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a b s t r a c t 

How to obtain object information as rich as possible, with the highest possible speed and accuracy from recorded 

optical signals, has been a crucial issue to the pursuit of powerful imaging technologies. Nowadays, the speed of 

ultra-fast photography can exceed one quadrillion. However, it can record only two-dimensional images which 

lack the depth information, greatly limiting our ability to perceive and to understand the complex real-world 

objects. Inspired by recent successes of deep learning methods in computer vision, we present a novel high-speed 

three-dimensional (3D) surface imaging approach named micro deep learning profilometry ( 𝜇DLP) using the 

structured light illumination. With a properly trained deep neural network, the phase information is predicted 

from a single fringe image and then can be converted into the 3D shape. Our experiments demonstrate that 𝜇DLP 

can faithfully retrieve the geometry of dynamic objects at 20,000 frames per second. Moreover, comparative 

results show that 𝜇DLP has superior performance in terms of the phase accuracy, reconstruction efficiency, and 

the ease of implementation over widely used Fourier-transform-based fast 3D imaging techniques, verifying that 

𝜇DLP is a powerful high-speed 3D surface imaging approach. 
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. Introduction 

It is usually said that the first instance of what we would call high-

peed photography nowadays was to settle the hot dispute “is there a

oment in a horse’s gait when all four hooves are off the ground at

nce? ” in 1872 [1] . Eadweard Muybridge, a pioneer in the field of mo-

ion study, developed an imaging system that involved 12 cameras trig-

ered by the legs of the horse through tripwires, successfully capturing

hotos on photographic glass plates at the shutter speed of near 2000

rames per second (fps) [2] . After that, the major development for high-

peed photography came, as with scientific purposes, in the wake of the

esearches on nuclear weapons during the cold war. With applications

f rotating mirror technologies, streak cameras, and rotating prism cam-

ras [3] , the imaging speed soared up to 100 million fps, i.e., Mfps. In

he late nineteenth century, the high-speed imaging underwent a further

dvancement owing to the great breakthrough in electronic semiconduc-

or devices, leading to film-based cameras replaced gradually by CCD or

MOS based cameras [4] . Nowadays, with the assistance of laser, e.g.,

he femtosecond laser pulse [5] , the imaging speed can even exceed one

uadrillion, i.e., 10 15 fps. Benefiting from the ever-increasing power of

he high-speed photography, many transient events, which happen at

emtosecond to nanosecond time scale and reflect significant fundamen-

al mechanisms, can be analyzed in-depth [6–11] . 
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However, most high-speed cameras or imaging systems can record

nly two-dimensional (2D) images which lack the depth information.

his fundamental restriction greatly limits our ability to perceive and to

nderstand the complex real-world objects. The past several decades

ave witnessed tremendous development in three-dimensional (3D)

maging technologies in many fields including biomechanics [12] , ge-

materials [4] , industrial manufacturing [13–15] , driven by the rapid

dvances in sensors, optical engineering and computer vision [16–21] .

n general, optical 3D surface imaging techniques can be classified into

wo categories: the passive approaches and the active ones. Stereo vi-

ion techniques, as the representative passive methods, capture inherent

urface textures from two or more viewpoints and calculate 3D shapes

hrough triangulation [22] . However, they are susceptible to uniform

r periodic textures. Compared with the passive sensing, active meth-

ds encode test objects with predesigned signals, thus reducing the de-

endence of the object textures and increasing the accuracy of 3D re-

onstructions. Time-of-flight (ToF) techniques emit a modulated light

ay onto test objects and collect the light scattered back. The distance

s then estimated via multiplying the speed of light by the time delay

f the light pulse [23] . As the 3D reconstruction of ToF is not based

n triangulation, the system can be made very compactly for appli-

ations where portable equipment is preferred. Microsoft Kinect 2 ex-

loits this technique for real-time 3D imaging and finds applications for
o), chenqian@njust.edu.cn (Q. Chen). 
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Fig. 1. Schematic of 3D surface imaging by structured light illumination. 
uman-computer interactions [24] . But, the depth precision of ToF is

enerally not high for short-range inspections as light travels too fast.

s another extensively used active methods, the structured light tech-

iques illuminate test scenes with 2D spatially varying intensity pattern.

he 3D shape is extracted based on the information from the distortion

f captured structured light patterns. Because of the advantages of favor-

ble flexibility and versatility, 3D surface imaging based on the struc-

ured light illumination is receiving increasing attention, and becoming

ore and more important. The commercial success of these techniques

ncludes Microsoft Kinect 1 [25] , Intel RealSense [26] , Apple iPhone X

27] , and OPPO Find X [28] . Owing to advances of intelligent manu-

acturing, pilotless vehicle, and cloud imaging, the desire to developing

eal-time ( ∼30 fps) or high-speed ( > 10,000 fps) 3D imaging techniques

as never been more apparent [29,30] . 

Rapid developments in high-frame-rate imaging sensors and digital

rojection technology are providing new avenues for the generation of

owerful high-speed 3D surface imaging systems. Compared with high-

peed cameras running at tens of thousands fps or even faster, how-

ver, projectors normally operate at a much lower rate that is often

round 120 fps when gray-scale patterns are projected. Therefore, the

efocusing techniques are developed, with which quasi-sinusoidal fringe

atterns can be projected at the maximum allowed frame rate (typi-

ally more than 1000 fps) with binary dithering techniques and lens-

efocused digital light processing projectors [31,32] . Once the limita-

ion of the system hardware is overcome, the major concern focuses

n the imaging theory, for which the key is to reduce the number

f images required for a single 3D reconstruction. Intuitively, spatial-

ultiplexing or one-shot techniques, e.g., Fourier transform based pro-

lometry (FT) [33–36] , windowed Fourier transform technique (WFT)

37] , wavelet transform technique [38] , and intensity-correlation-based

ethods [39,40] , are very suitable for scanning moving objects. As the

odification can be condensed into a single pattern, these methods have

deal efficiency for high-speed 3D surface imaging. However, their spa-

ial resolution and depth accuracy are not high for discontinuities, e.g.,

bject edges, due to the inherent hypothesis of the continuity and the

moothness for local areas in these methods. 

For high-accuracy 3D surface imaging, researchers typically prefer

ime-multiplexing or multi-shot techniques that can benefit from abun-

ant information collected temporally. Some techniques project many

atterns of random intensity to implement active high-speed stereo-

ision 3D measurements [41,42] . However, the 3D reconstructions tend

o compromise for rapidly moving objects since a relatively long se-

uence of images (usually > 9 frames) is required to extract a single 3D

rame. In contrast, the phase-shifting profilometry (PSP) [43] , which is

ne of the most widely used multi-shot approaches, can produce accu-

ate 3D reconstructions by projecting a small-scale set of phase-shifting

ringe images (minimum three images). Nevertheless, it is still sensitive

o motion even with the minimum images. The reason is the object mo-

ion violates the nominal phase shifts of the raw fringe patterns, leading

o artificial ripples on reconstructed surfaces [44] . Besides, the motiva-

ion to remove the phase ambiguity due to the periodic nature of sinu-

oids is also a challenge for time-critical PSP applications, which can

asily double or even triple the size of the image sequence [45] . 

To reduce the size of the image sequence (captured in the time do-

ain) while collecting comparable amount of information, some re-

earchers suggest strengthening the encoding capability in the space do-

ain. To reduce the images for phase unwrapping, one can have more

han one viewpoints, e.g., using more cameras to capture structured-

ight patterns. Benefiting from the geometric constraint, the methods

an discriminate the fringe order without capturing extra images [46–

9] . But, the weakness is that the structure of the imaging system would

ecome complex. Also, the cost would increase significantly because of

he use of additional high-speed cameras. Alternatively, without resort-

ng to more viewpoints, the spacial coding strategy can also be intro-

uced into the time-multiplexing techniques by condensing two images

nto a single one or reusing the existing patterns with more than one
417 
urpose [50–54] . These approaches can remove the phase ambiguity

ithout greatly increasing the projected images, but would suffer in the

rocess of phase unwrapping when the projected fringe is very dense

55] . Recently, micro FTP ( 𝜇FTP) was developed to measure 3D profiles

or transient scenes at 10,000 fps [32] . Although the dynamic 3D shapes

an be recovered from dense fringe patterns, several uniform images

i.e., pure white images) have to be projected along with the structured-

ight patterns for robust phase retrieval. Thus, the size of overall image

equence is still relatively large, making the 3D imaging sensitive to fast

oving objects. 

In this work, we present a novel micro deep learning profilometry

 𝜇DLP), which enables high-quality 3D shape reconstructions for tran-

ient scenes. The micro means small values for both the frequency vari-

tions and periods of fringe patterns, allowing highly-accurate phase

easurement and high resistance to the global illumination. Deep learn-

ng is a powerful machine learning technique that has shown great suc-

ess in numerous imaging and computer vision applications [56–61] .

hanks to the strength of machine learning, the proposed method shows

uperiority in three aspects to the state-of-art methods. The first one is

he high efficiency. The phase information can be extracted from a sin-

le image via a properly trained neural network. Compared with 𝜇FTP,

t only uses half of the images to obtain a 3D image. Then, the second

dvantage is the high-quality phase measurement. As indicated by our

xperiments, the phase error of 𝜇DLP is only one-third of those of FT

nd WFT and is almost half of that of 𝜇FTP. Further, with only three im-

ges our method can nearly reproduce the ground-truth 3D result that

s calculated with the multi-shot phase-shifting method that uses 36 im-

ges. Last, the proposed method is easy to use. Different from Fourier-

ransform-based methods in which the phase measurement deeply re-

ies on the fine tuning of parameters, e.g., the window size in FT, the

igma, the sampling intervals, and the frequency threshold in WFT, the

resented 𝜇DLP is fully automatic once the neural network has been

rained, which means the exhaustive search for the optimal parameters

an be avoided. Experiments demonstrate that 𝜇DLP is a powerful high-

peed 3D surface imaging approach that can reconstruct high-accuracy

D shapes for transient scenes at 20,000 fps. 

. Theory 

.1. Phase retrieval through a deep neural network 

In 𝜇DLP, the fringe image is captured with a system of structured

ight illumination, which consists of a projector and a camera typically.

ccording to the schematic shown in Fig. 1 , the projector emits a fringe

mage onto the measured object to encode the illuminated surface. The

amera captures the image from a different viewpoint, from which the
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Fig. 2. Schematic of the proposed 𝜇DLP. With a few fringe patterns I 1 ( x, y ), I 2 ( x, y ), and I 3 ( x, y ), the neural network predicts the numerator M t ( x, y ) and the 

denominator D t ( x, y ) for each input fringe image. These intermediate results are then fed into the arctangent function to calculate the phase distribution 𝜙t ( x, y ). 

After phase unwrapping, an unwrapped absolute phase map Φ( x, y ) is obtained and is further converted into the 3D reconstruction. 
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tripes are observed with distortion due to the depth variation of the

bject. The phase is then calculated from the captured fringe image,

hich works as a cue to compute the 3D information. 

During the image projection, 𝜇DLP exploits several fringe patterns

ith slightly different wavelengths or fringe pitches 
{
𝜆1 , 𝜆2 , … , 𝜆𝑇 

}
. For

apid projection, the sinusoidal patterns are generated in the binary

ode and are projected by a defocused projector [62,63] . The wave-

engths of projected patterns are carefully chosen by considering: First,

he selected 𝜆 is supposed to be small enough, i.e., the frequency should

e sufficiently high for high-quality phase retrieval. Second, the least

ommon multiple ( LCM ) of the wavelengths should be larger than the

orizontal or vertical resolution of the projector so that the phase ambi-

uity can be removed properly. In this work, we project vertical fringes,

hich means 𝐿𝐶𝑀 

(
𝜆1 , 𝜆2 , … , 𝜆𝑇 

)
should be greater than the width of

rojection plane. With the determined wavelengths, the intensity of pro-

ected patterns can be written as 

 

𝑝 

𝑡 
( 𝑥 𝑝 , 𝑦 𝑝 ) = 𝑎 + 𝑏 cos 

( 2 𝜋𝑥 𝑝 

𝜆𝑡 

) 

(1)

here ( 𝑥 𝑝 , 𝑦 𝑝 ) is the pixel coordinate of the projector, and 𝑡 = 1 , 2 , … , 𝑇 .

arameters a and b are the mean value and the amplitude, respectively.

Then, the generated patterns are projected and captured sequen-

ially. The intensity of captured images can be represented as 

 𝑡 ( 𝑥, 𝑦 ) = 𝐴 ( 𝑥, 𝑦 ) + 𝐵( 𝑥, 𝑦 ) cos 𝜙𝑡 ( 𝑥, 𝑦 ) (2)

here ( x, y ) is the pixel coordinate of the camera, A ( x, y ) the background

ntensity, B ( x, y ) the modulation, and 𝜙t ( x, y ) the phase to be recovered.

n most phase measurement techniques, the wrapped phase map is often

etrieved from an inverse trigonometric function: 

𝑡 ( 𝑥, 𝑦 ) = arctan 
𝑀 𝑡 ( 𝑥, 𝑦 ) 
𝐷 𝑡 ( 𝑥, 𝑦 ) 

= arctan 
𝑐𝐵( 𝑥, 𝑦 ) sin 𝜙𝑡 ( 𝑥, 𝑦 ) 
𝑐𝐵( 𝑥, 𝑦 ) cos 𝜙𝑡 ( 𝑥, 𝑦 ) 

(3)

here M t ( x, y ) and D t ( x, y ) denote the numerator and the denominator

f the arctan function, respectively. c is a constant that depends on the

hase demodulation algorithm, e.g., 𝑐 = 0 . 5 for FT and 𝑐 = 

𝑁 

2 for N -step

SP. 

To realize the process of phase retrieval with machine learning, we

onstruct a deep convolutional neural network. As mentioned above,

e prefer small sets of fringe images for high-speed 3D surface imag-

ng. However, one or more assistant phase maps are required for robust

hase unwrapping of dense fringe pattern [45] . Thus, we have a balance

y totally employing three fringe patterns (i.e., 𝑇 = 3 ) for 3D imaging

hat can produce three phase maps, one of which is used for 3D recon-

truction and the rest for reliable phase unwrapping. Fig. 2 demonstrates

he schematic of the proposed method. The neural network is trained to

redict the numerator M t ( x, y ) and the denominator D t ( x, y ) for each

nput image I ( x, y ). Each pair of numerator and denominator { M ( x,
t t 

418 
 ), D t ( x, y )} is then fed into the arctangent function ( Eq. (3) ) to obtain

he wrapped phase map 𝜙t ( x, y ). Next, an unwrapped phase distribution

( x, y ) is obtained by the temporal phase unwrapping algorithm based

n projection distance minimization. Finally, the 3D surface is calcu-

ated from the absolute phase map with calibrated mapping parameters

etween the camera and the projector. 

Note that we presented a machine-learning-based fringe analysis

ethod [56] that employs two neural networks to calculate the phase

nformation. For applications of transient 3D measurements, some im-

rovements have been made in this work. First, 𝜇DLP uses only one

etwork for the phase retrieval, thus easing the learning process and

aving the time cost of the training process. To compensate the influence

f the absence of the background intensity, a more powerful three-scale

ata processing architecture is developed here to perceive the surface

etails and learn the phase extraction. Moreover, the neural network in

DLP can learn fringe patterns of different frequencies simultaneously

nd output the intermediate results for corresponding fringe patterns,

hich improves the measurement efficiency of the phase and 3D con-

ours. 

Fig. 3 shows the internal structure of the neural network in 𝜇DLP.

he labeled dimension of each layer or block indicates the size of the

utput data. The inputs of the network are the fringe images { I 1 ( x, y ),

 2 ( x, y ), I 3 ( x, y )}. The size of each input image is W ×H pixels, where W

s the width and H is the height. Three data-flow paths are constructed

o process the input images at different scales. In the first path which

eeps the original size of input data, the fringe images are successively

rocessed by a convolutional layer, a group of residual blocks and an-

ther convolutional layer. C is the number of filters used in the convo-

utional layer and equals the number of channels of output data. Each

lter is used to extract a feature map (channel) for the output tensor.

he same input data also undergoes similar but more sophisticated pro-

edures in the second and the third paths where the data are first down-

ampled by ×2 and ×4 for high-level perceptions and then upsampled

o match the original dimensions. Eventually, the results of each data-

ow path are concatenated to produce the final outputs that feature

hree pairs of { M ( x, y ), D ( x, y )} corresponding to every input image

 t ( x, y ). With the design of multi-scale data-flow paths, geometric de-

ails that the input images contain can be perceived precisely, ensuring

he estimation of high-quality phase information. Note that it is diffi-

ult to output the wrapped phase directly with the input of the fringe

mage, since the sharp discontinuity at the 2 𝜋 jump is hard to learn by

he neural network. Therefore, for high-accurate phase estimations, the

eep neural network is trained to calculate the intermediate results that

ary continuously in space, i.e., the numerator and the denominator.

urther details about the architecture of the network are provided in

ppendix A. 
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Fig. 3. Architecture of the proposed multi-scale deep neural network. The input data have three channels containing the three fringe images. The neural network 

has three data-flow paths that involve different kinds of layers/blocks, which can process the input data at different scales and extract useful information with 

downsampling rates of ×1, ×2 and ×4, respectively. The outputs of the network are three pairs of numerator and denominator that correspond to each fringe 

pattern. 
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.2. Phase unwrapping and 3D reconstruction 

After feeding the estimated pair of numerator and denominator into

q. (3) , 𝜇DLP calculates wrapped phase maps 𝜙t ( x, y ) for each in-

ut fringe image. To remove the phase discontinuity of 𝜙t ( x, y ), we

se the temporal phase unwrapping approach based on the projec-

ion distance minimization [32] . Given a vector of wrapped phase 𝜑 =
𝜙1 , 𝜙2 , … , 𝜙𝑇 

)𝑇 𝑟𝑠 
of the pixel ( x, y ), where Trs means the transposition,

he vector of corresponding unwrapped phase 𝚽 = 

(
Φ1 , Φ2 , … , Φ𝑇 

)𝑇 𝑟𝑠 
an be expressed as 

= 𝛗 + 2 𝜋𝐤 (4)

here 𝐤 = 

(
𝑘 1 , 𝑘 2 , … , 𝑘 𝑇 

)𝑇 𝑟𝑠 
is the vector of integer fringe order that we

alculate for phase unwrapping. By taking the wavelengths into account,

e have the following relationship 

1 𝜆1 = Φ2 𝜆2 = … = Φ𝑇 𝜆𝑇 (5)

Eq. (5) reveals that the unwrapped phase 𝚽 = 

(
Φ1 , Φ2 , … , Φ𝑇 

)𝑇 𝑟𝑠 
of

ach pixel forms a line in space R 

T . Therefore, with the mentioned con-

traint that 𝐿𝐶𝑀 

(
𝜆1 , 𝜆2 , … , 𝜆𝑇 

)
> 𝑊 

𝑝 where W 

p is the width of projec-

ion plane in pixel, there will be a unique qualified fringe order vec-

or k that corresponds to the measurement range. In theory, the un-

rapped phase 𝚽 of each pixel would align perfectly along the line

xpressed by Eq. (5) . However, the unwrapped phase often scatters

round the line due to the effects of random noise and non-sinusoidal

ringe intensity in reality. Therefore, the distance between each candi-

ate unwrapped phase and its projection onto this line is calculated.

he desired 𝚽 = 

(
Φ1 , Φ2 , … , Φ𝑇 

)𝑇 𝑟𝑠 
is determined when the distance is

inimized. 

As a group of unwrapped phase maps is obtained after phase unwrap-

ing, one of them is selected as Φ( x, y ) for the 3D reconstruction. In the

erspective of the camera, given the point ( x w , y w , z w ) of test object is

maged by pixel ( x, y ), we have the following projection relationship in
419 
omogeneous coordinates 

 

𝑐 

⎛ ⎜ ⎜ ⎝ 
𝑥 

𝑦 

1 

⎞ ⎟ ⎟ ⎠ = 𝑃 𝑐 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑥 𝑤 

𝑦 𝑤 

𝑧 𝑤 

1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 

⎛ ⎜ ⎜ ⎝ 
𝑝 𝑐 11 𝑝 𝑐 12 𝑝 𝑐 13 𝑝 𝑐 14 
𝑝 𝑐 21 𝑝 𝑐 22 𝑝 𝑐 23 𝑝 𝑐 24 
𝑝 𝑐 31 𝑝 𝑐 32 𝑝 𝑐 33 𝑝 𝑐 34 

⎞ ⎟ ⎟ ⎠ 
⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑥 𝑤 

𝑦 𝑤 

𝑧 𝑤 

1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(6) 

here s c is a scaling factor, P c is the projection matrix of camera that is

he product of the extrinsic parameter matrix and the intrinsic parameter

atrix of the camera. In the other perspective of projector, there is a

imilar process when the projector is considered as an inverse camera 
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here s p is a scaling factor, P p is the projection matrix of projector that is

he product of the extrinsic parameter matrix and the intrinsic parameter

atrix of the projector. Given the unwrapped phase of this pixel is Φ, the

elationship between the camera pixel and its corresponding projector

ixel can be expressed by 

( 𝑥, 𝑦 ) = 

2 𝜋
𝜆
𝑥 𝑝 (8)

Thus, the 3D coordinate can be calculated by combing Eqs. (6) and

7) , giving 

 

 

 

 

𝑥 𝑤 

𝑦 𝑤 

𝑧 𝑤 

⎞ ⎟ ⎟ ⎠ = 
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𝑝 𝑐 21 − 𝑝 𝑐 31 𝑦 𝑝 𝑐 22 − 𝑝 𝑐 32 𝑦 𝑝 𝑐 23 − 𝑝 𝑐 32 𝑦 

𝑝 𝑐 11 − 𝑝 𝑐 31 𝑥 
𝑝 𝑝 𝑐 12 − 𝑝 𝑐 32 𝑥 

𝑝 𝑝 𝑐 13 − 𝑝 𝑐 33 𝑥 
𝑝 

⎞ ⎟ ⎟ ⎠ 
−1 ⎛ ⎜ ⎜ ⎝ 
𝑝 𝑐 34 𝑥 − 𝑝 𝑐 14 
𝑝 𝑐 34 𝑦 − 𝑝 𝑐 24 
𝑝 𝑐 34 𝑥 

𝑝 − 𝑝 
𝑝 

14 

⎞ ⎟ ⎟ ⎠ (9) 

The projection matrices of the camera and the projector can be ob-

ained with the system calibration [46] . Note that gigabyte-scale image

ata are often recorded in applications of high-speed imaging. Although

he 3D reconstruction can be carried out off-line, the time cost would be

till very high. To increase the calculation speed, we suggest Eq. (9) to

e implemented with a graphics processing unit [64] or several look-up

ables [65] , which can greatly save the time cost of the 3D reconstruc-

ion. 
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Fig. 4. Testing the trained network using a scene which is not present in the 

training phase. (a) The measured scene; (b) fringe image I 1 ( x, y ) with 𝜆1 = 9 ; (c) 

fringe image I 2 ( x, y ) with 𝜆2 = 11 ; (d) fringe image I 3 ( x, y ) with 𝜆3 = 13 . 
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. Experiments 

To validate the proposed method, we built a structured light illu-

ination system that consisted of a projector (DLP 4100, Texas Instru-

ents) with resolution of 1024 ×768 and a high-speed camera (V611,

ision Research Phantom) with resolution of 640 ×440 and with pixel

epth of 8 bits. The camera equipped with a lens of 24 mm focal

ength. The distance between the test object and the imaging system

as about 1.5 m. The wavelengths of projected images were selected

s 
{
𝜆1 = 9 , 𝜆2 = 11 , 𝜆3 = 13 

}
, which provided unambiguous 3D recon-

tructions for the whole projection range (i.e., 𝐿𝐶𝑀 ( 9 , 11 , 13 ) = 1287 >
024 ). 

The implementation of 𝜇DLP has two steps: training and testing. In

he training stage, the training data were collected from different scenes.

nalogous to traditional approaches of structured light illumination that

equire fringes with enough signal-to-noise ratio or without saturated

ixels, 𝜇DLP also prefers the training objects without very dark or shiny

urfaces. Otherwise, the training process would be damaged, since it is
ig. 5. Predicted results of the trained neural network. Each row shows the estima

ringe image. 

420 
ard to obtain reliable ground truth data for these objects. Here, our

raining data set was collected from 45 scenes. With the 12-step phase-

hifting method, we captured 1620 different fringe patterns and their

orresponding ground-truth data for each wavelength (see Appendix B

or more details on the collection of the training data). The neural net-

ork was implemented using TensorFlow framework (Google) and was

omputed on a GTX Titan graphics card (NVIDIA). To monitor during

raining the accuracy of the neural network on the data that it has never

een before, we created a validation set including 120 fringe images

rom 10 validation scenes which were separate from the training scenar-

os. With 120 epochs of training, the training loss and the validation loss

f the network converged. And there is not overfitting to our training

ataset. We provide further details of the training results in Appendix

. 

.1. The performance of 𝜇DLP for static scene 

To test the performance of the trained neural network, we measured

 static scenario that includes two isolated plaster models, as shown

n Fig. 4 (a). Note that our neural network never sees these models in

he training stage. Fig. 4 (b)–(d) are the captured fringe images I 1 ( x, y ),

 2 ( x, y ), and I 3 ( x, y ), respectively. With these images, the trained neu-

al network predicted the numerator and the denominator for each of

he input fringe image. The results are shown in the first two columns

f Fig. 5 . The estimated numerators and denominators were then fed

nto Eq. (3) to calculate the wrapped phase maps that are shown in the

hird column of Fig. 5 . Finally, we calculated the unwrapped phase dis-

ributions that are displayed in the last column of Fig. 5 . As we can see,

he discontinuity have been removed completely for all of the wrapped

hase. 

We chose one of the unwrapped phase maps, i.e., Φ2 ( x, y ), to inves-

igate the quality of the phase estimated by 𝜇DLP. In the investigation,

2-step phase-shifting method was used to calculate a reference phase

ap which was unwrapped in the same way. Moreover, we also applied

T, WFT, and 𝜇FTP for comparison. Fig. 6 shows the phase error of each

ethod. We can see the errors of WFT and FT are more significant than

hose of 𝜇FTP and 𝜇DLP. Further, 𝜇DLP shows better performance than

FTP due to less phase errors observed at the object edges. To compare

he error maps in detail, we studied two recovered areas of complex sur-

aces, as can be seen in Fig. 7 . The selected regions are the hair of the left

odel and the face of the right one. These two regions of interest (ROI)

ave rich details, which can be used to evaluate the capability of han-
ted numerator, denominator, wrapped phase, and unwrapped phase for each 
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Fig. 6. Comparison of the phase error distribution for methods: (a) WFT, (b) FT, (c) 𝜇FTP, and (d) 𝜇DLP. 

Fig. 7. Comparison of the phase error of two ROI. The 

first ROI is selected from the hair of the left model, and 

the second is picked from the face of the right model. 

The zoom-in phase error of different approaches are 

demonstrated for each region. 

Fig. 8. 3D reconstructions of the methods: (a) WFT, (b) FT, (c) 𝜇FTP, (d) 𝜇DLP, and (e) 12-step phase-shifting method (ground truth). 

Table 1 

Quantitative comparison of the proposed 

𝜇DLP with WFT, FT and 𝜇FTP in terms of MAE 

of unwrapped phase and the required number 

of images. 

WFT FT 𝜇FTP 𝜇DLP 

MAE (rad) 0.36 0.26 0.13 0.077 

Images 3 3 6 3 
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Fig. 9. Amplified views of the 3D reconstructions of four ROI: The face of the 

left model, the pedestal of the left model, the face of the right model, and the 

arms of the right model. 
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l  

a  

a  

s  

l  
ling profiles with fine structures. In Fig. 7 , we can observe WFT has the

argest phase error, especially for the region of hair. By contrast, FT per-

ormed better than WFT as there are less errors at the reconstructed hair.

ut, it still failed to accurately retrieve the phase of the facial contour

f the right model. In contrast to WFT and FT, 𝜇FTP shows increased

ut yet not high enough accuracy for these areas. As to 𝜇DLP, it has the

east phase errors for both the hair of the left model and the details of

he face of the right one. For quantitative evaluation, the mean abso-

ute error (MAE) of unwrapped phase and the number of used images

or the phase retrieval are shown in Table 1 . Although the same images

re used, the error of 𝜇DLP is smaller than one-third of those of WFT

nd FT. Compared with 𝜇FTP, 𝜇DLP only exploited half of the patterns

hile improved the phase accuracy by almost 50%. 

Further, we converted the unwrapped phase maps into 3D rendered

eometries, as shown in Fig. 8 . Also, several ROI were selected for the

etailed comparison. Fig. 9 shows the enlarged views of reconstructions

f the face and the pedestal of the left model, and the face and the

rms of the right model. From the result of WFT, the general profiles

f these regions have been recovered but with significant loss of details

ompared with the reference that was reconstructed by 12-step phase-
421 
hifting method. From the 3D reconstruction of FT, the result features

any grainy distortions that are mainly due to the inevitable spectra

eakage and overlapping in the frequency domain. In contrast to WFT

nd FT, 𝜇FTP successfully retrieved some fine structures, e.g., the nose

nd the mouse of the right model. But, it still failed to preserve a few

harp edges. Finally, from the result of our method, we can see the deep-

earning based approach yielded the highest-quality 3D reconstruction,
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Fig. 10. 3D surface imaging of an electric fan rotating at different speeds by 𝜇FTP. (a)–(c) Images captured at 1000 rpm, 3000 rpm, and 5000 rpm with their 

corresponding 3D reconstructions. 

Fig. 11. 3D surface imaging of an electric fan rotating 

at different speeds by the proposed 𝜇DLP. (a)–(c) Im- 

ages captured at 1000 rpm, 3000 rpm, and 5000 rpm 

with their corresponding 3D reconstructions. 
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hich almost reproduced the reference 3D model. It is worthwhile to

ention that only three images were used in our method while 12 ×3

mages were employed by the 12-step phase-shifting method. This exper-

ment verifies that 𝜇DLP can produce high-fidelity phase measurements

nd 3D reconstructions, and is superior to the state-of-art high-speed 3D

urface imaging approaches regarding the accuracy and efficiency. 

.2. The performance of 𝜇DLP for dynamic scene 

We measured an electric fan rotating at a high speed to show 𝜇DLP’s

erformance of handling fast rotating objects. The radius of the fan is

bout 50 mm. For comparison, we also used the 𝜇FTP to test the same

cene. By tuning the input current (from 0.3A to 5A), we let the fan ro-

ate from 1000 rotations per minute (rpm) to 5000 rpm. Fig. 10 shows

he images captured by 𝜇FTP and the corresponding surface reconstruc-

ions when the fan rotated at about 1000 rpm, 3000 rpm, and 5000 rpm,

espectively. During the tests, the fan rotated clockwise, and the sys-
422 
em kept capturing the images at 20,000 fps for both approaches. As the

hase information was extracted from a pair of images (a fringe image

nd a plain image) in 𝜇FTP, it reconstructed the 3D surface at 10,000 fps.

n Fig. 10 , we can observe that within a period of 3D reconstruction the

eft blade shifted upward about two and six pixels respectively with the

otating speed of 1000 rpm and 3000 rpm. Under these conditions, 𝜇FTP

uccessfully measured the contour of the blades. However, when the fan

ccelerated to 5000 rpm, several areas were retrieved with many errors

s can be observed from Fig. 10 (c). The reason lies in the fact that 𝜇FTP

xploited six images to reconstruct a single 3D frame. When the speed

eached up to 5000 rpm, the left blade moved ∼9 pixels during the cap-

ure of the six images. Because of the long period of the image capture,

he 3D reconstruction becomes fragile for the object motion. 

By contrast, 𝜇DLP can reconstruct 3D shapes at 20,000 fps with the

act that the height-related phase was measured from a single fringe

mage. Fig. 11 shows the captured images and the corresponding recov-

red 3D results of 𝜇DLP. Although the speed increased to 5000 rpm, our
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Fig. 12. Measurement of a dynamic scene that includes a static model and a falling table tennis, which are also not present in the training process. The first row 

shows captured fringe images at five different moments, and the second the corresponding 3D reconstructions obtained through 𝜇DLP. 

Fig. 13. Investigation of the speed of the table tennis. (a) 

The speed of the table tennis during the fall; (b) the am- 

plified view of the red box in (a) showing the change of 

speed at the moment when the sphere hit the ground. 
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ethod can still measure the surface robustly. As fewer images were

sed by 𝜇DLP, the motion caused a shift of merely about 4 pixels as can

e seen in Fig 11 (c), which did not affect the 3D reconstruction. From

his experiment, thanks to the powerful computational capability of ma-

hine learning, the number of images can decrease significantly, which

s favorable for overcoming the influence of object motion and dealing

ith fast moving objects. 

Then, another dynamic scene was measured to further validate

DLP’s capability of handling transient events. The scene consisted of

 static plaster model and a falling table tennis. During the measure-

ent, the fringe patterns were projected repeatedly onto the scene and

he camera was synchronized with the projector at 20,000 fps. The first

ow of Fig. 12 shows the captured fringe images I 2 ( x, y ) at five different

oments. We can see in this transient process the table tenuis gradually

ell to the lowest point, and then bounced after hitting the ground. The

ynamic process was retrieved by 𝜇DLP and is shown in Visualization

. The 3D images corresponding to the selected moments are displayed

n the second row of Fig. 12 . We can observe that both the static model

nd the dropping sphere have been faithfully reconstructed with the

eep-learning based technique. 

Further, we analyzed the velocity of the falling table tennis using

he retrieved geometry. First, the 3D point cloud of the table tennis was

tted to the function of sphere. Then, we estimated the center of the

phere, and calculated the speed by computing the displacement of the

enter between successive 3D frames. The velocity of the sphere dur-

ng this transient event is shown in Fig. 13 (a). As the measurement just

tarted after the fall, the table tennis had an initial velocity which is

bout 1.36 m/s. As time went on, it moved faster due to the acceler-

tion of gravity. When the velocity reached the maximum, the sphere

it the ground. Fig. 13 (b) shows the speed of the sphere before and
fter the rebound. We can see the table tennis had the maximum ve- d  

423 
ocity of 2.21 m/s before the hitting the ground. The speed began to

ecrease sharply right away after the hit. Within about one millisec-

nd, the velocity reduced to 1.62 m/s and 0.37 m/s. Then, the speed

ent up instantly to 1.49 m/s due to the elastic potential energy. We

an see the speed at this moment is smaller than the previous maxi-

um velocity. The reason could be the fact that some of the energy

as consumed to overcome the damping effect during the energy con-

ersion. Next, the table tennis gradually raised but with a diminishing

peed until it reached a point where the velocity came close to zero.

rom the overall process, we can see it happened in less than 0.25 s.

lthough the time period is very short, 𝜇DLP reconstructed the 3D

hape of the falling sphere accurately and analyzed the velocity success-

ully with the geometry information. This experiment demonstrates that

DLP can not only reconstruct 3D shapes of the dynamic objects but also

e applied to the study of some key physical quantities of the transient

vents. 

.3. Quantitative evaluation of 3D reconstruction accuracy 

Last but not least, we measured a pair of gauge spheres made from ce-

amic to demonstrate the accuracy of 3D reconstruction quantitatively.

he shape of the gauge spheres have been calibrated by a coordinate

easurement machine. Fig. 14 (a) shows the tested spheres whose radii

re 25.398 mm and 25.403 mm, respectively, and their center-to-center

istance is 100.069 mm. With the proposed method, we computed the

D point cloud and fitted the 3D points into the sphere model. The re-

onstructed result is shown in Fig. 14 (b), where the “jet ” colormap is

sed to represent data values of reconstruction errors. The radii of re-

onstructed spheres are 25.449 mm and 25.470 mm, with the deviations

f 0.051 mm and 0.067 mm respectively. The measured center-to-center

istance is 100.134 mm with the error of 0.065mm. Further, Figs. 14 (c)
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Fig. 14. Quantitative analysis of the recon- 

struction accuracy of 𝜇DLP. (a) Measured ob- 

jects: a pair of gauge spheres; (b) 3D recon- 

struction with accuracy analysis; (c) histogram 

of the 3D error of sphere A; (d) histogram of 

the 3D error of sphere B. 
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nd 14 (d) show that the root-mean-square error (RMSE) of the spheres

re 0.059 mm and 0.067 mm respectively. Since the measured shapes

re very close to the ground truth, this experiment validates that our

ethod can provide reliable phase information as well as high-accuracy

D measurements. 

. Conclusion 

In this work, we present a novel high-speed 3D surface imaging ap-

roach 𝜇DLP that can reconstruct dense and precise 3D shapes of tran-

ient events. Different from most of fast 3D imaging techniques using

tructured light illumination, 𝜇DLP can extract phase information from

 single fringe image through a properly trained deep neural network.

ith only several fringe images of slightly different wavelengths, unam-

iguous high-quality 3D reconstructions can be obtained. 

𝜇DLP has three major advantages over the existing high-speed 3D

maging techniques. The first one is the high-accuracy phase retrieval.

rom our experiment, the phase error of 𝜇DLP is smaller than one-third

f those of FT and WFT, and is almost half of that of 𝜇FTP. Moreover,

DLP can preserve details for fine structures or edges of test objects,

esulting in the 3D reconstruction that is even comparable to that of 12-

tep phase-shifting method. Next, the second advantage of 𝜇DLP is the

igh efficiency. According to experimental results, 𝜇DLP leveraged only

alf of the patterns of 𝜇FTP but achieved nearly doubled phase preci-

ion. Also, 𝜇DLP used only three images to produce a high-quality 3D

econstruction that is close to that of 12-step phase-shifting method, by

hich, however, 36 fringe images were employed. Last, 𝜇DLP is easy to

mplement. Unlike the approaches based on Fourier transform, the per-

ormance of which heavily relies on tuning parameters, e.g., the window

ize for FT, the sigma, the sampling intervals, and the frequency thresh-

ld for WFT, 𝜇DLP is fully automatic and does not require a manual pa-

ameter search to optimize its performance once the neural network has

een trained. Owing to these merits, 𝜇DLP can faithfully reconstruct 3D

hapes of fast moving objects at 20,000 fps as demonstrated by the ex-

erimental result. The rate of 3D reconstruction can be further increased

nce more powerful equipment is in use. We believe the proposed 𝜇DLP

ould narrow the gap between the high-speed 3D imaging and the high-

ate 2D photography, providing new insights for extensive studies and

pplications. 
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ppendix A. Architecture and training of the neural network 

The input fringe patterns are handled by three different data-flow

aths, as demonstrated in Fig. 3. In the first path which keeps the orig-

nal size of input data, the fringe images are successively processed by

 convolutional layer, a group of residual blocks and another convo-

utional layer. Meanwhile, the same input data undergoes similar but

ore sophisticated procedures in the second and the third paths where

he data are first downsampled by ×2 and ×4 for high-level perceptions

nd then upsampled to match the original dimensions. The downsam-

ling is achieved through a max-pooling layer [66] . For each channel

f the input, the pooling layer finds the maximum value in a 2 ×2 or

 ×4 neighborhood. It then replaces the pixels in the 2 ×2 or 4 ×4 win-

ow with the found pixel of the maximum value. Therefore, the size of

utput is reduced by half/quarter for both the height and the width. 

In the convolutional layers, the kernel size is 3 ×3 and the convo-

ution stride is one. Zero-padding is used to control the spatial size of

he output data, so that the input and output height and width are the

ame. The output of the convolutional layer is a three-dimensional (3D)

ensor of shape ( H, W, C ), where H and W are the height and width in

ixels of the input fringe pattern. C is the number of filters used in the

onvolutional layer and equals the number of channels of output data.

ach filter is used to extract a feature map (channel) for the output ten-

or. Therefore with more filters, the convolutional network can perceive

ore details of measured surfaces. But the cost is that the network will

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/100014103
https://doi.org/10.13039/501100013058
https://doi.org/10.13039/501100010035
https://doi.org/10.13039/501100010014
https://doi.org/10.13039/501100012226
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Fig. A1. Architecture of the residual block. 

Fig. A2. (a) Architecture of the upsampling block; (b) diagram of the upsam- 

pling process. 
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Fig. A3. Loss curve of the training and validation set for the neural network. 
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onsume more time during training. Thus, we have 𝐶 = 50 filters in the

ork to achieve a balance. Except for the last convolutional layer which

s activated linearly, the rest ones use the rectified linear unit (ReLU) as

ctivation function, i.e., 𝑅𝑒𝐿𝑈 ( 𝑥 ) = 𝑚𝑎𝑥 ( 0 , 𝑥 ) . Compared with other ac-

ivation functions, e.g., sigmoid function [67] , it has been demonstrated

o enable better training of deeper networks [68] . 

In our network, we also used residual blocks whose architecture is

hown in Fig. A1 . The residual framework is composed of 2 sets of con-

olutional layer (Conv) activated by ReLU stacked one above the other

69] . It creates a shortcut between the input and output and can solve

he degradation of accuracy as the network becomes deeper, thus easing

he training process. To match the dimension of the original image, we

psample the output data from residual blocks using the upsampling

lock as shown in Fig. A2 (a). The data first passes through a convo-

utional layer with ReLU activation. We then use quadruple filters to

xtract features from the input for providing rich information for the

ollowing upsampling, whose schematic is shown in Fig. A2 (b). For the

psampled channel x , it is generated by original channels from 4 𝑥 − 3 to
 x , thus allowing the output data with ×2 spatial resolution. Next, the

utputs of these three data flow paths are concatenated into a tensor

ith triple channels. Finally, the last convolutional layer yields a six-

hannel output datum which consists of three pairs of numerator M ( x,

 ) and denominator D ( x, y ). The reason why we have the last convolu-

ional layer to be linear is that the neural network is trained to predict

he numerator and the denominator which can be negative. 

To train the network, we minimize the mean-squared-errors of the

utput numerators and the output denominators with respect to the

round truth, which are obtained using the 12-step phase-shifting al-

orithm. The parameters of the network, i.e., the weights, bias and con-

olutional kernels, are trained using the backpropagation [70] . Thus,

he loss function is computed as 

𝑜𝑠𝑠 ( 𝜃) = 

1 
𝐻 ×𝑊 

3 ∑
𝑡 =1 

( ‖‖‖𝑌 𝑀 

𝑡 
( 𝜃) − 𝐺 

𝑀 

𝑡 

‖‖‖2 + 

‖‖‖𝑌 𝐷 𝑡 
( 𝜃) − 𝐺 

𝐷 
𝑡 

‖‖‖2 
) 

(A1)
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here 𝐺 

𝑀 

𝑡 
and 𝐺 

𝐷 
𝑡 

are the ground-truth numerator and denominator for

he input fringe image I t . 𝑌 
𝑀 

𝑡 
( 𝜃) and 𝑌 𝐷 

𝑡 
( 𝜃) the numerator and denomi-

ator predicted by the network with the parameter space 𝜃 that includes

he weights, bias and convolutional kernels. 

During the training, the network uses the score of loss function as a

eedback signal to adjust the parameters in 𝜃 by a little bit, in a direc-

ion that would lower the loss score. To this end, the adaptive moment

stimation (ADAM) is used in our networks to tune the parameters for

nding the minimum of the loss function [71] . In the implementation of

DAM, we start the training with a learning rate of 10 −4 . We drop it by

 factor of 2 if the validation loss has stopped improving for 10 epochs,

hich helps the loss function get out of local minima during training.

o characterize the training, we plot the progression of the training and

alidation loss over training epochs, i.e., the number of iterations in the

ackpropagation over all of the dataset. Fig. A3 shows the loss curves

onverge after 120 epochs. From both curves, we can see there is not

verfitting to our training dataset. As to the time cost, the training over

00 epochs took 3.16 hours. 

ppendix B. Collection of training data 

Prior to practical measurements, the developed neural network

eeds a training process in which the network learns to retrieve the

hase. To obtain the ground-truth data used to train the neural network,

e exploit the N -step phase-shifting method as it allows precise phase

easurements. With this method, the captured phase-shifted fringe pat-

erns with different wavelengths can be written as 

 

𝑡 
𝑛 
( 𝑥, 𝑦 ) = 𝐴 ( 𝑥, 𝑦 ) + 𝐵( 𝑥, 𝑦 ) cos 

[
𝜙𝑡 ( 𝑥, 𝑦 ) − 𝛿𝑛 

]
(B1)

here 𝑛 = 0 , 1 , … , 𝑁 − 1 indicates the step of phase shift, and 𝑡 = 1 , 2 , 3
mplies the used wavelengths. 𝛿n is the phase shift that equals 2 𝜋𝑛 

𝑁 
. With

he least square method, the ground-truth phase can be calculated by 

𝑡 ( 𝑥, 𝑦 ) = arctan 
∑𝑁−1 
𝑛 =0 𝐼 

𝑡 
𝑛 
( 𝑥, 𝑦 ) sin 𝛿𝑛 ∑𝑁−1 

𝑛 =0 𝐼 
𝑡 
𝑛 
( 𝑥, 𝑦 ) cos 𝛿𝑛 

(B2)

According to Eq. (B2) , the numerator and the denominator can be

xpressed as 

 𝑡 ( 𝑥, 𝑦 ) = 

∑𝑁−1 
𝑛 =0 

𝐼 𝑡 
𝑛 
( 𝑥, 𝑦 ) sin 𝛿𝑛 (B3)

 𝑡 ( 𝑥, 𝑦 ) = 

∑𝑁−1 
𝑛 =0 

𝐼 𝑡 
𝑛 
( 𝑥, 𝑦 ) cos 𝛿𝑛 (B4)

Equations (B3) and (B4) are used to calculate the ground-truth nu-

erator and denominator that are exploited to train the neural network.

In our experiments, three sets of 12-step phase-shifting fringe pat-

erns with wavelengths 
{
𝜆1 = 9 , 𝜆2 = 11 , 𝜆3 = 13 

}
were generated ac-

ording to Eq. (B1) . These patterns were then projected onto different

easured objects. The camera captured the reflected fringe patterns si-

ultaneously at a different viewpoint and transferred them to our com-

uter. In our experiment, we collected the training data from 45 differ-

nt scenes including simple and complex objects. For each scene, we

ecorded 12 ×3 phase-shifting fringe patterns. Thus, 1620 fringe im-

ges were collected for all of the scenes. The captured training data are
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Fig. B1. The collected training data. The first 

column shows different tested scenarios. For each 

of them, we captured three sets of 12 phase- 

shifting fringe patterns and totally obtained 540 

training input images for fringe images with 

three different wavelengths, as demonstrated in 

the second to the fourth column. 

Fig. B2. Ground truth of the collected training data. The first column shows the tested scenarios. Within each set of fringe patterns of the same wavelengths, 

we calculated the ground-truth numerator and denominator by the 12-step phase-shifting algorithm. The second to the fourth columns displays the ground-truth 

numerator computed through Eq. (B3) . The fifth to the seventh column shows the ground-truth denominator obtained through Eq. (B4) . 
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emonstrated in Fig. B1 . The first column shows the measured scenes.

he second to the fourth column shows the captured fringe images with

ifferent wavelengths, respectively. Within each set of fringe patterns

f the same wavelength, we calculated the corresponding ground-truth

ata by the 12-step phase-shifting algorithm. The results are shown in

ig. B2 , where the second to the fourth column displays the ground-

ruth numerator, and the fifth to the seventh column shows the ground-

ruth denominator. It is noted that before being fed into the networks,

he raw fringe images { I 1 ( x, y ), I 2 ( x, y ), I 3 ( x, y )} were divided by 255

or normalization, which can make the learning process easier for the

etwork. Moreover, for a preferable selection of training objects, one

s suggested choosing objects without very dark or shiny surfaces to en-

ure captured fringe images with enough signal-to-noise ratio or without

aturated points. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.optlaseng.2019.04.020 . 
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