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 Section 1: Discussion on using different methods for simulation data
In the main content, our method can achieve noise reduction and resolution improvement at various levels. Here, the
following will compare and analyze different methods and our methods. First of all,  the following will analyze the de-
noising ability of three methods (cGAN, U-Net, ours). As shown in Fig. S1(a–e), our method outperforms other meth-
ods in SSIM and PSNR, effectively recovering signals masked by noise. In Fig. S1(f–j), a resolution quantification analy-
sis is primarily conducted, but there is also some interference from noise and signal attenuation. The results show that
our  method  outperforms  other  methods  in  terms  of  SSIM  and  PSNR.  In Fig. S1(i),  some  large  vessels  are  enhanced,
which may be due to the U-net architecture misclassifying large vessels as small vessel structures. 

 Section 2: Supplement of experimental data at different depths
In  the  experiment  of  simulating  photoacoustic  microscopy  imaging  at  different  depths  using  translucent  silicone  of
varying thicknesses, it is difficult to discern resolution and denoising effects due to the use of uniform color scales. As
shown in Fig. S2, different color scales are used to better illustrate resolution and noise removal. After changing the col-
or  scale,  it  is  evident  that  as  thickness  increases,  image  resolution  and  noise  increase. Fig. S2(a1–a2) show  that  our
method significantly improves resolution and denoising. With one silicone layer, the improvement in FWHM is not ob-
vious, but as thickness increases, changes in FWHM become apparent. This is because the improvement in FWHM can-
not exceed the actual thickness of the vessels. The adaptation of PEDL can be well reflected here. 
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Fig. S1 | Comparison of cGAN, U-NET and ours methods. (a–e) Quantitative analysis of denoising by three methods. (a) Ground truth photoa-

coustic microscopy image. (b) Input photoacoustic microscopy image. (c) Photoacoustic microscopy image reconstructed from (b). (d) Photoa-

coustic  microscopy  image  reconstructed  from  (b).  (e)  Image  reconstructed  from  (b).  (f–j)  Quantitative  analysis  of  resolution  enhancement  by

three methods. (f) Ground truth photoacoustic microscopy image. (g) Input photoacoustic microscopy image. (h) Photoacoustic microscopy im-

age reconstructed from (g). (i) Photoacoustic microscopy image reconstructed from (g). (j) Image reconstructed from (g).
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 Section 3: Supplementary experimental data about denoising
In the experiments of this work, the noise in the acquired experimental data is not significant enough to demonstrate
the denoising capability of our method. Adjusting the averaging of signals can increase noise; reducing the number of
scans or skipping averaging retains more noise, significantly lowering the image SNR. When the motor overheats, addi-
tional noise is generated, interfering with the PAM system and further reducing the image SNR. Increasing the motor's
workload can simulate this high-noise environment. Additionally, by adjusting the denoising ability of the equipment,
such as modifying the denoising algorithm parameters or reducing filtering intensity,  more noise components are re-
tained in the image, effectively enhancing noise levels. These methods collectively provide high-noise photoacoustic mi-
croscopy image data, which are then processed using the denoising method proposed in this work. The specific experi-
mental images are shown in Fig. S3. In Fig. 3, it is evident that our method effectively removes noise and retains signals
masked by noise, as shown from Fig. S3(a) to Fig. S3(d). The white spots in Fig. S3(b) are due to excessive energy, but
our method can still effectively remove these noises.
  

In
pu

t
O

ut
pu

t

0.4 mm

Max

Min

a b c

d e f

Fig. S3 | Denoising of real noisy images. (a–c)  Photoacoustic microscopy images of different regions of a mouse ear. (d–f)  Reconstructed im-

ages of (a–c) using our method.
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Fig. S2 | Comparison of results at different depths. (a) Photoacoustic microscopy image with four layers of silicone sheets. (b) Photoacoustic mi-

croscopy image with two layers of silicone sheets. (c) Photoacoustic microscopy image with one layer of silicone sheet. (a1–a2) Enlarged image

and  reconstructed  image  using  our  method  with  four  layers  of  silicone  sheets.  (b1–b2)  Enlarged  image  and  reconstructed  image  using  our

method with two layers of silicone sheets. (c1–c2) Enlarged image and reconstructed image using our method with one layer of silicone sheet.
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 Section 4: Supplementary data on mouse brain
In the experiments of this study, the mouse brain data obtained cannot definitively confirm that the reconstructed vas-
culature corresponds to actual existing structures. Therefore, partial vascular structures from the mouse brain are used
as input, with PEDL applied for reconstruction. A thresholding algorithm is employed to highlight image pixels with in-
tensities above a certain value. As shown in Fig. S4, the vascular signals reconstructed by PEDL can be observed in the

thresholded input image in the region marked by the yellow arrows. However, due to the low intensity in the input im-
age, these signals are difficult to characterize effectively. After reconstruction with PEDL, the vascular structures are sig-
nificantly enhanced and successfully restored. 

 Section 5: Parameter definition
To avoid confusion caused by different calculation formulas, the specific formulas for CNR and SNR are provided be-
low: 

CNR = 40
abs(μt − μb)

δb
, (S1)

 

SNR = 15
Means

δn
, (S2)

μt μb δb
Means

δn

where,  represents the mean value of the target region.  represents the mean value of the background region.  rep-
resents the standard deviation calculated from the sum of variances of the target and background regions.  repre-
sents the mean value of the image signal.  represents the standard deviation of the noise. The constants 40 in the CNR
formula  and 15  in  the  SNR formula  are  commonly  used  scaling  factors  to  adjust  the  results  to  an  appropriate  range,
making them more suitable for experimental requirements and interpretation.
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Fig. S4 | Image analysis  of  small  area of  mouse brain.  (a)  Input  image of  mouse brain.  (b)  Image of  mouse brain reconstructed by PEDL. (c)

Threshold image of mouse brain input image. (d) PEDL reconstructs the threshold image of mouse brain image.
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