

To reduce the size of the image sequence (captured in the time do-
main) while collecting comparable amount of information, some re-
searchers suggest strengthening the encoding capability in the space do-
main. To reduce the images for phase unwrapping, one can have more
than one viewpoints, e.g., using more cameras to capture structured-
light patterns. Benefiting from the geometric constraint, the methods
can discriminate the fringe order without capturing extra images [46—
49]. But, the weakness is that the structure of the imaging system would
become complex. Also, the cost would increase significantly because of
the use of additional high-speed cameras. Alternatively, without resort-
ing to more viewpoints, the spacial coding strategy can also be intro-
duced into the time-multiplexing techniques by condensing two images
into a single one or reusing the existing patterns with more than one

417

Optics and Lasers in Engineering 121 (2019) 416-427

purpose [50-54]. These approaches can remove the phase ambiguity
without greatly increasing the projected images, but would suffer in the
process of phase unwrapping when the projected fringe is very dense
[55]. Recently, micro FTP (uFTP) was developed to measure 3D profiles
for transient scenes at 10,000 fps [32]. Although the dynamic 3D shapes
can be recovered from dense fringe patterns, several uniform images
(i.e., pure white images) have to be projected along with the structured-
light patterns for robust phase retrieval. Thus, the size of overall image
sequence is still relatively large, making the 3D imaging sensitive to fast
moving objects.

In this work, we present a novel micro deep learning profilometry
(uDLP), which enables high-quality 3D shape reconstructions for tran-
sient scenes. The micro means small values for both the frequency vari-
ations and periods of fringe patterns, allowing highly-accurate phase
measurement and high resistance to the global illumination. Deep learn-
ing is a powerful machine learning technique that has shown great suc-
cess in numerous imaging and computer vision applications [56-61].
Thanks to the strength of machine learning, the proposed method shows
superiority in three aspects to the state-of-art methods. The first one is
the high efficiency. The phase information can be extracted from a sin-
gle image via a properly trained neural network. Compared with uFTP,
it only uses half of the images to obtain a 3D image. Then, the second
advantage is the high-quality phase measurement. As indicated by our
experiments, the phase error of uDLP is only one-third of those of FT
and WFT and is almost half of that of uFTP. Further, with only three im-
ages our method can nearly reproduce the ground-truth 3D result that
is calculated with the multi-shot phase-shifting method that uses 36 im-
ages. Last, the proposed method is easy to use. Different from Fourier-
transform-based methods in which the phase measurement deeply re-
lies on the fine tuning of parameters, e.g., the window size in FT, the
sigma, the sampling intervals, and the frequency threshold in WFT, the
presented uDLP is fully automatic once the neural network has been
trained, which means the exhaustive search for the optimal parameters
can be avoided. Experiments demonstrate that uDLP is a powerful high-
speed 3D surface imaging approach that can reconstruct high-accuracy
3D shapes for transient scenes at 20,000 fps.

2. Theory
2.1. Phase retrieval through a deep neural network

In uDLP, the fringe image is captured with a system of structured
light illumination, which consists of a projector and a camera typically.
According to the schematic shown in Fig. 1, the projector emits a fringe
image onto the measured object to encode the illuminated surface. The
camera captures the image from a different viewpoint, from which the
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Fig. 1. Schematic of 3D surface imaging by structured light illumination.
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Fig. 2. Schematic of the proposed yDLP. With a few fringe patterns I, (x, y), I,(x, ), and I5(x, y), the neural network predicts the numerator M,(x, y) and the
denominator D,(x, y) for each input fringe image. These intermediate results are then fed into the arctangent function to calculate the phase distribution ¢,(x, y).
After phase unwrapping, an unwrapped absolute phase map ®(x, y) is obtained and is further converted into the 3D reconstruction.

stripes are observed with distortion due to the depth variation of the
object. The phase is then calculated from the captured fringe image,
which works as a cue to compute the 3D information.

During the image projection, uDLP exploits several fringe patterns
with slightly different wavelengths or fringe pitches {4, 4,, ..., Ay }. For
rapid projection, the sinusoidal patterns are generated in the binary
mode and are projected by a defocused projector [62,63]. The wave-
lengths of projected patterns are carefully chosen by considering: First,
the selected 4 is supposed to be small enough, i.e., the frequency should
be sufficiently high for high-quality phase retrieval. Second, the least
common multiple (LCM) of the wavelengths should be larger than the
horizontal or vertical resolution of the projector so that the phase ambi-
guity can be removed properly. In this work, we project vertical fringes,
which means LCM (4, 4,, ..., Ap) should be greater than the width of
projection plane. With the determined wavelengths, the intensity of pro-
jected patterns can be written as

27 xP

")

where (x?, y?) is the pixel coordinate of the projector, andr = 1,2,...,T.
Parameters a and b are the mean value and the amplitude, respectively.

Then, the generated patterns are projected and captured sequen-
tially. The intensity of captured images can be represented as

Ii(x,y) = A(x, ) + B(x, y) cos ¢,(x, y) (@)

where (x, y) is the pixel coordinate of the camera, A(x, y) the background
intensity, B(x, y) the modulation, and ¢,(x, y) the phase to be recovered.
In most phase measurement techniques, the wrapped phase map is often
retrieved from an inverse trigonometric function:

M(x,y)
Dy(x,y) -
where M,(x, y) and D,(x, y) denote the numerator and the denominator
of the arctan function, respectively. c is a constant that depends on the
phase demodulation algorithm, e.g., ¢ = 0.5 for FT and ¢ = % for N-step
PSP.

To realize the process of phase retrieval with machine learning, we
construct a deep convolutional neural network. As mentioned above,
we prefer small sets of fringe images for high-speed 3D surface imag-
ing. However, one or more assistant phase maps are required for robust
phase unwrapping of dense fringe pattern [45]. Thus, we have a balance
by totally employing three fringe patterns (i.e., T = 3) for 3D imaging
that can produce three phase maps, one of which is used for 3D recon-
struction and the rest for reliable phase unwrapping. Fig. 2 demonstrates
the schematic of the proposed method. The neural network is trained to
predict the numerator M,(x, y) and the denominator D,(x, y) for each
input image I,(x, y). Each pair of numerator and denominator {M,(x,

If(x”,y”):a+bcos< 1

cB(x, y)sin¢,(x, y)

—_— (3)
¢B(x, y)cos ¢, (x, y)

¢,(x, y) = arctan
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¥), Di(x, y)} is then fed into the arctangent function (Eq. (3)) to obtain
the wrapped phase map ¢,(x, y). Next, an unwrapped phase distribution
®(x, y) is obtained by the temporal phase unwrapping algorithm based
on projection distance minimization. Finally, the 3D surface is calcu-
lated from the absolute phase map with calibrated mapping parameters
between the camera and the projector.

Note that we presented a machine-learning-based fringe analysis
method [56] that employs two neural networks to calculate the phase
information. For applications of transient 3D measurements, some im-
provements have been made in this work. First, uDLP uses only one
network for the phase retrieval, thus easing the learning process and
saving the time cost of the training process. To compensate the influence
of the absence of the background intensity, a more powerful three-scale
data processing architecture is developed here to perceive the surface
details and learn the phase extraction. Moreover, the neural network in
uDLP can learn fringe patterns of different frequencies simultaneously
and output the intermediate results for corresponding fringe patterns,
which improves the measurement efficiency of the phase and 3D con-
tours.

Fig. 3 shows the internal structure of the neural network in yDLP.
The labeled dimension of each layer or block indicates the size of the
output data. The inputs of the network are the fringe images {I; (x, y),
I,(x, y), I3(x, y)}. The size of each input image is W x H pixels, where W
is the width and H is the height. Three data-flow paths are constructed
to process the input images at different scales. In the first path which
keeps the original size of input data, the fringe images are successively
processed by a convolutional layer, a group of residual blocks and an-
other convolutional layer. C is the number of filters used in the convo-
lutional layer and equals the number of channels of output data. Each
filter is used to extract a feature map (channel) for the output tensor.
The same input data also undergoes similar but more sophisticated pro-
cedures in the second and the third paths where the data are first down-
sampled by x2 and x4 for high-level perceptions and then upsampled
to match the original dimensions. Eventually, the results of each data-
flow path are concatenated to produce the final outputs that feature
three pairs of {M(x, ¥), D(x, y)} corresponding to every input image
I(x, y). With the design of multi-scale data-flow paths, geometric de-
tails that the input images contain can be perceived precisely, ensuring
the estimation of high-quality phase information. Note that it is diffi-
cult to output the wrapped phase directly with the input of the fringe
image, since the sharp discontinuity at the 2z jump is hard to learn by
the neural network. Therefore, for high-accurate phase estimations, the
deep neural network is trained to calculate the intermediate results that
vary continuously in space, i.e., the numerator and the denominator.
Further details about the architecture of the network are provided in
Appendix A.
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Fig. 3. Architecture of the proposed multi-scale deep neural network. The input data have three channels containing the three fringe images. The neural network
has three data-flow paths that involve different kinds of layers/blocks, which can process the input data at different scales and extract useful information with
downsampling rates of x1, x2 and x4, respectively. The outputs of the network are three pairs of numerator and denominator that correspond to each fringe

pattern.

2.2. Phase unwrapping and 3D reconstruction

After feeding the estimated pair of numerator and denominator into
Eq. (3), uDLP calculates wrapped phase maps ¢,(x, ¥) for each in-
put fringe image. To remove the phase discontinuity of ¢.(x, y), we
use the temporal phase unwrapping approach based on the projec-
tion distance minimization [32]. Given a vector of wrapped phase ¢ =
(¢1 sy ¢T)T” of the pixel (x, y), where Trs means the transposition,

the vector of corresponding unwrapped phase ® = (®,®,, ... ,<I>T)T”
can be expressed as

P =@+ 27k “
wherek = (ki, ky, ..., kT)T” is the vector of integer fringe order that we

calculate for phase unwrapping. By taking the wavelengths into account,
we have the following relationship
DA =Dpdy=...= Dpip ®)

Eq. (5)reveals that the unwrapped phase @ = (@, ®,, ... ,<I>T)T” of
each pixel forms a line in space R”. Therefore, with the mentioned con-
straint that LCM (4, 4,, ..., Ap) > WP where WP is the width of projec-
tion plane in pixel, there will be a unique qualified fringe order vec-
tor k that corresponds to the measurement range. In theory, the un-
wrapped phase @ of each pixel would align perfectly along the line
expressed by Eq. (5). However, the unwrapped phase often scatters
around the line due to the effects of random noise and non-sinusoidal
fringe intensity in reality. Therefore, the distance between each candi-
date unwrapped phase and its projection onto this line is calculated.
The desired @ = (, ®,, ... ,@T)T”
minimized.

As a group of unwrapped phase maps is obtained after phase unwrap-
ping, one of them is selected as ®(x, y) for the 3D reconstruction. In the
perspective of the camera, given the point (x", y*, 2*) of test object is
imaged by pixel (x, y), we have the following projection relationship in

is determined when the distance is
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where s€ is a scaling factor, P¢ is the projection matrix of camera that is
the product of the extrinsic parameter matrix and the intrinsic parameter
matrix of the camera. In the other perspective of projector, there is a
similar process when the projector is considered as an inverse camera
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where sP is a scaling factor, PP is the projection matrix of projector that is
the product of the extrinsic parameter matrix and the intrinsic parameter
matrix of the projector. Given the unwrapped phase of this pixel is @, the
relationship between the camera pixel and its corresponding projector
pixel can be expressed by

(x,) = ®)

Thus, the 3D coordinate can be calculated by combing Egs. (6) and
(7), giving
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The projection matrices of the camera and the projector can be ob-
tained with the system calibration [46]. Note that gigabyte-scale image
data are often recorded in applications of high-speed imaging. Although
the 3D reconstruction can be carried out off-line, the time cost would be
still very high. To increase the calculation speed, we suggest Eq. (9) to
be implemented with a graphics processing unit [64] or several look-up
tables [65], which can greatly save the time cost of the 3D reconstruc-
tion.
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Fig. 4. Testing the trained network using a scene which is not present in the
training phase. (a) The measured scene; (b) fringe image I, (x, y) with 4, = 9; (c)
fringe image I,(x, y) with 4, = 11; (d) fringe image I(x, y) with 4; = 13.

3. Experiments

To validate the proposed method, we built a structured light illu-
mination system that consisted of a projector (DLP 4100, Texas Instru-
ments) with resolution of 1024 x 768 and a high-speed camera (V611,
Vision Research Phantom) with resolution of 640 x 440 and with pixel
depth of 8 bits. The camera equipped with a lens of 24 mm focal
length. The distance between the test object and the imaging system
was about 1.5m. The wavelengths of projected images were selected
as {4, =9,1, =11, A; = 13}, which provided unambiguous 3D recon-
structions for the whole projection range (i.e., LCM(9,11,13) = 1287 >
1024).

The implementation of xDLP has two steps: training and testing. In
the training stage, the training data were collected from different scenes.
Analogous to traditional approaches of structured light illumination that
require fringes with enough signal-to-noise ratio or without saturated
pixels, uDLP also prefers the training objects without very dark or shiny
surfaces. Otherwise, the training process would be damaged, since it is

Optics and Lasers in Engineering 121 (2019) 416-427

hard to obtain reliable ground truth data for these objects. Here, our
training data set was collected from 45 scenes. With the 12-step phase-
shifting method, we captured 1620 different fringe patterns and their
corresponding ground-truth data for each wavelength (see Appendix B
for more details on the collection of the training data). The neural net-
work was implemented using TensorFlow framework (Google) and was
computed on a GTX Titan graphics card (NVIDIA). To monitor during
training the accuracy of the neural network on the data that it has never
seen before, we created a validation set including 120 fringe images
from 10 validation scenes which were separate from the training scenar-
ios. With 120 epochs of training, the training loss and the validation loss
of the network converged. And there is not overfitting to our training
dataset. We provide further details of the training results in Appendix
A.

3.1. The performance of uDLP for static scene

To test the performance of the trained neural network, we measured
a static scenario that includes two isolated plaster models, as shown
in Fig. 4(a). Note that our neural network never sees these models in
the training stage. Fig. 4(b)-(d) are the captured fringe images I, (x, y),
I,(x, y), and I3(x, y), respectively. With these images, the trained neu-
ral network predicted the numerator and the denominator for each of
the input fringe image. The results are shown in the first two columns
of Fig. 5. The estimated numerators and denominators were then fed
into Eq. (3) to calculate the wrapped phase maps that are shown in the
third column of Fig. 5. Finally, we calculated the unwrapped phase dis-
tributions that are displayed in the last column of Fig. 5. As we can see,
the discontinuity have been removed completely for all of the wrapped
phase.

We chose one of the unwrapped phase maps, i.e.,®,(x, y), to inves-
tigate the quality of the phase estimated by uDLP. In the investigation,
12-step phase-shifting method was used to calculate a reference phase
map which was unwrapped in the same way. Moreover, we also applied
FT, WFT, and uFTP for comparison. Fig. 6 shows the phase error of each
method. We can see the errors of WFT and FT are more significant than
those of uFTP and uDLP. Further, uDLP shows better performance than
uFTP due to less phase errors observed at the object edges. To compare
the error maps in detail, we studied two recovered areas of complex sur-
faces, as can be seen in Fig. 7. The selected regions are the hair of the left
model and the face of the right one. These two regions of interest (ROI)
have rich details, which can be used to evaluate the capability of han-
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Fig. 5. Predicted results of the trained neural network. Each row shows the estimated numerator, denominator, wrapped phase, and unwrapped phase for each

fringe image.

420



S. Feng, C. Zuo and W. Yin et al.

Optics and Lasers in Engineering 121 (2019) 416-427

Fig. 6. Comparison of the phase error distribution for methods: (a) WFT, (b) FT, (c) uFTP, and (d) uDLP.

uFTP

Fig. 7. Comparison of the phase error of two ROI The
first ROI is selected from the hair of the left model, and
the second is picked from the face of the right model.
The zoom-in phase error of different approaches are
demonstrated for each region.

uDLP

Fig. 8. 3D reconstructions of the methods: (a) WFT, (b) FT, (c) uFTP, (d) uDLP, and (e) 12-step phase-shifting method (ground truth).

Table 1

Quantitative comparison of the proposed
uDLP with WFT, FT and xFTP in terms of MAE
of unwrapped phase and the required number

of images.
WFT  FT uFTP  uDLP
MAE (rad) 0.36 0.26 0.13 0.077
Images 3 3 6 3

dling profiles with fine structures. In Fig. 7, we can observe WFT has the
largest phase error, especially for the region of hair. By contrast, FT per-
formed better than WFT as there are less errors at the reconstructed hair.
But, it still failed to accurately retrieve the phase of the facial contour
of the right model. In contrast to WFT and FT, uFTP shows increased
but yet not high enough accuracy for these areas. As to uDLP, it has the
least phase errors for both the hair of the left model and the details of
the face of the right one. For quantitative evaluation, the mean abso-
lute error (MAE) of unwrapped phase and the number of used images
for the phase retrieval are shown in Table 1. Although the same images
are used, the error of yDLP is smaller than one-third of those of WFT
and FT. Compared with yFTP, uDLP only exploited half of the patterns
while improved the phase accuracy by almost 50%.

Further, we converted the unwrapped phase maps into 3D rendered
geometries, as shown in Fig. 8. Also, several ROI were selected for the
detailed comparison. Fig. 9 shows the enlarged views of reconstructions
of the face and the pedestal of the left model, and the face and the
arms of the right model. From the result of WFT, the general profiles
of these regions have been recovered but with significant loss of details
compared with the reference that was reconstructed by 12-step phase-
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Fig. 9. Amplified views of the 3D reconstructions of four ROI: The face of the
left model, the pedestal of the left model, the face of the right model, and the
arms of the right model.

shifting method. From the 3D reconstruction of FT, the result features
many grainy distortions that are mainly due to the inevitable spectra
leakage and overlapping in the frequency domain. In contrast to WFT
and FT, uFTP successfully retrieved some fine structures, e.g., the nose
and the mouse of the right model. But, it still failed to preserve a few
sharp edges. Finally, from the result of our method, we can see the deep-
learning based approach yielded the highest-quality 3D reconstruction,
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Speed =~ 1000 rpm

~2 pixels

Fig. 10. 3D surface imaging of an electric fan rotating at different speeds by uFTP. (a)-(c) Images captured at 1000 rpm, 3000 rpm, and 5000 rpm with their

corresponding 3D reconstructions.
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Fig. 11. 3D surface imaging of an electric fan rotating
at different speeds by the proposed yDLP. (a)-(c) Im-
ages captured at 1000 rpm, 3000 rpm, and 5000 rpm
with their corresponding 3D reconstructions.
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which almost reproduced the reference 3D model. It is worthwhile to
mention that only three images were used in our method while 12x 3
images were employed by the 12-step phase-shifting method. This exper-
iment verifies that 4DLP can produce high-fidelity phase measurements
and 3D reconstructions, and is superior to the state-of-art high-speed 3D
surface imaging approaches regarding the accuracy and efficiency.

3.2. The performance of uDLP for dynamic scene

We measured an electric fan rotating at a high speed to show yDLP’s
performance of handling fast rotating objects. The radius of the fan is
about 50 mm. For comparison, we also used the yFTP to test the same
scene. By tuning the input current (from 0.3A to 5A), we let the fan ro-
tate from 1000 rotations per minute (rpm) to 5000 rpm. Fig. 10 shows
the images captured by 4FTP and the corresponding surface reconstruc-
tions when the fan rotated at about 1000 rpm, 3000 rpm, and 5000 rpm,
respectively. During the tests, the fan rotated clockwise, and the sys-
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tem kept capturing the images at 20,000 fps for both approaches. As the
phase information was extracted from a pair of images (a fringe image
and a plain image) in uFTP, it reconstructed the 3D surface at 10,000 fps.
In Fig. 10, we can observe that within a period of 3D reconstruction the
left blade shifted upward about two and six pixels respectively with the
rotating speed of 1000 rpm and 3000 rpm. Under these conditions, 4FTP
successfully measured the contour of the blades. However, when the fan
accelerated to 5000 rpm, several areas were retrieved with many errors
as can be observed from Fig. 10(c). The reason lies in the fact that yFTP
exploited six images to reconstruct a single 3D frame. When the speed
reached up to 5000 rpm, the left blade moved ~ 9 pixels during the cap-
ture of the six images. Because of the long period of the image capture,
the 3D reconstruction becomes fragile for the object motion.

By contrast, #DLP can reconstruct 3D shapes at 20,000 fps with the
fact that the height-related phase was measured from a single fringe
image. Fig. 11 shows the captured images and the corresponding recov-
ered 3D results of yDLP. Although the speed increased to 5000 rpm, our
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Time: 0.00975s

Time: 0.04940s

Time: 0.09180s

Time: 0.11890s Time: 0.23520s

Fig. 12. Measurement of a dynamic scene that includes a static model and a falling table tennis, which are also not present in the training process. The first row
shows captured fringe images at five different moments, and the second the corresponding 3D reconstructions obtained through xDLP.

Fig. 13. Investigation of the speed of the table tennis. (a)
25 — @) 25 b The speed of the table tennis during the fall; (b) the am-
1.49mls (b) plified view of the red box in (a) showing the change of
T\,,‘ 2 Rebound @ 2 221mis” ] speed at the moment when the sphere hit the ground.
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[} 1 Py 1
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method can still measure the surface robustly. As fewer images were
used by uDLP, the motion caused a shift of merely about 4 pixels as can
be seen in Fig 11 (c), which did not affect the 3D reconstruction. From
this experiment, thanks to the powerful computational capability of ma-
chine learning, the number of images can decrease significantly, which
is favorable for overcoming the influence of object motion and dealing
with fast moving objects.

Then, another dynamic scene was measured to further validate
uDLP’s capability of handling transient events. The scene consisted of
a static plaster model and a falling table tennis. During the measure-
ment, the fringe patterns were projected repeatedly onto the scene and
the camera was synchronized with the projector at 20,000 fps. The first
row of Fig. 12 shows the captured fringe images I,(x, y) at five different
moments. We can see in this transient process the table tenuis gradually
fell to the lowest point, and then bounced after hitting the ground. The
dynamic process was retrieved by xDLP and is shown in Visualization
1. The 3D images corresponding to the selected moments are displayed
in the second row of Fig. 12. We can observe that both the static model
and the dropping sphere have been faithfully reconstructed with the
deep-learning based technique.

Further, we analyzed the velocity of the falling table tennis using
the retrieved geometry. First, the 3D point cloud of the table tennis was
fitted to the function of sphere. Then, we estimated the center of the
sphere, and calculated the speed by computing the displacement of the
center between successive 3D frames. The velocity of the sphere dur-
ing this transient event is shown in Fig. 13(a). As the measurement just
started after the fall, the table tennis had an initial velocity which is
about 1.36 m/s. As time went on, it moved faster due to the acceler-
ation of gravity. When the velocity reached the maximum, the sphere
hit the ground. Fig. 13(b) shows the speed of the sphere before and
after the rebound. We can see the table tennis had the maximum ve-
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locity of 2.21 m/s before the hitting the ground. The speed began to
decrease sharply right away after the hit. Within about one millisec-
ond, the velocity reduced to 1.62m/s and 0.37 m/s. Then, the speed
went up instantly to 1.49m/s due to the elastic potential energy. We
can see the speed at this moment is smaller than the previous maxi-
mum velocity. The reason could be the fact that some of the energy
was consumed to overcome the damping effect during the energy con-
version. Next, the table tennis gradually raised but with a diminishing
speed until it reached a point where the velocity came close to zero.
From the overall process, we can see it happened in less than 0.25 s.
Although the time period is very short, yDLP reconstructed the 3D
shape of the falling sphere accurately and analyzed the velocity success-
fully with the geometry information. This experiment demonstrates that
uDLP can not only reconstruct 3D shapes of the dynamic objects but also
be applied to the study of some key physical quantities of the transient
events.

3.3. Quantitative evaluation of 3D reconstruction accuracy

Last but not least, we measured a pair of gauge spheres made from ce-
ramic to demonstrate the accuracy of 3D reconstruction quantitatively.
The shape of the gauge spheres have been calibrated by a coordinate
measurement machine. Fig. 14(a) shows the tested spheres whose radii
are 25.398 mm and 25.403 mm, respectively, and their center-to-center
distance is 100.069 mm. With the proposed method, we computed the
3D point cloud and fitted the 3D points into the sphere model. The re-
constructed result is shown in Fig. 14(b), where the “jet” colormap is
used to represent data values of reconstruction errors. The radii of re-
constructed spheres are 25.449 mm and 25.470 mm, with the deviations
of 0.051 mm and 0.067 mm respectively. The measured center-to-center
distance is 100.134 mm with the error of 0.065mm. Further, Figs. 14(c)
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Fig. 14. Quantitative analysis of the recon-
struction accuracy of yDLP. (a) Measured ob-
jects: a pair of gauge spheres; (b) 3D recon-
struction with accuracy analysis; (c) histogram
of the 3D error of sphere A; (d) histogram of
the 3D error of sphere B.
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and 14(d) show that the root-mean-square error (RMSE) of the spheres
are 0.059mm and 0.067 mm respectively. Since the measured shapes
are very close to the ground truth, this experiment validates that our
method can provide reliable phase information as well as high-accuracy
3D measurements.

4. Conclusion

In this work, we present a novel high-speed 3D surface imaging ap-
proach yDLP that can reconstruct dense and precise 3D shapes of tran-
sient events. Different from most of fast 3D imaging techniques using
structured light illumination, yDLP can extract phase information from
a single fringe image through a properly trained deep neural network.
With only several fringe images of slightly different wavelengths, unam-
biguous high-quality 3D reconstructions can be obtained.

uDLP has three major advantages over the existing high-speed 3D
imaging techniques. The first one is the high-accuracy phase retrieval.
From our experiment, the phase error of uDLP is smaller than one-third
of those of FT and WFT, and is almost half of that of 4FTP. Moreover,
uDLP can preserve details for fine structures or edges of test objects,
resulting in the 3D reconstruction that is even comparable to that of 12-
step phase-shifting method. Next, the second advantage of uDLP is the
high efficiency. According to experimental results, uDLP leveraged only
half of the patterns of uFTP but achieved nearly doubled phase preci-
sion. Also, uDLP used only three images to produce a high-quality 3D
reconstruction that is close to that of 12-step phase-shifting method, by
which, however, 36 fringe images were employed. Last, uDLP is easy to
implement. Unlike the approaches based on Fourier transform, the per-
formance of which heavily relies on tuning parameters, e.g., the window
size for FT, the sigma, the sampling intervals, and the frequency thresh-
old for WFT, uDLP is fully automatic and does not require a manual pa-
rameter search to optimize its performance once the neural network has
been trained. Owing to these merits, 4DLP can faithfully reconstruct 3D
shapes of fast moving objects at 20,000 fps as demonstrated by the ex-
perimental result. The rate of 3D reconstruction can be further increased
once more powerful equipment is in use. We believe the proposed yDLP
could narrow the gap between the high-speed 3D imaging and the high-
rate 2D photography, providing new insights for extensive studies and
applications.
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Appendix A. Architecture and training of the neural network

The input fringe patterns are handled by three different data-flow
paths, as demonstrated in Fig. 3. In the first path which keeps the orig-
inal size of input data, the fringe images are successively processed by
a convolutional layer, a group of residual blocks and another convo-
lutional layer. Meanwhile, the same input data undergoes similar but
more sophisticated procedures in the second and the third paths where
the data are first downsampled by x 2 and x 4 for high-level perceptions
and then upsampled to match the original dimensions. The downsam-
pling is achieved through a max-pooling layer [66]. For each channel
of the input, the pooling layer finds the maximum value in a 2x2 or
4 x 4 neighborhood. It then replaces the pixels in the 2 x 2 or 4 x 4 win-
dow with the found pixel of the maximum value. Therefore, the size of
output is reduced by half/quarter for both the height and the width.

In the convolutional layers, the kernel size is 3x 3 and the convo-
lution stride is one. Zero-padding is used to control the spatial size of
the output data, so that the input and output height and width are the
same. The output of the convolutional layer is a three-dimensional (3D)
tensor of shape (H, W, C), where H and W are the height and width in
pixels of the input fringe pattern. C is the number of filters used in the
convolutional layer and equals the number of channels of output data.
Each filter is used to extract a feature map (channel) for the output ten-
sor. Therefore with more filters, the convolutional network can perceive
more details of measured surfaces. But the cost is that the network will
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Fig. A2. (a) Architecture of the upsampling block; (b) diagram of the upsam-
pling process.

consume more time during training. Thus, we have C = 50 filters in the
work to achieve a balance. Except for the last convolutional layer which
is activated linearly, the rest ones use the rectified linear unit (ReLU) as
activation function, i.e., Re LU (x) = max(0, x). Compared with other ac-
tivation functions, e.g., sigmoid function [67], it has been demonstrated
to enable better training of deeper networks [68].

In our network, we also used residual blocks whose architecture is
shown in Fig. Al. The residual framework is composed of 2 sets of con-
volutional layer (Conv) activated by ReLU stacked one above the other
[69]. It creates a shortcut between the input and output and can solve
the degradation of accuracy as the network becomes deeper, thus easing
the training process. To match the dimension of the original image, we
upsample the output data from residual blocks using the upsampling
block as shown in Fig. A2(a). The data first passes through a convo-
lutional layer with ReLU activation. We then use quadruple filters to
extract features from the input for providing rich information for the
following upsampling, whose schematic is shown in Fig. A2(b). For the
upsampled channel x, it is generated by original channels from 4x — 3 to
4x, thus allowing the output data with x 2 spatial resolution. Next, the
outputs of these three data flow paths are concatenated into a tensor
with triple channels. Finally, the last convolutional layer yields a six-
channel output datum which consists of three pairs of numerator M(x,
y) and denominator D(x, y). The reason why we have the last convolu-
tional layer to be linear is that the neural network is trained to predict
the numerator and the denominator which can be negative.

To train the network, we minimize the mean-squared-errors of the
output numerators and the output denominators with respect to the
ground truth, which are obtained using the 12-step phase-shifting al-
gorithm. The parameters of the network, i.e., the weights, bias and con-
volutional kernels, are trained using the backpropagation [70]. Thus,
the loss function is computed as

3

Loss(0) = 7 i v z <HY’M(9) - G,M”2 + HY,D(H) - GrDH2>
=1

(A1)
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Fig. A3. Loss curve of the training and validation set for the neural network.

where GM and GP are the ground-truth numerator and denominator for
the input fringe image I,. Y, (0) and Y,°(6) the numerator and denomi-
nator predicted by the network with the parameter space ¢ that includes
the weights, bias and convolutional kernels.

During the training, the network uses the score of loss function as a
feedback signal to adjust the parameters in 6 by a little bit, in a direc-
tion that would lower the loss score. To this end, the adaptive moment
estimation (ADAM) is used in our networks to tune the parameters for
finding the minimum of the loss function [71]. In the implementation of
ADAM, we start the training with a learning rate of 10~*. We drop it by
a factor of 2 if the validation loss has stopped improving for 10 epochs,
which helps the loss function get out of local minima during training.
To characterize the training, we plot the progression of the training and
validation loss over training epochs, i.e., the number of iterations in the
backpropagation over all of the dataset. Fig. A3 shows the loss curves
converge after 120 epochs. From both curves, we can see there is not
overfitting to our training dataset. As to the time cost, the training over
200 epochs took 3.16 hours.

Appendix B. Collection of training data

Prior to practical measurements, the developed neural network
needs a training process in which the network learns to retrieve the
phase. To obtain the ground-truth data used to train the neural network,
we exploit the N-step phase-shifting method as it allows precise phase
measurements. With this method, the captured phase-shifted fringe pat-
terns with different wavelengths can be written as

I'(x,y) = A(x, ) + B(x,y) cos [¢,(x,y) — §,]

where n =0, 1,..., N — 1 indicates the step of phase shift, and r = 1,2,3
implies the used wavelengths. &, is the phase shift that equals ZLN" With
the least square method, the ground-truth phase can be calculated by

NI (x, ) sing,

ZHN=BI Ii(x,y)cos 6,

(BI)

¢;(x,y) = arctan (B2)
According to Eq. (B2), the numerator and the denominator can be
expressed as

N-1 .
M,(x,y) = Y " Ti(x, y)sing, (B3)

N-1
Dy(x,y) = Y, o Ti(x,y)cos s, (B4)

Equations (B3) and (B4) are used to calculate the ground-truth nu-
merator and denominator that are exploited to train the neural network.

In our experiments, three sets of 12-step phase-shifting fringe pat-
terns with wavelengths {A; =9, 4, =11, 4; = 13} were generated ac-
cording to Eq. (B1). These patterns were then projected onto different
measured objects. The camera captured the reflected fringe patterns si-
multaneously at a different viewpoint and transferred them to our com-
puter. In our experiment, we collected the training data from 45 differ-
ent scenes including simple and complex objects. For each scene, we
recorded 12 x 3 phase-shifting fringe patterns. Thus, 1620 fringe im-
ages were collected for all of the scenes. The captured training data are
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Scenario Image I;

#540

Fig. B1. The collected training data. The first
column shows different tested scenarios. For each
of them, we captured three sets of 12 phase-
shifting fringe patterns and totally obtained 540
training input images for fringe images with
three different wavelengths, as demonstrated in
the second to the fourth column.

Image I3

Scenario Numerator M;  Numerator M,

#1

Numerator M;

Denominator D; Denominator D, Denominator D,

G

#

Fig. B2. Ground truth of the collected training data. The first column shows the tested scenarios. Within each set of fringe patterns of the same wavelengths,
we calculated the ground-truth numerator and denominator by the 12-step phase-shifting algorithm. The second to the fourth columns displays the ground-truth
numerator computed through Eq. (B3). The fifth to the seventh column shows the ground-truth denominator obtained through Eq. (B4).

demonstrated in Fig. B1. The first column shows the measured scenes.
The second to the fourth column shows the captured fringe images with
different wavelengths, respectively. Within each set of fringe patterns
of the same wavelength, we calculated the corresponding ground-truth
data by the 12-step phase-shifting algorithm. The results are shown in
Fig. B2, where the second to the fourth column displays the ground-
truth numerator, and the fifth to the seventh column shows the ground-
truth denominator. It is noted that before being fed into the networks,
the raw fringe images {I;(x, ¥), I,(x, ¥), I3(x, y)} were divided by 255
for normalization, which can make the learning process easier for the
network. Moreover, for a preferable selection of training objects, one
is suggested choosing objects without very dark or shiny surfaces to en-
sure captured fringe images with enough signal-to-noise ratio or without
saturated points.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.optlaseng.2019.04.020 .
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