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a b s t r a c t 

Speckle projection profilometry (SPP), as a promising structured light projection technique, can achieve global 

unambiguous 3D measurement by projecting a single random speckle pattern. In addition, the projected speckle 

pattern is usually etched into the microstructure of highly integrated Vertical-Cavity Surface-Emitting Laser (VC- 

SEL), which makes the hardware system compact enough to be mounted on mobile devices such as robots. 

However, since the stereo matching algorithm used in SPP involves high computational overhead, it usually runs 

in real-time on specially customized hardware platforms such as ASIC/FPGA, rather than general-purpose mo- 

bile platforms. In this paper, we propose a real-time and accurate 3D measurement method using a monocular 

3D sensor based on the infrared speckle projection. Similar to Kinect v1, our sensor mainly consists of an IR 

dot projector and one IR camera for projecting and capturing speckle images synchronously. Low-cost and high- 

quality speckle projection is achieved by customizing the projection pattern of VCSEL and using the beam copy 

function of Diffractive Optical Elements (DOE). Based on the 3D imaging principle of monocular 3D sensors, a 

reference plane calibration method is proposed to obtain a high-quality reference speckle image for improving 

the monocular matching accuracy. Then, benefited from the local memory mechanism and multiple operating 

synchronizations on the OpenCL environment, an optimized semi-global matching (SGM) algorithm using GPU 

is presented to achieve efficient and accurate depth reconstruction dynamically. Within the measurement range 

of 0 . 8 𝑚 (length) × 0 . 5 𝑚 (width) × 1 𝑚 (depth), the proposed method can achieve real-time and single-shot 3D 

imaging with an accuracy of 1.277 mm at 75 FPS on GTX 1060 and 15 FPS on ARM Mail G52(mobile platform). 
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. Introduction 

Optical 3D measurement has become currently one of the most

romising 3D sensing technologies and is extensively applied in indus-

ry inspection and scientific research. Various optical 3D measurement

pproaches have been developed, such as time-of-flight (TOF) [1–3] ,

inocular/multiview stereo vision [4–11] , and structured light projec-

ion [12–18] . For TOF, a pulse signal is emitted from the near-infrared

ight source and reflected by the measured object, and then received

y the detector. The depth information can be estimated directly by

ecording the time difference from sending to receiving the light sig-

al. However, due to the limitation of the manufacturing technique,

OF is mainly suitable for long-distance depth sensing, and its mea-

urement accuracy and resolution at short distances are relatively low.
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urrently, driverless cars are equipped with TOF-based 3D LiDAR to

erceive the surrounding 3D scenes at long distances [19] . Stereo vi-

ion is a passive 3D measurement method based on the principle of

riangulation. Multiple images of the tested scene are acquired by us-

ng two or more cameras from different perspectives. The same object

oint on each image is found through various stereo matching tech-

iques, and then its disparity can be calculated to obtain the corre-

ponding depth information. The measurement system based on stereo

ision has the advantages of simple hardware configuration and easy

mplementation. However, due to the occlusion or shadows in practical

pplications, there may be obvious differences in visual information be-

ween multiple views, which leads to a higher mismatch rate and miss-

ng rate in the disparity maps. In addition, for weak texture regions

n the measured scenes, it is also difficult to find corresponding points
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rom multiple perspectives that limit the 3D measurement accuracy

20–23] . 

In contrast, the structured light-based 3D measurement methods can

e regarded as an improved form of stereo vision, which is realized by

eplacing a camera with a light source generator (such as a projector)

n the system configuration. The light source generator projects a se-

ies of special structured light patterns onto the object to be measured

24] . Compared with stereo vision-based methods, the structured light-

ased methods, as an active 3D sensing technique, can easily overcome

he problem of low matching accuracy for weak texture regions. Among

D measurement methods based on structured light projection, com-

on structured light patterns mainly include fringe patterns and speckle

atterns, which have been developed into two mainstream methods ac-

ordingly: fringe projection profilometry (FPP) [25–31] and speckle pro-

ection profilometry (SPP) [32–35] . For FPP, the projector projects a

eries of fringe patterns onto the measured scene. The phase informa-

ion proportional to the surface profile is embedded in the fringe im-

ges recorded by the camera and successfully recovered by using vari-

us phase retrieval techniques, such as Fourier transform profilometry

FTP) using only a single fringe pattern [36–38] or Phase-shifing pro-

lometry (PSP) at least three fringe patterns [39,40] . But, these methods

oth perform the arctangent function for phase retrieval thus resulting

n the wrapped phase with 2 𝜋 phase jumps. The operation of phase un-

rapping is necessary to eliminate the phase ambiguities and convert

he wrapped phases into the absolute ones [41–50] . Therefore, it is dif-

cult to obtain high-precision and absolute phase information from a

ingle fringe image in FPP, which limits its applications in dynamic 3D

easurement [51,52] . 

Different from FPP, the structured light pattern projected in SPP

s designed according to various spatial coding strategies: Non-formal

odification [53,54] , De Bruijn sequences [55–57] , and M-arrays [58] .

hese design methods ensure that the whole measurement space has

 global uniqueness by projecting only a single pattern, and assist in

he establishment of an accurate global correspondence between stereo

mages, which makes SPP have the advantage of single-shot 3D recon-

truction. The efficient 3D measurement methods based on SPP are

opular in consumer electronics, such as Microsoft’s motion-sensing

evice (Kinect), Apple’s face recognition (FaceID), intel’s stereo cam-

ra(RealSense), and orbbec’s depth camera (Astra). But, due to the mea-

ured objects with complex reflection characteristics and the perspec-

ive differences between the stereo camera, it is still difficult to guaran-

ee that every pixel in the whole measurement space has perfect global

niqueness by only projecting a speckle pattern [29,33,34] . In order

o solve the common mismatching in SPP, some classical stereo match-

ng algorithms, such as SGM [5,22] , ELAS [8] , and PatchMatch [9] , are

sed to achieve robust absolute 3D measurement by smoothing the dis-

arity map, but at the cost of matching accuracy. Gu et al. [59] proposed

n improved SGM algorithm to increase the measurement accuracy of

peckle-based structured light sensor by adopting a new penalty term.

n addition, it is more important that the expensive computational over-

ead required by dense stereo matching brings an enormous challenge

or real-time and accurate 3D reconstruction in mobile devices [60] . 

In the early days, due to the limitation of stereo matching methods

nd computational performance, some GPU-accelerated local matching

ethods were proposed to improve the matching accuracy and running

peed by using different cost calculation methods or multi-scale match-

ng windows [61–63] . However, in Middlebury, the matching accuracy

f these methods is lower than the global stereo matching method.

he global stereo matching method achieves accurate pixel-level stereo

atching through a global energy function, but it has higher compu-

ational complexity and is not suitable for real-time applications. Dif-

erent from global methods, semi-global matching (SGM) methods have

he same algorithmic complexity as local methods by combining one-

imensional cost aggregation results from all directions, achieving effi-

ient and accurate stereo matching [5,22] . A lot of works have proposed

ifferent hardware solutions of SGM to implement quasi-real-time, real-
2 
ime, and ultra-fast stereo matching. In 2008, Ernst et al. [64] pio-

eered a fully GPU implementation of SGM with mutual information

t 4.2 FPS on GeForce 8800 ULTRA for VGA images ( 640 × 480 pixel)

nd 128 pixel disparity range. In 2011, Banz et al. [65] presented a

eal-time SGM method with non-parametric rank transform based on

PU acceleration, which reaches 27 FPS for images ( 1024 × 768 pixel)

ith 128 pixel disparity range. In addition, Banz et al. [66] provided

he FPGA parallelization scheme at 30 FPS for VGA images. In 2016,

enefited from the shared memory mechanism, Hernandez-Juarez et al.

67] proposed a real-time disparity estimation method on embedded

PU devices. Their method reaches 27 FPS on a Tegra X1 for an im-

ge size of 640 × 480 and 128 disparity levels using SGM method in-

luding matching with center-symmetric census transform but without

ny post-processing. Even though some stereo vision approaches utilize

igh-performance GPU or FPGA platforms to achieve real-time stereo

atching, considering that speckle projection-based 3D sensors are gen-

rally mounted on mobile devices with weak GPU performance, these

ethods cannot be directly applied to stereo matching in SPP for meet-

ng the requirements of accuracy and speed at the same time. Therefore,

t is necessary to re-evaluate the GPU-based SGM method in SPP and de-

elop new parallelization schemes. 

In this work, for enhancing the performance of single-shot 3D imag-

ng of SPP in mobile devices, we propose an infrared speckle projection-

ased monocular 3D sensor using the reference plane calibration and an

ptimized SGM based on OpenCL acceleration. In terms of hardware, our

D sensor mainly consists of an IR dot projector and one IR camera for

rojecting and capturing speckle images synchronously. Low-cost and

igh-quality speckle projection is achieved by customizing the projec-

ion pattern of the Vertical-Cavity Surface-Emitting Laser (VCSEL) and

sing the beam copy function of Diffractive Optical Elements (DOE). In

erms of software, according to the 3D imaging principle of monocular

D sensors, a calibration method is proposed to obtain a high-quality

eference speckle image for improving the measurement accuracy. In

ddition, different from the common CUDA-based GPU development en-

ironment, we choose the OpenCL framework [68] which is more suit-

ble for mobile devices as the implementation environment of stereo

atching. An optimized SGM algorithm using OpenCL acceleration is

roposed to obtain efficient, dense, and accurate matching results. The

xperiment results demonstrate that our 3D sensor can achieve high-

uality 3D reconstruction dynamically with the millimeter accuracy at

he speed of 75 FPS on GTX 1060 and 15 FPS on ARM Mail G52. 

. Principle 

.1. The infrared speckle projection-based monocular 3D sensor 

The monocular 3D sensor developed in this paper is shown in Fig. 1 ,

ts main components include an infrared speckle projector (IR dot pro-

ector, Crystal Optech C-PM-STR001A-C), illuminators of IR and RGB, a

istance detector, a color camera (RGB camera, OmniVision OV02K10),

nd an infrared camera (IR camera, OmniVision OV9282). The distance

etween the IR camera and the IR dot projector is 35 mm, which is also

he baseline of monocular 3D sensor. 

For 3D sensors based on speckle projection, the quality of the pro-

ected speckle pattern is critical to its 3D measurement results. The spe-

ific implementation of speckle projection is as follows: based on a near-

nfrared light source, the dot-like distribution of the required speckle

attern is realized by opening holes at specific positions on the top layer

f a Vertical-Cavity Surface-Emitting Laser (VCSEL) [69,70] in Fig. 1 (a).

he infrared light emitted from the VCSEL passes through a collimating

ens, which collimates and converges the diffraction beam with a wide

obe into an approximately parallel format based on the principle of light

efraction, thus generating a speckle-like structured light pattern. It is

orth noting that the high-density speckle pattern is one of the neces-

ary prerequisites for achieving dense and accurate 3D imaging. There-

ore, the number of the etched holes in the top layer of the VCSEL should
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Fig. 1. Overview of the infrared speckle projection-based monocular 3D sensor. (a)-(b) The diagram of infrared speckle projection scheme including VCSEL and 

DOE. (c) Hardware system and 3D imaging procedure of monocular 3D sensor. (d) The diagram of the proposed calibration method for monocular 3D sensors with 

the reference speckle image. 
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e as numerous and dense as possible, but is subject to two aspects: on

he one hand, the holes must be large enough to ensure the amount of

ight passing through to enhance the brightness of the speckle, thus in-

reasing the signal-to-noise ratio (SNR) of the whole projected pattern;

n the other hand, if the hole size is too large, the missing reflective area

n the top layer of the VCSEL will make it difficult for the VCSEL to res-

nate, thus affecting the proper operation of the projection module. In

ig. 1 (b), the specific structure of DOE is used to disperse the illumina-

ion beam and diffract tens or hundreds of sub-patterns that are exactly

he same as the incident pattern, thus increasing the number of speckles

s well as the measurable field. As shown in Fig. 1 (a), according to the

ustomized VCSEL-based miniaturized speckle projection scheme, the

verall size of the projection module is less than 1 𝑚𝑚 × 1 𝑚𝑚 , and the

mission angle is 25 ◦, which can project a total of 35 thousand clear and

niform speckle spots to the measured scene, enabling a low-cost and

igh-quality speckle projection. 

.2. The 3D imaging principle of monocular 3D sensors 

In a typical 3D imaging system based on stereo vision, two cameras

laced along the horizontal direction simultaneously capture stereo im-
3 
ge pairs of the target scene. Stereo matching is implemented to obtain

he disparity map 𝑑, which represents the pixel-wise correspondence be-

ween the rectified stereo image pair. The depth map 𝑍 of the scene can

e calculated as follows [71] : 

 = 

𝐵 × 𝑓 
𝑑 − 𝑥 𝑙 

𝑐 
+ 𝑥 𝑟 

𝑐 

, (1) 

here 𝐵 and 𝑓 are the system baseline and the focal length of the cam-

ra, and 𝑑 represents the horizontal disparity between corresponding

oints in the two images. 𝑥 𝑙 
𝑐 

and 𝑥 𝑟 
𝑐 

are the horizontal coordinates of the

rincipal points in the left and right cameras. The speckle projection-

ased monocular 3D sensor can be regarded as an improved form of

tereo vision, which replaces a camera with an IR dot projector to im-

rove 3D imaging results in weakly textured areas. Based on the re-

ersibility of the projection and imaging optical paths, the projector can

e regarded as an inverse camera, and the captured image is the pro-

ected speckle pattern. However, due to the manufacturing technique

nd the limited module size, the miniaturized projection module cannot

e considered as an ideal camera, and its normal model parameters are

ot available. 
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Therefore, another feasible 3D imaging principle is proposed [72] :

he monocular 3D sensor is translated along the Z-axis to acquire a se-

ies of speckle images of the reference plane at the known depth 𝑍 𝑟𝑒𝑓 

ithin the measured range in Fig. 1 (c). Based on Eq. (1) , the speckle im-

ge of the reference plane will provide a constant and known reference

isparity 𝑑 𝑟𝑒𝑓 : 

 𝑟𝑒𝑓 = 

𝐵 × 𝑓 
𝑍 𝑟𝑒𝑓 

+ 𝑥 𝑙 
𝑐 
− 𝑥 𝑟 

𝑐 
. (2) 

ince the speckle projector is placed horizontally relative to the camera,

here is only an approximately horizontal shift between the reference

peckle image and the target speckle image: 

 𝑥 𝑟𝑒𝑓 , 𝑦 𝑟𝑒𝑓 ) = ( 𝑥 + 𝑑 𝑟𝑒𝑙 , 𝑦 ) , (3) 

here 𝑑 𝑟𝑒𝑙 is the relative disparity. Then, the actual disparity 𝑑 can be

btained: 

 = 𝑑 𝑟𝑒𝑓 − 𝑑 𝑟𝑒𝑙 . (4) 

ombining Eqs. (1), (2) , and (4) , the depth map can be calculated: 

 = 

𝐵 × 𝑓 
𝑑 − 𝑥 𝑙 

𝑐 
+ 𝑥 𝑟 

𝑐 

= 

𝐵 × 𝑓 
𝐵 × 𝑓∕ 𝑍 𝑟𝑒𝑓 − 𝑑 𝑟𝑒𝑙 

. (5) 

ssuming that the measured depth range of the monocular 3D sensor is

 𝑍 𝑚𝑖𝑛 , 𝑍 𝑚𝑎𝑥 ] , the range of 𝑑 𝑟𝑒𝑙 can be obtained: 

𝐵 × 𝑓 
𝑍 𝑟𝑒𝑓 

− 

𝐵 × 𝑓 
𝑍 𝑚𝑖𝑛 

≤ 𝑑 𝑟𝑒𝑙 ≤ 

𝐵 × 𝑓 
𝑍 𝑟𝑒𝑓 

− 

𝐵 × 𝑓 
𝑍 𝑚𝑎𝑥 

. (6) 

nder the above description, if the relative disparity map and the depth

f the reference speckle image are known, the depth of the target scene

an be obtained immediately, enabling monocular 3D imaging. 

.3. The calibration method for monocular 3D sensors with the reference 

peckle image 

According to Eq. (5) , it can be found that 𝑍 𝑟𝑒𝑓 is closely related to the

epth 𝑍 of the target image, which affects the accuracy of monocular

D sensors. Therefore, it is crucial to obtain a reference speckle image

ith high quality, which requires that the distance 𝑍 𝑟𝑒𝑓 between the ref-

rence plane and the IR camera is high-precision and reliable. Fanello

t al. at Google exploited a calibration procedure to recover the pro-

ected reference pattern successfully [73] . However, calibrating such a

onocular 3D sensor is nontrivial due to the complicated procedure. In

his subsection, a calibration method is proposed for monocular 3D sen-

ors with the reference speckle image. By approximately replacing the

eference plane with a standard calibration board, the extrinsic param-

ters between the reference plane and the IR camera can be calibrated

o obtain a high-quality reference speckle image in Fig. 1 (d). 

Specifically, the IR camera captures an image of the calibration

oard, which is placed on the ground (the reference plane). After ob-

aining the 2D feature coordinates 𝐩 𝑐 = [ 𝑥 𝑐 , 𝑦 𝑐 ] 𝑇 of the calibration im-

ge, according to the standard pin-hole model, we have: 

 

⎡ ⎢ ⎢ ⎣ 
𝑥 𝑐 

𝑦 𝑐 

1 

⎤ ⎥ ⎥ ⎦ = 𝐀 

[
𝐫 1 𝐫 2 𝐫 3 𝐭 

]⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑋 

𝑊 

𝑌 𝑊 

𝑍 

𝑊 

1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (7) 

here 𝑠 is a scaling factor, 𝐀 is a 3 × 3 intrinsic matrix, 𝐑 =
 𝐫 1 , 𝐫 2 , 𝐫 3 ] is a 3 × 3 rotation matrix, 𝐭 is a 3 × 1 translation vector, and

 

𝑊 = [ 𝑋 

𝑊 , 𝑌 𝑊 , 𝑍 

𝑊 ] 𝑇 are the world coordinates of features. With the

nown 𝐀 , 𝐩 𝑐 = [ 𝑥 𝑐 , 𝑦 𝑐 ] 𝑇 can be converted to the normalized coordinates

 

𝑛 = [ 𝑥 𝑛 , 𝑦 𝑛 ] 𝑇 : 

 

 

 

 

𝑥 𝑛 

𝑦 𝑛 

1 

⎤ ⎥ ⎥ ⎦ = 

[
𝐫 1 𝐫 2 𝐫 3 𝐭 

]⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑋 

𝑊 

𝑌 𝑊 

𝑍 

𝑊 

1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (8) 
i  

4 
ssuming that the world coordinate system is defined on the calibration

arget with 𝑍 

𝑊 = 0 , Eq. (8) can also be rewritten as: 

 

 

 

 

𝑥 𝑛 

𝑦 𝑛 

1 

⎤ ⎥ ⎥ ⎦ = 

[
𝐫 1 𝐫 2 𝐭 

]⎡ ⎢ ⎢ ⎣ 
𝑋 

𝑊 

𝑌 𝑊 

1 

⎤ ⎥ ⎥ ⎦ . (9) 

VD can be implemented to provide the exact solution for Eq. (9) , and

he last column vector of V obtained using SVD is the initial guess of

 𝐫 1 , 𝐫 2 , 𝐭] . Then the Levenberg-Marquardt algorithm is used to solve the

onlinear minimization problem in Eq. (8) . Benefited from the uniform

hickness 𝑍 

𝑊 

𝑟𝑒𝑓 
of the calibration board with high quality, combining

he world coordinates 𝐏 𝑊 and the externsic matrix [ 𝐫 1 , 𝐫 2 , 𝐫 3 , 𝐭] , the ref-

rence plane on 3D camera coordinate system can be represented as:

 

 

 

 

 

 

𝑋 

𝐶 
𝑟𝑒𝑓 

𝑌 𝐶 
𝑟𝑒𝑓 

𝑍 

𝐶 
𝑟𝑒𝑓 

1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

[
𝐫 1 𝐫 2 𝐫 3 𝐭 

]⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑋 

𝑊 

𝑌 𝑊 

𝑍 

𝑊 

𝑟𝑒𝑓 

1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (10) 

 𝑟𝑒𝑓 can be obtained by calculating the distance from the origin of the

D camera coordinate system to the reference plane, the normal vector

f the reference plane is 𝐫 3 . Finally, by continuously adjusting the pose

f the monocular 3D sensor to make 𝐫 3 approach to [0 , 0 , - 1] 𝑇 , a high-

uality reference speckle image at 𝑍 𝑟𝑒𝑓 can be acquired. 

.4. The optimized SGM algorithm based on opencl acceleration 

In this section, different from the CUDA-based parallel computing en-

ironment with GPUs, an optimized SGM algorithm based on OpenCL

cceleration is proposed to obtain efficient and accurate matching re-

ults 𝑑 𝑟𝑒𝑙 between the reference speckle image and the target speckle

mage, enabling high-quality 3D reconstruction dynamically for univer-

al mobile devices. There is generally a four-step pipeline for stereo

atching, including matching cost calculation, cost aggregation, dis-

arity computation, and disparity refinement. The specific diagram of

he proposed OpenCL-based SGM algorithm is shown in Fig. 2 . 

The matching cost calculation aims to obtain the similarity between

 pixel in the target image and its candidates in the reference image.

mong different kinds of similarity metrics or cost functions, it has been

roved that the census transform is an efficient and robust operator,

hich provides better matching performance even in the presence of

trong radiometric differences [22] . In our method, census transform

ith a 5 × 5 window is adopted to extract the local feature vectors of

peckle images, which can be described as: 

𝑒𝑛𝑠𝑢𝑠 ( 𝑥, 𝑦 ) = 

2 
⊗
𝑖 = - 2 

2 
⊗
𝑗= - 2 

𝑇 ( 𝐼 ( 𝑥, 𝑦 ) , 𝐼 ( 𝑥 + 𝑖, 𝑦 + 𝑗)) , (11) 

 ( 𝐼( 𝑥, 𝑦 ) , 𝐼( 𝑥 + 𝑖, 𝑦 + 𝑗)) = 

{ 

0 , 𝐼( 𝑥, 𝑦 ) ≤ 𝐼( 𝑥 + 𝑖, 𝑦 + 𝑗) , 
1 , 𝐼( 𝑥, 𝑦 ) > 𝐼( 𝑥 + 𝑖, 𝑦 + 𝑗) , (12) 

here 𝐶𝑒𝑛𝑠𝑢𝑠 ( 𝑥, 𝑦 ) is a 25-bit feature vector of the central pixel ( 𝑥, 𝑦 ) , ⊗
epresents a bit-wise concatenation operator. Since the census transform

s a pixel-independent algorithm, the feature vectors of all pixels in the

hole target image can be calculated simultaneously. For the simplest

penCL implementation, 𝑊 ×𝐻 work items are created, each of which

eads the intensity values of pixels in a 5 × 5 window to compute the

eature vector of an individual pixel. However, the speckle images are

tored in the global memory of GPU, and there is a large access latency

or the read operation of the global memory with a total of 𝑊 ×𝐻 × 25
imes. Unlike the global memory, the local memory, which is on-chip

emory, is shared and accessible to all work items of the workgroup,

nd its access latency is an order of magnitude lower than the global

emory. Considering the high overlap between the windows read by

he census transform of adjacent pixels, a local memory-based efficient

mplementation scheme is proposed that the speckle image is deposited
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Fig. 2. The schematic diagram of the optimized SGM algorithm based on OpenCL acceleration. 
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n slices into the local memory of each workgroup. Specifically, the ker-

el program of OpenCL has 𝑊 ∕32 ×𝐻∕32 workgroups, each of which

s divided into 32 × 32 work items. Each workgroup is responsible for

he census transform of 32 × 32 pixels. In order to make all work item in

he workgroup complete the census transformation of a 5 × 5 window at

he same time, each work item will performs one or two read operations

f the global memory, thereby writing 36 × 36 pixels in the speckle im-

ge into the local memory. After synchronizing the work items of same

orkgroup, each work item reads the corresponding 5 × 5 window to

ompute the feature vector of a pixel. There are only the read opera-

ion of the global memory with a total of 𝑊 ×𝐻 × 2 times and the local

emory with a total of 𝑊 ×𝐻 × 25 times. 

And then, based on the disparity range [ 𝐷 𝑚𝑖𝑛 , 𝐷 𝑚𝑎𝑥 ] of 𝑑 𝑟𝑒𝑙 in Eq. (5) ,

he initial matching cost can be obtained by calculating the Hamming

istance between the feature vector of each pixel in the target image

nd all candidates of the reference image: 

𝑜𝑠𝑡 ( 𝑥, 𝑦, 𝑑) = 𝐵𝐶 ( 𝐶𝑒𝑛𝑠𝑢𝑠 ( 𝑥, 𝑦 ) ⊕𝐶𝑒𝑛𝑠𝑢𝑠 𝑟𝑒𝑓 ( 𝑥 + 𝑑, 𝑦 )) , (13) 

here ⊕ is a XOR operation, 𝐵𝐶 (∙) is used to count the number of 1

n the XOR result. Since the cost calculation using the Hamming dis-

ance is a row-independent algorithm, the initial matching cost of each

ow in the target image can be calculated simultaneously. Considering

he high overlap between candidate reference pixels corresponding to

he neighboring pixels in the target image, the feature vectors of each

ow are stored in a segmented manner into the local memory of each

orkgroup. Specifically, the kernel program of OpenCL has 𝐻 work-
5 
roups, each of which is divided into 𝐷 work items. Each workgroup is

esponsible for the cost calculation of all pixels in a row, and each work

tem performs the cost calculation of a target pixel with a total of 𝑊 ∕ 𝐷
imes. In each time, the feature vectors of 𝐷 pixels in the target image

nd the corresponding 2 ×𝐷 pixels in the reference image are first writ-

en into the local memory. After synchronizing the work items of same

orkgroup, each work item computes the matching cost of a pixel by

eading the feature vectors of 𝐷 + 1 pixels in the local memory. 

The initial matching cost 𝐶𝑜𝑠𝑡 ( 𝑥, 𝑦, 𝑑) is coarse and needs to be fur-

her optimized using cost aggregation or cost filtering. In our method,

he SGM-based cost aggregation approximates the global solution by ag-

regating 1D matching costs along 4 independent paths. The aggregated

ost 𝐿 𝑖 ( p , 𝑑) of the pixel p ( 𝑥, 𝑦 ) at disparity 𝑑 along a path r 𝑖 = ( 𝑟 𝑥 , 𝑟 𝑦 ) is
efined recursively as: 

 𝑖 ( p , 𝑑) = 𝐶𝑜𝑠𝑡 ( p , 𝑑) + min 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝐿 𝑖 ( p − r 𝑖 , 𝑑) 
𝐿 𝑖 ( p − r 𝑖 , 𝑑 − 1) + 𝑃 1 
𝐿 𝑖 ( p − r 𝑖 , 𝑑 + 1) + 𝑃 1 
min 
𝑘 
𝐿 𝑖 ( p − r 𝑖 , 𝑘 ) + 𝑃 2 

(14) 

− min 
𝑘 
𝐿 𝑖 ( p − r 𝑖 , 𝑘 ) , 

( p , 𝑑) = 

1 
4 

4 ∑
𝑖 =1 
𝐿 𝑖 ( p , 𝑑) , (15) 
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o  

t  
here 𝑆( p , 𝑑) is final aggregated cost. 𝑃 1 is a constant penalty, 𝑃 2 is a

enalty varies with the intensity gradient: 

 1 ≤ 𝑃 2 = 

𝑃 3 |||𝐼( 𝐩 ) − 𝐼 
(
𝐩 − 𝐫 𝑖 

)||| ≤ 𝑃 3 , (16) 

here 𝑃 3 is another constant penalty. Since the four paths of cost aggre-

ation are r 1 = [1 , 0] 𝑇 , r 2 = [ - 1 , 0] 𝑇 , r 3 = [0 , 1] 𝑇 , and r 4 = [0 , - 1] 𝑇 , the cost

ggregation is a row-independent or column-independent algorithm,

.e., four aggregated costs 𝐿 𝑖 ( p , 𝑑) can be calculated simultaneously. Fur-

hermore, the cost aggregation is performed sequentially along the path

or each pixel in a row or column, i.e., the aggregated cost of the cur-

ent pixel is only related to the aggregated cost of all disparities of the

revious pixel. It is obvious that each disparity of the current pixel can

e cost aggregated at the same time. In addition, the parallel comput-

ng speed can be further improved by computing the aggregated cost

f multiple disparities for one pixel simultaneously in each work term.

ake r 1 = [1 , 0] 𝑇 as an example, the kernel program of OpenCL has 𝐻

orkgroups, each of which is divided into 𝐷∕2 work items. Each work-

roup is responsible for the cost aggregation of all pixels in a row, and

ach work item performs the cost aggregation of two disparities of a tar-

et pixel with a total of 𝑊 ∕ 𝐷 times. In each time, each work item will

erforms two write operations of the global memory, thereby writing

he aggregated cost of D disparities of the previous pixel into the local

emory. After synchronizing the work items of same workgroup, all ag-

regated costs are ranked using the reduction algorithm to obtain the

inimum aggregated cost. Finally, each work item computes the aggre-

ated cost of two disparities of a pixel independently and stores them in

he local memory for the cost aggregation of the next pixel. 

In disparity computation, the disparity at each pixel is selected as

he index of the minimum cost in 𝑆( p , 𝑑) : 

( p ) = argmin 
𝑑 

𝑆( p , 𝑑) , (17) 

ub-pixel disparity estimation is implemented by fitting a parabola using

eighboring costs: 

 

𝑠𝑢𝑏 
p = 𝐷 p − 

𝑆( p , 𝐷 p + 1) − 𝑆( p , 𝐷 p − 1) 
2 𝑆( p , 𝐷 p + 1) + 2 𝑆( p , 𝐷 p −1) − 4 𝑆( p , 𝐷 p ) 

, (18) 

n addition, the disparity map of the reference image is obtained using

( p , 𝑑) by a diagonal search for the minimum [64] : 

 𝑟𝑒𝑓 ( p ) = argmin 
𝑑 

𝑆( p + [ 𝑑, 0] 𝑇 , 𝑑) . (19) 

he disparity computation and sub-pixel disparity estimation are pixel-

ndependent algorithms, which are only related to the aggregated cost of

he current pixel. Specifically, the kernel program of OpenCL has 𝑊 ×𝐻 

orkgroups, each of which is divided into 𝐷∕2 work items. Each work-

roup is responsible for disparity computation and subpixel disparity

stimation of an individual pixel. First, each work item performs two

rite operations to store the aggregated cost of the current pixel in the

ocal memory. After synchronizing the work items of same workgroup,

he reduction algorithm is used to rank the aggregated cost of the cur-

ent pixel and obtain the disparity with the minimum cost. Then, one

ork item of the workgroup performs the sub-pixel disparity estimation

f the current pixel. 

After obtaining the disparity map from the reference and target

peckle images, a modified Left-Right consistency check (L-R Check) is

sed to identify invalid pixels in the disparity map, including occluded,

ismatched, and background areas: 

 

𝑠𝑢𝑏 ( p ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
- 10 , 𝑆( p , 𝐷( p )) > 𝑃 4 , 
- 20 , 𝑥 + 𝐷( p ) ≤ 0 ∥ 𝑥 + 𝐷( p ) > 𝑊 , 

- 30 , 𝐷( p ) − 𝐷 𝑟𝑒𝑓 ( p + 𝐷( p )) > 1 , 
(20) 

here 𝑃 4 is a parameter related to 𝑆( p , 𝑑) , which determines some pix-

ls with larger aggregated costs as invalid background areas. According

o the disparity value 𝐷 

𝑖𝑛𝑡 ( p ) , some pixels whose corresponding points

re beyond the reference image are set as occlusion areas. Based on the
6 
isparity maps of the reference and target images, some pixels with un-

qual disparity values are determined as mismatch points by L-R Check.

ince the modified L-R Check is a pixel-independent algorithm, each

ork item is responsible for a single pixel. 

For disparity optimization, the disparity map is first filtered by GPU-

ased median filtering with a 3 × 3 window, and converted to the depth

ap. The disparity and depth maps from the GPU are then transferred

o the CPU. In the CPU environment, the 4-connected-based image seg-

entation method is exploited to process the disparity map to identify

nd remove segments with fewer pixels. The mismatched points in the

isparity map are interpolated by selecting the second-lowest disparity

alue from their 8-neighborhood points. 

There are several means to further improve the efficiency of the pro-

osed OpenCL-based SGM algorithm shown in Fig. 4 , as follows: 

1) According to the 3D imaging principle of monocular 3D sensors, the

reference image is a known speckle image at 𝑍 𝑟𝑒𝑓 and its census

transform can be calculated in advance. 

2) The local memory mechanism of OpenCL is widely used to improve

computational efficiency in the census transform, cost calculation,

cost aggregation, disparity calculation, sub-pixel disparity estima-

tion, and median filtering. 

3) The GPU-accelerated reduction algorithm is used to quickly find the

minimum value of a set of data. 

4) OpenCL can execute multiple queues for different operations simul-

taneously. While performing the census transform and cost calcula-

tion, another queue pre-computes the penalty parameter 𝑃 2 of the

target image. Considering that the same aggregation cost is used in

the disparity calculation of the reference image and the target image,

for cost aggregation, it is more efficient to first launch three queues

simultaneously to calculate the aggregated cost of three paths, and

then invoke one queue to aggregate another path while averaging

the total cost from all paths. 

. Experiments 

To reveal the actual performance of the proposed monocular 3D

ensor, some experiments are carried out, including precision analysis,

xperimental comparisons of different 3D sensors, and dynamic scenes

easurement. In our sensor, the resolution of the IR camera is 640 × 480 ,
he baseline between the camera and the projector is about 35 𝑚𝑚 . First,

 square LED with a wavelength of 940 𝑛𝑚 is used to uniformly illuminate

he calibration board, and the calibration targets with different orienta-

ions at 16 different distances are continuously captured to obtain the

amera intrinsic parameters as shown in Fig. 3 . Considering the geomet-

ic parameters of the proposed 3D sensor, the absolute disparity range

s suitably set to 64 pixels to measure scenes with a depth range of 0 . 3 𝑚
o 3 𝑚 . 

In the proposed OpenCL-based SGM algorithm, census transform

ith a 5 × 5 window is adopted to obtain the initial matching cost, which

anges from 0 to 25. After the SGM-based cost aggregation, the aggre-

ated cost ranges from 0 to 300. In order to enhance the accuracy of

peckle matching, the preset thresholds of the parameters 𝑃 1 , 𝑃 3 , and 𝑃 4 
re set as 30, 120, and 120 based on the matching quality metric after

n exhaustive empirical search. 

.1. Precision analysis 

To verify the feasibility of the proposed calibration method for

onocular 3D sensors with the reference speckle image, five high-

uality speckle reference images at different distances ( 400 𝑚𝑚 , 500 𝑚𝑚 ,

00 𝑚𝑚 , 700 𝑚𝑚 , and 800 𝑚𝑚 ) are collected to implement plane measure-

ents. Precision analysis results are obtained by measuring the planar

arget at distances between 400 𝑚𝑚 and 1500 𝑚𝑚 . In this experiment, not

nly the 3D imaging accuracy of the monocular 3D sensor can be quanti-

atively evaluated, but also the best reference speckle image is selected.
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Fig. 3. Calibration results of IR camera. (a) 16 images of 

the calibration board with different poses. (b) The cali- 

brated camera parameters. (c) Reprojection error distri- 

butions of the camera. 
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owever, due to the limited disparity accuracy of stereo matching and

he quantization error of the depth map, the measurement accuracy of

lanar targets is not only related to the 3D measurement algorithm, but

lso affected by the angle between the planar and the 𝑍-axis of the

D sensor [74] . As the measurement angle gradually increases, the 3D

easurement error of the plane increases significantly in Fig. 4 . There-

ore, for each distance, it needs to continuously adjust the pose of the

onocular 3D sensor to obtain accurate precision analysis results by

ulti-frame averaging of the plane fitting, as shown in Fig. 5 . It is easy

o find that the measurement precision of the planar target is slightly

 

7 
ifferent at distances between 400 𝑚𝑚 and 1500 𝑚𝑚 using different refer-

nce images, but their trend is the same, and the following conclusions

an be drawn: 

(1) As the measurement distance increases, the measurement preci-

sion gradually deteriorates, which is determined by the triangu-

lation of stereo vision. 

(2) If the 3D measurement is performed using the reference speckle

image at 𝑍 𝑟𝑒𝑓 , the measurement accuracy of the planar tar-

get close to 𝑍 𝑟𝑒𝑓 is relatively high, which is determined by the

measurement principle of monocular 3D sensors. According to
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Fig. 4. The 3D measurement error of the plane increases 

significantly as the measurement angle gradually in- 

creases. (a)-(c) The 3D measurement results. (d)-(f) The 

3D measurement errors of (a)-(c). 

Fig. 5. Precision analysis of 3D measurement results 

for the planar target at distances between 400 𝑚𝑚 and 

1500 𝑚𝑚 using reference speckle patterns at different dis- 

tances. 
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Table 1 

Parameters of 3D sensors based on speckle projection. 

Parameter The developed HJIMI Orbbec RealSence 

3D sensor A200 Dabai D435 

3D Imaging principle Monocular Monocular Binocular Binocular 

Algorithm platform GPU ASIC ASIC ASIC 

Baseline 35 𝑚𝑚 55 𝑚𝑚 40 𝑚𝑚 50 𝑚𝑚 
Resolution 640 × 480 640 × 400 640 × 400 640 × 480 
Minimum unit 0 . 01 𝑚𝑚 1 𝑚𝑚 0 . 1 𝑚𝑚 0 . 1 𝑚𝑚 

e  

a  

A  

F  
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Eq. (5) , as the planar target is closer to the reference plane, the

relative disparity 𝑑 𝑟𝑒𝑙 is more accurate, thereby improving the

measurement accuracy. 

(3) In Fig. 5 , the measurement accuracy (within 700 𝑚𝑚 , 1000 𝑚𝑚 , and

1500 𝑚𝑚 ) is less than 0 . 8 𝑚𝑚 , 2 𝑚𝑚 and 4 𝑚𝑚 . This experimental re-

sult indirectly proves the high quality of the reference speckle

image, which confirms that the proposed calibration method for

monocular 3D sensors with the reference speckle image is prac-

tical and feasible. 

(4) While quantitatively evaluating the 3D imaging accuracy of the

monocular 3D sensor, the measurement accuracy at distances be-

tween 400 𝑚𝑚 and 1500 𝑚𝑚 is higher using the reference speckle

image at 700 𝑚𝑚 , which is selected as the best reference speckle

image. 

.2. Experimental comparison of 3D sensors 

To verify the actual performance of our monocular 3D sensor, the

xperiments of precision analysis and complex scene measurement are

arried out for comparison with some common 3D sensors based on

peckle projection. These 3D sensors are classified into monocular 3D

ensors and stereo 3D sensors in Fig. 6 (a) and Table. 1 . Due to the ex-

ensive overhead of dense and accurate depth sensing algorithms in

obile applications, it is worth noting that mainstream 3D sensors are

enerally equipped with ASIC to realize real-time data processing and

ransmission of 3D measurements, such as MX series chips of Orbbec and

MI series chips of HJIMI. However, these 3D sensors need to guarantee
8 
fficient data transmission from hardware platforms to mobile devices

t the cost of 3D measurement accuracy. As shown in Table. 1 , HJIMI

200 stably outputs the depth map with a minimum unit of 1 𝑚𝑚 at 30

PS, and the minimum unit of the depth map output by Orbbec Dabai

nd RealSense D435 is 0 . 1 𝑚𝑚 . 

Likewise, in order to estimate the 3D imaging accuracy quantita-

ively, 3D measurement results for the planar target at distances be-

ween 400 𝑚𝑚 and 1500 𝑚𝑚 using different 3D sensors in Fig. 6 (b)-(c).

or 3D measurement results at 1000 𝑚𝑚 in Fig. 6 (b), as a monocular 3D

ensor with a wider baseline, it can be found that the plane measure-

ent results provided by HJIMI A200 are relatively rough, which may

e related to the cost aggregation strategy in the used stereo matching

lgorithm. The point cloud smoothing method used in Orbbec Dabai

ay lead to obvious step-like measurement errors in Fig. 6 (b). For the

easurement results of RealSense D435, it suffers from severe measure-

ent errors which limits its 3D imaging quality and precludes the re-
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Fig. 6. Precision analysis of 3D measurement results 

for the planar target at distances between 400 𝑚𝑚 and 

1500 𝑚𝑚 using different 3D sensors. (a) Photograph of 

different 3D sensors based on speckle projection. (b) 3D 

measurement results of the planar target at 1000 𝑚𝑚 . (c) 

Precision analysis results for the planar target at dis- 

tances between 400 𝑚𝑚 and 1500 𝑚𝑚 . 

Table 2 

Runtime of the optimized SGM algorithm based on 

OpenCL acceleration on different GPUs. 

Runtime(ms) GTX 1060 ARM Mail G52 

Stage 1 (GPU) 0.39 3.83 ms 

Stage 2 (GPU) 2.88 15.67 

Stage 3 (GPU) 4.51 29.36 

Stage 4 (CPU) 5.48 18.55 

Total 13.26 67.41 

Frame rate 75.41 FPS 14.83 FPS 
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overy of the fine details of the measured plane. In contrast, benefited

rom the proposed reference plane calibration method and the optimized

GM algorithm based on OpenCL acceleration, our monocular 3D sen-

or can run on a desktop computer (GTX 1060) and the Android tablet

C (UNISOC T618 with ARM Mali-G52) to obtain 3D measurement re-

ults losslessly, enabling high-accuracy and real-time 3D imaging. The

untime on different GPUs is shown in Table. 2 , which achieves fast

onocular matching at speeds of 75.41 FPS and 14.83 FPS. These ex-

erimental results verify that the proposed 3D sensor can significantly

ncrease the measurement accuracy to 2 − 3 times that of other 3D sen-

ors, the measurement accuracy of our monocular 3D sensor (within

00 𝑚𝑚 , 1000 𝑚𝑚 , and 1500 𝑚𝑚 ) are about 0 . 7 𝑚𝑚 , 1 . 5 𝑚𝑚 and 3 . 5 𝑚𝑚 in

ig. 6 (c). 

Measuring the target scenes with ridged, complex, or discontinuous

urfaces is a challenging task for 3D sensors based on speckle projection.

o verify the reliability of these 3D sensors for scanning the challenging

urfaces, a complex indoor scene is measured within a large 3D space

olume of 0 . 8 𝑚 ( 𝑤𝑖𝑑𝑡ℎ ) × 0 . 5 𝑚 ( ℎ𝑒𝑖𝑔ℎ𝑡 ) ×1 𝑚 ( 𝑑𝑒𝑝𝑡ℎ ) as shown in Fig. 7 (a),

he corresponding 3D reconstruction results output by different 3D sen-

ors are shown in Fig. 7 (b)-(e). In terms of the accuracy of the measure-

ent results, the depth map output by RealSenseD435 has the worst

uality and edge fattening in Fig. 7 (e). There have been over-smoothing

nd obvious distorted measurement errors in measuring the teacup at

00 𝑚𝑚 , and severe corrugated measurement errors in measuring the wall
9 
t 900 𝑚𝑚 , making it impossible to measure the power line on the wall in

ig. 7 (i). In the measurement results of Orbbec Dabai, due to the com-

on occlusion problem in stereo vision systems, it cannot accurately

easure the power line on the wall, but the measurement results of the

oldier dolls and a teacup have the best quality in Figs. 7 (d) and (h).

ased on different 3D imaging principles, the stereo 3D sensor matches

he left and right images of the same scene, while the monocular 3D

ensor matches the target scene image with the reference plane image.

herefore, stereo 3D sensors are good at measuring complex scenes in

ig. 7 , while monocular 3D sensors are good at measuring planar tar-

ets in Figs. 6 (b)-(c). HJIMI A200 with a wider baseline ( 55 𝑚𝑚 ) outputs

he depth map with the lowest completeness and the coarse measure-

ent results of the teacup, but reconstructs the 3D point clouds with

igh quality of the power line in Figs. 7 (c) and (g). In contrast, our

D sensor provides a more complete and high-quality reconstruction

f the power line and the teacup in Figs. 7 (b) and (f), which demon-

trates its reliability of high-accuracy 3D imaging for measuring complex

cenes. 

.3. Dynamic scene measurement 

Next, our 3D sensor is applied to record a dynamic scene to further

alidate its capability of real-time 3D shape measurement in Fig. 8 . The

cene consisted of two face masks and a moving hand mostly. During

his experiment, the exposure time of cameras is set at 33 𝑚𝑠 to capture

peckle images for achieving 3D reconstruction at 30 FPS. Figs. 8 (a)-(b)

how representative 2D camera images and corresponding color-coded

.5D depth reconstructions at different time points. For the correspond-

ng enlarged local details shown in Fig. 8 (c), the 3D point clouds of

ace masks and the hand are presented to illustrate that our method can

chieve robust 3D shape measurement for objects with complex surfaces

nd geometric discontinuities. The whole 3D measurement results can

e referred to in 𝑉 𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 1 , and it can be found that complex sur-

aces of the dynamic scene are correctly reconstructed with high quality,

erifying the reliability of the proposed monocular 3D sensor to perform

ccurate 3D measurement with high completeness dynamically. 
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Fig. 7. Comparison of 3D measurement results for com- 

plex scenes. (a) Photograph of a complex indoor scene. 

(b)-(e) The depth maps output by our 3D sensor, HJIMI 

A200, Orbbec Dabai, and RealSense D435. (f)-(i) The 

3D point clouds of the enlarged local details in (b)-(e). 

Fig. 8. The 3D reconstruction results for a dynamic 

scene ( 𝑉 𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 1 ). (a)-(b) 2D camera images and 

corresponding color-coded depth reconstructions at 

different times. (c) The 3D point clouds of the enlarged 

local details in (b). 
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i  
. Conclusions and discussion 

In this work, we proposed a real-time and accurate monocular 3D

ensor using the reference plane calibration and an optimized SGM

ased on OpenCL acceleration. In terms of hardware, benefited from the

ustomized VCSEL-based speckle projection scheme, the IR dot projector

an project a total of 35 thousand clear and uniform speckle spots to the

easured scene, enabling low-cost and high-quality speckle projection.

ccording to the 3D imaging principle of monocular 3D sensors above,

t revealed an important relationship between the quality of the refer-

nce speckle image and the measurement accuracy. Then, a calibration
10 
ethod is proposed to estimate the extrinsic parameters between the

eference plane and the IR camera for acquiring the high-quality refer-

nce speckle image at 𝑍 𝑟𝑒𝑓 . In addition, considering that 3D sensors are

enerally mounted on mobile devices, an optimized semi-global match-

ng (SGM) algorithm using OpenCL acceleration is proposed to obtain

fficient, dense, and accurate matching results, enabling high-quality

D reconstruction dynamically. Concretely, in the OpenCL environment,

he local memory mechanism is widely used to improve computational

fficiency in the census transform, cost calculation, cost aggregation,

isparity calculation, sub-pixel disparity estimation, and median filter-

ng. Since OpenCL can execute multiple queues for different operations
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imultaneously, the Census-based cost calculation and the penalty 𝑃 2 for

he target image will first be computed simultaneously in two different

ueues, respectively. For cost aggregation, considering that the same ag-

regation cost is used in the disparity calculation of the reference image

nd the target image, an efficient program is implemented to first launch

hree queues to calculate the aggregated cost of three paths simultane-

usly, and then invoke one queue to aggregate another path while aver-

ging the total cost from all paths. Finally, some post-processing opera-

ions are implemented to identify and correct the mismatch points and

he occlusion regions, guaranteeing the high completeness of 3D mea-

urement results. The experimental results of precision analysis proved

hat the proposed 3D sensor can significantly increase the measurement

ccuracy to 2 − 3 times that of other 3D sensors, our measurement ac-

uracy (within 800 𝑚𝑚 , 1000 𝑚𝑚 , and 1500 𝑚𝑚 ) is less than 0 . 7 𝑚𝑚 , 1 . 5 𝑚𝑚
nd 3 . 5 𝑚𝑚 , which confirms that the proposed calibration method for

he reference speckle image is practical and feasible. For complex scene

easurement, the experimental comparison of different 3D sensors illus-

rated that our 3D sensor can provide a more complete and high-quality

econstruction of the power line and the teacup at different distances.

he dynamic measurement experiment has verified the success of the

roposed method in its ability to effectively achieve fast and accurate

D imaging within the large measurement range of 0 . 8 𝑚 (length) × 0 . 5 𝑚
width) × 1 𝑚 (depth) at 75 FPS on GTX 1060 and 15 FPS on ARM Mail

52(mobile platform). 

It should be discussed here that the 3D sensor developed in this pa-

er can achieve more accurate 3D measurement compared with others,

ut it cannot meet the requirements of 3D measurement with the sub-

illimeter accuracy in some applications. How to improve the matching

ccuracy while maintaining the miniaturization of 3D sensors is still a

roblem to be solved. Recently, some 3D measurement systems based on

ulti-frame speckle projection have been proposed, which can greatly

mprove the measurement accuracy by utilizing the spatial-temporal

tereo matching algorithm, but it is no longer miniaturized and portable.

ased on the above analysis, we will explore other methods to design a

ingle-shot SPP system with higher performance. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper. 

RediT authorship contribution statement 

Wei Yin: Conceptualization, Methodology, Software, Visualization,

riting – original draft. Lu Cao: Software, Formal analysis. Hang Zhao:

ata curation, Validation. Yan Hu: Writing – review & editing. Shijie

eng: Writing – review & editing. Xiaolei Zhang: Writing – review &

diting. Detong Shen: Software, Formal analysis. Huai Wang: Writing

review & editing. Qian Chen: Formal analysis, Writing – review & edit-

ng, Funding acquisition. Chao Zuo: Formal analysis, Writing – review

 editing, Funding acquisition. 

cknowledgments 

This work was supported by National Key Research and Develop-

ent Program of China (2022YFB2804603, 2022YFB2804604), Na-

ional Natural Science Foundation of China (62075096, 62205147,

21B2033), China Postdoctoral Science Foundation (2022M711630,

022M721619), Jiangsu Funding Program for Excellent Postdoctoral

alent (2022ZB254), The Leading Technology of Jiangsu Basic Re-

earch Plan (BK20192003), The “333 Engineering ” Research Project of

iangsu Province (BRA2016407), The Jiangsu Provincial “One belt and

ne road ” innovation cooperation project (BZ2020007), Open Research

und of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense
11 
JSGP202105), Fundamental Research Funds for the Central Universi-

ies (30921011208, 30919011222, 30920032101, 30922010405), and

ational Major Scientific Instrument Development Project (62227818).

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.optlaseng.2023.107536 . 

eferences 

[1] Ganapathi V, Plagemann C, Koller D, Thrun S. Real time motion capture using a sin-

gle time-of-flight camera. In: 2010 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. IEEE; 2010. p. 755–62 . 

[2] Kolb A, Barth E, Koch R, Larsen R. Time-of-flight cameras in computer graphics. In:

Computer Graphics Forum. Wiley Online Library; 2010. p. 141–59 . 

[3] Hansard M, Lee S, Choi O, Horaud RP. Time-of-flight cameras: principles, methods

and applications. Springer Science & Business Media; 2012 . 

[4] Sun J, Zheng N-N, Shum H-Y. Stereo matching using belief propagation. IEEE Trans

Pattern Anal Mach Intell 2003;25(7):787–800 . 

[5] Hirschmüller H. Stereo processing by semiglobal matching and mutual information.

IEEE Trans Pattern Anal Mach Intell 2007;30(2):328–41 . 

[6] Lazaros N, Sirakoulis GC, Gasteratos A. Review of stereo vision algorithms: from

software to hardware. Int J Optomechatronics 2008;2(4):435–62 . 

[7] Jin S, Cho J, Dai Pham X, Lee KM, Park S-K, Kim M, et al. Fpga design and imple-

mentation of a real-time stereo vision system. IEEE Trans Circuits Syst Video Technol

2009;20(1):15–26 . 

[8] Geiger A, Roser M, Urtasun R. Efficient large-scale stereo matching. In: Asian Con-

ference on Computer Vision. Springer; 2010. p. 25–38 . 

[9] Bleyer M, Rhemann C, Rother C. Patchmatch stereo-stereo matching with slanted

support windows. In: Bmvc; 2011. p. 1–11 . 

10] Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R. A comparison and evalua-

tion of multi-view stereo reconstruction algorithms. In: 2006 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. IEEE; 2006. p. 519–28 . 

11] Goesele M, Snavely N, Curless B, Hoppe H, Seitz SM. Multi-view stereo for commu-

nity photo collections. In: 2007 IEEE 11th International Conference on Computer

Vision. IEEE; 2007. p. 1–8 . 

12] Zhang Q, Su X. High-speed optical measurement for the drumhead vibration. Opt

Express 2005;13(8):3110–16 . 

13] Gorthi SS, Rastogi P. Fringe projection techniques: whither we are? Opt Laser Eng

2010;48:133–40 . 

14] Feng S, Zhang L, Zuo C, Tao T, Chen Q, Gu G. High dynamic range 3d measurements

with fringe projection profilometry: a review. Mea Sci Technol 2018;29(12):122001 .

15] Zhang S. Absolute phase retrieval methods for digital fringe projection profilometry:

a review. Opt Laser Eng 2018;107:28–37 . 

16] Yin W, Feng S, Tao T, Huang L, Zhang S, Chen Q, Zuo C. Calibration

method for panoramic 3d shape measurement with plane mirrors. Opt Express

2019;27(25):36538–50 . 

17] Guo W, Wu Z, Li Y, Liu Y, Zhang Q. Real-time 3d shape measurement with du-

al-frequency composite grating and motion-induced error reduction. Opt Express

2020;28(18):26882–97 . 

18] Wu Z, Guo W, Zhang Q. High-speed three-dimensional shape measurement based on

shifting gray-code light. Opt Express 2019;27(16):22631–44 . 

19] Wolcott RW, Eustice RM. Visual localization within lidar maps for automated ur-

ban driving. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and

Systems. IEEE; 2014. p. 176–83 . 

20] Hirschmüller H, Innocent PR, Garibaldi J. Real-time correlation-based stereo vision

with reduced border errors. Int J Comput Vis 2002;47(1–3):229–46 . 

21] Hirschmüller H, Scharstein D. Evaluation of cost functions for stereo matching. In:

2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2007.

p. 1–8 . 

22] Hirschmüller H, Scharstein D. Evaluation of stereo matching costs on images with

radiometric differences. IEEE Trans Pattern Anal Mach Intell 2008;31(9):1582–99 . 

23] Scharstein D, Hirschmüller H, Kitajima Y, Krathwohl G, Ne š i ć N, Wang X, West-

ling P. High-resolution stereo datasets with subpixel-accurate ground truth. In: Ger-

man Conference on Pattern Recognition. Springer; 2014. p. 31–42 . 

24] Salvi J, Pages J, Batlle J. Pattern codification strategies in structured light systems.

Pattern Recognit 2004;37(4):827–49 . 

25] Zhang Z. Review of single-shot 3d shape measurement by phase calculation-based

fringe projection techniques. Opt Laser Eng 2012;50:1097–106 . 

26] Zuo C, Tao T, Feng S, Huang L, Asundi A, Chen Q. Micro fourier transform pro-

filometry ( 𝜇ftp): 3d shape measurement at 10,000 frames per second. Opt Laser Eng

2018;102:70–91 . 

27] Zuo C, Qian J, Feng S, Yin W, Li Y, Fan P, Han J, Qian K, Chen Q. Deep learning in

optical metrology: a review. Light: Sci Appl 2022;11(1):1–54 . 

28] Zhang S. High-speed 3d shape measurement with structured light methods: a review.

Opt Laser Eng 2018;106:119–31 . 

29] Heist S, Dietrich P, Landmann M, Kühmstedt P, Notni G, Tünnermann A. Gobo pro-

jection for 3d measurements at highest frame rates: a performance analysis. Light:

Sci Appl 2018;7(1):1–13 . 

30] Yin W, Zuo C, Feng S, Tao T, Hu Y, Huang L, Ma J, Chen Q. High-speed three-di-

mensional shape measurement using geometry-constraint-based number-theoretical

phase unwrapping. Opt Laser Eng 2019;115:21–31 . 

https://doi.org/10.1016/j.optlaseng.2023.107536
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0001
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0002
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0003
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0004
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0005
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0006
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0007
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0008
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0009
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0010
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0011
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0012
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0013
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0014
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0015
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0016
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0017
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0018
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0019
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0020
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0021
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0022
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0023
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0024
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0025
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0026
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0027
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0028
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0029
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0030


W. Yin, L. Cao, H. Zhao et al. Optics and Lasers in Engineering 165 (2023) 107536 

[  

 

[  

[  

 

[  

[  

 

[  

[  

[  

 

[  

[  

[  

[  

 

[  

 

[  

[  

[  

 

[  

[  

[  

[  

 

[  

[  

 

[  

[  

[  

[  

 

[  

[  

 

[  

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

[  

 

[  

 

[  

[  

[  

 

[  

 

31] Wu Z, Guo W, Zhang Q. Two-frequency phase-shifting method vs. gray-coded-based

method in dynamic fringe projection profilometry: acomparative review. Opt Laser

Eng 2022;153:106995 . 

32] Schaffer M, Grosse M, Kowarschik R. High-speed pattern projection for three-dimen-

sional shape measurement using laser speckles. Appl Opt 2010;49(18):3622–9 . 

33] Schaffer M, Grosse M, Harendt B, Kowarschik R. High-speed three-dimensional shape

measurements of objects with laser speckles and acousto-optical deflection. Opt Lett

2011;36(16):3097–9 . 

34] Zhou P, Zhu J, Jing H. Optical 3-d surface reconstruction with color binary speckle

pattern encoding. Opt Express 2018;26(3):3452–65 . 

35] Yin W, Hu Y, Feng S, Huang L, Kemao Q, Chen Q, Zuo C. Single-shot 3d shape

measurement using an end-to-end stereo matching network for speckle projection

profilometry. Opt Express 2021;29(9):13388–407 . 

36] Su X, Chen W. Fourier transform profilometry: a review. Opt Laser Eng

2001;35:263–84 . 

37] Feng S, Chen Q, Gu G, Tao T, Zhang L, Hu Y, Yin W, Zuo C. Fringe pattern analysis

using deep learning. Adv Photonics 2019;1(2):025001 . 

38] Yin W, Zhong J, Feng S, Tao T, Han J, Huang L, Chen Q, Zuo C. Composite deep

learning framework for absolute 3d shape measurement based on single fringe phase

retrieval and speckle correlation. J Phys: Photon 2020;2(4):045009 . 

39] Zuo C, Feng S, Huang L, Tao T, Yin W, Chen Q. Phase shifting algorithms for fringe

projection profilometry: a review. Opt Laser Eng 2018;109:23–59 . 

40] Feng S, Zuo C, Zhang L, Yin W, Chen Q. Generalized framework for non-sinusoidal

fringe analysis using deep learning. Photonics Res 2021;9(6):1084–98 . 

41] Su X, Chen W. Reliability-guided phase unwrapping algorithm: a review. Opt Laser

Eng 2004;42:245–61 . 

42] Zhao M, Huang L, Zhang Q, Su X, Asundi A, Kemao Q. Quality-guided phase un-

wrapping technique: comparison of quality maps and guiding strategies. Appl Opt

2011;50(33):6214–24 . 

43] Wu Z, Guo W, Zhang Q, Wang H, Li X, Chen Z. Time-overlapping structured-light

projection: high performance on 3d shape measurement for complex dynamic scenes.

Opt Express 2022;30(13):22467–86 . 

44] Wang Y, Zhang S. Novel phase-coding method for absolute phase retrieval. Opt Lett

2012;37(11):2067–9 . 

45] Zhong K, Li Z, Shi Y, Wang C, Lei Y. Fast phase measurement profilometry for

arbitrary shape objects without phase unwrapping. Opt Laser Eng 2013;51:1213–

1222 . 

46] Zuo C, Huang L, Zhang M, Chen Q, Asundi A. Temporal phase unwrapping al-

gorithms for fringe projection profilometry: a comparative review. Opt Laser Eng

2016;85:84–103 . 

47] Tao T, Chen Q, Feng S, Hu Y, Zhang M, Zuo C. High-precision real-time 3d shape

measurement based on a quad-camera system. J Opt 2017;20(1):014009 . 

48] Cai Z, Liu X, Chen Z, Tang Q, Gao BZ, Pedrini G, Osten W, Peng X. Light-field-based

absolute phase unwrapping. Opt Lett 2018;43(23):5717–20 . 

49] Yin W, Chen Q, Feng S, Tao T, Huang L, Trusiak M, Asundi A, Zuo C. Temporal phase

unwrapping using deep learning. Sci Rep 2019;9(1):1–12 . 

50] Yin W, Feng S, Tao T, Huang L, Trusiak M, Chen Q, Zuo C. High-speed 3d shape mea-

surement using the optimized composite fringe patterns and stereo-assisted struc-

tured light system. Opt Express 2019;27(3):2411–31 . 

51] Su X, Zhang Q. Dynamic 3-d shape measurement method: a review. Opt Laser Eng

2010;48:191–204 . 

52] Feng S, Zuo C, Tao T, Hu Y, Zhang M, Chen Q, Gu G. Robust dynamic 3-d mea-

surements with motion-compensated phase-shifting profilometry. Opt Laser Eng

2018;103:127–38 . 

53] Ito M, Ishii A. A three-level checkerboard pattern (tcp) projection method for curved

surface measurement. Pattern Recognit 1995;28(1):27–40 . 
12 
54] Maruyama M, Abe S. Range sensing by projecting multiple slits with random cuts.

IEEE Trans Pattern Anal Mach Intell 1993;15(6):647–51 . 

55] Boyer KL, Kak AC. Color-encoded structured light for rapid active ranging. IEEE

Trans Pattern Anal Mach Intell 1987(1):14–28 . 

56] Zhang L, Curless B, Seitz SM. Rapid shape acquisition using color structured light

and multi-pass dynamic programming. In: First International Symposium on 3D Data

Processing Visualization and Transmission. IEEE; 2002. p. 24–36 . 

57] Pagès J, Salvi J, Collewet C, Forest J. Optimised de bruijn patterns for one-shot shape

acquisition. Image Vis Comput 2005;23(8):707–20 . 

58] Morita H, Yajima K, Sakata S. Reconstruction of surfaces of 3-d objects by m-array

pattern projection method. In: Second International Conference on Computer Vision.

IEEE; 1988. p. 468–73 . 

59] Gu F, Song Z, Zhao Z. Single-shot structured light sensor for 3d dense and dynamic

reconstruction. Sensors 2020;20(4):1094 . 

60] Li Y, Zheng S, Wang X, Ma H. An efficient photogrammetric stereo matching method

for high-resolution images. Comput Geosci 2016;97:58–66 . 

61] Wang L, Gong M, Gong M, Yang R. How far can we go with local optimization in re-

al-time stereo matching. In: Third International Symposium on 3D Data Processing,

Visualization, and Transmission. IEEE; 2006. p. 129–36 . 

62] Gallup D, Frahm J-M, Mordohai P, Yang Q, Pollefeys M. Real-time plane-sweeping

stereo with multiple sweeping directions. In: 2007 IEEE Conference on Computer

Vision and Pattern Recognition. IEEE; 2007. p. 1–8 . 

63] Woetzel J, Koch R. Real-time multi-stereo depth estimation on gpu with approxima-

tive discontinuity handling. In: 1st European Conference on Visual Media Produc-

tion; 2004 . 

64] Ernst I, Hirschmüller H. Mutual information based semi-global stereo matching

on the gpu. In: International Symposium on Visual Computing. Springer; 2008.

p. 228–39 . 

65] Banz C, Blume H, Pirsch P. Real-time semi-global matching disparity estimation on

the gpu. In: 2011 IEEE International Conference on Computer Vision Workshops

(ICCV Workshops). IEEE; 2011. p. 514–21 . 

66] Banz C, Hesselbarth S, Flatt H, Blume H, Pirsch P. Real-time stereo vision system

using semi-global matching disparity estimation: Architecture and fpga-implemen-

tation. In: 2010 International Conference on Embedded Computer Systems: Archi-

tectures, Modeling and Simulation. IEEE; 2010. p. 93–101 . 

67] Hernandez-Juarez D, Chacón A, Espinosa A, Vázquez D, Moure JC, López AM. Em-

bedded real-time stereo estimation via semi-global matching on the gpu. Procedia

Comput Sci 2016;80:143–53 . 

68] Stone JE, Gohara D, Shi G. Opencl: a parallel programming standard for heteroge-

neous computing systems. Comput Sci Eng 2010;12(3):66–73 . 

69] Morinaga M, Gu X, Shimura K, Nakahama M, Matsutani A, Koyama F. Vcsel amplifier

dot projector with folded-path slow-light waveguide for 3d depth sensing. In: 2018

IEEE International Semiconductor Laser Conference (ISLC). IEEE; 2018. p. 1–2 . 

70] Morinaga M, Gu X, Shimura K, Matsutani A, Koyama F. Compact dot projector based

on folded path vcsel amplifier for structured light sensing. In: 2019 Conference on

Lasers and Electro-Optics (CLEO). IEEE; 2019. p. 1–2 . 

71] Hartley R, Zisserman A. Multiple view geometry in computer vision. Cambridge

University; 2003 . 

72] Dal Mutto C, Zanuttigh P, Cortelazzo GM. Time-of-flight cameras and microsoft

kinecttm. Springer Science & Business Media; 2012 . 

73] Fanello SR, Rhemann C, Tankovich V, Kowdle A, Escolano SO, Kim D, Izadi S. Hy-

perdepth: Learning depth from structured light without matching. In: 2016 IEEE

Conference on Computer Vision and Pattern Recognition; 2016. p. 5441–50 . 

74] Nguyen CV, Izadi S, Lovell D. Modeling kinect sensor noise for improved 3d recon-

struction and tracking. In: 2012 Second International Conference on 3D Imaging,

Modeling, Processing, Visualization & Transmission. IEEE; 2012. p. 524–30 . 

http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0031
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0032
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0033
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0034
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0035
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0036
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0037
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0038
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0039
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0040
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0041
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0042
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0043
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0044
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0045
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0046
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0047
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0048
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0049
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0050
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0051
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0052
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0053
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0054
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0055
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0056
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0057
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0058
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0059
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0060
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0061
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0062
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0063
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0064
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0065
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0066
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0067
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0068
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0069
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0070
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0071
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0072
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0073
http://refhub.elsevier.com/S0143-8166(23)00065-9/sbref0074

	Real-time and accurate monocular 3D sensor using the reference plane calibration and an optimized SGM based on opencl acceleration
	1 Introduction
	2 Principle
	2.1 The infrared speckle projection-based monocular 3D sensor
	2.2 The 3D imaging principle of monocular 3D sensors
	2.3 The calibration method for monocular 3D sensors with the reference speckle image
	2.4 The optimized SGM algorithm based on opencl acceleration

	3 Experiments
	3.1 Precision analysis
	3.2 Experimental comparison of 3D sensors
	3.3 Dynamic scene measurement

	4 Conclusions and discussion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary material
	References


