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a b s t r a c t

In this paper, an improved interframe registration based nonuniformity correction algorithm for focal
plane arrays is proposed. The method simultaneously estimates detector parameters and carries out
the nonuniformity correction by minimizing the mean square error between the two properly registered
image frames. A new masked phase correlation algorithm is introduced to obtain reliable shift estimates
in the presence of fixed pattern noise. The use of an outliers exclusion scheme, together with a variable
step size strategy, could not only promote the correction precision considerably, but also eliminate ghost-
ing artifacts effectively. The performance of the proposed algorithm is evaluated with clean infrared
image sequences with simulated nonuniformity and real pattern noise. We also apply the method to a
real-time imaging system to show how effective it is in reducing noise and the ghosting artifacts.
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1. Introduction

Focal plane array (FPA) sensors, especially infrared FPA (IRFPA)
sensors, are widely used in military applications, environmental
monitoring, scientific instrumentation, and medical imaging appli-
cations [1]. The performance of FPA is known, however, to be
strongly affected by fixed pattern noise (FPN), which results from
the fact that the responses of different detectors of the array are
not identical [1,2]. This noise, which is also referred to as nonuni-
formity, is especially problematic in IRFPA systems. The overall
effect of nonuniformity is that the image is observed as if one is
looking through a dirty window. Furthermore, this problem cannot
be solved by a one-time factory calibration since the nonunifor-
mity often drifts in time. This slow temporal drift in the pixel
response is generally attributed to factors such as variation in
the surrounding temperature, changes in the scene, and variation
in the transistor bias voltages [2,3]. Reference-based nonunifor-
mity correction (NUC) using uniform blackbody irradiance sources
on startup cannot solve the drift in the parameters of the detectors
over time. As a result, scene-based nonuniformity correction
(SBNUC) methods have been studied to continuously correct IR
nonuniformity without interrupting the scene acquisition.

Scene-based algorithms are generally identified by two main
approaches: namely, statistical methods [2–7] and registration
based methods [8–11]. Statistical techniques typically exploit
some spaciotemporal assumptions on the irradiance observed by
each detector. One common statistical assumption is constant sta-
012 Published by Elsevier B.V. All
tistics [4], which states that the statistics of the observed scene be-
come constant over time. So the statistical approaches usually
require a significant number of image frames and the camera needs
to move in such a way as to satisfy the statistical assumptions [5].
Registration based methods do not use or require any statistical
assumptions about the scene and could estimate the nonunifor-
mity in a much smaller number of image frames. These methods
consider that each detector should have identical response when
observing the same scene point [8–11]. Therefore, registration-
based methods require accurate estimation of the motion between
frames. Due to its relevance to this paper, we now focus on a reg-
istration based algorithm so-called interframe registration based
least-mean-square-error algorithm (IRLMS) that was recently
developed by Zuo et al. [11]. This technique minimizes the mean
square error between two properly registered image frames to
make any two detectors with the same scene produce the same
output value. It has been reported to be superior to the existing
methods and can achieve excellent NUC results with small compu-
tational load and memory requirement.

Nevertheless, this technique is not trouble-free and the follow-
ing issues that are often encountered in practical applications: (1)
reliable registration between frames in the presence of FPN; (2) lo-
cal motion; (3) complex motion fields between consecutive frames.
In the IRLMS method, registration is performed by measuring the
relative motion between frames via traditional phase correlation
methods. But a significant level of FPN makes it difficult to reliably
compute the motion between frames. The reason is that dominant
components used for motion estimation are mainly from FPN
rather than features of real scene motion. Besides, since IRLMS is
based on the translation-only registration, its correction accuracy
rights reserved.
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Fig. 1. Block scheme of the proposed NUC method. yn is the current observed frame and yn�1 is the previous observed frame. wn and gn are the NUC parameters. xn�1 and xn is
the corrected versions of yn and yn�1, which are properly registered using masked phase correlation method. The error signal en is their corresponding difference. The outliers
in the error signal en are excluded for reliably updating the FPN correction parameters and the phase correlation peak value cmax determines the step size of the current frame.
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may be affected by errors resulting from inaccuracy of registration,
local motion, scene warping and rotation, etc.

The goal of this paper is to present a novel SBNUC algorithm
that provides the key advantages of fast convergence and minor
residual error by improving the IRLMS method. Since the perfor-
mance of registration based algorithms depends heavily on the
accuracy of the registration estimates, the very first thing we
should do is to improve the accuracy of registration under condi-
tions of nonuniformity noise. Secondly, the IRLMS method is based
on the assumption that the radiation emanating from the scene
does not change during the time between image frames, which is
of course not true when some of the objects in the scene are not
motionless. These outlier values caused by local motion should
be excluded to prevent a large degree of influence on NUC param-
eters. Finally, since only translational motion between two image
frames is taken into consideration, the estimation errors may result
from scene rotation, warping, etc. These errors can be reduced by
attenuating these frames’ contribution to the updating process.

The remainder of this paper is organized as follows. In Section 2
the proposed scene-based algorithm is presented. In particular, we
describe the details of our improvements concerning three aspects
on the IRLMS method. After presenting experimental results on
synthetic and real data in Section 3, we conclude our paper in Sec-
tion 4.

2. Proposed method

The NUC algorithm proposed here bases on the same frame-
work as the IRLMS method but has the following improvements:
first, we develop a masked phase correlation algorithm for robust
motion estimation in the presence of FPN; second, a new decision
rule based on the spatial statistics of the calculated error images is
designed to exclude the abnormal data which may results from lo-
cal motion or registration error; finally, a variable step size strategy
is employed in the recursive parameter update process to permit a
better and more stable estimation for NUC parameters. The intact
principle scheme of the proposed algorithm is clearly illustrated
in Fig. 1.

Generally, the relationship between the signal response and the
incident infrared photon flux is nonlinear, especially when the FPA
operates on a wide dynamic incident flux range [12]. For SBNUC, to
simplify the problem formulation, the photo-response of the indi-
vidual detectors in a FPA is commonly approximated to a linear
irradiance-voltage model [13] and their output is given by

ynði; jÞ ¼ gnði; jÞ � xnði; jÞ þ onði; jÞ: ð1Þ
Here, subscript n is frame index. gn(i, j) and on(i, j) are respectively
the real gain and offset of the (i, j)th detector. xn(i, j) stands for real
incident infrared photon flux collected by the respective detector.
This model is reasonable especially for some SBNUC methods with
a fast convergence rate, because during a short period of time, the
objects temperature could be ensured in a small range so as to sat-
isfy the linear response model. We apply a linear mapping to the
observed pixel value to provide an estimate of the true scene value
so that the detectors appear to be performing uniformly.

xnði; jÞ ¼ wnði; jÞ � ynði; jÞ þ bnði; jÞ; ð2Þ

where wn(i, j) and bn(i, j) are respectively the NUC gain and offset of
the linear correction model of the (i, j)th detector. Their relations
with the real gain and offset can be represented by:

wnði; jÞ ¼
1

gnði; jÞ
; ð3Þ

bnði; jÞ ¼ �
onði; jÞ
gnði; jÞ

: ð4Þ

However, for SBNUC, obtaining the NUC gain and offset is blind esti-
mation because the real gain and offset are known. In IRLMS, the
estimation of NUC parameters is achieved by minimizing the mean
square error between the two properly registered image frames
using the steepest descent method [11]. The needed error image
en can be formulated as

enði; jÞ ¼ x̂nði; jÞ � Tnði; jÞ; ð5Þ

where x̂nði; jÞ is the nth estimated true image and can be calculated
by

x̂nði; jÞ ¼ ŵnði; jÞ � ynði; jÞ þ b̂nði; jÞ; ð6Þ

where wn(i, j) and bn(i, j) are respectively the estimated gain and off-
set of the linear correction model of the (i, j)th detector at nth frame.
The desired target value Tn(i, j) in Eq. (5) is only a properly shifted
version of last frame corrected using estimated parameters:

Tnði; jÞ ¼ jI�1½Iðx̂n�1Þe�2pjðudxþvdyÞ�j; ð7Þ

where

x̂n�1ði; jÞ ¼ ŵnði; jÞ � yn�1ði; jÞ þ b̂nði; jÞ: ð8Þ

The I sign indicates the discrete Fourier transform (DFT) and I�1

represents the inverse DFT operation. (u, v) are the Fourier domain
coordinates. The DFT and its inverse can be computed efficiently
using fast Fourier transform. The (dx, dy) represents the translation



Fig. 2. Two noisy infrared images with some shifts (shown in (a) and (b)) and their phase correlation matrix (shown in (c)). Two distinctive peaks correspond to the FPN and
the real scene motion, respectively.
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(in pixels) between the two adjacent frames (frame n and frame
n � 1), which can be obtained using masked phase correlation reg-
istration algorithm. Some details about this algorithm will be given
in Section 2.1. After we get the error image en, a post-processing
procedure is needed to exclude some outliers. This part will be dis-
cussed at length in Section 2.2. The modified error image is denoted
as e0n. The parameter update process is finally described as follows:

ŵnþ1ði; jÞ ¼ ŵnði; jÞ þ an � e0nði; jÞ � ynði; jÞ
b̂nþ1ði; jÞ ¼ b̂nði; jÞ þ an � e0nði; jÞ

(
ð9Þ

Note that the NUC parameters are only updated in the overlapped
part between frame n � 1 and frame n. In our method, the step size
an is adapted to the scene content and depended on the value of
phase correlation peak. This step will be discussed in Section 2.3.

Finally, it should also be mentioned that for some high-frame-
rate infrared cameras, almost no translation between two frames
can be detected in most cases. If we still use two adjacent frames
to register, the NUC performance will obviously degenerate. So in
this paper, the above update process is performed only if a suffi-
cient displacement (2 pixels used in [11]) is measured between
the current frame (frame n) and a reference frame (frame
n � k, k = 1, 2, 3, . . .). And the reference frame is only refreshed
when the correction coefficients are updated.

2.1. Masked phase correlation registration

The phase correlation registration enables to estimate the dis-
placement between images with subpixel accuracy from the loca-
tion of the phase correlation peak [14]. The peak is a Dirac delta
function in continuous case. While in the discrete case, it is a
Dirichlet kernel [15]. Subpixel Registration can be effectively
achieved by the upsampled correlation peak using matrix-multiply
DFT [16]. However, as mentioned earlier, conventional registration
techniques are difficult to obtain reliable estimates of motion be-
tween frames under significant FPN.

Considering the case where the offset FPN is the dominate noise
in the captured images and the changes in dynamic range of inci-
dent infrared flux are rather small during the interframe time, in
the registration procedure, we simplify the detector response mod-
el, assuming that the influence of the gain nonuniformity can be
neglected. This simplification is crucial because if the gain compo-
nent is involved, the FPN will become signal dependent, making
our registration problem to be a very hard nut to crack. We found
that this simplification is reasonable and its validity was verified
via several experiments. Using this offset-only model, the two con-
secutive image frames f1 and f2 can be represented as follows:

f1ði; jÞ ¼ xði; jÞ þ oði; jÞ; ð10Þ
and

f2ði; jÞ ¼ xðiþ dx; jþ dyÞ þ oði; jÞ: ð11Þ

The FPN o(i, j) is assumed to be fixed between two observed images
and signal independent. (dx, dy) is the scene relative translation (in
pixels) between the two images. Then the normalized (whiten)
cross-power spectrum can be expressed as:

Cðu; vÞ ¼ Iðf1ÞI�ðf2Þ
jIðf1ÞI�ðf1Þj

¼ jIðsÞj2

jIðsÞj2 þ jIðoÞj2
e�jðudxþvdyÞ þ jIðoÞj2

jIðsÞj2 þ jIðoÞj2
; ð12Þ

where the asterisk stands for the complex conjugate. In such cir-
cumstances, the phase correlation matrix cðx; yÞ ¼ jI�1½Cðu;vÞ�j is
no longer a Dirac delta function but two peaks with magnitudes re-
lated to the corresponding frequency content (see Fig. 2). According
to the convolution theorem and the properties of Fourier transform,
we know that the two peaks must be highly spatial limited and with
narrow support. Since the FPN is motionless, one of the intensity
peaks in the image c(x, y) is always located at the origin (0, 0), while
the coordinate of the other peak corresponds directly to the trans-
lation vector (dx, dy). This makes it easier to identify the true scene
motion. However, when the displacement is too small, two peaks
may be too close to be resolved. Fortunately, the nonuniformity
coefficients are only updated if sufficient displacement (2 pixels)
is measured. So we can first mask the origin and its four nearest
neighbor pixels in c(x, y) with zeros, and then search for the second
peak. If the amplitude of second peak cmax is too small (<0.05),
which means the relative displacement is insufficient, no update
is preformed for this frame. Otherwise, we upsample the second
correlation peak using matrix-multiply DFT [16] to get an estimate
of the real scene displacement with subpixel accuracy. In this paper,
the upsampling factor is chosen as 10, which means the registration
accuracy can reach 0.01 pixel, theoretically. The flowchart of the
proposed masked phase correlation registration method is illus-
trated in Fig. 3.

2.2. Exclude the abnormal data

The IRLMS method assumes that the temperature field of the
observed scene does not change during the interframe time inter-
val. However, if the objects in the scene are not motionless, this
assumption cannot be met well so that real scene information
may leak into the error signal. Hence the error signal is unreliable
in the local motion region and the correction coefficients would be
wrongly updated. In addition, the registration errors may make
this matter even worse, severely affecting the NUC precision.



Fig. 3. Flowchart of the masked phase correlation registration algorithm: Step 1: Calculate the phase correlation matrix; Step 2: Mask the origin region; Step 3: Identify the
true peak and upsample it using matrix-multiply DFT to obtain its coordinate with subpixel accuracy.
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Statistically, the nonuniformity in the gains and offsets of individ-
ual detectors due to temporal drift are often modeled as indepen-
dent and identically distributed Gaussian random process [8,17].
Although this model is not so accurate because the FPN is usually
perceived as a grid-like pattern or as a striping pattern laid on top
of the true scene [18], when the gain/offset parameters are histo-
gramed, their value distribution will be approximately Gaussian.
Using this regulation, the error image can also be assumed to obey
a Gaussian distribution with mean ln and standard deviation rn,
where the ln and rn are the spatial mean and standard deviation
of the error image, respectively. However, the error caused by local
motion is obviously deviated from the Gaussian distribution. For
global registration error, the situation is more complicated. Due
to the spatial correlation of the observed scene, most pixels’ values
are rather similar with those of their neighborhoods. In these
homogeneous regions of the scene, the effect of registration error
is slight. While in the strong edges objects in the scene, the influ-
ence of registration error is vital. The Gaussian distribution prior
is also very useful to identify those ‘‘dangerous pixels’’ around
scene edges. So we can exclude the abnormal data based on the fol-
lowing rules:
Fig. 4. Exclude the outliers from the error image. (a) and (b) Are two adjacent frames tak
error image (overlapped region only). The detected the abnormal data (shown in white
e0nði; jÞ ¼
0 whenjenði; jÞ � lnjP 3rn

enði; jÞ whenjenði; jÞ � lnj < 3rn

�
ð13Þ

It can be seen when the value of the error image has a greater
difference from the expectation, it will be set to zero and no updat-
ing will be done. This mechanism prevents biased estimates from
improper updating caused by the outliers and helps to sample data
better. Fig. 4 gives an example to demonstrate the effect of the pro-
posed scheme. Fig. 4a and b are two consecutive frames taken from
a noisy infrared sequence. Note that the FPN is superimposed on
the scene. There are also a number of bad pixels. The two people
in the camera view were on a walk during the shoot, so their con-
tours are clearly outlined in the error image shown in Fig. 4d. We
hope that the error image contains only nonuniformity, and the
scene information can be erased as much as possible. The bad pixel
should also be excluded to produce an unbiased error image. From
Fig. 4c, it can be seen that the values of error image can be approx-
imately regarded as a Gaussian distribution. Using the ‘‘3rn princi-
ple’’, we detect these abnormal data and bad pixels, successfully
(Fig. 4e). The final modified error image is shown in Fig. 4f. It can
be seen that the pixel values in error regions are set to null, thus
no parameter updating would be performed in these regions. The
en from a sequence of IR data. (c) Is the interframe error distribution and (d) is the
) and the modified error image are shown in (e) and (f), respectively.
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modified error image shows very little scene information so that
no significantly wrong updating would happen, preventing per-
ceivable ghosting emerging.
2.3. Variable step size

The parameter a in the IRLMS represents the step size of the
algorithm and governs the convergence speed. Normally, larger
values for a can provide a faster convergence speed, but smaller
values can assure better stability instead. The adaptive step size
strategies are widely adopted to improve the performance of the
Scribner’s method [17,19,20]. The main idea behind these strate-
gies is to adjust the step size based on local spatial variance of
the observed image. If a given piece of the input image (a pixel
and its neighbors) is smooth enough, then the desired averaged
target value at the output is more confident, and the step size as-
sumes larger values. On the other hand, if the local input standard
deviation in the surroundings of a certain pixel is too high, like in
an object border, the correspondent step size assumes smaller
values.

Inspired by these strategies, we also employed the variable step
size rule to increase the efficiency of the parameter updating pro-
cess of IRLMS. Specifically in the IRLMS, the error confidence is di-
rectly dependent on how well the two adjacent frames are
matched. Under ideal circumstances, i.e. there is a one-to-one
mapping of pixels map between two images; the height of a
phase-correlation peak is unity. Because of the FPN, usually there
are two peaks in the phase-correlation function in our condition;
the sums of the two peaks should be unity ideally. However, some
factors such as local motion, scene rotation, warping, and other
perturbations may diminish the value of the phase-correlation
peak at the correct displacement position [14]. These factors also
Fig. 5. PSNR results of the synthetic noisy test sequence I (a). (b) Is the raw 400th frame
proposed method.
cause estimation errors in the updating process. Obviously, the er-
ror signal measure is more reliable when the objects in the scene
are stationary and the motion between current image and the ref-
erence image is pure translation. In this case, large values of a
should be used. On the other hand, when there is rotation or warp-
ing between two consecutive frames or the scene is very busy, the
error image may contain more scene information and there will be
more chances to deviate the parameters estimation. In such situa-
tions, a should assume smaller values. Considering the amplitude
of the coherent peak cmax at the true shift position in the phase cor-
relation matrix is a direct measure of the degree of congruence be-
tween the two images, an can be adaptively controlled as follows:

an ¼ amax � cmax; ð14Þ

where amax denotes the maximal iterative step size which range
from 0 to 1 (we use 0.05 as recommended in [11]) and cmax is the
value of the coherent peak corresponding to the true shift in the
phase correlation matrix. Besides, the initial convergence should
not be affected by the noisy phase correlation matrix, so we use
an = amax for the first 50 times updates. When the FPN is largely re-
moved, the convergence is controlled by the value of the phase cor-
relation peak.
3. Results

To validate the effectiveness of the proposed method, we first
compared it with IRLMS by using a 500-frame IR video sequence
I with simulated nonuniformity. The test sequence I was collected
by using a properly calibrated 320 � 256 HgCdTe IRFPA camera
operating in the 8�14 lm range and working at 25 frames per sec-
ond (FPS), corrupted with a synthetic gain with a unit-mean Gauss-
ian distribution with standard deviation of 0.1, and a synthetic
in the test sequence and (c) and (d) are the correction results of the IRLMS and the
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offset with a zero-mean Gaussian distribution with standard devi-
ation of 50. The metric used to measure the NUC performance is gi-
ven by the peak signal-to-noise ratio (PSNR), which is widely used
to quantify the differences between two images, and it is defined as

PSNR ¼ 20log10
2b � 1
RMSE

 !
; ð15Þ

where b represents the number of bits per pixel in the image, which
in this case is equal to 14. RMSE is the root mean square error of the
difference between two images, which is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M � N

X
i;j
½xði; jÞ � x̂ði; jÞ�2

r
; ð16Þ

where x(i, j) is the (i, j)th pixel’s value of the true frame while x̂ði; jÞ
is the pixel’s value of the corrected frame. M and N are the image
dimensions. The PSNR is finally given in decibel units (dB), and it
measures the overall difference between a clean reference image
against its nonuniformity corrected version. Larger values for the
PSNR indicate better NUC performances.

The PSNR evolution of the two tested algorithms is displayed in
Fig. 5a. It can be seen clearly that the proposed method achieves
faster convergence and minor residual error compared with the
IRLMS method. For the first 50 frames, the curve of the proposed
method rose faster, because sometimes the IRLMS failed to detect
the real translation between two dirty images, wrongly consider-
ing the motion was insufficient, which slowed its parameter updat-
ing process. For the rest of the sequence, the PSNR of the proposed
method kept at a high level, especially for the last 300 frame, it is
about 4 dB greater than that of the IRLMS.

To better explain the gap in PSNR, the resulting video sequence I
(Video 1) and one sample frame was presented. In Fig. 5b–d, an
example of the corrupted, and the corrected IR images obtained
with two methods tested can be observed. It can be noted that,
to the naked eye, the proposed produces a better NUC result than
the IRLMS method. Again, a visual inspection of Video 1 shows that
the image corrected with our algorithm is much less affected by
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the ghosting caused by the objects with local motion than the
one corrected with the IRLMS method, which explains in part the
higher performance rates achieved.

In the above simulation, the nonuniformity was assumed to be
spatially unstructured random variables and the camera was
panned horizontally/vertically. In the second simulation, we focus
on the conditions that the nonuniformity is structured pattern
and the motion is more complex. The noise pattern shown in
Fig. 6a is the FPN acquired from a real 320 � 256 uncooled IRFPA
camera. Another 300-frame clean IR video sequence was captured
and we vary the amounts of the added FPN to produce the test
sequence II with a PSNR around 27. One sample corrupted image
is shown in Fig. 6b. Since only offset nonuniformity is considered
in this simulation, we applied an offset-only version of our NUC
method to this corrupted sequence. To show how the variable
step size strategy can help prevent abnormal updating in NUC
parameters, we illustrate the evolution of step-size an in Fig. 6c.
The PSNR evolution is shown in Fig. 6d and the resulting video se-
quence (Video 2) was presented as well. At first 100 frames, the
camera moved horizontally/vertically. From frame 100–270, we
turned the camera upside down several times to create complex
motions. From Fig. 6c, it can be seen that the step-size value kept
at a low-level (generally < 0.01) during frame 100–270, prevent-
ing NUC parameter wrongly update. Meanwhile, although the
PSNR fluctuated during these frames, it still kept above 37.5 dB.
After that stage, the value of PSNR continued to rise, reaching
39.7 dB at the last frame. The correction video and PSNR result
shows that the proposed method can tackle complex motion
and structured nonuniformity without affecting the NUC
precision.

To demonstrate the performance of the proposed NUC method
in a practical imaging system, a real-time correction video (Video
3) is also captured by using a 320 � 240 VOx uncooled microbolo-
meter. Our method has been fully implemented on a Texas Instru-
ments DM642 digital signal processor, working at 25 FPS (25 Hz
PAL). Two photos of the camera core with the hardware are shown
in Fig. 7.
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Fig. 7. The 320 � 240 VOx uncooled camera core with the hardware.
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The correction video has been acquired inside a laboratory. Dur-
ing the capture, the camera is held by hand. The 14 s sequence does
not present a sufficient global motion. Moreover, the human in the
field of view was in continual motion. Despite this challenging sit-
uation, our algorithm only required about one second to exhibit an
excellent reduction of FPN. The subsequent corrected images
showed a clear scene, and the residual nonuniformity was scarcely
perceptible. Besides, almost no ghosting artifact could be detected
through the whole sequence.

4. Conclusion

We have presented a novel scene-adaptive NUC algorithm
based on interframe registration. Such an algorithm employs
masked phase correlation method to calculate the motion between
two consecutive frames, which results in more reliable and robust
translation estimates than traditional registration methods under
conditions of FPN. In addition, a decision rule is introduced to ex-
clude the abnormal data in the error image, which promotes the
correction precision considerably. Finally, the parameters updating
process is well controlled by adjusting the step size coefficient
according to the amplitude of the phase correlation peak. Those
improvements contribute to the performance and robustness pro-
motion of our algorithm. The quantitative error analysis showed
that the improved method had faster convergence rate than the
IRLMS methods, as well as higher overall PSNR. Moreover, the
high-quality correction abilities of the presented method were
demonstrated through simulations and application to real un-
cooled IRFPA sensors.
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