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a b s t r a c t 

Fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in 

many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving 

or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier 

Transform Profilometry ( 𝜇FTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The 

high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection 

hardware. In order to capture 3D information in such a short period of time, we focus on the improvement of 

the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, 

unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high- 

frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary 

pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Based on this 

system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating 

fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with 

conventional approaches. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The desire to capture and record fast phenomena can be traced
ack to invention of film photography in the nineteenth century, which
sed controllable mechanical light shutters to limit the film exposure
ime [1–3] . However, it is only with the advances made during the
ast few decades in the field of solid-state electronic imaging sensors
ased on the charge-coupled device (CCD) or complementary metal-
xide-semiconductor (CMOS) technology that high-speed imaging has
ained substantial interests and applications [4,5] . Investigation into
he scientific origins of fast phenomena has benefited enormously from
he development of such high-speed cameras [6,7] , and other applica-
ions exist in almost all areas of industry, television, defense, sports,
nd health care. More recently, ultra-high-speed imaging at picosecond
 10 −12 s) timescales has been demonstrated by either using ultra-short
ulse illumination to provide temporal resolution [8,9] , or combining
treak imaging technology with scanning [10] or temporal pixel coding
trategy [11] to achieve two-dimensional (2D) information, enabling a
rame rate fast enough to visualize photons in motion. 
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Despite these tremendous advances, most of the current high-speed
maging sensors can only record instantaneous phenomena as 2D im-
ge sequences that lack the depth information. Nevertheless, high-speed
hree-dimensional (3D) reconstruction of transient scenes has been long
ought in a host of fields that include biomechanics [12] , industrial in-
pection [13] , solid mechanics [14] , and vehicle impact testing [15] . In
hese areas, it is always desirable that the 3D information can be ac-
uired at a high frame rate so that transient geometric changes of an
bject or an environment can be captured. These can then be reviewed
n slow motion to provide in-depth insights into fast changing events in
 broad range of application scenarios. 

Over the past decades, 3D image acquisition technologies have also
apidly evolved, benefiting from the advances in electronic imaging sen-
ors, optical engineering, and computer vision. For a small scale depth or
hape, micrometer or even nanometer measurements can be reached by
sing interferometry [16] , confocal [17] or other depth-resolved 3D mi-
roscopic techniques [18,19] . Time-of-flight methods [20,21] , in which
he distance is resolved by measuring the time of flight of a light pulse
ith the known speed of light, are well suited for measuring large-scale

cenes or depth ( > 0.5 m). For the 3D measurement of medium-size
u.cn (Q. Chen). 
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bjects, full field triangulation based active structured light (SL), has
roven to be one of the most promising techniques [22–24] . Just as hu-
an vision system, the basic principle of SL is optical triangulation,

n which correspondences between a projector and a camera are es-
ablished with some coded patterns projected onto the scene. Recent
ears, numerous SL approaches have been proposed and investigated,
nd there is a clear trend towards improving the measurement speed
o video rates ( ∼ 25 Hz) and far beyond [25–27] . This trend is being
riven by the increasing demand for high-speed depth data coupled with
apid advances in high-frame-rate image sensors and digital projection
echnology. Today’s high-speed cameras can capture video at speeds up
o tens of thousands full frames per second (fps) and even faster at a
educed resolution. On the other hand, the digital micro-mirror device
DMD), as a key component of digital light processing (DLP) projection
ystem, is able to create, store, and display high-speed binary pattern
equences through optical switching ( “on ” and “off”) at rates in excess
f 10,000 Hz as well. By operating the DMD in binary (1-bit) mode,
uasi-sinusoidal fringe patterns can be created at the maximum frame
ates with lens defocusing and binary dithering techniques [28–30] . 

Once the speed of hardware is no longer a limiting factor, the main
urdle to overcome in high-speed 3D sensing is to reduce the number of
atterns required for reliable 3D reconstruction. Single-shot approaches
31,32] , e.g., de Bruijin sequences [32,33] , M-arrays [34] , and sym-
ol coded patterns [35] , are well-suited for dynamic 3D sensing. Gener-
lly, the pattern needs to be wisely designed so that each point can be
niquely identified from its neighboring pixels. Nevertheless, the spatial
esolution and depth accuracy of single-shot approaches are limited due
o the local depth smoothness assumption, which does not hold around
he regions with depth discontinuities and fine details. Fourier transform
rofilometry (FTP) [25,36–38] is another representative single-shot ap-
roach in which the phase is extracted from a single high-frequency
ringe image by applying a properly designed band-pass filter in the
requency domain. Compared with other single-shot methods, FTP has
he advantages of pixel-wise measurement and effective noise removal,
et with the precondition that the fundamental frequency component,
hich carries the phase information of the object, is separable from

ero-order background. In practice, this precondition can be easily vio-
ated when the measured surface contains sharp edges, discontinuities,
nd/or large surface reflectivity variations [37,39–42] . Several methods
ave been proposed to alleviate this problem by carefully designing the
and-pass filter [40,43] , or capturing an additional flat [41] or 𝜋-phase
hifted fringe pattern [39] . However, for objects with complex surface
roperties, the measurement accuracy of these FTP approaches is still
uite limited due to the inherent spectrum leakage. 

To achieve high-quality dense 3D reconstructions, the multi-frame
ethods [44–46] are usually preferred for their advantages of high ac-

uracy and low complexity. In general, multi-frame methods require
everal predetermined patterns to be projected onto the measured ob-
ect. Hence, their measurement speed is limited by the number of pat-
erns per sequence and both camera and projector frame rate. The most
idely used multi-frame approach is phase shifting profilometry (PSP)

47] , which requires a minimum of three fringe images to provide high-
ccuracy pixel-wise phase measurement. Furthermore, the measurement
s quite robust to ambient illumination and varying surface properties.
owever, when measuring dynamic scenes, motion will lead to phase
istortion artifacts, especially when the object motion during the inter-
rame time gap is non-negligible [42,46,48–50] . This is an intrinsic prob-
em of PSP, since the phase information is spread over multiple fringe
mages. Another challenging problem in both PSP and FTP is the phase
mbiguity resulting from the periodical nature of the sinusoidal signal.
hough high-frequency patterns with dense fringes are usually preferred
or high-accuracy 3D reconstruction (especially for FTP), they also in-
roduce severe ambiguities. To recover the absolute phase, a common
ractice is to use temporal phase unwrapping (TPU) algorithms with
he help of Gray-code patterns [51] or multi-wavelength fringes [52] .
owever, this requires a large number of additional images, which are
71 
nly used for phase disambiguation purpose but not contribute to the
nal 3D results. The prolonged pattern sequence (e.g., a minimum of
 patterns are required per 3D reconstruction for three-wavelength PSP
53] ) greatly limits the performance of PSP and FTP in high-speed, time-
ritical scenarios. 

To address this limitation, several composite phase shifting schemes
54–59] (e.g., dual-frequency PSP [54] , bi-frequency PSP [59] , 2+2 PSP
55] , and period coded PSP [56,57] ) have been proposed. They can solve
he phase ambiguity problem without significantly increasing the num-
er of projected patterns. However, in order to guarantee a reasonable
eliability of phase unwrapping, the fringe frequency often cannot be too
igh, which provides only a comparatively low accuracy [60] . Alterna-
ively, stereo unwrapping methods based on geometric constraint can be
sed to determine the fringe order without capturing additional images
46,58,61–63] . But the measured objects must be within a restricted
epth of the measurement volume. Moreover, some of these techniques
equire multiple ( ≥ 2) high-speed cameras, which could considerably in-
rease the overall cost of the system. On a different note, high-speed 3D
ensing can also be realized via active stereo-photogrammetry without
xplicit evaluation of phase information [64–68] . In such approaches,
he projected patterns are merely used to establish precise camera-to-
amera correspondences based on correlation algorithms, so various
ypes of structured patterns (e.g., statistical speckle [64] and aperiodic
inusoid [69] ) can be applied. This idea allows to develop alternative
rojection units without the need of a DMD, yielding simpler optical de-
igns and/or much higher projection rates. For example, the LED-based
rray projection system and the GOBO (GOes Before Optics) projection
ystem enable high-speed pattern switching with frame rates up to tens
f kHz [66,67] , which is much higher than the maximum speed of com-
ercial DLP projectors (typically 180–360 Hz after disassembling the

olor wheel [45,55,70] ). However, these techniques still require at least
wo high-speed cameras. Moreover, as stated by Grosse et.al. [71] , more
han 9 images are typically required to establish dense, accurate, and
utlier-free correspondences. Thus, the final 3D frame rate achievable
s still much lower (almost an order of magnitude) than the native frame
ate of the camera and projector, which is typically in the range of only
everal hundreds Hz (e.g., 330 Hz at a projection frame rate of 3 kHz by
sing array projection [66] and 1,333 Hz at a camera rate of 12,000 Hz
y using GOBO projection [67] ). 

In this work, we present Micro Fourier Transform Profilometry

 𝜇FTP), which enables highly-accurate dense 3D shape reconstruction
t 10,000 Hz, without posing restrictions on surface texture, scene com-
lexity, and object motion. In contrast to conventional FTP which uses a
ingle high-frequency sinusoidal pattern with a fixed spatial frequency,
FTP introduces very small temporal variations in the frequency of mul-
iple spatial sinusoids to eliminate phase ambiguity. So in 𝜇FTP, the
ord Micro just refers to the small values for both the frequency vari-
tions and periods of fringe patterns. This is similar to that of Micro

hase Shifting [72] , in which band-limited high-frequency phase-shifted
ringes are used to reduce measurement errors due to global illumina-
ion. The key idea of 𝜇FTP is to freeze the high-speed motion by encod-
ng the phase information within a single high-frequency sinusoidal pat-
ern. And the phase ambiguities are resolved spatio-temporally with the
xtra information from the small frequency variations along the tem-
oral dimension. Besides, high-quality 2D texture can be acquired by
nserting additional white patterns (all mirrors of the DMD are in the
on ” state) between each high-frequency sinusoidal patterns, which also
emove spectrum overlapping and enable high-accuracy phase measure-
ents even in the presence of large surface reflectivity variations. Unlike
revious approaches in which the phase retrieval and disambiguation
ere separately addressed in a pixel-wise and time-dependent fashion,

he 𝜇FTP extends phase unwrapping into the space-time domain. The
ain contributions of this paper are two-fold: 

(1) We propose and analyze a complete computational framework
based on a combination of improved phase recovery, phase unwrap-
ing, error compensation, and system calibration algorithms) that al-
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Fig. 1. (a) Schematic diagram of the high-frame-rate fringe projection system developed. 

(b) Mirror trajectory for the DMD after “reset ” operation [73] . 
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o  
ows to effectively recover an accurate, unambiguous, and distortion-
ree 3D point cloud with every two projected patterns (Section Principle

f 𝜇FTP ). Each projected pattern serves the dual purpose of phase disam-
iguation and 3D reconstruction, which allows to minimize the number
f fringe patterns for absolute depth recovery. The comprehensive the-
ry, implementation, and demonstration of each algorithm involved in
he 𝜇FTP framework are provided in details in Appendices A-D . 

(2) We develop a high-frame-rate DLP fringe projection system by
airing a high-speed CMOS camera and a high-speed projection system
ased on a DLP development kit (Section Experimental setup ). By ap-
lying the 𝜇FTP framework to our hardware system, we can achieve a
D image acquisition rate of up to 10,000 fps, with a depth accuracy
etter than 80 μm and a temporal uncertainties below 75 μm within a
easurement volume of 400 mm × 275 mm × 400 mm (Section Quan-

itative analysis of 3D reconstruction accuracy ). In Section Results ,
e demonstrate for the first time high-quality textured 3D imaging of
ibrating cantilevers, rotating fan blades, flying bullet, and bursting bal-
oon, which were previously difficult or even unable to be captured with
onventional approaches. 

. Materials and methods 

.1. Experimental setup 

The high-frame-rate fringe projection system consists of a high-speed
MOS camera (Vision Research Phantom V611) and a high-speed pro-

ection system. The high-speed projection system includes a DLP devel-
pment kit (Texas Instruments DLP Discovery 4100) with an XGA res-
lution (1024 × 768) DMD, and a custom-designed optics module. By
mitting any grayscale capabilities, we drive the DMD at a refresh rate
p to 20,000 binary fps. The light source is a green LED module with
n output of 600 lm. The high-speed camera used in this system has a
rame rate of 6246 fps for maximum image resolution (1280 × 800). A
4 mm (focal length) lens (Nikon AF–S) with a variable aperture from
/3.5 to f/5.6 is attached to the camera. The camera lens aperture is fully
pened to allow the maximum amount of light to enter. In this work,
he camera is operated at a reduced image resolution (640 × 440) to
atch the frame rate of the DMD (20,000 fps) with an exposure time of
6 μs. It is also precisely synchronized with the projection system with
he help of the DLP development hardware, which will be described in
etails in the next subsection. 

.2. Phase unwrapping using geometry constraint 

To realize high-frame-rate 3D shape reconstruction, the key techni-
al issue regarding the hardware system is the precisely synchronized
igh-speed pattern projection and capture. Over the years, a number of
ringe projection systems have been developed by re-engineering off-
he-shelf DLP projectors for high-speed applications [44,45,55,70] . The
ommon idea is to remove the color wheel of the DLP projector to make
t work in the monochrome mode so that the projection rate can be
ripled theoretically. For conventional 3-step PSP, one can simply make
he projector display one static color image with three phase-shifted pat-
erns encoded in its RGB channels respectively [44,45] . Once the pro-
ector receives the video signal, it will automatically decode the input
olor image and project the three phase-shifted patterns in each color
hannel sequentially. The situation becomes more complicated when the
attern sequence contains more than 3 images because the input color
mage needs to be switched sequentially and periodically at high speed.
n order to handle the pattern switching, addition hardware, like Field-
rogrammable Gate Array (FPGA) circuits can be used to generate the
esired video sequence with high precision and stability. Another pos-
ible solution is to directly access the memory of the graphical device
ased on CUDA programming [70] . Nevertheless, the maximum projec-
ion rate can be achieved is still around 180–360 Hz, which is ultimately
imited by the projection mechanism of the DLP projector (the gray-scale
72 
attern is generated with the binary pulse width modulation along the
ime-axis, and the intensity level is reproduced by integrating smaller
inary intensities over time by an image sensor, like eye or camera) and
he use of standard (typically 60 Hz–120 Hz) graphic adapters for DMD
ontrol. Such bottlenecks in speed block a regular consumer DLP pro-
ector from many important applications where very fast motion needs
o be acquired. 

To overcome these current limitations, in this work, we use a DLP
iscovery 4100 development kit from Texas Instruments as the basis of
ur projection system. As shown in the hardware diagram [ Fig. 1 (a)],
he DLP kit includes a DMD chip and a DMD driver board. The DMD
s based on the 0.7 XGA (1024 × 768) chipset with a mirror pitch
f 13.6 μm (DLP7000, Texas Instruments). The driver board has a pro-
rammable FPGA (Xilinx Virtex 5 LX50) and a USB 2.0 interface (Cy-
ress CY7C68013A) for receiving input patterns from the computer. The
n-board DDR2 SDRAM memory is used to store the pattern sequences
hat are pre-loaded for subsequent high-speed projection. The FPGA con-
ects with the DMD controller chip (DDC4100, Texas Instruments) by
arallel interface and transfers pattern data to it directly. At the same
ime, DDC4100 provides a high-speed 2xLVDS data interface and con-
rols the DMD mirrors to turn for generating a pattern according to the
attern data. Based on these specific hardware, DLP Discovery 4100
ffers advanced micro-mirror control as well as flexible formatting and
equencing light patterns. It enables the DMD to operate in binary mode
ithout any temporal dithering, allowing binary light patterns to be pro-

ected with speed far surpassing that of a regular DLP projector. How-
ver, there remain a few constraints underlying the basic operation of a
MD. 

(1) There hardware requires a certain amount of time to transition
rom one micro-mirror configuration to another - a limitation that is
mposed due to data transmission to the DMD. The data transmission
us between FPGA and DMD operates at 64 bits and at 400 MHz. Hence,
or our DMD with 1024 × 768 micro-mirrors, it takes at least 30.72 𝜇 s
 𝜏LD ) to load a full frame binary image 

𝐿𝐷 = 

1024 × 768 
64 × 400 × 10 6 

= 30 . 72 μs (1)

(2) When the data is loaded in memory, “reset ” operation can be
erformed, which tilts the mirrors into their new “on ” or “off” states.
t requires some time to physically tilt the mirrors and some time for
irrors to settle down. As illustrated in Fig. 1 (b), there are about 4 μs

ransition time ( 𝜏TT ) and 8 μs settling time ( 𝜏ST ) during the mirror state
onversion process [73] . Besides, during the reset and mirror settling
ime, no data can be loaded in the DMD, thus slowing down the pattern
utput rate. 

When both two factors are considered, the total time required to
utput one pattern on the mirrors is given in Eq. (2) : 

= 𝜏𝐿𝐷 + 𝜏𝑇𝑇 + 𝜏𝑆𝑇 = 30 . 72 + 4 + 8 = 42 . 72 𝜇𝑠 (2) 

o the highest possible rate for binary pattern output is 1/42.72 μs =
3408 fps. For the sake of simplicity and security, we update all micro-
irrors with a switching period of 50 μs, based on the timing shown in

ig. 2 . With this timing configuration, we are able to project the binary
atterns at 20,000 Hz. However, the synchronization between the DMD
peration and the high-speed camera needs to be carefully designed in
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Fig. 2. Timing diagram of the designed hardware system. The exposure time of the cam- 

era is set at 46 μs to skip the mirror transition stage. 

Fig. 3. Captured images with different exposure and trigger settings. (a) Two comple- 

mentary patterns which are repeatedly projected by the DLP system at 20,000 Hz. (b) 

Timing diagrams of different exposure and trigger settings used under the test. (c) Corre- 

sponding images captured by the high-speed camera. Crosstalk can be obviously seen at 

49.5 μs exposure but disappears when the exposure reduces to 46 μs. Further reducing the 

exposure offers no visible improvement but leads to light intensity attenuation. 
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rder to maximize the exposure time while avoiding potential cross-talk
ue to the mirror transition. Thus, we program the trigger output from
he DMD to the camera according to the waveform shown in the second
ow of Fig. 2 and set the exposure time of the camera at 46 μs to skip
he mirror transition stage. Further reducing the exposure time does not
rovide visible improvement but leads to light intensity attenuation, as
learly illustrated in Fig. 3 . This is due to the fact that the intensity fluc-
uation during the 8 μs mirror settling time can be effectively averaged
ut during camera exposure. It should also be noted that the trigger
ignal output from the DLP board is 2.5 V logic level only while the trig-
er level required for the camera is 5 V. To fix this problem, we build
 voltage translation circuit (SN74ALVC164245, Texas Instruments) to
ake the output trigger of the DMD at 2.5 V, condition it, and level con-
ert to the required 5 V for the camera. In Supplementary Video 1 , it
s further demonstrated that the designed pattern sequences (see Sec-
ion Principle of 𝜇FTP for details) can be repeatedly projected onto a
ynamic scene (a rotating desk fan) and precisely captured by a synchro-
ized high-speed camera at 20,000 Hz, indicating the synchronization
etween the DMD and the camera works well. 

.3. Projection optics 

Since the DLP development kit does not include optics, a custom-
esigned module is attached to the DMD to provide both illumination
nd projection optics. The projection optics module has two ports, one
onnecting the DMD and the other connecting the light source. The light
73 
ource we use is a green LED with an output of 600 lm (Osram). When
he light emitting from the LED enters the projection optics module, it is
rstly spatially smoothed by an integration rod to create homogeneous

llumination, and then directed onto the DMD by relay optics. The pro-
ection lens has a working distance of 800–2,000 mm and an aperture of
/3.8. All lens components are coated for optimal transmission between
81 and 650 nm. Besides, a copper heat sink, piping, and a fan are added
o improve heat dissipation of the whole projection system. 

.4. Principle of 𝜇FTP 

The whole framework of 𝜇FTP is illustrated in Fig. 4 , which operates
n two stages: acquisition and reconstruction. In the image acquisition
tage, 𝜇FTP uses few ( n ≥ 2, e.g., 𝑛 = 3 as illustrated in Fig. 1 ) high-
requency sinusoidal fringe patterns with slightly different wavelengths
fringe pitches){ 𝜆1, 𝜆2, ... , 𝜆n }. Between two sinusoids, a “white ” pattern
ith all mirrors of the DMD in the “on ” state is inserted in the pattern

equence. Thus, there are totally 2 n patterns that will be rapidly pro-
ected onto the measured object surface sequentially at 20,000 fps. To
reate quasi-sinusoidal gray-scale fringe patterns with the DMD operat-
ng in the binary mode, the ideal sinusoids are binarized with Floyd–
teinberg ’s error diffusion dithering algorithm [74] , and the gray-scale
ntensity is then reproduced by properly defocusing the projector lens
28,29] . For 𝜇FTP, the fringe wavelength set { 𝜆1, 𝜆2, ... , 𝜆n } must meet
he following two conditions (see Appendix B for details): 

(1) 𝜆i should be sufficiently small (frequency is high) as required for
uccessful phase retrieval in conventional FTP based techniques. 

(2) The least common multiple (LCM) of the fringe wavelength set
hould be greater than the total pixel number in the axis wherein the
inusoidal intensity value varies ( 𝐿𝐶𝑀 

(
𝜆1 , 𝜆2 , ⋯ , 𝜆𝑛 

)
≥ 𝑊 ) so that

he phase ambiguities can be theoretically excluded. 
For our DMD projector with a resolution of 1024 × 768, we find

hat three wavelengths { 𝜆1 , 𝜆2 , 𝜆3 } = {14, 16, 18} pixels are sufficient
o make a good tradeoff between the fringe contrast and unambiguous
hase range (discussion about the wavelength selection is provided in
ppendix B4 ), and they are used throughout the present work. 

In the reconstruction stage, the captured pattern images are pro-
essed sequentially, with a 2 n -frame sliding window moving across the
hole video sequence. Considering 2 n frames within a window cen-

ered on the current frame ( I 2 in Fig. 4 ) at a given time point ( t 0 ), we
ave n sinusoid images { I 1, I 2, ... , I n } and corresponding n white images
 I 1B, I 2B, ... , I nB }, as illustrated in Fig. 4 . The 3D shape of the measured
bject at t 0 is reconstructed from these images based on the 4 steps as
ollows: 

(1) Background-normalized Fourier transform profilometry

BNFTP) : BNFTP is an improved version of existing FTP-based ap-
roaches [36,38,41] which is specially designed for high-speed 3D mea-
urement with binary patterns. It uses a sinusoidal fringe image and an
dditional “white ” image with all “1 ”s in the projection pattern to re-
over a high-quality wrapped phase map. The basic theory and imple-
entation of BNFTP is given in Appendix A in details. Based on the idea

f the modified FTP approach [41] , the “white ” image is firstly used to
liminate the background of the fringe image. Then, an additional nor-
alization step is applied to the background-subtracted fringe image,

urther alienating the influence of surface reflectivity variations. This
imple modification allows BNFTP to provide improved performance
hen measuring textured surfaces. Considering n sinusoidial images
 I 1, I 2, ... , I n } and corresponding n white images { I 1B, I 2B, ... , I nB } within
 2 n -frame sliding window ( Fig. 4 ), we can recover n wrapped phase
aps 

{
𝜙1 , 𝜙2 , ⋯ , 𝜙𝑛 

}
based on BNFTP. 

(2) Temporal phase unwrapping based on projection distance

inimization (PDM) : The phase maps obtained by Step (1) are
rapped to principle values of the arctangent function, and conse-
uently, phase unwrapping is required to remove the phase ambigui-
ies and correctly extract the object depth. For 𝜇FTP, the phase of the
urrent time point ( t 0 ) is firstly unwrapped temporally by exploiting
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Fig. 4. Overview of 𝜇FTP framework (frequency number 𝑛 = 3 ). 3 high-frequency binarized spatial sinusoids with slightly different wavelengths { 𝜆1 , 𝜆2 , 𝜆3 } and 3 white patterns are 

sequentially projected onto a scene. The camera captures the corresponding synchronized 2D video at 20,000 fps. To reconstruct 3D depth of the scene at a given time t 0 , a 6-frame 

sliding window centered on the current frame at t 0 (indicated by the red box) is applied to extracting 3 sinusoid fringe images { I 1 , I 2 , I 3 } and corresponding 3 flat images { I 1 B , I 2 B , 

I 3 B } with a frame interval of 50 μs. Three wrapped phase maps with different wavelengths can be recovered by background-normalized FTP (BNFTP) algorithm, and further unwrapped 

by projection distance minimization temporal phase unwrapping (PDM TPU) algorithm. The phase corresponding to current time point t 0 ( Φ2 ) is selected through multiplexer (MUX) 

and further refined with a reliability-guided compensation (RGC) algorithm in spatial domain. Finally, the refined phase is used to establish the projector-camera correspondences and 

reconstruct 3D point cloud through triangulation. 
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nformation from neighboring frames (as shown in Fig. 4 , the current
hase 𝜙2 is unwrapped with previous and next wrapped phases 𝜙1 and

3 ), based on a newly developed TPU algorithm called PDM (detailed
n Appendix B ). The basic idea of PDM is to determine the optimum
ringe order combination { k 1, k 2, ... , k n } (for each wrapped phase maps
𝜙1 , 𝜙2 , ⋯ , 𝜙𝑛 

}
) so that the corresponding unwrapped phase value

ombination 
{
Φ1 , Φ2 , ⋯ , Φ𝑛 

}
is “closest ” (in the Euclidean sense) to

he following straight line in dimension n 

1 𝜆1 = Φ2 𝜆2 = … = Φ𝑛 𝜆𝑛 (3)

n Appendix B2 , we also prove that the phase unwrapping results ob-
ained by PDM algorithm is optimal in a maximum likelihood sense . It pro-
ides a larger unwrapping range as well as better noise robustness than
lassic multi-wavelength TPU approaches (e.g. heterodyne approach, as
emonstrated in Appendices B3 and B4 ). Furthermore, the minimum
rojection distance in PDM also provides an inherent metric to quantita-
ively evaluate the unwrapping reliability for each pixel, which is used
n the following reliability guided compensation algorithm [Step (3)].
t should be also noted that, if the approximate depth range of the mea-
ured scene can be estimated, geometric constraint [58,61–63] can be
pplied to restricting the search range for possible fringe orders and rul-
ng out several false candidates beforehand (detailed in Appendix D2 ).
fter this step, a group of unwrapped phase maps 

{
Φ1 , Φ2 , ⋯ , Φ𝑛 

}
an be obtained, and only the phase map corresponding the current time
oint t 0 ( Φ2 shown in Fig. 4 ) will be further processed by the following
teps. 

(3) Reliability guided compensation (RGC) of fringe order er-

or : Although the initial unwrapped phase map obtained by Step (2)
 Φ shown in Fig. 4 ) encodes depth information of the measured scene
2 

74 
t t 0 with a temporal resolution of 100 μs (remember that in Step (1) the
rincipal value of Φ2 is recovered only from 2 patterns), fringe order er-
ors are inevitable especially around dark regions (lower fringe quality)
nd object edges (higher motion sensitivity). We propose an approach
alled RGC for identifying and compensating those fringe order errors
y exploiting additional information in the spatial domain (detailed in
ppendix C ). Our key observation is that the fringe order errors are
sually isolated (at least less concentrated than the correct phase val-
es) delta-spike artifacts with a phase error of integral multiples of 2 𝜋.
nspired by quality guided (spatial) phase unwrapping approaches [75–
7] , we first gather neighboring pixels within a continuous region of
he phase map into groups. Then the isolated pixels or pixels falling
nto small groups are considered as fringe order errors, and their phase
alues will be corrected sequentially according to an order ranked by a
redefined reliability function (we adopt the minimum projection dis-
ance in PDM algorithm as the reliability function, and larger distance
eans lower reliability). After RGC compensation, we can obtain the

efined absolute phase map that is free from fringe order errors ( Φ2 C 

hown in Fig. 4 ) 
(4) Mapping from phase to 3D coordinates : The final step of

FTP reconstruction is to establish the projector-camera pixel correspon-
ences based on the refined absolute phase map ( Φ2 C shown in Fig. 4 )
nd to reconstruct the 3D coordinates of the object surfaces at time t 0 
ased on the calibration parameters of the projector and the camera.
n this process, the effect of projection-imaging distortion of lenses is
xplicitly considered and effectively corrected by an iterative scheme
ased on lookup table (LUT) implementation (described in Appendix

 ). For more details about the implementation of 𝜇FTP, one can refer
o the MATLAB source code available on our website [78] . 
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Fig. 5. 3D reconstruction accuracy of 𝜇FTP measurement. (a) Test scene consisting of two standard ceramic spheres and a free-falling table tennis ball at T = 0 ms. (b) Corresponding 

color-coded 3D reconstruction. (c) The error distribution of the measured standard spheres at T = 0 ms. (d) The deviation map (the difference between the measured points and the 

fitted spheres) of the free-falling table tennis ball at three different time points (T = 0 ms, 20.4 ms, 40.8 ms). (e) Repeatability of 820 measurements over a 41 ms period of 3 points 

(A 1 , A 2 , and A 3 ) on the standard Sphere A. (f) Repeatability of 820 measurements of 3 points (B 1 , B 2 , and B 3 ) on the standard Sphere B. (g) Repeatability of 820 measurements of the 

center-to-center distance between the two spheres as well as the radius of the free-falling table tennis ball. 
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With the 𝜇FTP framework, an accurate, unambiguous, and
istortion-free 3D point cloud can be recovered with every two pro-
ected patterns. Furthermore, since the phase information is mainly en-
oded within a single high-frequency sinusoidal pattern, 𝜇FTP can be
onsidered “single-shot ” in essence, allowing for motion-artifact-free 3D
econstruction with fine temporal resolution (2 patterns per 3D recon-
truction, corresponding to 10,000 3D fps). It is also worth mentioning
hat since 𝜇FTP is based on sliding-window reconstruction, any newly
dded image can be combined with its preceding 2 𝑛 − 1 images to pro-
uce a new 3D result. Although in this case the consecutive two 3D
econstructions may use the same high-frequency fringes for phase eval-
ation, one can achieve a pseudo frame rate of 20,000 3D fps, which is
ame as the projector and camera speed. 

. Results 

.1. Quantitative analysis of 3D reconstruction accuracy 

To quantitatively determine the accuracy of 𝜇FTP measurement, we
onduct an experiment on a test scene consisting of two standard ce-
amic spheres and a free-falling table tennis ball, as shown in Fig. 5 (a).
he measured objects are put in the measurement volume, which is
pproximately 400 mm × 275 mm × 400 mm, established by using a
alibration panel (see Appendix D3 for details). According to the cali-
ration based on a coordinate measurement machine (CMM), the radii
f the two standard spheres are 25.3980 mm and 25.4029 mm, respec-
ively, and their center-to-center distance is 100.0688 mm. These two
pheres with accurate calibrated dimensions are used to quantify the
easurement accuracy and repeatability of 𝜇FTP system. The table ten-
is ball is used to test the performance of the system for measuring
75 
oving object, whose radius is about 19.8 ± 0.1 mm (dimension un-
alibrated, radius is simply measured by a vernier caliper). Fig. 5 (b)
hows the color-coded 3D reconstruction by 𝜇FTP at T = 0 ms and
ig. 5 (c) shows the corresponding error distribution of the two measured
tandard spheres. The accuracy is distinguished by fitting the standard
phere to the point cloud representing the spherical surface and calcu-
ating the difference between the measured points and the fitted sphere.
s shown in Fig. 5 (c), the root mean square (RMS) errors correspond-

ng to the two standard spheres are 75.730 μm and 68.921 μm, respec-
ively. The measured center-to-center distance between the two spheres
s 100.1296 mm. In Fig. 5 (d), we further show the deviation maps of
he free-falling table tennis ball at three different time points (T = 0 ms,
0.4 ms, 40.8 ms). Note that since the dimension of the table tennis
all is uncalibrated, we determine the best spherical fit on the 3D point
loud to estimate the spherical diameter, and the deviation maps shown
n Fig. 5 (d) are the difference between the measured points and the fitted
pheres. These results indicate that the measurement accuracy of 𝜇FTP
s better than 80 μm for both static and dynamic objects. Repeatability
f the 𝜇FTP measurement is also analyzed by performing 820 measure-
ents over a 41 ms period (at a pseudo frame rate of 20,000 fps) for
 different points on respective standard sphere [A 1 ∼ A 3 and B 1 ∼
 3 , as labelled in Fig. 5 (c)], the center-to-center distance between the
wo standard spheres, and the radius of the free-falling table tennis ball,
s shown in Fig. 5 (e)–(g), respectively. The temporal movie of color-
oded 3D reconstruction of the test scene and the corresponding error
nalysis over the 41 ms period is further provided in Supplementary

ideo 2 . One can clearly observe the excellent repeatability of 𝜇FTP
ystem: the center-to-center distance measurement exhibited a very low
emporal standard deviation (STD) of 22.433 μm; the temporal STD at
ne given point on the standard sphere is typically around 60 μm; the
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Fig. 6. Measurement of two vibrating cantilever beams. (a) Representative camera images at different time points. (b) Corresponding color-coded 3D reconstructions. (c) Displacement 

of 3 points on each cantilever [A 1 ∼ A 3 and B 1 ∼ B 3 , as labelled in (b)] as a function of time. (d) The 3D geometric field of the two cantilevers at three different time points. The two 

insets show the side-views (y-z plane) of the respective cantilever. 
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adius of the free-falling table tennis ball has a slightly higher temporal
TD (72.815 μm) due to the object motion. These results show that the
resented system achieves a measurement accuracy better than 80 μm
nd a temporal STD below 75 μm within 400 mm × 275 mm × 400 mm
easurement volume size. 

.2. Vibrating cantilevers 

In this subsection, vibrating cantilever beams are used to validate
FTP fast 3D imaging capability and compare its performance with the
tate-of-the-arts. Firstly, two fixed-end homogeneous plastic cantilever
eams are imaged. The dimensions of the two cantilever beams are
15 mm × 110 mm × 1.5 mm [for the larger one shown on the left of
ig. 6 (a)] and 215 mm × 80 mm × 1.5 mm [for the smaller one shown
n the right of Fig. 6 (a)]. One end of each cantilever is clamped on the
ptical table while the other end is excited by human hand. Fig. 6 (a) and
b) show representative camera images (white pattern) and correspond-
ng color-coded 3D reconstructions by 𝜇FTP at different time points. Ini-
ially, the two cantilevers are heavily bent with manual pressure, with
heir ends aligned at about the same depth. When hands release, the
tored elastic potential energy converts to kinetic energy to enable vi-
rations. To study the vibrating process quantitatively, the out-of-plane
z) displacement of 3 points on each cantilever [A 1 ∼ A 3 and B 1 ∼ B 3 ,
s labelled in Fig. 6 (b)] are plotted as a function of time in Fig. 6 (c).
he plots show that the largest vibration amplitudes occur at points A 1 

nd B 1 , since they are closer to the free ends of the cantilevers. Their vi-
ration amplitudes gradually reduced from about 50 mm to 10 mm (for
76 
oint A 1 and B 1 ) with a frequency of ∼ 8 Hz. Besides, there is about
0 ms time difference between the two hand releases, making the vi-
rations of the two cantilever out-of-phase. In Fig. 6 (d), we show the
econstructed 3D shapes of the two cantilevers at three different time
oints, with the two insets showing the side-views (y-z plane) of the re-
pective cantilever. The movie of color-coded 3D rendering of the two
antilevers surfaces as well as the corresponding side-views is provided
n Supplementary Video 3 . These results verify that the proposed 𝜇FTP
nables high-speed 3D reconstruction of object vibration and provides
igh-accuracy quantitative evaluation of any characteristic points on the
bject surface. 

Next, we compare our 𝜇FTP with the well-known three-wavelength
hase shifting profilometry (PSP) [47,53] by using only the larger can-
ilever beam. One end of the cantilever is vertically fixed on the optical
able, and the free end is heavily excited to create large amplitude vi-
ration. In order to achieve a fair comparison, we project the required
5 patterns for both 𝜇FTP (6 patterns) and three-wavelength PSP (9
atterns) sequentially onto the same scene, according to the pattern
equence illustrated in Fig. 7 (a). Both algorithms use the same fringe
avelengths { 𝜆1 , 𝜆2 , 𝜆3 } = {14, 16, 18} pixels, and the retrieved phases
re processed with the same algorithms (PDM unwrapping and RGC),
espectively. The final 3D point clouds are both reconstructed from the
espective unwrapped phases corresponding to 𝜆2 . Since the two groups
f patterns are sequentially projected onto the moving surface, there ex-
sts a 400 μs time difference between the two 3D reconstructions from
hese two methods. Fig. 7 (b) shows representative camera images (white
atterns from 𝜇FTP) at different time points. In Fig. 7 (c) and (d), we
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Fig. 7. Comparison of 𝜇FTP with three-wavelength PSP. (a) Projected pattern sequence (6 patterns for 𝜇FTP and 9 pattern for 3-wavelength PSP). (b) Representative camera images 

(white pattern from 𝜇FTP) at different time points. (c) 3D reconstructions of the cantilever surface by 3-wavelength PSP at three different time points. (d) 3D reconstructions of the 

cantilever surface by 𝜇FTP at three different time points. (e) Line profiles along the central lines of cantilever surface [corresponding to the dashed lines in (c) and (d)]. (f) Comparison 

of 2D texture obtained by three-wavelength PSP and 𝜇FTP. 
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ompare the reconstructed 3D surfaces of the cantilever at three differ-
nt time points. As clearly highlighted in the zoom area and the line
rofile [ Fig. 7 (e)], apparent ripples can be observed in the results of 3-
avelength PSP, which also cause unwrapping errors around the end of

antilever (where the vibration amplitude is high). Whereas the 𝜇FTP
roduces decent 3D reconstruction without notable motion ripples (see
lso the Supplementary Video 4 for a comparative movie). It should be
ointed out that the flat image in 𝜇FTP is inherently a normal 2D image
hat can be used for texture mapping. However, as shown in Fig. 7 (f),
he fringe images have to be averaged to create a texture for PSP, which
s also easily distorted by the object motion (see also the Supplemen-

ary Video 5 for a comparative movie of the 3D cantilever surfaces with
exture mapping). These results verify that 𝜇FTP is completely immune
o motion ripples [46,50] , leading to distortion-free 3D reconstruction
long with high-quality 2D texture even though the motion is fast and
he out-of-plane displacement is large. 

Finally, we compare our 𝜇FTP with conventional FTP [36,38] and
odified FTP [41] . The measured scene is similar with the previous
emonstration but an additional sticker (our lab logo) is pasted on the
antilever surface to create large reflectivity variations [ Fig. 8 (a)]. All
hree algorithms use the same raw image data (the white images are not
 b  

77 
sed in conventional FTP), and the retrieved phases are processed with
he same algorithms (PDM unwrapping and RGC). The reconstructed 3D
urfaces of the cantilever at three different time points by using the three
ethods are shown in Fig. 8 (b)–(d), respectively. As can be seen, the re-

ults generated by conventional FTP suffer from obvious artifacts and
nwrapping errors around sharp edges and dark regions. Modified FTP
liminates the unwrapping error and reduces the artifacts through back-
round substraction. But there still remain severe fluctuations (high-
ighted in the zoom area), which is mainly caused by large reflectivity
ariations. In contrast, 𝜇FTP produces a much smoother reconstruction
ithout notable artifacts because the influence of surface reflectivity
ariations is significantly suppressed. These results suggest that 𝜇FTP
otably improves the performance of state-of-the-arts in terms of accu-
acy and robustness when measuring textured surfaces. 

.3. Rotating fan blades 

The next test object is a commercially available desk fan with 3
lades made of ∼ 1.6 mm thick plastic. The fan is fixed on the opti-
al table with its front protect shell removed so that the fan blades can
e directly exposed to the measurement system. As shown in Fig. 9 (a),
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Fig. 8. Comparison of conventional FTP, modified FTP (background subtraction), and 𝜇FTP (background subtraction and normalization). (a) Representative camera images at different 

time points. (b) 3D reconstructions of the cantilever surface with conventional FTP at three different time points. (c) 3D reconstructions with modified FTP. (d) 3D reconstructions with 

𝜇FTP. 
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Fig. 9. Measurement of rotating blades. (a) Images captured by the camera at different exposure time (46 μs, 1 ms, 2.5 ms, and 10 ms). (b) The reconstructed 3D shape of the whole fan 

at the start of the observation time (T = 0 ms), the inset shows the side-view (y-z plane) of the 3D reconstruction. (c) Displacement in the z direction at 3 chosen point locations [A, B, 

and C, shown in (a)] as a function of time over a 100 ms period. (d) 5 line profiles drawn along the radial direction [corresponding to the dashed line in (e)] at time intervals of 0.75 ms. 

(e) The color-coded 3D rendering of the fans surface at T = 10.5 ms. 
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Fig. 10. 3D measurement and tracking a bullet fired from a toy gun. (a) Representative camera images at different time points. (b) Corresponding color-coded 3D reconstructions. (c) 3D 

reconstruction of the muzzle region [corresponding to the boxed region shown in (b)] as well as the bullet at three different points of time over the course of flight (7.5 ms, 12.6 ms, and 

17.7ms). The insets show the horizontal (x–z) and vertical (y-z) profiles crossing the body center of the flying bullet at 17.7 ms. (d) The 3D point cloud of the scene at the last moment 

(135 ms), with the colored line showing the 130 ms long bullet trajectory. The inset plots the bullet velocity as a function of time. 
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hough the fan is rotating at its highest possible speed, the 46 𝜇 s ex-
osure time of 𝜇FTP system is short enough to freeze the high-speed
otion and record a clear image of the whirling fan blades. To illus-

rate the rotating speed of the fan blades more intuitively, we increase
he camera exposure from 46 μs to 1 ms, 2.5 ms, and 10 ms. The blade
dges become increasingly blurred. And finally at 10 ms exposure, we
re unable to identify the fan blades since the motion blur makes them to
ppear as one streak. Despite of this challenging rotation speed, the 3D
hape of the whole fan, including the base, center hub, side cover, and
hree blades are well reconstructed by 𝜇FTP, as shown in Fig. 9 (b). One
oint on each blade is chosen to demonstrate the cyclic displacements
f the fan blades [points A, B, and C, shown in Fig. 9 (a)]. Displacement
n the z (out-of-plane) direction at the chosen point locations are plotted
s a function of time over a 100 ms period, as shown in Fig. 9 (c). The
lot shows that the fan has a rotation period of approximately 30.3 ms,
orresponding to a speed of 1980 rotations per minute (rpm). The plot
lso demonstrates a good repeatability of the 𝜇FTP measurement. Be-
ides, by applying a proper threshold on the captured white pattern, a
inary mask can be generated to extract the moving fan blades region
f interest from the static background. The color-coded 3D rendering of
he fans surface at one point in time (10.5 ms) is illustrated in Fig. 9 (e).
ig. 9 (d) further gives 5 line profiles drawn along the radial direction
ut from the center hub [corresponding to the dashed line in Fig. 9 (e)]
t time intervals of 0.75 ms. Within the short 3 ms, the fan blade quickly
weeps through the radical profile for about 1/10 of a revolution, result-
ng in a maximum variation over 15 mm in the z direction. The results
lso demonstrate that the length of fan blade is ∼ 80 mm in the radial
irection out from the center hub which has a radius of ∼ 20 mm. The
orresponding 3D movie is further provided in Supplementary Video

 . It is important to mention that unlike the previous study based on stro-
oscopic structured illumination [79] , here we truly recorded the entire
rocess of fan rotation without any stroboscopic time gap between two
uccessive 3D frames. 

.4. Bullet fired from a toy gun 

Next, we apply 𝜇FTP to image one-time transient event: a bullet fired
rom a toy gun and then rebounded from a plaster wall. Fig. 10 (a)-(b)
how representative camera images (white pattern) and corresponding
79 
olor-coded 3D reconstructions at different time points. T = 0 ms is the
tart of the observation time, and the bullet begins to occur in the vicin-
ty of the gun muzzle at about T = 7.5 ms. After travelling in free-flight
or about 15 ms, the bullet hits the plaster and rebounds towards the
amera. In Fig. 10 (c), we show the 3D reconstruction of the muzzle re-
ion [corresponding to the boxed region in Fig. 10 (b)] as well as the
ullet at three different points of time (7.5 ms, 12.6 ms, and 17.7 ms).
he two insets further provide the horizontal (x–z) and vertical (y-z)
rofiles crossing the body center of the bullet at 17.7 ms, which indi-
ate that the bullet has a length of ∼ 35.5 mm and a diameter of ∼
1.8 mm. Besides, the 3D data can be used to quantitatively analyze the
rocess with regards to the ballistic trajectory and velocity. By tracing
he center of the bullet body, we can obtain the bullet trajectory in 3D
pace. The instantaneous speed of the bullet can then be estimated by
aking the derivative of the position function with respect to time. The
alculated muzzle velocity (velocity of the bullet when it leaves the bar-
el) is around 7.3 m/s. At that speed, the bullet moves about one pixel
etween each camera frames. Since the phase information is encoded in
ingle fringe pattern in 𝜇FTP, the frame-by-frame motion does not in-
roduce any visible artifacts. In Fig. 10 (d), we further show the 3D point
loud of the scene at the last moment (T = 135 ms), with the colored
ine showing the 130 ms long bullet trajectory (the bullet velocity is en-
oded by the line color, see Supplementary Video 7 for time evolution
f the trajectory). The inset of Fig. 10 (d) provides the bullet velocity as a
unction of time, indicating that the bullet speed keeps almost constant
hen travelling in free-flight, and suddenly reduces to about 2 m/s dur-

ng the collision. The fluctuation of speed after collision mainly results
rom the rolling over of the bullet, which also increases the estimation
ncertainty [red shaded region in Fig. 10 (d)] due to the difficulties in
ccurate tracking of the bullet body center. A more detailed illustration
f the transient event is provided in Supplementary Video 8 , which is
 slow-motion 3D movie containing 2700 3D frames with a frame inter-
al of 50 μs (corresponding to 20,000 3D fps over an observation period
f 135 ms). These experimental results demonstrate the potential appli-
ations of 𝜇FTP for tracking 3D trajectory of fast moving object within
 wide observation volume. 
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Fig. 11. Balloons explosion triggered by a flying dart. (a) Representative camera images at different time points. (b) Corresponding color-coded 3D reconstructions. (c) and (d) continue 

to (a) and (b), respectively. (e) Line profiles across the dashed line in (a) at the time points of 10.7 ms, 11.4 ms, 12.1 ms, 12.8 ms and 13.7 ms. 
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.5. Balloons explosion triggered by a flying dart 

In the last demonstration, the proposed 𝜇FTP is applied to capturing
 very-high-frequency event air balloon bursting punctured by a fly-
ng dart. Fig. 11 (a)–(d) show representative 2D camera images (white
attern) and corresponding color-coded 3D reconstructions at different
ime points. The corresponding movie is provided in Supplementary

ideo 9 . The balloon is suspended in air by threads and keeps still until
ts surface touchs the tip of the flying dart (T = 10.7 ms). The pricked
ole propagates into a radial crack towards to two poles of the balloon,
licing the balloon into a piece of rubber membrane (T = 13.7 ms. The
embrane then shrinks into a crumpled form rapidly (T = 15 ms) and
nally breaks into 2 fragments (T = 31.7 ms, indicated by the yellow
nd blue arrows). The whole process lasts about 47 ms, while the key
vent (balloon blowing up) takes place only within about 4 ms (note that
he frame intervals from the second to sixth 3D snapshots in Fig. 11 (b)
re less than 1 ms). The 3D data can be used to quantitatively analyze
he explosion process. Fig. 11 (e) shows 5 line profiles across the dashed
ine shown in Fig. 11 (a), corresponding to the time points of 10.7 ms,
1.4 ms, 12.1 ms, 12.8 ms and 13.7 ms. When the balloon is intact, only
he top surface can be imaged (shown in gray). With the crack expanding
nd propagating, the bottom (inner) surface of the balloon is revealed. It
s interesting that, except for the eversion around the crack boundaries,
he main balloon surface still demonstrates a good axi-symmetry during
xplosion (3 ms), characterized by a longitudinal diameter of ∼ 187 mm
shaded region in Fig. 11 (d)]. In Supplementary Video 9 , we can see
hat the depth information of the sudden explosion within time spans
n the order of tens of microseconds is fully recovered by 𝜇FTP. The
D results show good image quality without depth ambiguities (note in
ig. 11 (c) and (d), the two “overlapping ” fragments in 2D camera im-
ges are actually separated in 3D space due to their large difference in
epth). Some depth artifacts noticeable are attributed to the insufficient
cene overlapping between adjacent camera frames because 𝜇FTP relies
n certain spatio-temporal redundancy for phase unwrapping. 

. Discussion 

In this study, we have demonstrated 𝜇FTP, which is able to recon-
truct dense and precise 3D shapes of complex scenes of several inde-
endently moving objects at 10,000 fps. Within the entire measurement
80 
olume of 400 mm × 275 mm × 400 mm, we achieve a depth accuracy
etter than 80 μm and a temporal uncertainties less than 75 μm. 𝜇FTP
as several advantages over conventional high-speed 3D imaging meth-
ds. Not only can the high-resolution, unambiguous depth information
e retrieved from two images, but also high-quality 2D textures (white
atterns) provided simultaneously with the 3D geometry. This allows
lling in the speed gap between high-speed 2D photography and fast 3D
ensing, pushing the speed limits of unambiguous, motion-artifact-free
D imaging to the range of tens of kilo-hertz (half of the native camera
rame rate). The effectiveness of 𝜇FTP has been verified by several ex-
eriments on various types of transient events, including objects that are
apidly moving or undergoing sudden shape deformation. Experimental
esults suggest the potential applications of 𝜇FTP in various fields, such
s solid mechanics, material science, fluid dynamics, and biomedical re-
earch. Furthermore, 𝜇FTP is highly flexible: the fringe pitches, number
f wavelengths, sliding window length can be adjusted according to the
urface characteristics and motion speed of objects, for instance using
ore than 3 wavelengths to achieve higher reconstruction reliability for
ore complex objects when the motion speed is lower than the camera

rame rate. 
Being a recording and post-processing technique, the processing

peed of 𝜇FTP has not yet been fully optimized. We have implemented
he 𝜇FTP reconstruction in MATLAB (the RGC algorithm is written in
++ language and called from MATLAB using the Mex “MATLAB Ex-
cutable ” dynamically linked subroutine). The reconstruction code can
e accessed from our website [78] . The time required for reconstruct-
ng one 3D frame is approximately 870 ms on a desktop computer (In-
el Core i7-4790 CPU 3.6 GHz, 16 GB RAM). The processing speed can
e significantly improved by using graphics processing units (GPUs), as
he involved algorithms, such as 2D fast Fourier transform and pixel-
ise PDM phase unwrapping are highly parallelizable. This could fur-

her enable 𝜇FTP to execute real-time 3D video reconstruction with low
atency, if a high-speed camera with synchronous data acquisition capa-
ility is employed. Moreover, due to the very similar architecture and
eneral versatility, 𝜇FTP is possible to be extended to other computa-
ional illumination based imaging techniques for high-speed imaging
asks, such as structured illumination microscopy [18,80,81] and com-
utational ghost imaging [82,83] . 

Finally, it should also be mentioned that due to the spatio-temporal
ature of 𝜇FTP reconstruction, the reconstructed point clouds are not
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trictly independent. Though the principal value of the phase is retrieved
rom two patterns (mainly from a single high-frequency sinusoidal pat-
ern), the PDM phase unwrapping procedure relies on all frames within
he sliding window (6 frames in our case). Since phase unwrapping
nly remove the modulus 2 𝜋 ambiguities without affecting the principal
alue of the phase, we take advantage of the inherent spatio-temporal
orrelation between successively captured phase images. As we have
hown, when the object motion does not induce significant discrepan-
ies between consecutive phase images, 𝜇FTP can still produce accurate
nd reliable 3D reconstruction based on robust temporal phase unwrap-
ing and spatial phase error compensation. However, for scenes with
ery fast object motion, it is prone to fail due to large phase discrep-
ncies or insufficient overlap of the object between consecutive phase
mages, which does impose certain restrictions on its practical applica-
ion. In future work, we hope to further improve the robustness of phase
nwrapping by introducing multiple cameras or perspectives. The use
f multi-viewpoint geometric constraints increases the data redundancy
nd allows the determination of absolute phase with a shorter sliding
emporal window. This improvement should make our system more fea-
ible for the measurement of faster moving objects. 
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ppendix A. Background Normalized Fourier Transform 

rofilometry (BNFTP) 

1. Theory 

In fringe projection profilometry technique, the sinusoidal fringe pat-
ern designed in projector space can be represented as 

 

𝑝 ( 𝑥 𝑝 , 𝑦 𝑝 ) = 𝑎 𝑝 + 𝑏 𝑝 cos 
(
2 𝜋𝑓 𝑝 0 𝑥 

𝑝 
)

(A.1)

here a p is the mean value, and b p is the amplitude (or projector mod-
lation), ( x p , y p ) is the pixel coordinate of the projector, 𝑓 𝑝 0 is the fre-
uency of the sinusoidal fringe. All generated fringe patterns are sent to
 projector and then projected onto the object. Without loss of general-
ty, we assume that the fringes are oriented perpendicular to the x p axis,
s we did in this work. When the fringe pattern is projected onto the ob-
ect surface, the light reflected from the object can be attributed to two
ources: projector light as well as the ambient light. The projected fringe
attern combined with the ambient light 𝛽1 is modulated and reflected
y the object. The reflected light is then captured by the camera with
ome additional ambient light 𝛽2 directly entering the camera. So, the
ringe image actually captured by the camera is: 

( 𝑥 𝑐 , 𝑦 𝑐 ) = 𝛼( 𝑥 𝑐 , 𝑦 𝑐 ){ 𝑎 𝑝 + 𝑏 𝑝 𝑐 𝑜𝑠 [2 𝜋𝑓 0 𝑥 𝑐 + 𝜙( 𝑥 𝑐 , 𝑦 𝑐 )] 

+ 𝛽1 ( 𝑥 𝑐 , 𝑦 𝑐 )} + 𝛽2 ( 𝑥 𝑐 , 𝑦 𝑐 ) (A.2) 

here ( x c , y c ) is the pixel coordinate in the camera space, 𝛼( x c , y c ) is the
eflectivity of the measured object, and 𝜙( x c , y c ) is the phase containing
he depth information of the object. For simplicity, I ( x c , y c ) is commonly
xpressed as follows 

 

(
𝑥 c , 𝑦 c 

)
= 𝐴 

(
𝑥 c , 𝑦 c 

)
+ 𝐵 

(
𝑥 c , 𝑦 c 

)
cos 

[
2 𝜋𝑓 0 𝑥 c + 𝜙

(
𝑥 c , 𝑦 c 

)]
(A.3)
81 
here A ( x c , y c ) is the average intensity which
quals 𝛼( 𝑥 c , 𝑦 c ) 

[
𝑎 𝑝 + 𝛽1 ( 𝑥 c , 𝑦 c ) 

]
+ 𝛽2 ( 𝑥 c , 𝑦 c ) , B ( x c , y c ) represents the

ntensity modulation which equals 𝛼( x c , y c ) b p , f 0 is the carrier fre-
uency of the captured fringe image. The 2D Fourier transform of I ( x c ,
 

c ) gives 

 ̂

(
𝑓 𝑥 , 𝑓 𝑦 

)
= 𝐴̂ 

(
𝑓 𝑥 , 𝑓 𝑦 

)
+ 𝐶̂ 

(
𝑓 𝑥 − 𝑓 0 , 𝑓 𝑦 

)
+ 𝐶̂ 

∗ (𝑓 𝑥 + 𝑓 0 , 𝑓 𝑦 
)

(A.4)

here ( f x , f y ) is the vector in spatial frequency domain corresponding

o ( x c , y c ) . 𝐴̂ 

(
𝑓 𝑥 , 𝑓 𝑦 

)
and 𝐶̂ 

(
𝑓 𝑥 − 𝑓 0 , 𝑓 𝑦 

)
are the Fourier transforms of

 ( x c , y c ) and 1 2 𝐵 ( 𝑥 c , 𝑦 c ) exp 
{
− 𝑖 
[
2 𝜋𝑓 0 𝑥 c + 𝜙( 𝑥 c , 𝑦 c ) 

]}
, respectively, and ∗ 

enotes the complex conjugate. Note that influence of the phase factor
xp 

(
− 𝑖 2 𝜋𝑓 0 𝑥 

)
can be interpreted as a translation of f 0 in the spatial fre-

uency domain. In conventional Fourier Transform Profilometry (FTP)
25,36–38] , 𝜙 , A , and B are assumed to vary slowly compared with the
arrier frequency f 0 , and thus, the zero order ( 𝐴̂ 

(
𝑓 𝑥 , 𝑓 𝑦 

)
) is separated

ith the +1 order ( ̂𝐶 

(
𝑓 𝑥 − 𝑓 0 , 𝑓 𝑦 

)
) and − 1 order ( ̂𝐶 

∗ (𝑓 𝑥 + 𝑓 0 , 𝑓 𝑦 
)
) in

he frequency domain. Then a properly designed band-pass filter can be
pplied to extracting the +1 order ( ̂𝐶 

(
𝑓 𝑥 − 𝑓 0 , 𝑓 𝑦 

)
), and the phase can

e retrieved by taking the angle part of the resultant inverse Fourier
ransform. 

One major limitation of conventional FTP lies in the fact that
hen the measured surface contains sharp edges, discontinuities, or

arge surface reflectivity variations, the support of the three terms in
q. (A.4) will be significantly extended, so that the zero frequency may
verlap with the +1 and − 1 orders [37] . The spectrum overlapping
akes it difficult to filter out the +1 order ( ̂𝐶 

(
𝑓 𝑥 − 𝑓 0 , 𝑓 𝑦 

)
), preclud-

ng high-accuracy phase reconstruction of complex objects. To address
his problem, 𝜋 -shift FTP [39] and modified FTP [41] have been pro-
osed to effectively suppress the zero order by projecting an additional
-shift sinusoidal fringe image or a flat image. However, in 𝜋 -shift FTP,

he phase information is encoded in two sinusoidal fringes and thus the
ensitivity to object motion is increased. While in modified FTP, the flat
mage (average gray-scale of the sinusoidal fringe pattern) is not able
o be perfectly generated by the DMD operating in binary (1-bit) mode
since only “0 ”s and “1 ”s can be projected, the gray-scale “0.5 ” needs to
e created by additional spatial dithering). Furthermore, though the ef-
ect of zero order is largely removed, neither approach can handle large
urface reflectivity variations, which introduce spectrum leakage and
hus influence the high-quality phase retrieval. 

Therefore, in this work, we propose a improved FTP-based approach
o-called Background Normalized Fourier Transform Profilometry (BN-
TP) that is specially designed for high-speed 3D measurement with
inary patterns. Similar to modified FTP [41] , BNFTP uses a sinusoidal
ringe image and an additional “white ” image with all “1 ”s in the pro-
ection pattern (all mirrors in the DMD are in the “on ” state). The fringe
mage is created by binarizing an ideal spatial sinusoid, therefore the
arameter a p and b p in Eq. (A.1) should be both 0.5: 

 

𝑝 

1 ( 𝑥 
𝑝 , 𝑦 𝑝 ) = 

1 
2 
+ 

1 
2 
cos 

(
2 𝜋𝑓 𝑝 0 𝑥 

𝑝 
)

(A.5)

he additional while image can be simply represented as: 

 

𝑝 

2 ( 𝑥 
𝑝 , 𝑦 𝑝 ) = 1 (A.6)

n high-speed imaging conditions, the effect of the ambient light ( 𝛽1 and

2 ) can be neglected compared with the strong projector light within the
ery limited exposure time (46 𝜇 s for our 𝜇FTP system), especially when
ll other light sources are turned off in measurement environment. Then
he corresponding captured images can be simplified as 

 1 
(
𝑥 c , 𝑦 c 

)
= 

1 
2 
𝛼
(
𝑥 c , 𝑦 c 

)
+ 

1 
2 
𝛼
(
𝑥 c , 𝑦 c 

)
cos 

[
2 𝜋𝑓 0 𝑥 c + 𝜙

(
𝑥 c , 𝑦 c 

)]
(A.7) 

 2 
(
𝑥 c , 𝑦 c 

)
= 𝛼

(
𝑥 c , 𝑦 c 

)
(A.8) 

y taking the normalized difference between I 1 and I 2 , the zero-
requency term as well as the effect of surface reflectivity variations
an be effectively removed: 

 𝑑 

(
𝑥 c , 𝑦 c 

)
= 

2 𝐼 1 − 𝐼 2 
𝐼 2 + 𝛾

= cos 
[
2 𝜋𝑓 0 𝑥 c + 𝜙

(
𝑥 c , 𝑦 c 

)]
(A.9) 
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here 𝛾 is a small constant to prevent divide-by-zero error. Then Fourier
ransform is applied on the normalized image I d to extract the phase in-
ormation. With the subtraction and normalization of the white image,
he effect of zero-order as well as surface reflectivity variations is re-
oved before the Fourier transform, and the spectrum overlap in the

requency domain can be prevented or significantly alleviated. Further-
ore, the white image I 2 is also used to define a binary mask. The pixel
ith sufficient large reflectivity ( I 2 ( x 

c , y c ) > threshold ) is considered re-
iable in determining that pixels phase, and only these pixels are used
o reconstruct a 3D surface. 

2. Experimental comparison with state-of-the-art FTP methods 

To demonstrate the performance of BNFTP in terms of phase error
eduction, we measure an A4-size (21.0 mm × 29.7 mm) textured flat
oard with 12-by-8 checkerboard pattern printed on its surface. The
orresponding sinusoidal fringe image and white image captured by the
FTP system (camera exposure 46 μs, 20,000 fps, see Section Projec-

ion and capture synchronization for details) are shown in Fig. A.1 (a)
nd (b), respectively. Fig. A.1 (c)–(e) show the results obtained by the
onventional FTP method (without using the white image), background
ubtracted FTP (similar to modified FTP [41] but use 2 𝐼 1 − 𝐼 2 for phase
etrieval), and BNFTP (use Eq. (A.9) for phase retrieval). The images
rom left to right are processed fringe patterns, Fourier spectra, fil-
ered Fourier spectra (180 × 300 Hanning window), recovered wrapped
hases (carrier phases removed by spectrum centering for better illustra-
ion of the phase error), 3D reconstructions, and the corresponding line
rofiles (for phase to 3D conversion, see Appendix D for details). The
oot mean square (RMS) error shown here is calculated by fitting the
ine profile to a straight line and calculating the difference between the
easured points about the fitted line. In the Fourier spectrum of conven-

ional FTP approach, three terms corresponding to the 0 and ± 1 orders
re clearly visible. However, they are significantly extended and over-
apped because of the background and surface reflectivity variations,
eading to prominent reconstruction artifacts (RMS error 664.15 μm).
ue to the spectrum leakage, such artifacts are not just limited to the
ark square regions but propagate to bright regions and degrade the
econstruction accuracy prevailingly. Subtracting the background can
uppress the zero-order and alleviate the spectrum overlapping to some
xtent, reducing the RMS error to 169.66 μm. However, the reconstruc-
ion error is still obvious because of the negligible spectrum overlapping
etween ± 1 orders. All these errors are almost eliminated in the results
ig. A.1. Measurement of a textured flat board. (a) Sinusoidal fringe image. (b) White im- 

ge. (c) Results obtained by conventional FTP method without using the white image. (d) 

esults obtained by background subtracted FTP (similar to modified FTP but use 2 𝐼 1 − 𝐼 2 
or phase retrieval). (e) Results obtained by BNFTP. The images from left to right are: 

rocessed fringe patterns, Fourier spectra, filtered Fourier spectra (180 × 300 Hanning 

indow), recovered wrapped phases (carrier phases removed by spectrum centering for 

etter illustration of the phase error), 3D reconstructions, and the corresponding line pro- 

les (labelled by the red, green, and blue solid lines). (For interpretation of the references 

o colour in this figure legend, the reader is referred to the web version of this article.) 
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f BNFTP, as shown in Fig. A.1 (e). With the subtraction and normaliza-
ion of the white image, the zero-order is removed and the support of
 1 orders is significantly shrunk into a compact star-shaped region.
he 3D result illustrates the improved smoothness as we expected. The
MS error along the line profile is only 61.78 μm, which is reduced by
1 times and 2.74 times as compared with conventional FTP and back-
round subtracted FTP (modified FTP), respectively. 

ppendix B. Temporal Phase Unwrapping with Projection 

istance Minimization (PDM) 

1. Theory 

The initial phase retrieved by BNFTP is wrapped to principle values
f the arctangent function, and consequently, the phase discontinuities
ccur when the unknown true phase changes by 2 𝜋. Thus, phase un-
rapping is required to remove the ambiguities and correctly extract

he object depth. With only single wrapped phase map, spatial phase
nwrapping algorithms cannot uniquely determine the period numbers
or the cases of large discontinuities or spatially isolated surfaces. Thus,
emporal phase unwrapping (TPU) approaches with more than one rela-
ive phase maps have to be used to remove such depth ambiguities [52] .
n this work, a new algorithm so-called projection distance minimization
PDM) is proposed to address the multi-frequency temporal phase un-
rapping in an optimum way. Without loss of generality, for n relative
hase maps represented by a vector 𝜑 = [ 𝜙1 , 𝜙2 , ⋯ , 𝜙𝑛 ] 𝑇 and charac-
erized by the fringe wavelengths (fringe pitches) 𝛌 = [ 𝜆1 , 𝜆2 , ⋯ , 𝜆𝑛 ] 𝑇 ,
he corresponding unwrapped phase maps 𝚽 = [ Φ1 , Φ2 , ⋯ , Φ𝑛 ] 𝑇 can
e represented as 

= 𝜑 + 2 𝜋𝐤 (B.1)

here 𝐤 = [ 𝑘 1 , 𝑘 2 , ⋯ , 𝑘 𝑛 ] 𝑇 is the integer fringe order vector. Since TPU
s performed pixel-wisely over the whole image, the pixel coordinate ( x c ,
 

c ) is omitted here for simplicity. The task of phase unwrapping is to de-
ermine the fringe orders k from the knowledge of wrapped phase vector
 only, and the continuous phase maps 𝚽 can be recovered by Eq. (B.1) .
o achieve this goal, the fringe wavelengths 𝝀 should be properly chosen
o that the phase 𝝋 can be successfully unwrapped without ambiguities
ithin the desired measurement range [84] . This relies on the fact that
iven a set of fringe wavelengths 𝛌 = [ 𝜆1 , 𝜆2 , ⋯ , 𝜆𝑛 ] 𝑇 , their least com-
on multiple 𝐿𝐶𝑀 

(
𝜆1 , 𝜆2 , ⋯ , 𝜆𝑛 

)
determines the maximum range on

he absolute phase axis within which each combinations for wrapped
hase values are unique [85–87] . Considering the projection pattern
as W pixels along the horizontal axis wherein the sinusoidal intensity
alue varies (the pixels in the same column all have equal intensity) the
ondition 

𝐶𝑀 

(
𝜆1 , 𝜆2 , ⋯ , 𝜆𝑛 

)
≥ 𝑊 (B.2)

hould be satisfied to exclude ambiguity. 
Given the projector coordinate 0 ≤ x p < W and the condition of

q. (B.2) holds, all unwrapped phase values can be connected with the
orresponding projector coordinate x p through the following relation: 

◦𝛌 = 2 𝜋𝑥 𝑝 ≡ 𝑡 (B.3)

here ∘ is the Hadamard product (entrywise product). Eq. (B.3) sug-
ests that the trajectory of continuous phase values ( Φ1 , Φ2 , ⋯ , Φ𝑛 )
orm a straight line passing through the origin in dimension n . The
irection vector of the line is 𝛌−1 = [ 1 

𝜆1 
, 

1 
𝜆2 

, ⋯ , 
1 
𝜆𝑛 
] 𝑇 and can be pa-

ameterized by parameter t . For a given set of wrapped phase values 𝜑 =
 𝜙1 , 𝜙2 , ⋯ , 𝜙𝑛 ] 𝑇 , the problem of TPU is recast to finding the integer
ringe order vector 𝐤 = [ 𝑘 1 , 𝑘 2 , ⋯ , 𝑘 𝑛 ] 𝑇 so that the final unwrapped
hase values 𝚽 = [ Φ1 , Φ2 , ⋯ , Φ𝑛 ] 𝑇 calculated from Eq. (B.1) can pre-
isely fall on the straight line described by Eq. (B.3) . Since the ambi-
uity in the projector space is ruled out by condition Eq. (B.2) , there
hould be only one qualified fringe order vector k within the range
 ≤ x p < W . For simplicity of explanation, we consider an example with
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Fig. B.1. A simple example explaining the basic idea of PDM [ 
(
𝜆1 , 𝜆2 , 𝜆3 

)
= ( 2 , 3 , 5 ) 

pixels, and 𝐿𝐶𝑀 

(
𝜆1 , 𝜆2 , 𝜆3 

)
= 30 pixels]. (a) Changes of three wrapped phase maps 

within the unambiguous range. (b) Calculated the unwrapped phase values of the red- 

shaded pixel with all possible combinations of fringe orders shown in 3D space described 

by ( Φ1 , Φ2 , Φ3 ) . Only the correct fringe orders (7,5,3) produces unwrapped phase values 

(red dot) that can precisely fall on the straight line described by Eq. (B.3) . (c) In the 

presence of noise, the calculated unwrapped phase values may never precisely fall on the 

straight line even when the fringe order vector is correct. But the optimum fringe orders 

should produce unwrapped phase values (red dot) that is closest to the straight line. The 

inset shows the magnified boxed region where the point P representing the projection of 

unwrapped phase values 𝚽 onto the line. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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hree wrapped phase maps 𝜑 = [ 𝜙1 , 𝜙2 , 𝜙3 ] 𝑇 , characterized by the
ringe pitches 𝜆1 = 2 pixels, 𝜆2 = 3 pixels, and 𝜆3 = 5 pixels. Fig. B.1 (a)
hows changes of three wrapped phase maps within the unambiguous
ange 𝐿𝐶𝑀 

(
𝜆1 , 𝜆2 , 𝜆3 

)
= 30 pixels. In Fig. B.1 (a), each small rectangu-

ar block represents one pixel, labeled by its fringe order. Careful ob-
ervation reveals that for a given pixel coordinate, each combination of
hree wrapped phase values is unique, therefore the fringe orders of the
hree phase maps 𝐤 = [ 𝑘 1 , 𝑘 2 , 𝑘 3 ] 𝑇 can be uniquely determined by ex-
mining their wrapped phases. For example, considering the red shaded
ixel with 𝑥 𝑝 = 16 , we can calculate the corresponding unwrapped phase
alues with all possible combinations of fringe orders 𝐤 = [ 𝑘 1 , 𝑘 2 , 𝑘 3 ] 𝑇 .
hough there are 22 possible combinations of 

(
𝑘 1 , 𝑘 2 , 𝑘 3 

)
in this

ase: (0,0,0), (1,0,0), (1,1,0), (2,1,0), (2,1,1) , (3,2,1), ⋅⋅⋅, (14,9,5), only
7,5,3) produces the unwrapped phase values 𝚽 that can precisely fall
n the straight line described by Eq. (B.3) in 3D space, as shown in
ig. B.1 (b). 

However, in practice, there are many factors such as non-sinusoidal
ringe intensity, random noise of the projector and the camera, ob-
ect motion in the measurement process that may induce errors in ob-
ained wrapped phase maps. In such cases, the unwrapped phase values
= [ Φ1 , Φ2 , ⋯ , Φ𝑛 ] 𝑇 calculated from Eq. (B.1) may not precisely fall

n the straight line described by Eq. (B.3) for all possible fringe order
ectors [even when the fringe order vector is correct, as illustrated in
ig. B.1 (c)]. To solve the phase unwrapping problem in the presence of
oise optimally, we should choose the fringe order which produces the
nwrapped phase values 𝚽 = [ Φ1 , Φ2 , ⋯ , Φ𝑛 ] 𝑇 that is closest to the
traight line. Thus, the distance from the point ( Φ1 , Φ2 , ⋯ , Φ𝑛 ) to the
ine in Euclidean geometry should be calculated to quantify how close
hey are. We first project the point onto the line to get a projected point
 = [ 𝑃 1 , 𝑃 2 , ⋯ , 𝑃 𝑛 ] 𝑇 , which should satisfy the following simultaneous
quations 

 

𝐏 ◦𝛌 ≡ 𝐭 
( 𝐏 − 𝚽) 𝑇 𝛌−1 = 0 (B.4) 
83 
he first line of Eq. (B.4) indicates that the projected point P must lie on
he line described by Eq. (B.3)) , and the second line of Eq. (B.4) suggests
hat the projected vector 𝐏 − 𝚽 must be perpendicular to the direction
ector of the line. Solving Eq. (B.4) we obtain the parameter 

 = 

( ‖‖‖𝛌−1 ‖‖‖2 
) −1 (

𝛌−1 
)𝑇 𝚽 = 

( ∑𝑛 

𝑖 =1 

( 

1 
𝜆2 
𝑖 

) ) −1 ∑𝑛 

𝑖 =1 
Φ𝑖 

𝜆𝑖 
(B.5)

nd the projected point 

 = 𝛌−1 𝑡 (B.6)

here ‖‖ is the Euclidean norm. The distance d from the point to the
ine is just the distance between the point 𝚽 = [ Φ1 , Φ2 , ⋯ , Φ𝑛 ] 𝑇 and
he projected point 𝐏 = [ 𝑃 1 , 𝑃 2 , ⋯ , 𝑃 𝑛 ] 𝑇 : 

 

2 = ‖𝐏 − 𝚽‖2 = ( 𝐏 − 𝚽) 𝑇 ( 𝐏 − 𝚽) (B.7) 

With all the above equations at hand, the basic procedures of the
DM algorithm can be summarized as follows: 

Step 1. Choose a proper set of fringe wavelengths 𝛌 =
 𝜆1 , 𝜆2 , ⋯ , 𝜆𝑛 ] 𝑇 satisfying condition Eq. (B.2) to generate wrapped
hase vector 𝜑 = [ 𝜙1 , 𝜙2 , ⋯ , 𝜙𝑛 ] 𝑇 with unique phase values over the
aximum projector coordinate W . 

Step 2. Generate all fringe order vector k i that contains all possible
ombinations of integer fringe orders [ 𝑘 1 , 𝑘 2 , ⋯ , 𝑘 𝑛 ] 𝑇 over the maxi-
um projector coordinate W , as we did in Fig. B.1 (a). 

Step 3. For each fringe order vector k i , calculate the corresponding
nwrapped phase values 𝚽i [ Eq. (B.1) ], projected unwrapped phase val-
es P i [ Eq. (B.5) and (B.6) ], and finally the distance 𝑑 2 

𝑖 
between them

 Eq. (B.7) ]. (Note that if the approximate depth range of the measured
cene can be estimated, geometric constraint [58,61–63] can be applied
o limiting the search range of k i and ruling out several false candidates
eforehand. See Appendix D2 for details) 

Step 4. Select the fringe order vector which produces the minimum
 

2 
𝑖 

(denoted as 𝑑 2 min ) as the optimum solution k opt . Meanwhile, the cor-
esponding unwrapped phase values 𝚽opt can be obtained [Eq. (S10)].
t should be also noted that the minimum projection distance map 𝑑 2 min 
n PDM reflects the unwrapping reliability for each pixel (larger 𝑑 2 min 
alue means lower unwrapping reliability), which is further used in the
ubsequent fringe order error compensation algorithm (See Appendix

 for details). 

2. Proof about optimality 

Let us assume the additive phase noise model of the phase measure-
ent 

 𝑚 = 𝜑 + Δ𝜑 (B.8)

here Δ𝝋 is zero-mean Gaussian distributed noise vector with a vari-
nce vector of 𝝈2 . This assumption is valid for typical image sensor in
hich thermal or shot noise is the main noise type. The importance of

he Gaussian distribution arises from the fact that many distributions
an be approximated by the Gaussian one. Furthermore, a combination
f noise sources of the same kind usually behaves like a Gaussian noise
ource as a result of central limit theorem. 

If the wrapped phase maps 𝝋 m 

are recovered from the same phase
etrieved algorithm (e.g., BNFTP or standard phase shifting algorithm
ith the same phase-shift step, which is true for most practical condi-

ions), their phase error variance should be identical 𝜎2 
1 = 𝜎2 

2 = ⋯ = 𝜎2 
𝑛 
= 𝜎2 

which is independent with fringe wavelength, see our recent TPU re-
iew paper [52] for detailed explanations). After phase unwrapping, the
hase values in the phase maps are only modified by multiples of 2 𝜋, so
he noise variances for all of unwrapped phase maps should be identical
s well: 

𝑚 = 𝚽 + Δ𝜑 (B.9)

here Δ𝝋 is zero-mean Gaussian distributed noise vector with a vari-
nce of 𝜎2 , which is same as the one in Eq. (B.8) . For phase unwrapping
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Fig. B.2. Simulated of continuous phase maps and wrapped phase maps. (a) Phase map 

1. (b) True continuous phase maps when 
(
𝜆1 , 𝜆2 , 𝜆3 

)
= (14, 16, 18). (c) Wrapped phase 

maps with noise (phase noise variance 0.04 2 ). (d) Phase map 2. (e) True continuous phase 

map when 
(
𝜆1 , 𝜆2 , 𝜆3 

)
= (14, 16, 18). (f) Wrapped phase maps with noise (phase noise 

variance 0.04 2 ). 

Fig. B.3. Phase unwrapping results of three-wavelength heterodyne method 
(
𝜆1 , 𝜆2 , 𝜆3 

)
= (14, 16, 18). (a)–(c) Unwrapped phase maps of Phase 1. (d) 3D plot of unwrapping result 

with 𝜆1 = 14 . (e)–(g) Unwrapped phase maps of Phase 2. (f) 3D plot of unwrapping result 

with 𝜆1 = 14 . Note for (d) and (f), the linear carrier phase (phase ramp) is removed from 

each result to get a better view. 

Fig. B.4. Phase unwrapping results of three-wavelength PDM method 
(
𝜆1 , 𝜆2 , 𝜆3 

)
= 

(14, 16, 18). (a)–(c) Unwrapped phase maps of Phase 1. (d) 3D plot of unwrapping result 

with 𝜆1 = 14 . (e)–(g) Unwrapped phase maps of Phase 2. (f) 3D plot of unwrapping result 

with 𝜆1 = 14 . Note for (d) and (f), the linear carrier phase (phase ramp) is removed from 

each result to get a better view. 
roblem, since the true unwrapped phase vector is unknown, the fringe
rders k can only be determined from the measured values. Suppose we
ave a group of unwrapped phase maps 𝚽𝑚 = [ Φ𝑚 1 , Φ𝑚 2 , ⋯ , Φ𝑚𝑛 ] 𝑇 ,
ach phase map Φmi actually corresponds to a statistically independent
easurement of the same physical quantities. In most case, the phase

alue is used as a unique identifier of the projector pixel coordinate x p 
or equivalently, parameter t in Eq. (B.3) ], which is related to the actual
eight/depth of the measured objects. So we can obtain n separate and
ndependent (but inconsistent) estimates of the parameter t 

 𝑚 = 𝚽𝑚 ◦𝛌 = 𝑡 + Δ𝐭 (B.10)

here Δ𝐭 = 𝛌◦Δ𝜑 is an zero-mean Gaussian distributed derivation vec-
or with a variance vector of 𝝀2 𝜎2 . Based on the principle of maximum
ikelihood, the best estimate of t from these actual estimates is given by
he following weighted average [88] 

̂
 𝑀𝐿 = 

𝐰 

𝑇 𝐭 𝐦 ‖𝐰 ‖1 = 

∑𝑛 

𝑖 =1 𝑤 𝑖 𝜆𝑖 Φ𝑚𝑖 ∑𝑛 

𝑖 =1 
||𝑤 𝑖 

|| (B.11)

here the weights are inverse squares of the uncertainties in actual es-
imates 

 𝑖 = 

1 
𝜆2 
𝑖 
𝜎2 

(B.12)

he rationale of Eq. (B.10) can be understood based on the fact that us-
ng denser fringe patterns (smaller wavelengths) generally leads to more
ensitive measurements and lower uncertainties, and hence the weights
or smaller wavelengths should be larger. Substituting Eq. (B.12) into
B.11) and after simple reduction, it can be verified that Eq. (B.11) is
xactly the same as Eq. (B.5) . This exactly proves that the proposed
DM algorithm always produces the optimum fringe order pair so that
he corresponding unwrapped phase values are closest to the maximum
ikelihood estimates. 

3. Comparison with heterodyne phase unwrapping 

Similar to many other TPU algorithms, the PDM solves the phase am-
iguity problem by employing multiple phase measurements with dif-
erent frequencies. Compared with the state-of-the-art algorithms [52] ,
t not only guarantees to give an optimal solution in a maximum like-
ihood sense but also provides an inherent metric 𝑑 2 min to evaluate the
nwrapping reliability quantitatively (which is used in the reliability
uided compensation algorithm. See Appendix C for details). To bet-
er understand the advantage of the PDM algorithm, here we compare
t with the classic heterodyne approach [89,90] , which is probably the
ost widely used TPU algorithm especially for the three-wavelength

ase [53,91] . Let us first consider the two-frequency scenario with the
avelengths 𝜆1 < 𝜆2 < 2 𝜆1 . The heterodyne approach extends the un-
mbiguous phase range to the synthetic wavelength 𝜆12 by taking the
ifference of the phase measurements taken at each wavelength: 

12 = 

𝜆1 𝜆2 
𝜆2 − 𝜆1 

(B.13)

owever, for the proposed PDM, it is easy to verify that its unambigu-
us measurement range is always no less than that of the heterodyne
pproach 

𝐶𝑀 

(
𝜆1 , 𝜆2 

)
≥ 

𝜆1 𝜆2 
𝜆2 − 𝜆1 

(B.14)

he conclusion can be easily extended to the cases of three or even more
avelengths. Thus, the proposed PDM has a larger unwrapping range

han classic heterodyne approach. Another advantage of the proposed
pproach lies in fact that it is less sensitive to noise, and thus can provide
igher unwrapping reliability (success rate). For space reasons, here we
nly support our claim by simulation and experiment (see Appendices

4 and B5 ). More detailed theoretical analysis about the noise tolerance
nd the optimum choice of wavelengths will be presented in future pub-
ications. 
84 
4. Comparison by simulations 

In this section, the performance of PDM and heterodyne phase un-
rapping algorithms is compared by numerical simulations. Two dif-

erent situations will be considered in these simulations. The smooth
urface (phase map 1, generated from the MATLAB built-in function
peaks ”) and a discontinuous surface (phase map 2) with sharp abrupt
dges. The true wrapped and continuous phase maps (1024 × 1024 pix-
ls) are shown in Fig. B.2 (a) and (d), respectively. 

Firstly, three different wavelengths 
(
𝜆1 , 𝜆2 , 𝜆3 

)
= (14, 16, 18) are

sed in the simulations, and the true continuous phases are shown in
ig. B.2 (b) and (e). These continuous phases are corrupted by normally
istributed random noise with a mean value of zero and a standard
erivation of 0.04 and then wrapped to the range of [− 𝜋, 𝜋) , as shown
n Fig. B.2 (c) and (f). Figs. B.3 and B.4 show the phase unwrapping re-
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Fig. B.5. Phase unwrapping results of three-wavelength heterodyne and PDM methods (
𝜆1 , 𝜆2 , 𝜆3 

)
= (16, 17, 18). (a) 3D plot of unwrapping result of Phase 1 with 𝜆1 = 16 

using heterodyne method. (b) 3D plot of unwrapping result of Phase 1 with 𝜆1 = 16 using 

PDM method. (c) 3D plot of unwrapping result of Phase 2 with 𝜆1 = 16 using heterodyne 

method. (d) 3D plot of unwrapping result of Phase 2 with 𝜆1 = 16 using PDM method. 

The insets illustrate the error maps (black correct, white- wrong) and number of errors 

(excluding edge regions) for corresponding unwrapping results. 
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Fig. B.6. Measurement results of a complicated scene using three-wavelength PDM (
𝜆1 , 𝜆2 , 𝜆3 

)
= (14, 16, 18). (a1)–(a3) Fringe images with different wavelengths. (a4) 

White image. (b1)–(b3) Wrapped phase maps recovered by BNFTP algorithm. (b4) Mini- 

mum projection distance map (reliability map 𝑑 2 min ). (c1)–(c3) Phase unwrapping results 

of the classic heterodyne approach. (c4) Synthetic phase map Φ123 obtained by taking 

the differences of the phase measurements taken at each wavelength. (d1)–(d3) Phase 

unwrapping results of PDM. (d4) 3D reconstruction based on the unwrapped phase map 

corresponding to 𝜆2 . (e1)–(e4) are the results when the geometric constraint is imposed 

to restrict the search range of fringe orders in Step 3 of PDM algorithm. (f1)–(f4) are the 

final results after the reliability guided fringe order error compensation algorithm. 
ults of heterodyne and PDM algorithms, respectively. Note that the un-
rapped phase maps with 𝜆1 = 14 from each group of results are further
lotted in 3D in Figs. B.2 and B.3 , where the linear carrier phase (phase
amp) is removed from each result to get a better view. It can be seen
hat there remain several phase discontinuities in the unwrapping results
f heterodyne approach. This is due to the fact that the 

(
𝜆1 , 𝜆2 , 𝜆3 

)
=

14, 16, 18) only leads to synthetic wavelength 𝜆123 = 504 < 1,000 pix-
ls, so the heterodyne method cannot unwrap the whole range of phase
uccessfully. However, for PDM, since the unambiguous measurement
ange can be extended to 𝐿𝐶𝑀 

(
𝜆1 , 𝜆2 , 𝜆3 

)
= 1,008 > 1,000 pixels,

ll phase maps can be successfully unwrapped, and the 3D surfaces are
orrectly reconstructed. Note that there are still some unwrapping errors
oticeable in the right edge regions of the unwrapped phase maps. This
ind of edge error is normal for TPU algorithms and only influences the
dge regions of the continuous phase without spoiling the whole mea-
urement [52] . Besides, this kind of error can be avoided by using a
maller field of view of the projected patterns for actual measurements.
xcluding the limited edge parts (20 pixels in width), the success rates
f the two PDM unwrapped results are both 100% in this simulation. 

The second simulation compares the performance of PDM and het-
rodyne with a different wavelength setting 

(
𝜆1 , 𝜆2 , 𝜆3 

)
= (16, 17, 18)

nd with other parameters in the previous simulation unchanged. Un-
er this condition, the theoretical unambiguous measurement ranges of
eterodyne and PDM are the same and both larger than the image di-
ension ( 𝜆123 = 𝐿𝐶𝑀 

(
𝜆1 , 𝜆2 , 𝜆3 

)
= 2,448 > 1,000 pixels). Fig. B.5

ompares phase unwrapping results of heterodyne and PDM. The num-
er of errors (excluding edge regions) as well as error distribution maps
black correct, white wrong) for corresponding unwrapping results are
lso provided in the insets of Fig. B.5 . It can be seen that the PDM ap-
roach provides higher success rate and fewer phase unwrapping errors.
nly about 110 out of the totally pixels are not correctly unwrapped.

n contrast, unwrapping errors are far more prevailing in the results of
eterodyne approach, with more than 2,100 pixels are contaminated by
ringe order errors [ Fig. B.5 (a)–(c)]. 

From the above two simulations, it can be found that the proposed
DM approach offers extended unambiguous measurement range com-
ared to classic heterodyne approach using the same wavelengths. It also
ffers better resistance to noise and higher unwrapping reliability. By
arefully comparing the results of Figs. B.4 and B.5 , it is also found that
he unwrapping reliability of PDM is closely related to the selection of
avelengths. Simply changing the wavelengths 

(
𝜆1 , 𝜆2 , 𝜆3 

)
from (14,

6, 18) to (16, 17, 18) leads to obvious decline in the noise-robustness.
his means that there does exist certain configurations of wavelengths
hich is more efficient, in terms of noise immunity, than that of other
85 
ettings. In practice, the optimal set of wavelengths should depend on
he noise levels, resolutions of the projector and the camera, scenes albe-
os, and the degree of lens defocusing. We cannot discuss this point in
etail for lack of space. But a simple, empirical procedure is suggested
ere for obtaining a “reasonably good ” (but not necessarily yields the
ptimal) set of wavelengths for the 𝜇FTP measurement. 

(1) Determine a wavelength range so that the wavelength is suffi-
ient small for BNFTP phase retrieval but can achieve both good fringe
isibility (modulation) and sinusoidity with a slight defocused projector.

(2) Select each wavelength within the determined range properly
o that 𝐿𝐶𝑀 

(
𝜆1 , 𝜆2 , 𝜆3 

)
is larger but close enough to the required

mbiguous measurement range (the projector resolution). 

5. Experiment on a complicated scene 

To demonstrate the performance of the proposed PDM approach, we
easure a complicated scene which contains a plaster model on the

eft and a human hand separately on the right. The wavelength set
𝜆1 , 𝜆2 , 𝜆3 

)
= (14, 16, 18) is used in the experiment, and the unam-

iguous range is 𝐿𝐶𝑀 

(
𝜆1 , 𝜆2 , 𝜆3 

)
= 1008 pixels. Though this value is

 bit smaller than the 𝑊 = 1024 pixels of the projector used, it is suffi-
ient to exclude phase ambiguity especially when a smaller field of view
f the projected patterns is used for actual measurements, and the geo-
etric constraint is imposed to restrict the search range of fringe orders

see Appendix D2 for details). 
Fig. B.6 (a1)–(a4) show the three fringe images with different wave-

engths and the white image captured by the 𝜇FTP system (camera ex-
osure 46 𝜇 s, 20,000 fps, see Materials and methods for details). The
orresponding wrapped phase maps recovered by BNFTP algorithm (see
ppendix A for details) are shown in Fig. B.6 (b1)– (b3). These three
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Fig. C.1. Flow chart of the RGC algorithm as well as an example explaining its basic 

principle. (a) Construct the reliability value based on the distance map 𝑑 2 min . The relia- 

bility value of each edge is defined as the summation of the reliability of the two pixels 

connected. (b) Go through all the edges in the phase map and gather contiguous pixels 

within a continuous region of the PDM unwrapped phase map into groups. (c) Isolated 

pixels or pixels falling into the small groups are considered as fringe order errors, and 

their phase values will be corrected with respect to the phase value of the adjacent pixel 

within a larger group. 
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rapped phases are unwrapped by the classic heterodyne approach and
he proposed PDM. The minimum projection distance map ( 𝑑 2 min ) for
ach pixel generated by PDM is shown in Fig. B.6 (b4). Fig. B.6 (c1)–
c3) show the phase unwrapping results of heterodyne approach, and
ig. B.6 (c4) is the synthetic phase map Φ123 obtained by taking the
ifferences of the phase measurements taken at each wavelength. Phase
iscontinuities can obviously seen in the results as expected because the
eterodyne method cannot unwrap the whole phase range (synthetic
avelength 𝜆123 = 504 < 1,000 pixels), which is consistent with the

imulation results shown in Fig. B.3 . Fig. B.6 (d1)–(d3) show the phase
nwrapping result of PDM, and Fig. B.6 (d4) is the 3D reconstruction
ased on the unwrapped phase map Φ2 (see Appendix D2 for details).
t can be seen from Fig. B.6 (d) that most points (more than 98% of
ixels) are correctly unwrapped through the PDM approach. The lim-
ted fringe order errors are mostly concentrated on the dark regions
nd object edges where the minimum projection distance map 𝑑 2 min is
arge [the bright regions of Fig. B.6 (b4)]. These fringe order errors can
e greatly reduced by imposing the geometric constraint to restrict the
earch range of fringe orders in Step 3 of PDM algorithm and finally
ompletely eliminated by a subsequent reliability guided fringe order
rror compensation algorithm, which will be introduced in the next sec-
ion. 

ppendix C. Reliability Guided Compensation (RGC) of Fringe 

rder Error 

1. Theory 

Though PDM can provide optimal unwrapping performance even un-
er noisy conditions, fringe order errors are still inevitable especially
round dark regions and object edges where the fringe quality is low
 Fig. B.6 (d)]. The problem is even worse for high speed imaging of
ransient events due to the very limited exposure time and nonnegli-
ible frame-by-frame object motion. Here we propose an approach so
alled RGC for identifying and compensating those fringe order errors
y exploiting additional information in spatial domain. The rationale of
he approach is based on the fact that the fringe order errors are usu-
lly isolated (at least less concentrated than the correct phase values)
elta-spike artifacts with a phase error of integral multiples of 2 𝜋. In-
pired by the quality guided (spatial) phase unwrapping [75–77] , we
rst gather contiguous pixels within a continuous region of the phase
ap into groups. Then the isolated pixels or pixels falling into the small

roups are considered as fringe order errors, and their phase values will
e corrected with respect to the phase value of the adjacent pixel within
 larger group, according to an order ranked by a predefined reliability
unction. 

There are two main issues in the RGC algorithm: the choice of the
eliability function and the design of processing path. In PDM, tempo-
al phase unwrapping is recast as an optimization problem of choosing
he fringe orders so that the resulting unwrapped phase value combina-
ion 𝚽 = [ Φ1 , Φ2 , ⋯ , Φ𝑛 ] 𝑇 is closest to the straight line described by
q. (B.3) . Therefore, the minimum projection distance map 𝑑 2 min for each
ixel calculated from Eq. (B.7) is used to evaluate the reliability of phase
nwrapping [larger 𝑑 2 min value means lower reliability, as demonstrated
n Fig. B.6 (b4)]. It should be noted that other criterions, like the fringe
odulation and phase gradient, can also serve as the reliability function
hen 𝑑 2 min is unavailable (when a different TPU approach is employed).
he processing path is determined by comparing the value of the reli-
bility of the edges instead of pixels [75] . The reliability of an edge is
efined as the summation of the reliability of the two pixels connected
y the edge. The edges are stored in an array and sorted by the value of
eliability. The edges with higher reliability are resolved first. 

Fig. C.1 presents the flow chart of the RGC algorithm as well as an
xample explaining its basic principle. At the preparation stage, the re-
iability value of each edge is constructed based on the distance map,
s illustrated in Fig. C.1 (a). Then, we go through all the edges in the
86 
hase map and join adjacent pixels with phase difference less than 𝜋
nto a group. After this step, all contiguous pixels within a continuous
egion of the PDM unwrapped phase map can be gathered into the same
roup, as illustrated in Fig. C.1 (b). The third step of RGC algorithm is
o correct the fringe order error according to an order ranked by the
alue of reliability (edges with higher reliability or smaller edge value
re processed first). For a given edge being processed, if the connected
wo pixels belong to different groups, and the number of pixel in the
maller group is less than a predefined threshold T h (a typical value of
 ℎ = 200 ), we need to correct all phase values of smaller group with re-
pect to the larger group and join the two groups together. As shown
n Fig. C.1 (c), if the edge with the reliability value 0.47 is currently be-
ng processed, and this edge connects two pixels with phase values of ΦL 

nd ΦS , which belong to two different groups. Then the 𝑅𝑜𝑢𝑛𝑑 

(
Φ𝐿 − Φ𝑆 

2 𝜋

)
ultiples of 2 𝜋 value is added to all the pixels in the group that contains

he smaller number of pixels, and the two groups are joined together.
his step is repeated until all the edges are processed. Eventually, the
ringe order errors can be effectively compensated. 

2. Experiments 

In Fig. B.6 (e), we have already demonstrated that the fringe order
rror in PDM unwrapped phase can be completely corrected by the RGC
lgorithm. However, since the measured object is quasi-static, the phase
nwrapping errors are very limited, especially when the geometric con-
traint is applied. Thus, in Fig. C.2 , we further present two experimen-
al results to demonstrate the validity of RGC algorithm when mea-
uring fast changing objects. The measured objects are a rotating fan
nd a bursting balloon punctured by a flying dart (more details about
he experimental configurations can be found in Sections Rotating fan
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Fig. C.2. Experimental results of RGC algorithm when measuring dynamically changing 

objects. (a) Rotating fan blades. (b) A bursting balloon punctured by a flying dart. The 

images from left to right are: wrapped phases recovered by BNFTP, phase unwrapped by 

PDM (with geometric constraint), 3D reconstructions from the PDM unwrapped phases, 

phases refined by RGC, and final 3D reconstructions from the RGC refined phases, respec- 

tively. 
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lades and Balloons explosion triggered by a flying dart ). As shown
n Fig. C.2 , the object motion introduces more prominent fringe order er-
ors, and the geometric constraint is inadequate to suppress them. How-
ver, these fringe order errors are successfully corrected by the RGC al-
orithm, resulting in high-quality 3D reconstructions without any delta-
pike artifacts. 

ppendix D. System Calibration, Geometric Constraints, and 3D 

oordinate Mapping 

1. Mapping from phase to 3D coordinates 

Once the final unwrapped phase image is obtained after RGC, we can
stablish a unique correspondence value x p for every camera pixel ( x c ,
 

c ) through the linear equation 

( 𝑥 𝑐 , 𝑦 𝑐 ) = 

2 𝜋
𝜆

𝑥 𝑝 (D.1) 

ased on the pin-hole model of the imaging lens, the relationship be-
ween the 3D world coordinates of the measured object ( x w , y w , z w ) and
he 2D camera pixel coordinates ( x c , y c ) can be described as 
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(D.2) 

ere superscript c denotes the camera, s is a scaling factor, [ R 

c , t c ] is the
 × 4 extrinsic parameter matrix representing the rotation-translation
rom the world coordinate system to the camera coordinate system. A 

c 

s the 3 × 3 intrinsic parameter matrix of the camera. P 

c is the 3 × 4 per-
pective matrix, which is just the product of extrinsic parameter matrix
nd the intrinsic parameter matrix of the camera. Since the projector
as exactly the same mathematical model as the camera, similar rela-
ionship can be established between the 3D world coordinates of the
easured object ( x w , y w , z w ) and the 2D projector pixel coordinates ( x p ,
 

p ) 
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(D.3) 

ere superscript p denotes the projector. The meaning of the parameters
n Eq. (D.3) are the same as those in Eq. (D.2) but for the DLP projector.
f both projector and camera are calibrated under the same world coor-
inate system, Eq. (D.1 )–( D.3) can be combined to obtain the 3D world
oordinates ( x w , y w , z w ) for each camera pixel ( x c , y c ) : 
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q. (D.4) can be effectively implemented based on lookup tables (LUTs)
f the matrix inversion and multiplication operations are expended and
re-calculated for each pixel [54] . After simplification, the mapping of
amera pixel to world coordinates can be represented as 

 

𝑤 ( 𝑥 𝑐 , 𝑦 𝑐 ) = 𝐿 𝑧 1 ( 𝑥 𝑐 , 𝑦 𝑐 ) + 

𝐿 𝑧 2 ( 𝑥 𝑐 , 𝑦 𝑐 ) 
𝐿 𝑧 3 ( 𝑥 𝑐 , 𝑦 𝑐 ) ⋅ 𝑥 𝑝 + 1 

(D.5) 

 

𝑤 ( 𝑥 𝑐 , 𝑦 𝑐 ) = 𝐿 𝑥 1 ( 𝑥 𝑐 , 𝑦 𝑐 ) 𝑧 𝑤 ( 𝑥 𝑐 , 𝑦 𝑐 ) + 𝐿 𝑥 2 ( 𝑥 𝑐 , 𝑦 𝑐 ) (D.6) 

 

𝑤 ( 𝑥 𝑐 , 𝑦 𝑐 ) = 𝐿 𝑦 1 ( 𝑥 𝑐 , 𝑦 𝑐 ) 𝑧 𝑤 ( 𝑥 𝑐 , 𝑦 𝑐 ) + 𝐿 𝑦 2 ( 𝑥 𝑐 , 𝑦 𝑐 ) (D.7) 

here L [ •] are pre-calculated LUTs (constant parameters) for each cam-
ra pixel coordinate. 

2. Geometric constraints in phase unwrapping 

On a different note, the simple linear 3D coordinate mapping pro-
ess can be reverse-applied if the measurement volume or the approx-
mate depth range of the measured scene can be estimated beforehand
ccording to the fringe quality, or the size of the measured object. The
eometric constraint [58,61–63] allows to reduce the search space for
ringe order combinations in PDM and thus, decrease the possibility of
ringe order errors. For example, if the depth of interest is within the
ange [ 𝑧 𝑤 min , 𝑧 

𝑤 
max ] , we can invert Eq. (D.5) to find the corresponding

alid range of absolute phase [ Φmin , Φmax ] for each camera pixel: 

min ( 𝑥 𝑐 , 𝑦 𝑐 ) = 

2 𝜋
𝜆

{ 

𝐿 𝑧 2 ( 𝑥 𝑐 , 𝑦 𝑐 ) 
𝐿 𝑧 3 ( 𝑥 𝑐 , 𝑦 𝑐 ) 

[
𝑧 𝑤 min − 𝐿 𝑧 1 ( 𝑥 𝑐 , 𝑦 𝑐 ) 

] − 

1 
𝐿 𝑧 3 ( 𝑥 𝑐 , 𝑦 𝑐 ) 

} 

(D.8) 

max ( 𝑥 𝑐 , 𝑦 𝑐 ) = 

2 𝜋
𝜆

{ 

𝐿 𝑧 2 ( 𝑥 𝑐 , 𝑦 𝑐 ) 
𝐿 𝑧 3 ( 𝑥 𝑐 , 𝑦 𝑐 ) 

[
𝑧 𝑤 max − 𝐿 𝑧 1 ( 𝑥 𝑐 , 𝑦 𝑐 ) 

] − 

1 
𝐿 𝑧 3 ( 𝑥 𝑐 , 𝑦 𝑐 ) 

} 

(D.9) 

hen the valid range of the fringe order k ∈ [ k min , k max ] for each camera
ixel can be determined: 

 min ( 𝑥 𝑐 , 𝑦 𝑐 ) = 𝑓𝑙𝑜𝑜𝑟 

[ 
Φmin ( 𝑥 𝑐 , 𝑦 𝑐 ) 

2 𝜋

] 
(D.10) 

 max ( 𝑥 𝑐 , 𝑦 𝑐 ) = 𝑐𝑒𝑖𝑙 

[ 
Φmax ( 𝑥 𝑐 , 𝑦 𝑐 ) 

2 𝜋

] 
(D.11) 

here the floor [.] ( ceil [. toolbox ]) function returns the largest (smallest)
nteger less (greater) than or equal to the specified numeric expression.
qs. (D.10) and (D.11) can be incorporated into the Step 3 of PDM al-
orithm to limit the search range of fringe order combinations k i and
ule out several false candidates beforehand. As the example shown in
ig. B.6 (c), if no depth constraint is applied in PDM, most of the 3D
oint clouds reconstructed from the wrong candidates (fringe order er-
or) will fall outside of the measurement volume, exhibiting very large
epth deviation. Fig. B.6 (d) shows the results when the depth constraint
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Table D.1 

Experimentally Calibrated Internal, External and Distortion Parameters of 𝜇FTP system. 

Index Camera Projector 

Focal length (pixels) [1182.245 1180.819] [1881.674 1880.710] 

Principal point (pixels) [331.579 230.428] [536.013 356.105] 

Skew coefficient 0.00205 0.00116 

Distortion coefficients [ − 0.0858 0.1837 0.00047 − 0.00112] [ − 0.02421 − 0.1305 0.00149 0.00280] 

Rotation matrix [0.995 0.0096 0.0991 0.0064 − 0.999 0.0321 0.0993 − 0.0313 − 0.9946] [0.984 0.0059 − 0.178 0.0115 − 0.999 0.0304 − 0.177 − 0.0320 − 0.984] 

Translation vector [24.369 − 21.189 808.857] [31.207 11.652 806.228] 

Fig. D.1. Valid range of the fringe order [ k min , k max ] calculated based on the calibra- 

tion parameters of 𝜇FTP system when the measurement depth is limited to the range 

[ 𝑧 𝑤 min , 𝑧 
𝑤 
max ] = [ 0 mm , 100 mm ] . (a) Fringe wavelength 𝜆1 = 14 pixels. (b) Fringe wavelength 

𝜆2 = 16 pixels. (c) Fringe wavelength 𝜆3 = 18 pixels. 
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Fig. D.2. Calibration of 𝜇FTP system. (a) 9 images of the calibration board with different 

poses. (b) Reprojection error distributions of the camera and the projector. 
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s applied in the PDM ( [ 𝑧 𝑤 min , 𝑧 
𝑤 
max ] = [ 0 mm , 100 mm ] ). Based on the cal-

bration parameters of the 𝜇FTP system shown in Table. D.1 , the valid
ange of the fringe order [ k min , k max ] for different wavelengths are cal-
ulated, as shown in Fig. D.1 . The results demonstrate that the geometric
onstraint significantly shrinks the search space of fringe orders in PDM,
nd considerable portion of fringe order errors can be rectified. 

3. System calibration 

One important issue in the above-mentioned linear 3D coordinate
apping approach is that the projection imaging distortion of lenses
sed in the system is not considered. When determining the valid range
f the fringe orders, the effect of lens distortion is minimum and can be
imply ignored. However, it must be involved in the final 3D point cloud
apping process to give a result with higher measurement accuracy. In

his work, 4 coefficients (two radial distortion parameters and two tan-
ential parameters) are used to describe the distortion of the projector
nd camera lenses, and these coefficients can be obtained in conjunc-
ion with the intrinsic and extrinsic parameters during the calibration.
ue to the lens distortion, the imaging points will deviate from their

deal locations, thus the correspondence between the distorted 𝑥 𝑝 
𝑑𝑖𝑠 

and
amera pixel 

(
𝑥 𝑐 
𝑑𝑖𝑠 

, 𝑦 𝑐 
𝑑𝑖𝑠 

)
based on the absolute phase value should not be

irectly used for 3D reconstruction. Instead, we need to transform them
o the undistorted coordinates( x p and ( x c , y c )) based on the calibrated
istortion coefficients. Since the analytical inversion of the lens distor-
88 
ion model (inverse mapping relationship from the distorted coordinate
o the undistorted coordinate) does not exist, an iterative scheme [92] is
sed to find the correspondence between the undistorted camera coordi-
ate 

(
𝑥 𝑐 , 𝑦 𝑐 

)
and the projector coordinate 𝑥 𝑝 , and the distortion-free 3D

orld coordinates ( x w , y w , z w ) can then be obtained through Eq. (D.4) .
ote that the undistorted camera coordinates can be pre-calculated and

tored in a LUT, while the projector distortion needs to be corrected
ased on the phase value and can only be performed at runtime. For
ore details about the implementation, one can refer to the MATLAB

ource code available on our website [78] . 
In the system calibration procedure, a calibration board with a white

 × 11 circle array distributed uniformly on a black background is used.
he distance between the centers of each circles is 30 mm. We capture 9

mages of the calibration board with different poses to get a calibration
olume of ∼ 400 mm × 275 mm × 400 mm, as shown in Fig. D.2 (a).
he projector is calibrated as an inverse camera with the help of the
alibrated camera. We project two orthogonal sets of frequency-varying
fringe periods 1, 8, 64 in the x direction and 1, 8, 48 in the y direc-
ion) and phase-shifted (16-frame for the highest frequency) sinusoidal
ringe patterns onto the calibration board. The absolute phase recovered
y phase-shifting and multi-frequency temporal phase unwrapping tech-
iques is used to establish a one-to-one mapping between a camera pixel
nd a DMD pixel. The intrinsic, extrinsic, and distortion parameters of
he projector and camera are calibrated based on MATLAB Calibration
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Fig. E.3. Supplementary Video 3: Color-coded 3D rendering of the two vibrating can- 

tilevers surfaces and the corresponding side-views over the whole 986.4 ms period [see 

also Fig. 6(d)]. 
oolbox from J. Bougue [93] , and optimized with bundle adjustment
BA) [94,95] in which both measurement errors and the fabrication er-
ors of the calibration board are taken into account. The final inter-
al, external and distortion parameters of the camera and projector are
hown in Table. D.1 , and the RMS of the resultant reprojection error is
0.053, 0.051) pixels for the camera and (0.087, 0.085) pixels for the
rojector, as shown in Fig. D.2 (b). 

ppendix E. Supplementary Videos 
ig. E.1. Supplementary Video 1: Projection and capture synchronization of 𝜇FTP sys- 

em. The designed pattern sequences are projected on a dynamic scene (a rotating desk 

an) sequentially and periodically at 20,000 Hz. The corresponding images are precisely 

aptured by a synchronized high-speed camera. 

ig. E.2. Supplementary Video 2: Color-coded 3D reconstruction of the test scene and the 

orresponding error analysis over the 41 ms period [see also Fig. 5 (b)–(d)]. The test scene 

onsists of two standard spheres and a free-falling table tennis ball. The color-coded 3D 

econstruction is shown on the top left corner. The error distributions of enlarged areas 

orresponding to the dashed-boxes are shown on the bottom left and right. 

Fig. E.4. Supplementary Video 4: Comparison of 𝜇FTP with three-wavelength PSP based 

on a vibrating cantilever. 𝜇FTP is completely immune to motion ripples that are inevitable 

in conventional multi-frequency phase-shifting based techniques [see also Fig. 7 (c)-(d)]. 

Fig. E.5. Supplementary Video 5: Comparison of 𝜇FTP with three-wavelength PSP based 

on a vibrating cantilever. The 3D point clouds are visualized with texture mapping. 

Fig. E.6. Supplementary Video 6: Color-coded 3D rendering of the rotating fans surface 

and the evolution of the corresponding radical profile along the dash line for approxi- 

mately two full rotating cycles (60 ms) [see also Fig. 9 (d)-(e)]. 
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Fig. E.7. Supplementary Video 7: Temporal evolution of the bullet trajectory and the 3D 

point clouds of the scene over the 135 ms period. The bullet velocity at each track point 

is encoded by the line color [see also Fig. 10(d)]. 

Fig. E.8. Supplementary Video 8: Slow-motion 3D movie of the transient event: a bullet 

fired from a toy gun and rebounded from a plaster wall. The video contains 2700 3D 

frames with a frame interval of 50 μs (corresponding to a frame rate of 20,000 fps over 

an observation period of 135 ms). 

Fig. E.9. Supplementary Video 9: Air balloon bursting punctured by a flying dart. The 

2D images are directly taken by the camera (corresponding to the white patterns) at 

20,000 fps. The 3D reconstruction speed is 10,000 fps (2 images per 3D frame) [see also 

Figs. 11 (a)–11 (d)]. 
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Supplementary material associated with this article can be found, in
he online version, at 10.1016/j.optlaseng.2017.10.013 . 
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