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a b s t r a c t

The shape reconstruction from gradient data is a common problem in many slope-based metrology
applications. In practice, the gradient data may not be ideally available for the whole field of view as
expected, due to the aperture or the unmeasurable part of sample. An iterative method by using discrete
cosine transforms is addressed in this work to deal with the integration problem with incomplete
gradient dataset in Southwell configuration. Simulation indicates that the discrete cosine transform
provides better initial values than discrete Fourier transform does, and it converges to a more accurate
level by updating with spectrum-based slopes comparing to the slope updates from finite difference in
classical method. Experimental results show the feasibility of the proposed approach in a practical
measurement.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is an integration problem to reconstruct a shape from its
gradient data (the first derivatives) measured by slope sensors.
The essence of this integration problem is to solve a Poisson
equation with Neumann boundary conditions [1]. With decades
of study in various fields, many “integrators” has been proposed
[2–8]. These problem solvers are very popular and have been
widely applied in wavefront metrology [9], phase measuring
deflectometry [10–13], and even phase unwrapping [14], etce-
tera. After the proposal of finite-difference solvers with various
configurations in late 1970 s [2–4], the Discrete Fourier Trans-
form (DFT) has been used to reconstruct the wavefront in 1980 s
[5], whereas the DFT algorithm essentially operates in rectan-
gular domains. Instead of using DFT method which only pro-
vides a suboptimal solution with its implicit periodic boundary
conditions, it is suggested to expand the estimation into cosine
series, and as a result the reconstruction error is significantly
reduced [8]. By simply padding slope matrices with flipped and

positive or negative slope values accordingly, Discrete Cosine
Transform (DCT) integration method can be implemented using
the Fast Fourier Transform (FFT) algorithm [15,16].

However, since optical pupils are commonly circular, not in
rectangle, the pixels outside the aperture do not provide available
data from the measurement. In addition, the central region of the
aperture in real applications, such as astronomy and X-ray metrol-
ogy, may be blocked for a certain purpose. Moreover, the sample
under test is not always ideal to measure and some regions are not
measurable by a particular technique. Due to the reasons above,
some pixels in sensor fail to offer valid measures as a result [see
Fig. 1]. This brings troubles to the integration process, especially to
the transform-based integration approaches. To solve this issue,
missing slopes outside an arbitrarily-shaped aperture are extra-
polated with an iterative DFT method [6,7], which is basically an
application of the Gerchberg iteration [17]. Taking the loop
continuity into account, another idea of slope extrapolation is
proposed by Poyneer et al. with boundary and extension methods
for Hudgin or Fried configuration [18]. Zou and Rolland employ the
finite-difference solvers into the Gerchberg iteration to estimate
wavefront for general-shaped pupils in Southwell configuration
[19]. Unfortunately, the DCT integration method [8,15,16] is not
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able to directly apply to incomplete gradient data for shape
reconstruction [20].

In this work, a fast and accurate method for shape reconstruc-
tion from gradient in an arbitrarily-shaped aperture, or say
incomplete gradient data, is addressed by employing iterative
DCT in Southwell configuration. Of course, the available region of
gradient data should be fully connected as a single piece, that is,
there are no separate regions which have no connections with
each other. The proposed method enjoys the high accuracy of the
DCT integration, the high accuracy of extrapolation outside aper-
ture with DCT-delivered derivatives through the Gerchberg itera-
tion, and the high efficiency of the widely available FFT algorithm.

2. Method

In Southwell configuration, the shape is reconstructed where
the slopes are measured as shown in Fig. 2, which is a beauty by
itself.

Unlike the other configurations, there is no spatial shift
between slope and shape grids, and as a result, the FFT-based
slope-shape relation in Southwell configuration is really simple
and elegant as [15,21].

z¼ FFT�1 Fzf g; ð1Þ

where

Fz ¼
0; ðu; vÞ ¼ ð0;0Þ

FFT sx þ i U syf g
i U2π uþ i Uvð Þ ; elsewhere

8<
: ; ð2Þ

sx and sy stand for the slope values in x and y direction,
respectively. z denotes the estimated shape with the piston term
ignored. The coordinates in spatial frequency domain (u, v) can be
calculated through the size of matrix (Nx�Ny) and the x- and y-
sampling intervals (hx, hy).

u; vð Þ ¼ nx�Nx
2

hxNx
;
ny�Nx

2
hyNy

 !
;

nx ¼ 0;1;⋯;Nx�1
ny ¼ 0;1;⋯;Ny�1 : ð3Þ

According to reference [16], the DCT integration can be imple-
mented with the use of FFT algorithm by flipping slopes with
positive or negative values, accordingly. Here, simpler expressions

used in reference [15] are adopted as Eqs. (4)–(6).

Sx : ¼
�sx �x; �yð Þ; �sx �x; yð Þ
sx x; �yð Þ; sx x; yð Þ

" #

Sy : ¼
�sy �x; �yð Þ; sy �x; yð Þ
�sy x; �yð Þ; sy x; yð Þ

" #
8>>>>><
>>>>>:

; ð4Þ

FZ ¼
0; u; vð Þ ¼ 0;0ð Þ

FFTfSx þ i U Syg
i U2π uþ i Uvð Þ ; elsewhere

(
; ð5Þ

z �x; �yð Þ; z x; �yð Þ
z �x; yð Þ; z x; yð Þ

" #
¼ : Z ¼ FFT�1 FZf g; ð6Þ

The resultant height distribution z¼z(x, y) is desired and can be
retrieved by simply cropping it from matrix Z. By the way, the
slopes estimated by transforms can be presented as

Sx ¼ FFT �1 iU2πuUFZ
� �

; ð7Þ

Sy ¼ FFT �1 iU2πvUFZ
� �

: ð8Þ

However, because of the blocking by the aperture or the “poor” quality
of samples in practice, some of the sensor elements may not provide
available slopes [e.g. Fig. 1]. The Gerchberg-type iteration is employed
to extrapolate the missing data. The algorithm is illustrated in Fig. 3.

The implementation details can be described as the following steps.

Step 1: Flip the measured slopes by Eq. (4).
Step 2: Fill those unavailable slope values with 0 to get Sx,0 and
Sy,0. Set the iterative number n¼1.
Step 3: Take the FFT according to Eq. (5) to get FZ.
Step 4: Take inverse FFTs by Eqs. (6)–(8) to estimate the Zn, Sx,n,
and Sy,n. Update n¼n þ1.

Fig. 1. Imperfections on samples or the shape of aperture may result in incomplete gradient data, which do not fulfill the whole sensing array and hence bring troubles to the
implementation of DCT or FFT algorithm.

Slope Sensing 

Shape Estimation 

Fig. 2. In Southwell configuration, shape estimations happen at the same rectan-
gular grid where the slopes are measured.

L. Huang et al. / Optics and Lasers in Engineering 67 (2015) 176–181 177



Step 5: Check the difference updated estimation and with the
previous estimation. ΔS¼(Sx,n, Sy,n)�(Sx,n-1, Sy,n-1) and
ΔZ¼Zn�Zn-1. If both the standard deviations of slope differences
and shape differences are smaller than the preset thresholds and
the iteration number n is smaller the preset maximum number,
overwrite the slope in the available region with the measured
slopes and go back to Step 3. Otherwise, end the loop.

Step 6: Crop the wanted z from Z, and keep the data inside the
valid region Ω only.

3. Simulation

Simulation is carried out to verify the proposed algorithm is
effective and accurate. A surface expressed as Eq. (9) with arbitrarily-
shaped aperture [see Fig. 4(a)]. 128�128 points are sampled in an
area of 3 unit�3 unit and here the unit could be any unit, such as
mm, mm, or nm, which depends on the used measuring technique.
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Fig. 4. Reconstruction error (e) indicates the proposed iterative DCT can successfully reconstruct a shape [true shape (a) and the reconstructed ones before (c) and after
(d) cropping] from its slopes with additive noise and an arbitrarily-shaped aperture (b).

Flip the measured slopes 
by Eq. (4).

Fill unavailable pixels 
with zero to get Sx,0 and Sy,0.

Set n=1. 

Calculate FZ
according to Eq. (5)

Take the inverse FFTs 
 by Eqs. (6), (7), and (8). 

Update n = n+1. 

Acceptable  
Slope Error? 

Negligible Shape Update? 
Maximum Number  

of Iterations? 

Overwrite the slope  
in the valid region 

with the measured slopes.

Any Yes 
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and remove the data outside 

the valid region Ω.

All No 

Fig. 3. Flow chart of the iterative DCT integration algorithm.
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Fig. 5. The DCT method offers a better initial value than the DFT method does (a),
and comparing to the slopes from finite difference, updates with DCT-delivered
slopes leads to a better convergence (b).
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The aperture is shaped with a circle boundary which is common
in optics. Furthermore, the central region is blocked to simulate
conditions in X-ray or astronomy applications. Other irregular edges
are added to make aperture shape even more complex. Normally
distributed random noise (σ¼0.03 unit/unit) is added to the analy-
tical slopes [see Fig. 4(b)].

After about 40 iterations, the surface shape in and out of the aperture
is estimated as Fig. 4(c), whereas only the shape in slope-available
regionΩ is of interest which can be cropped out [Fig. 4(d)]. The error
distribution is shown in Fig. 4(e) with a root mean square of
1.1�10�3 unit and a peak-to-valley value of 9.9�10�3 unit when
the slope noise σ¼0.03 unit/unit and the sampling interval is 3/
128 units.

As an iterative algorithm, the initial values and the variable
updates are critical for its performance. The flipped slopes before
zero padding can be considered as setting up an initial guess from
DCT point of view, which is a better initial value comparing to
the directly zero padding from DFT point of view as shown in
Fig. 5(a). The Root Mean Square Error (RMSE) of initial estimation

from DCT is smaller than that from DFT, which will lead a faster
convergence.

On the other hand, for the updates of slopes, the transform-
delivered slopes from Eqs. (7) and (8) are updated instead of using
the finite differences of the estimated shape traditionally [6,7]. The
slopes from spatial frequency domain are inherent with the FFT
algorithm, which induces the iterations to converge at more

Fig. 6. The reconstructed shape (c) from incomplete gradient data [Fig. 1] in real measurement [see sample under (a) uniform illumination and (b) structured-light
illumination] shows the feasibility of the proposed method.

z¼

0:2 3 1�xð Þ2exp �x2� yþ1ð Þ2
h i

�10 x
5�x3�y5
� �

exp �x2�y2
� ��1

3exp � xþ1ð Þ2�y2
h in o

þexp � 6xð Þ2� 6 y�0:7ð Þ½ �2
n o

�exp � 3 xþ0:7ð Þ½ �2� 3yð Þ2
n o

þ0:3x
; ðx; yÞAΩ

no available values ; ðx; yÞ=2Ω

8>>>><
>>>>:

: ð9Þ
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accurate results as shown in Fig. 5(b). Moreover, it is not costly to
compute the slopes from Eqs. (7) and (8), because anyway we have
to calculate FZ for Z, and then Sx and Sy are obtained almost for free.

4. Experiment

The proposed method is also applied to a set of real data from
measurements to validate its actual use. The input slopes shown in
Fig. 1 are measured with phase measuring deflectometry [10]. The
sample under test is an optical component with many reflective
micro-mirrors positioned in an array. The height of each micro-
mirror is about 2 μm. The area of the specular surface is about
14 mm�14 mm. Two images (640�640 pixels) show the sample
with “freckles” under uniform lighting [Fig. 6(a)] or structured-
light illumination [Fig. 6(b)], respectively. With uniform illumina-
tion the micro-mirrors are very difficult to observe, but it becomes
obvious when illuminated with structured light. Although many
pixels fail to offer reliable slope values, the proposed method is
still able to reconstruct the shape from incomplete gradient data
straightforward as shown in Fig. 6(c) in details.

In fact, the change of the aperture shape or the sample may
change the available region for slope measurement, and it is very
common to happen in practice. Considering this, it is not hard to
find an obvious advantage of the proposed method comparing to
Poyneer’s boundary methods in which matrices for least squares
estimation have to be adjusted accordingly every time when the
available region changes. Here we do not need to consider this
problem if the proposed method is used, because the procedure of
the proposed method is the same for any shape of available
regions.

5. Discussion

The proposed iterative method is developed in the path of the
transform-based integration methods. Its superiority to the other
transform-based integration methods is demonstrated in Fig. 5.
Here we discuss its performance comparing to other existing
methods which do not use transforms to complete the integration.

As shown in the Fig. 7, the finite-difference-based least-squares
integration method [22,23] and radial basis functions based
integration method [24,25] are applied to make the comparison.

Very similar reconstruction results, referring to Fig. 7(a–c), can
be obtained by using these three methods. The these state-of-art
integration methods are able to deal with the problem of shape
reconstruction results indicate that from gradient data measured
by slope sensors even with an arbitrarily-shaped aperture. At the
boundary of the aperture, the transform-based methods usually
suffer the Gibbs ringing effect as shown in Fig. 7(d) and thus the
error is commonly larger than those of the non-transform based
approaches Fig. 7(e–f) around the inner and outer boundary
regions. More detailed comparisons in different circumstances
can be found in our recent comparison work [20].

6. Conclusions

In this work, an iterative DCT integration method is proposed
to reconstruct the surface or wavefront shape from gradient data
in an arbitrarily-shaped aperture. The feasibility of the method is
verified in both simulation and experiment. The DCT integration
method is pushed to be applicable for handling incomplete
gradient data with missing slopes either inside a “hole” or outside
the aperture. This method is designed for the situation that the
gradient data are in a single piece of available region. If there are
disconnected sub-regions, the proposed method will have no
capability of providing the relative depth/height information
between sub-regions.
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