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Laplacian reconstruction of one single hologram using two

different reconstruction distances or wavelengths
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A novel numerical algorithm is proposed to reconstruct the Laplacian of an object field from one single
in-line hologram. This method uses two different reconstruction distances of z and z+∆z, or two different
reconstruction wavelengths of λ and λ+∆λ to reconstruct one digital in-line hologram. Theoretical analysis
shows that when the value of ∆z or ∆λ is sufficiently small, the difference of the two reconstructed fields
is an approximation to the second-order Laplacian differentiation of the object wave, and the zero-order
and “twin-image” noise can be almost eliminated simultaneously. Computer numerical simulations and
optical experiments are carried out to validate the effectiveness of this algorithm.
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Since the development of high resolution cameras
and computer techniques, digital holography has been
widely applied to many different fields, such as
microscopy[1], particle image velocimetry[2], and defor-
mation analysis[3]. Compared with the conventional
holographic technique, numerical reconstruction offers
various possibilities for information recovery. Two forms
of digital holographic recording are in-line and off-axis.
Given the angle between the reference and object beams,
digital holograms recorded using off-axis geometry do not
fully utilize the available space-bandwidth product of the
CCD[4]. In-line architecture remains the mode of choice
in many cases, with method phase retrieval[5] or phase
shifting[6] being used for reconstruction.

Methods of differential reconstruction of an optical
wave field have recently been proposed, which differ
from the direct reconstruction of the original object wave
field[7−9]. The spatial derivative of an optical wave field
can be used for enhancing the edges of objects, auto-
matic focusing, and holographic reconstruction of three-
dimensional objects[10]. It has been shown that, by Fres-
nel propagating the difference of two such holograms,
recorded at two displaced planes[7,8] or with different
wavelengths[9], the resultant reconstruction is an approx-
imation to the Laplacian second order differentiation of
the object wave field.

In this letter, a new algorithm to realize the Lapla-
cian differential reconstruction of an optical wave field
is presented. This method only needs one in-line digital
hologram captured at a certain distance with a certain
wavelength by CCD, then uses two different distances or
wavelengths to reconstruct it. By subtracting the two re-
constructed wave fields, the result is approximately equal
to the Laplacian second-order differentiation of the ob-
ject wave in the transverse direction. The principles, sim-
ulations, and experimental results are explained below.

The basic principle of in-line holography recording is il-
lustrated using the schematic shown in Fig. 1. The inten-
sity of the incident coherent beam, diffracted when cross-
ing the object and free propagated beyond is recorded on
the digital camera. The reference and the object waves

are not separate beams, but a unique one. This simplified
recording setup gives a good stability in adequation with
industrial application constraints.

Suppose the complex-amplitude distribution of the ob-
ject wave in the object plane (corresponding to z = 0 in
the z axis) is o(x, y, 0). The resulting interference pattern
is recorded at the camera plane located at a distance of
z from the object plane. The intensity hologram pattern
can be written in the form of

I(x, y, z) = |r(x, y)|2 + |o(x, y, z)|2

+ r(x, y)o∗(x, y, z) + r∗(x, y)o(x, y, z), (1)

where r(x, y) stands for the reference plane wave, and
o(x, y, z) is the diffraction patterns of the object o(x, y, 0)
at the recording plane z. The object wave fields o(x, y, z)
can be expressed using the scalar diffraction theory as

o(x, y, z) = F−1
{

O(ξ, η, 0) exp
[

i2πz

√

1

λ
− (ξ2 + η2)

]}

.

(2)
where F−1 represents the inverse Fourier transform op-
eration, and O(ξ, η, 0) denotes the Fourier transform of
o(x, y, 0). In the Fresnel paraxial approximation, Eq. (2)
can be simplified as

o(x, y, z) = exp

(

i
2π

λ
z

)

· F−1
{

O(ξ, η, 0) exp
[

iπλz
(

ξ2 + η2
)]}

. (3)

Let us assume that the hologram reconstruction is
achieved by illumination with plane-wave reference, as
with classical holography. This process now could be
modeled numerically by propagating from the camera

���������
Fig. 1. In-line digital holography setup.
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recording plane a distance −z back to the object plane.

Df−z (I) = DC + r(x, y)o∗(x, y, 2z) + r∗(x, y)o(x, y, 0),
(4)

where Df−z (I) denotes the inverse diffraction integra-
tion through the distance of −z. Obviously, the recon-
struction field includes three parts: The DC term on the
right-hand side of Eq. (4) is the zero order of diffraction

equal to |r(x, y)|
2
+ |o(x, y, 0)|

2
. The second term in Eq.

(4) produces a real image located on the other side of
the hologram, whereas the third term produces a virtual
image located at the position initially occupied by the
object.

If we change the distance of numerical inverse
diffraction from z to z + ∆z, another diffraction field
Df

−(z+∆z) (I) near the object plane can be obtained.
We then calculate the difference between Df−z (I) and
Df

−(z+∆z) (I):

∆Dfz (I) =Df−z (I) − Df
−(z+∆z) (I)

=∆Dfz (DC) + r(x, y) exp

(

i
2π

λ
z

)

· F−1
{

O∗(−ξ,−η, 0) exp
[

i2πλz
(

ξ2 + η2
)]

·
{

1 − exp[iπλ∆z
(

ξ2 + η2
)

]
}}

+ r∗(x, y) exp

(

i
2π

λ
z

)

·F−1
{

O(ξ, η, 0)
{

1 − exp
[

iπλ∆z
(

ξ2+ η2
)]}}

.
(5)

When the difference between two reconstruction dis-
tances ∆z is sufficiently small, we can use the Taylor

series expansion of ex =
+∞
∑

n=0

xn

n! . Omitting all but the

constant and the linear terms gives

exp
[

iπλ∆z
(

ξ2 + η2
)]

∼= 1 + iπλ∆z
(

ξ2 + η2
)

. (6)

Note: This approximation is applicable as long
as the quadratic term in the Taylor expansion
1
2

[

iπλ∆z
(

ξ2 + η2
)]2

is much less than one. Further-
more, the difference of the DC terms ∆Dfz (DC) is neg-
ligible and can be omitted from Eq. (5). Substituting
Eq. (6) into Eq. (5) and neglecting the phase:

∆Dfz (I) = − iπλ∆zr(x, y)F−1
{(

ξ2+η2
)

O∗(−ξ,−η, 0)

· exp
[

i2πλz
(

ξ2 + η2
)]}

− iπλ∆zr∗(x, y)

· F−1
{(

ξ2 + η2
)

O(ξ, η, 0)
}

. (7)

According to the differential properties of Fourier trans-
form, we have

∆Dfz (I) =
iλ∆z

4π
r(x, y)∇2

xyo∗(x, y,−2z)

+
iλ∆z

4π
r(x, y)∗∇2

xyo(x, y, 0). (8)

When z is a greater distance, for an ordinary object wave,
its differential in transverse direction on the object plane
is generally much bigger than its differential on the plane
2z away from object plane[7]. Thus, the difference of two

reconstructed diffraction fields using a differential dis-
tance ∆z is an approximation to the Laplacian of the
object wave.

∆Dfz (I) ≈
iλ∆z

4π
r∗(x, y)∇2

xyo(x, y, 0). (9)

Alternatively, if we use two different wavelengths λ and
λ + ∆λ to reconstruct the digital hologram and assume
that ∆λ is very small, we can also get the Laplacian of
the object field:

∆Dfλ (I) ≈
iz∆λ

4π
r∗(x, y)∇2

xyo(x, y, 0). (10)

Equation (10) is directly analogous to Eq. (9). Therefore,
reconstructing one hologram using two different wave-
lengths (separated by ∆λ), and taking their difference
provide an approximation to the Laplacian of the original
object field. The two results are in complete accordance
with the two-plane[7] and the two-wavelength[9] methods.

The new algorithm is first tested by computer simu-
lation. The synthetic object studied is an opaque letter
“A” in a transparent screen of area 0.5×0.5 (mm) with
512×512 pixels. The object is illuminated with a plane
wave, of wavelength 632.8 nm, which propagates to the
hologram plane at a distance z = 200 mm, at normal
incidence. The part of the incident light scattered by
the object is the object wave and the remainder that
does not undergo scattering acts as the reference wave.
The hologram plane is of the same size and pixel count
as the object plane, and the propagation of optical field
is calculated from the Huygens convolution integral[10].
The corresponding computed hologram is the intensity
of the diffraction pattern on the hologram plane (Fig.
2(a)).

Figure 2(b) shows the normalized amplitude distribu-
tion of directly reconstructed fields by back propagat-
ing the holographic image data of Fig. 2(a) from the
holograph plane to the object plane. Given the in-line
geometry of the setup, the zero-order and the twin im-
ages are superposed, and the intensity distribution of
the reconstructed field shows clear diffractive patterns
of the object, instead of the uniform background. In Fig.
2(c), the normalized magnitude of the Laplacian recon-
struction ∆Dfz (I) using two different reconstruction
distances z = 200 mm and z + ∆z = 201 mm is given.
Similarly, the normalized magnitude of the Laplacian
reconstruction ∆Dfλ(I) using two different reconstruc-
tion wavelengths λ = 632.8 nm and λ + ∆λ = 635 nm
is presented in Fig. 2(d). The shape of the object is
clearly outlined, and the zero order and twin-image noise
effect can hardly be seen in the Laplacian reconstruction
images.

To verify the relationship between the magnitude of
the Laplacian object field and the differential distance
∆z or wavelength ∆λ, two sets of Laplacian images were
reconstructed using different ∆z and ∆λ, respectively.
The averaged intensities of the Laplacian images are used
for quantitative analyses. To better extract the magni-
tude of the Laplacian object wave field while excluding
the large number of pixels with a small magnitude, only
those pixels with an intensity larger than the averaged
intensity of the whole reconstructed image are taken
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into account. The averaged intensities of Laplacian im-
ages are shown in Figs. 3(a) and (b) by varying the
differential distance ∆z and wavelength ∆λ. When ∆z
is less than 10−3 m, the relation between the magnitude
of the Laplacian object field and the differential distance
∆z is approximately linear. When ∆z becomes larger,
the approximation of Eq. (6) is no longer applicable,
which introduces this deviation from linearity. We could
get a similar relation in the case of different reconstruc-
tion wavelengths. These results are consistent with the
aforementioned theoretical analysis.

Experiments are also carried out with the setup shown
in Fig. 1 to demonstrate the validation of this method.
The semiconductor laser diode used in the experiment
was an InGaP type with a wavelength of 635 nm and
output power of 3 mW. The point part of a needle posi-
tioned at z = 175 mm was illuminated by the collimated
beam. Diffraction intensity pattern was recorded with a
CCD camera with 1 024×1024 pixels, with a pixel size
of 5.5 µm. The recorded hologram and its corresponding
directly reconstructed image are shown in Figs. 4(a)
and (b). The magnitude of the Laplacian reconstruc-
tion using two different distances and wavelengths are
shown in Figs. 4(c) and (d), respectively. Perfect Lapla-
cian second-order differentiation reconstruction cannot
be achieved in the presence of noise[11,12]. However,
the object edge can be clearly identified despite some
noise in the two Laplacian images, demonstrating the
effectiveness of our approach. Moreover, the signal-to-
noise ratio of the Laplacian images can be improved
using speckle reduction methods[13].

This experiment was also repeated using different
reconstruction distances and wavelengths, and

Fig. 2. (a) Hologram of an opaque letter “A” computer gener-
ated. (b) Classical reconstructed image directly by one holo-
gram shown in (a). (c) Magnitude of Laplacian differential re-
construction using two reconstruction distances of z=200 mm
and z+∆z=201 mm. (d) Magnitude of Laplacian differential
reconstruction using two reconstruction wavelengths of λ =
632.8 nm and λ + ∆λ = 635 nm.

Fig. 3. Averaged intensity of Laplacian image versus (a)
differential reconstruction distance and (b) differential recon-
struction wavelength.

Fig. 4. (a) In-line hologram of a needle recorded at z = 175
mm. (b) Directly reconstructed image by one hologram shown
in (a). (c) Magnitude of Laplacian differential reconstruc-
tion using two reconstruction distances of z=175 mm and
z + ∆z=178 mm. (d) Magnitude of Laplacian differential re-
construction using two reconstruction wavelengths of λ = 635
nm and λ + ∆λ = 650 nm.

the results indicated that: (1) If ∆z/z is equal to
∆λ/λ, the two methods (using two reconstruction dis-
tances/wavelengths) would give almost the same results.
(2) The quality of reconstructed images may degenerate
when the value of ∆z/z (or ∆λ/λ) is either too small
(<0.5%) or too large (>2%). These results are consistent
with our theoretical analysis and those in Refs. [7–9].

In conclusion, a new digital holography reconstruc-
tion algorithm based on the reconstruction of one in-line
hologram using two reconstruction distances or wave-
lengths is proposed. By the subtraction of the two re-
constructed diffraction fields, the Laplacian second-order
differentiation of the object wave can be obtained with-
out the zero-order and twin-image noise. The practical
advantage of the proposed method is that it requires only
one single capture and no additional experimental oper-
ation. In addition, the said method can be performed
rapidly, and shows results similar to the multiple captures
with two-plane or two-wavelength methods. Theoretical
analysis, computer simulations, and optical experimental
results indicate that it is an effective means to realize the
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Laplacian differential reconstruction of the object wave
using one in-line digital hologram. This algorithm is es-
pecially applicable for enhancing the edge information of
the object wave and pinpointing the position of the ob-
jects, automatically determining the focused image plane
in the process of digital reconstruction, recognition, and
classification of three-dimensional objects.
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