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Enhanced photoacoustic microscopy with
physics-embedded degeneration learning
Haigang Ma1,2,3*, Shili Ren1,2,3, Xiang Wei1,2,3, Yinshi Yu1,2,3,
Jiaming Qian1,2,3, Qian Chen1,3* and Chao Zuo1,2,3*

Deep learning (DL) is making significant inroads into biomedical imaging as it provides novel and powerful ways of accu-
rately and efficiently improving the image quality of photoacoustic microscopy (PAM). Off-the-shelf DL models, however,
do not necessarily obey the fundamental governing laws of PAM physical systems, nor do they generalize well to scenar-
ios on which they have not been trained. In this work, a physics-embedded degeneration learning (PEDL) approach is
proposed  to  enhance  the  image  quality  of  PAM  with  a  self-attention  enhanced  U-Net  network,  which  obtains  greater
physical consistency, improves data efficiency, and higher adaptability. The proposed method is demonstrated on both
synthetic and real datasets, including animal experiments in vivo (blood vessels of mouse's ear and brain). And the re-
sults show that compared with previous DL methods, the PEDL algorithm exhibits good performance in recovering PAM
images qualitatively  and quantitatively.  It  overcomes the challenges related to  training data,  accuracy,  and robustness
which a typical data-driven approach encounters, whose exemplary application envisions to provide a new perspective
for existing DL tools of enhanced PAM.

Keywords: photoacoustic microscopy; deep learning; high quality imaging; physical model

Ma HG, Ren SL, Wei X et al. Enhanced photoacoustic microscopy with physics-embedded degeneration learning. Opto-Electron Adv
8, 240189 (2025).

  

Introduction
In  recent  years,  photoacoustic  imaging  (PAI)  has  been
drawing  increasing  attention  from  various  research
fields,  including  imaging,  physics,  chemistry,  and
biomedicine1−3.  Briefly,  in  PAI,  as  photons  travel  in  tar-
get,  some  of  them  are  absorbed  by  intrinsic  chro-
mophores,  and  their  energy  is  completely  or  partially
converted into thermal energy. The energy then induces
an initial  pressure rise of  target,  which propagates as  an
acoustic  wave.  A  piezoelectric  ultrasonic  transducer4 or
optical-acoustic transducer5 detects the acoustic wave to
yield an image,  which maps the initial  pressure rise dis-

tribution  in  the  target6.  By  harnessing  the  high  optical
absorption  contrast  and  low  acoustic  attenuation  in  the
target,  PAI  is  one  of  the  rapidly  growing  biomedical
imaging  modalities,  and  has  many  interesting  advan-
tages,  such  as  non-invasive,  high  resolution,  and  deep
penetration to intrinsic and extrinsic chromophores, en-
abling  morphological,  functional,  and  molecular  imag-
ing of living tissues7.

Photoacoustic  microscopy  (PAM)  is  a  unique  imple-
mentation  of  PAI  where  the  spatial  resolution  is  as  fine
as  a  micrometer  or  even  nanometer,  depending  on  the
system  configuration  and  imaging  depth8.  In  PAM, 
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which inherits the characteristics of PAI, millimeter pen-
etration  depth  can  be  obtained  and  is  used  for  in  vivo
imaging  of  biological  tissues9.  The  PAM  systems  have
been  developed  in  several  forms  and  are  used  in  many
applications  such  as  vascular  biology10,  histology11,  on-
cology12,  dermatology13,  neuroscience14,  etc.  However,
PAM still faces several challenges. First, the resolution of
PAM systems remains high within the depth of focus but
deteriorates  significantly at  greater  depths,  primarily  in-
fluenced  by  optical  and  acoustic  scattering  in  biological
tissues. Second, the detection sensitivity of PAM systems
is  determined by several  critical  parameters,  such as  the
incident laser fluence,  the target's  optical  absorption co-
efficient,  and  the  detection  efficiency  of  the  ultrasonic
transducer.  Third,  the  Signal  to  Noise  Ratio  (SNR)  of
PAM images degrades at  deep depths because of optical
and  acoustic  attenuation  in  tissues9,13.  The  low  SNR  at
deep  depth  can  limit  full  understanding  of  the  underly-
ing  conditions  in  large  tissues.  Thus,  new  methods  are
needed  to  improve  the  image  quality  of  PAM  while
maintaining  the  safety  of  biological  tissues  and  obtain-
ing  finer  details,  in  order  to  expand  the  scope  of  PAM
applications in preclinical studies.

Several  methods  have  been  shown  to  enhance  the
quality  of  photoacoustic  (PA) images15,16.  For  PAM, im-
age processing may be conducted for PA A-line signals17

or for  PA images  directly18.  Image processing of  in  vivo
images was also tested in some of these works19.  Among
these  image  processing  techniques,  PA  signal  averaging
is  the  most  commonly  used  one20,  but  acquisition  of
multiple signals is needed, which is time-consuming and
leads  to  low  temporal  resolution.  Further,  researchers
have  tried  to  improve  image  quality  using  various  algo-
rithms to deal with the raw A-line signals, such as empir-
ical  mode  decomposition21,  wavelet-based  algorithms22,
and  sparsity-based  methods23.  Alternatively,  algorithms
used in the image domain, such as synthetic aperture fo-
cusing  technique  (SAFT)24,  blind  deconvolution  tech-
nique  (BDT)25,  and  singular  value  decomposition
(SVD)26 can be used for PAM image processing directly.
However,  these  methods  still  face  some  challenges:  (i)
prior  information  about  the  PAM  image  property  is
needed,  which  is  a  key  bottleneck;  (ii)  time-consuming
calculations are required, especially for those based on it-
erative  and  mutual  optimization;  (iii)  some  parameters
such as  the  noise  level  or  the  attenuation compensation
are  needed  to  accommodate  the  manual  settings  of  dif-
ferent input PA signals and images.

Deep learning (DL) is a data-driven approach that us-
es  multilayered  artificial  neural  networks  for  the  auto-
mated processing of PA signals or images27−31.  There are
many applications  to  PAM such as  artifact  removal,  su-
per-resolution,  denoising,  and  information  enhance-
ment, etc.32. For example, Allman et al. focused on using
DL technology instead of traditional models based on it-
erative  back-projection  and  compressive  sensing  algo-
rithms,  employing it  as  a  post  processing method to re-
move  artifacts  in  reconstructed  PAM  images33.  Song  et
al.  utilized the  DL method to  improve lateral  resolution
of PAM at defocusing position, and remove background
noise34. Liu et al. applied the DL models to achieve high-
quality  PAM  images  at  low  pulse  laser  energy  for  the
purpose of high-speed PAM imaging35. Yao et al. applied
modified U-Net structures for reconstructing the under-
sampled PAM images, and improving the PAM systems'
imaging  speed36.  He et  al. proposed  a  deep  learning-
based  method  to  eliminate  noise  in  PAM  images  with-
out the need for manually selecting settings for different
noisy  images37.  Cheng et  al. trained  a  generative  adver-
sarial network (GAN) to enhance the lateral resolution of
AR-PAM  imaging38.  Besides,  data-driven  and  learning-
based  algorithms  have  also  prevailed  in  PAM  applica-
tions for image enhancement and reconstruction. For in-
stance,  Zheng  et  al.  proposed  an  algorithm  integrating
both learning-based and model-based approaches, allow-
ing a single framework to adaptively handle various dis-
tortion functions39. Furthermore, in ref.40 the authors al-
so displayed how the datasets  obtained from a 4D spec-
tral-spatial  computational  model  could  be  utilized  for
neural  network  training  to  break  the  physical  hardware
boundary and biological constraints to improve the qual-
ity  imaging  capability  of  PAM.  Although  DL  has  many
promising advantages and strengths compared with tra-
ditional  processing  approaches  and  physical  modelling,
there are also several challenges in making it robust and
trustworthy for a wide range of PAM applications so that
it can be reliably employed for policy- and decision-mak-
ing.  One  of  the  greatest  challenges  of  DL is  that  it  does
not  always  follow  the  underlying  physical  principles  of
the PAM systems it  is  applied to.  While  DL models  can
capture  the  underlying  relationships  within  PAM  data,
their  predictions  do  not  always  adhere  to  these  princi-
ples,  especially  when applied to conditions outside their
training scope, highlighting their limited ability to gener-
alize to new scenarios. Moreover, achieving good results
with  DL  models  often  relies  on  large,  high-quality
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datasets, which can be costly to obtain.
To address these challenges, here we developed a nov-

el and effective physics-embedded degeneration learning
(PEDL)  approach  to  incorporate  physical  principles,
governing laws, and domain knowledge of PAM into DL
models.  It  is  better  suited to  model  the  physical  process
of PAM by using tissue optics and acoustics to construct
the physics-embedded degeneration mechanism and de-
sign a data degeneration model for PA with domain ex-
pertise. The adopted neural network of PEDL is based on
a  U-Net  structure,  incorporating  multiple  groups  of
residual  blocks  and  a  global  context  (GC)  self-attention
enhanced  module.  More  complex  features  of  PAM  im-
age can be extracted by using multiple residuals, and the
gradient  dispersion  can  be  eliminated  by  residuals  join-
ing.  Meanwhile,  the  global  context  information  of  the
feature  graph  can  be  captured  by  GC  self-attention
mechanism,  which  can  help  the  PEDL  to  better  under-
stand the overall structure of the PAM image. And, mul-
tiple  sets  of  different  weighted  loss  functions  are  com-
bined to improve the network's effectiveness, enabling it
to match PAM images under different degeneration situ-
ations.  So  that,  the  PEDL  method  can  adaptively  en-
hance PAM images at different depths, and recover finer
structures.  In  addition,  the  PEDL  does  not  require  the
time-consuming  data  collection  tuning  process  com-
pared  with  previous  learning-based  PAM  enhancement
algorithms,  and  by  utilizing  a  lightweight  GC  module
and batch normalization (BN) layer,  which not  only  re-
duce the learning complexity but also accelerate conver-
gence  and  help  correct  learning  bias.  Furthermore,  the
PEDL  improves  the  generalizability  of  DL  models  to
make reliable predictions for unknown scenes, including
applicability to both acoustic resolution and optical reso-
lution PAM systems, e.g. multiple types of noise interfer-
ence, scattering changing biological tissue, and change of
the laser energy, etc.

In the next few subsections, firstly, the proposed PEDL
approach used to produce synthetic PAM images is  dis-
cussed.  Secondly,  the  architecture  of  self-attention  en-
hanced U-Net network in the PEDL approach is detailed,
including  the  residual  block,  the  GC  self-attention  en-
hanced module,  and the weighted loss functions. Third-
ly, the PA dataset,  feature network implementation, and
evaluation  metrics  are  presented  in  this  work.  Finally,
other DL imaging methods for comparison with our pro-
posed PEDL method are introduced. The results demon-
strate  that  the  proposed  PEDL  method  can  adaptively

enhance the PAM images obtained across different nois-
es  and  different  imaging  depths,  scattering  from  differ-
ent tissues, and different laser energy density, which can
extend the application scenarios of the PEDL approach. 

Physics-embedded degeneration
learning method
In DL applications,  a  high-quality,  large-scale  and com-
prehensive  dataset  plays  a  vital  role  in  determining  the
performance  of  the  network.  However,  it  is  impractical
to obtain a large number of in vivo image data for train-
ing  for  PAM  in  different  situations.  In  this  work,  the
physical  model  of  PAM process  is  explored by adding a
compensation function, and multiple groups of noises to
simulate  the  imaging  results  under  different  conditions
in the real environment, so as to characterize the degen-
eration of PAM, and establish a network to enhance the
image information of PAM under different degeneration
conditions.  The  following  will  introduce  the  degraded
physical  model  and  network  structure,  as  well  as  the
characterization  functions  Peak  Signal-to-Noise  Ratio
(PSNR)  and  Structural  Similarity  (SSIM),  and  the  com-
bined loss function. 

Degeneration model based on physical mechanism
This work utilizes high-quality images provided by Duke
University's  Photoacoustic  Imaging  Laboratory,  which
have  been  publicly  announced  to  be  available41.  This
dataset  consists  of  in  vivo  microvascular  images  of  the
mouse  brain  obtained using  an OR-PAM system with  a
lateral resolution of 5 micrometers. However, images un-
der different imaging conditions for training are not pro-
vided.  Therefore,  for  synthetic  training  dataset  genera-
tion,  a  degeneration  simulation  model  of  photoacoustic
microscopy  under  different  imaging  conditions  is  pro-
posed,  incorporating  compensation  functions  and  vari-
ous noise sets to synthesize matching image pairs.

According  to  acoustic  beamforming  theory,  the  pho-
toacoustic imaging mechanism at different depths can be
characterized by the physical model of a spherical focus-
ing  transducer  and  its  generated  field  pattern42,43.  First,
the  ultrasound  transducer  is  discussed,  and  from  the
Rayleigh-Sommerfeld diffraction formula, it is derived: 

Φ̃ (r0,ω) =
1
iλ

aw
0

πw
−π

(
Φ̃ (r1,ω)

)
eikr01

z
r012

r1dr1dϕ1

+
1
2π

aw
0

πw
−π

(
Φ̃ (r1,ω)

)
eikr01

z
r013

r1dr1dϕ1 . (1)
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Φ̃ (r0,ω)
Φ̃ (r0, t)

Φ̃ (r1,ω)
Φ̃ (r1, t) r01

r0
r1

In  the  above  formula,  the  first  term  and  the  second
term  represent  the  high-frequency  and  low-frequency
components,  respectively.  is  the  Fourier  trans-
form of  the  wave  field  at  the  spatial  point,  and

 is the Fourier transform of the aperture weight-
ing function . k represents the wave number. 
is the distance between the field point  and the source
point , given by the following formula: 

r01 =
√
(x0 − x1)2 + (y0 − y1)2 + z2 . (2)

r01 ≫ λ/2π

Equation (1) involves two double integrals, making its
computation  time-consuming.  Notably,  in  practical
beamforming  scenarios,  is  usually  satisfied,
allowing  the  second  term  in Eq.  (1) to  be  neglected.
Therefore, Eq. (1) can be simplified as follows: 

Φ̃ (r0,ω) =
1
iλ

aw
0

πw
−π

(
Φ̃ (r1,ω)

)
eikr01

z
r012

r1dr1dϕ1 . (3)

Φ̃ (r1,ω) ≡ 1A planar circular transducer ( ) can be de-
rived from Eq. (3) as follows: 

Φ̃ (r0,ω) =
ka2

i2z
eik(z−r20/ 2z)

[
2
J1 (kar0/z)
kar0/z

]
. (4)

J1where  is  the  first-order  Bessel  function  of  the  first
kind,  and a  is  the  radius  of  the  ultrasound transducer44.
The  field  pattern  of  a  spherical  focusing  ultrasound
transducer  can  be  obtained  by  combining  the  field  pat-
tern of a planar circular transducer with a spherical com-

pensation function, which is given by: 

Φ̃ (r1,ω) = e−ik
(√

F2+r21−F
)
, (5)

where F is  the  focal  length  of  the  transducer,  and  from
Eq. (3), it can be deduced that: 

Φ̃ (r0,ω) ∝ 2
J1 (kar0/F)
kar0/F

. (6)

T (ω)
The spherical focusing transducer then integrates over

the  frequency  to  the  sensor.  The  integral  is  taken
over  the  bandwidth  of  the  ultrasound transducer.  Thus,
the PSF kernel can be obtained as follows: 

h =
w
T (ω)Φ̃ (r0,ω) dω . (7)

As the depth increases,  the image information gradu-
ally  weakens  due  to  the  increased  scattering  medium  it
passes through. However, using maximum intensity pro-
jection (MIP) images, which treats the image as a whole,
is  unreasonable because weaker signals experience more
severe attenuation at greater depths.

Therefore,  as  shown  in Fig. 1,  this  work  introduces  a
compensation  function  to  address  the  degeneration  dif-
ferences. Z represents depth, I denotes images from dif-
ferent processes, and FWHM stands for full width at half
maximum.  The  signal  gradually  weakens,  with  weaker
signals experiencing more severe attenuation. The specif-
ic compensation function is given by: 

α(x) = μx1+ξz , (8)

 

FWHM(F1) FWHM(F2)

F2

Z

o

FWHM(F1)

I1 I2 I3

2
F1

Z

o

FWHM(F2)2

PM

Process

Degenerate model

Penalty function

η: Noiseα=μ1+ξ

h= T(ω)Φ(r0, ω)dω→~∫

I 2=
h⊗

I 1

I 3=
α(

I 2)
+η

a b c

Fig. 1 | Schematic diagram of physical mechanism. (a) Field pattern of the transducer at a shallower focal plane. (b) A simple schematic of the

physical model. (c) Field pattern of the transducer at a deeper focal plane.
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μ ξwhere  is  the attenuation coefficient and  is  the com-
pensation coefficient. Simultaneously, during the attenu-
ation  process,  the  image  information  will  inevitably  be
affected by noise. Therefore, it can be deduced that: 

η = η1 + η2 + η3 , (9)

η η1 η2 η3where  is  the total  noise. , ,  are Gaussian noise,
Rayleigh  noise,  and  Poisson  noise,  respectively,  with
Gaussian noise being the primary noise distribution. Fi-
nally, integrating the above equations, it can be deduced
that: 

Im = h⊗ (α(Im1)) + η , (10)

Im1 Im
η

η

where  is the original image, and  is the reconstruct-
ed image at different depths.  If  remains constant,  it  is
unreasonable and unrealistic. Therefore,  will  random-
ly vary within a range and will  increase as the degree of
degeneration intensifies. 

Structure of the network
Deep learning has  proven to  be  a  promising technology
for  many  visual  recognition  tasks.  Deep  learning-based
medical  imaging  has  been  widely  discussed  and  is  con-
sidered  to  have  great  potential,  especially  in  enhancing
raw data. The proposed network in this work, PEDL, pri-
marily  uses  convolutional  neural  networks  to  achieve
adaptive  enhancement  of  PAM  imaging  under  different
degeneration conditions.

Initially,  the  preliminary  reconstruction  network
structure  in  this  work  is  based  on  the  U-net  network,
with several modifications to match the physical model's
mechanism.  These  modifications  are  designed  to  im-
prove  the  network's  performance  in  image  restoration
and  adaptive  capacity.  The  physical  model  is  integrated
into the network. During each iteration, it generates dy-
namic  data,  satisfying  physical  laws  while  incorporating
inherent randomness. Specifically, during network train-
ing,  the  convolution  kernel  (h),  noise  intensity  (η),  and
compensation function (α) continuously vary and exhib-
it  a  certain  degree  of  weak  correlation.  Each  parameter
varies within a defined range and is influenced by a com-
mon scaling factor.  This  weak correlation better  reflects
real-world  scenarios,  as  different  imaging  systems  have
varying noise and resolution characteristics.  Additional-
ly, changing the physical model in each iteration enables
a  many-to-one  training  approach,  consistent  with  the
variation in noise distribution in actual imaging. The de-
tailed structure of the network is shown in Fig. 2(b). The

batch  size  for  training  is  set  to  12.  The  network's  input
uses  a  convolution  kernel  size  of  9×9.  Compared  to  the
traditional  3×3 convolution kernel,  the 9×9 convolution
kernel provides a larger field of view, which helps in bet-
ter extracting the global features of the image45,46. Follow-
ing this, multiple Res blocks (detailed structure shown in
Fig. 2(d)) are used to modify the original U-Net. A series
of  Res  blocks  with  3×3  convolution  kernels  are  placed,
and the stacking of  multiple  convolution blocks  can ex-
tract more complex and abstract features layer by layer47.
This allows for multi-resolution analysis and recovery of
both  major  and  micro  vessels.  Additionally,  the  intro-
duction of residual parts enhances the network, address-
ing issues of gradient dispersion and accuracy degenera-
tion in deep networks, allowing the network to go deep-
er  while  maintaining  accuracy  and  speed.  Due  to  the
varying sizes of vessels,  and since the U-Net structure is
not very sensitive to very high spatial frequency informa-
tion,  this  network  incorporates  BN  methods  in  each
down-sampling convolution layer and intermediate con-
volution layers to overcome this issue. The BN layers al-
so improve the network's convergence speed.

Secondly,  this  network  uses  skip  connections  to  link
the  encoder  and  decoder  of  the  same  layer,  preserving
spatial information for subsequent image reconstruction.
A  simple  schematic  of  the  physical  model  is  shown  in
Fig. 2(c). During network training, the values of h, α, and
η are  changed  with  each  iteration  to  improve  the  net-
work's  adaptability  and  enhance  the  image  reconstruc-
tion  performance  under  different  degrees  of  degenera-
tion.  The GC block attention module  is  also  introduced
into the network of this work48. In Fig. 2(e), X, Q, and W
are solely used as abstract symbols for modules, without
specific  meanings,  and  are  only  intended  to  represent
different  module  concepts.  The  following  formula  pro-
vides a simple representation of the GC attention module. 

zi = xi +Wv2ReLU

·

LN

Wv1

∑Np

j=1

exp(Wkxj)∑Np

m=1
exp(Wkxm)

xj

 . (11)

eWkxj
/∑Np

m=1 eWkxm

Wv2ReLU (LN (Wv1 (·)))
In the above Eq. (11),  is the weight

of the GC attention.  is the trans-
formation module. The GC attention module uses a self-
attention mechanism to capture the global context infor-
mation of the input feature map, which helps the model
understand the overall structure of the image. Addition-
ally, since the GC attention module is lightweight, it can
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be  applied  to  multiple  different  layers  to  better  capture
the global context information of the input feature map.
At the same time, because GC pays attention to modular
lightweight,  it  can improve the training speed very well.
Using the GC attention module can enhance the analysis
and recognition of microvasculature, providing possibili-
ties  for  subsequent  image  reconstruction.  Finally,  the
network structure uses a 9×9 convolution kernel for the
output, aiming to integrate multi-scale information. This
helps  enhance  feature  representation  capabilities,
smooths the feature map, and preserves the overall struc-
ture of the image. By integrating these additional compo-
nents, the network model demonstrates higher sensitivi-
ty  to  vascular  features  of  different  scales,  stronger  noise
resistance,  and  excellent  contrast  enhancement  effects.
At the same time, it can match the physical model well. 

Quantitative analysis
PSNR represents the peak signal-to-noise ratio. It is gen-
erally  used  as  a  ratio  between  the  maximum  signal  and
background noise, as follows: 

PSNR = 10 · log10

(
(2n − 1)2

MSE

)
. (12)

(2n − 1)2

In  the  above  formula,  Mean  Squared  Error  (MSE)  is
the  pixel-level  mean squared error  between the  two im-
ages.  is  the  square  of  the  maximum  possible
signal  value,  where n is  the  number  of  bits  per  sample.
The higher the PSNR value, the better the quality of the

reconstructed image.
The  pixel  similarity  between  images  cannot  fully  and

accurately reflect the quality of the reconstructed image.
According to the SSIM theory, there is a strong correla-
tion  between  pixels.  SSIM  evaluates  image  quality  by
measuring luminance, contrast, and structural similarity,
and then combines these aspects for the final image qual-
ity assessment.

The final calculation formula for the SSIM index is as
follows: 

SSIM = lαcβsγ . (13)
l c s

α
β γ

α = β = γ = 1

In Eq. (13), ,  and  represent adjustments for lumi-
nance, contrast, and structural similarity, respectively. ,

 and  are  parameters  indicating  the  weights  of  lumi-
nance,  contrast,  and  structural  similarity  measures  for
the  SSIM  index.  Typically, .  The  final
SSIM  value  ranges  from  [0,  1],  with  higher  values  indi-
cating  a  higher  degree  of  structural  similarity  between
the two images, thus implying better image quality of the
reconstructed image. 

Combined loss function
Throughout the entire network training process, the loss
function is very important. To enhance the resolution of
photoacoustic  imaging  at  different  depths  while  main-
taining  clarity  and  effective  information,  this  work  pro-
poses  a  combined  loss  function  to  assist  in  network
training. Our loss function mainly consists of two parts:
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(1) MSE Loss49; (2) perceptual Loss50.
MSE Loss: MSE is a loss function used to measure the

difference  between  model  predictions  and  actual  obser-
vations.  In  deep  learning,  MSE  is  often  used  as  a  loss
function for regression problems, especially in tasks such
as  image  generation  and  numerical  prediction.  MSE  is
calculated by squaring the differences between predicted
and  true  values  and  then  averaging  them.  For  a  dataset
with n samples, the MSE formula is as follows: 

MSE =
1
n
∑n

i=1
(Yi − Y′

i)
2
, (14)

Yi Y′
iwhere  is  the  actual  observed  value,  is  the  model's

reconstructed prediction, and n is the number of samples.
Perceptual  Loss:  Pixel-wise  loss  functions  (e.g.,  MSE)

directly compare differences based on all pixels, produc-
ing  a  single  value  for  the  entire  image.  This  approach
does  not  focus  on  the  recovery  of  sharp  edges  and  may
lead  to  overly  smooth  patterns.  In  contrast,  perceptual
loss, utilizing convolutional filters (including edge detec-
tors), is more likely to recover fine features. Therefore, to
better  restore  images,  this  work  adopts  perceptual  loss,
which  includes  various  convolutional  filters  to  extract
fine  textures  and focuses  on  high-level  features,  making
the  restoration  performance  more  aligned  with  human
visual perception. Specifically, high-level features are ex-
tracted from a pre-trained VGG-19 model. 

Perceptual = 1
n
∑n

i=1
(F (Yi)− F (Y′

i))
2
, (15)

F (Yi)

F (Y′
i)

where  represents the i-th element of the actual im-
age  in  this  feature  layer,  represents  the i-th  ele-
ment of the generated image in this feature layer,  and n
represents  the  number  of  feature  layers.  By  integrating
both loss functions, the model benefits from precise pix-
el-level  correction  and  enhanced  perceptual  quality,
leading  to  more  visually  appealing  and  accurate
reconstructions. 

Experimental results and analysis
The size of the training dataset images is standardized to
128×128  sub-images  and  then  5000  images  are  selected
for training. During network training, 96×96 images are
randomly  selected  from  the  128×128  sub-images  for
training  at  each  iteration  to  avoid  overfitting.  We  ran-
domly crop 500 images of size 400×400 from large-scale
images in the public dataset for testing. All input images
are normalized to the range [0, 1] before training. Adam
optimizer  known  for  its  robustness  is  used  to  optimize

the  model  weights  during  training.  The  trained  models
are  used  as  training  generated  models  in  the  network
framework.  The  neural  network  model  is  developed us-
ing  PyTorch  in  Python  3.6  and  trained  on  NVIDIA
GeForce  RTX 4060  laptop  GPU platform.  The  model  is
trained  for  80  epochs,  with  an  initial  learning  rate  of
5×10−5,  which  is  reduced  to  60%  of  its  original  value  at
the 20 th and 40 th epochs. Additionally, model outputs
and  the  loss  function  are  monitored  in  real  time  using
TensorBoard, and convergence is determined when these
values stabilized. In this work, the PSNR and SSIM met-
rics are calculated based on the Y channel of the images.
The Y channel,  which represents the luminance compo-
nent  in  the  YCbCr  color  space,  captures  the  brightness
information of the image. It is also the aspect most sensi-
tive  to  human perception of  image  quality.  By  adopting
this approach, the quality assessment focuses on the de-
tails  most  relevant  to  human  perception,  such  as  edges
and textures, which are particularly critical for the analy-
sis of photoacoustic imaging. 

Simulation experiments
To  test  the  denoising  performance  of  our  network,  this
work first adjusts the physical model to generate various
noise patterns and conducts network training. Then, the
reconstruction  effects  under  different  noise  levels  are
analyzed.

Different levels of noise are added to three types of im-
ages,  and  the  network  is  used  for  reconstruction  and
comparison with the ground truth images. Figure 3(a−c)
show three different ground truth images. Various levels
of noise, including Gaussian noise, Rayleigh noise, Pois-
son noise, and background noise, are added to the three
types  of  images,  with  Gaussian  noise  being  the  primary
noise.  Here  we  provide  partial  definitions  of  the  noise
distribution  standards.  For  a  "low"  noise  distribution,
Gaussian noise with a standard deviation of 10 is added,
and additional Gaussian noise is applied to regions with
pixel  intensities  below  30  to  enhance  noise  interference
in  small  vessel  signals.  For  a  "medium"  noise  distribu-
tion,  Gaussian  noise  with  a  standard  deviation  of  20  is
added,  with  extra  Gaussian  noise  introduced  in  regions
where  pixel  intensities  are  below  30.  For  a  "high"  noise
distribution, Gaussian noise with a standard deviation of
30 is  added, along with additional Gaussian noise in ar-
eas  with  pixel  intensities  below  30.  Different  levels  of
noise  are  shown  in Fig. 3(a1−c1, a3−c3, a5−c5).  The  re-
construction effects  of  different  noise  levels  are  evident,
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as shown in Fig. 3(a2−c2, a4−c4, a6−c6). From these fig-
ures, it is clear that the network adaptively enhances im-
ages under different noise conditions. The proposed net-
work  effectively  removes  noise  and  significantly  im-
proves  image  contrast.  In Fig. 3(d–f),  the  specific  SSIM
and PSNR characteristics of the three images are shown.
The line charts indicate that as noise increases, the input
PSNR  and  SSIM  gradually  decrease,  and  the  difference
between  input  and  output  PSNR  and  SSIM  increases.
The output PSNR and SSIM remain relatively stable, and
in  some  cases,  the  restoration  effect  improves  with  in-
creasing noise,  as  seen in Fig. 3(e).  The bar  chart  repre-
sents  the weighted product of  PSNR and SSIM, demon-
strating  the  significant  improvement  after  network  re-
construction, generally stabilizing at over 25. In addition
to  deep  learning  methods,  there  are  many  non-deep
learning  techniques  for  improving  photoacoustic  image
quality,  such  as  sparse  coding  and  SLD-PAM51,52.  How-
ever,  sparse  coding  denoising  techniques  are  typically
not  suitable  for  real-time  processing  and  require  a  long
processing time, while SLD-PAM has high hardware re-

quirements  and involves  complex  computations.  There-
fore,  in  this  work,  we  select  two conventional  non-deep
learning  methods  and  compare  them  with  our
approach53,54. Quantitative analysis of the network recon-
struction  under  different  noise  conditions  is  detailed  in
Table 1.  From the SSIM and PSNR metrics,  it  is  evident
that  the  network  output  shows  a  significant  improve-
ment in these quantitative metrics, with SSIM values sta-
bilizing  around  0.9.  This  demonstrates  the  network's
strong adaptability to different noise levels. Under high-
noise  conditions,  the  PEDL  method  can  efficiently  re-
move noise and significantly enhance the quality of pho-
toacoustic  microscopy  images,  outperforming  the  two
conventional methods.

To further  evaluate  the  denoising  performance  of  the
network,  more detailed feature analysis  is  conducted on
images under strong noise conditions.

As shown in Fig. 4,  a  significant  improvement can be
seen from Fig. 4(a) to Fig. 4(b). In the magnified regions,
the  network  shows  a  strong  recovery  effect  on  signals
masked by noise, as seen in Fig. 4(a1−a3, b1−b3, c1−c3).
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Figure 4(d−f) demonstrate  that  originally,  the  signals  in
the highlighted areas are covered by noise. However, af-
ter  network  training,  small  signals  are  significantly  re-
covered,  and  their  energy  intensity  is  enhanced.  Com-
paring Fig. 4(b3) and 4(c3),  it  is  evident  that  the  small
signal  intensity  is  strengthened  after  network  output.
Particularly in Fig. 4(d), analyzing the maximum intensi-
ty projection reveals  that  small  signals,  which are barely
observable in the original image due to noise, are recov-
ered  after  network  reconstruction.  From  the  above  re-
sults, it can be concluded that the network effectively re-
moves  various  noise  levels  and  recovers  small  signals
masked  by  noise,  while  also  enhancing  weaker  signals.
The  comparison  of  PEDL,  cGAN55 and  U-net56 algo-
rithms  in  denoising  effect  is  also  explored.  The  denois-

ing  performance  of  the  above  two  networks  and  the
PEDL  method  is  studied  using  simulated  data.  A  de-
tailed  comparison  is  shown in Fig.  S1.  The  results  indi-
cate  that  the  PEDL  method  outperforms  the  other  two
networks in terms of both PSNR and SSIM.

To comprehensively  test  the  performance  of  our  net-
work in all aspects, the physical model is adjusted to de-
generation  mode  and  network  training  is  carried  out.
Then,  this  work  analyzes  the  reconstruction  effect  of
photoacoustic  microscopic  images  under  different  de-
generation degrees.

In  the  degeneration  model,  the  value  of K represents
the degree of degeneration, related to the sizes of a and F
in Eq. (6). We use K to represent the overall image degra-
dation,  where  an  increase  in K leads  to  a  decrease  in

 

Table 1 | Quantitative analysis of different noises.
 

Low noise Medium noise Strong noise

PSNR SSIM PSNR SSIM PSNR SSIM

Input 27.730 0.784 23.409 0.506 19.684 0.415

NLMD53 30.358 0.917 28.690 0.879 23.371 0.756

NAD54 27.376 0.866 26.151 0.834 23.970 0.798

PEDL 33.076 0.957 32.602 0.940 30.343 0.906
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resolution, accompanied by an increase in noise, includ-
ing  Gaussian  noise,  Rayleigh  noise,  Poisson  noise,  and
background  noise,  with  Gaussian  noise  being  the  pre-
dominant  type. Figure 5 shows  the  resolution  enhance-
ment  with K=15  but  without  noise.  From Fig. 5
(a1−a2) to Fig. 5(a3−a4),  it  can  be  seen  that  the  resolu-
tion is significantly improved, and the weak signal is en-
hanced. Figure 5(b) and 5(c) show that, compared to the
input images, the network output images have a smaller
FWHM and that the network's output at small vessel lo-
cations is closer to the ground truth image. The FWHM
of the fine blood vessels improve by 12.0% after network
processing.

Figure 6(a) shows  data  under  different  degeneration
conditions, where increasing K values lead to lower reso-
lution  and  higher  noise  levels. Figure 6(b) shows  net-
work-reconstructed  images  under  different  degenera-
tion  conditions,  where  vascular  structures  are  signifi-
cantly  improved. Figure 6(c, d) show  PSNR  and  SSIM
values  between  reconstructed  and  input  images  com-
pared to  ground truth  images,  as  well  as  the  differences
between  input  and  output  images,  with  the  specific  dif-
ferences determined by the coordinates on the right side
of the graph. When the K value is 3, there is little differ-
ence between the reconstructed image and the input im-
age. As K increases to 6, an enhancement in the signal in-

tensity  of  small  vessels  can  be  observed  in  the  recon-
structed image compared to the input. With a further in-
crease in K to 15, the input image resolution significant-
ly decreases, and vessel structures become difficult to dis-
tinguish. However, after network reconstruction, the ves-
sel  structures  are  well  restored.  Overall,  the  network re-
construction  demonstrates  strong  generalization,  as  it
does  not  forcefully  alter  the  vessel  diameter  when K is
small.  Instead,  it  adapts  to  the  input  image  and  adjusts
the  reconstruction  strength  accordingly. Table 2 pro-
vides quantitative analysis results for K values of 3,  6,  9,
12,  and  15.  Although  PSNR  of  network-reconstructed
images decreases with increasing K values, the difference
between  input  and  output  PSNR  gradually  increases.
SSIM  improvement  remains  stable,  with  reconstructed
image SSIM generally above 0.8. When K=15, the PEDL
method  can  still  effectively  improve  both  PSNR  and
SSIM,  keeping them within a  valid  range.  It  can also  be
seen  from  the  above  figure  that  the  improvement  effect
of  the  network  is  adaptive  under  different  degeneration
conditions, and the reconstruction effect will change ac-
cording to the different input data.

To further evaluate the performance of the network in
enhancing  resolution,  the  features  of  severely  degraded
images are analyzed in detail.

As shown in Fig. 7, there is a significant improvement
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from Fig. 7(a) to Fig. 7(b).  In the magnified regions,  the

resolution  enhancement  is  evident,  as  shown  in Fig.

7(a1−a3, b1−b3, c1−c3). Figure 7(d−f) show  that  the

originally noisy regions are effectively denoised after net-

work reconstruction, improving the image resolution. In

Fig. 7(a−c), the yellow arrows indicate blood vessels that

are difficult to discern due to noise interference; howev-

er,  after  network  reconstruction,  the  reconstructed
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Table 2 | Quantitative analysis of different degeneration degrees.
 

K=3 K=6 K=9 K=12 K=15

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Input 30.371 0.881 29.239 0.845 24.380 0.684 22.151 0.599 19.766 0.540

PEDL 31.392 0.943 31.271 0.941 30.163 0.932 29.064 0.904 26.597 0.849
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images  are  much  closer  to  the  ground  truth.  In Fig.
7(d−f), the areas marked by orange arrows show that the
noise is effectively removed, and the FWHM of the ves-
sels  is  well  restored.  Specifically,  in Fig. 7(d),  analyzing
the maximum intensity projection reveals that the input
image is noisy except for the vascular regions. After net-
work  reconstruction,  the  noise  is  clearly  removed,  and
the  FWHM  of  the  vessels  is  reduced  from  51  µm  to  31
µm,  close  to  the  ground  truth  of  30  µm,  enhancing  the
vessel  signal.  Analyzing  these  results,  the  conclusion  is
that the network can effectively restore the images under
different  degeneration  conditions,  significantly  improve
the  resolution  and  reduce  the  noise.  At  the  same  time,
this work investigates the performance of different algo-
rithms in terms of resolution enhancement on simulated
data. A detailed comparison can be found in Fig. S1. The
results  indicate  that  PEDL  outperforms  both  the  cGAN
and U-Net algorithms across various metrics. 

Phantom experiments
To  validate  the  capability  of  the  preliminary  model  in

processing  real  imaging  data,  phantom  experiments  are
conducted. Two experiments are done here to verify the
processing ability and generalization ability of the PEDL.
Because the most important medical application of PA is
vascular system imaging, and our previous model is also
trained  with  mouse  vascular  system  data  set,  we  adopt
the  phantom created  with  the  imaging  results  of  mouse
vascular  system.  The  experimental  setup  employs  a
nanosecond  laser  system  operating  at  532  nm  with  a
pulse frequency of 10 kHz57.  The laser beam is attenuat-
ed,  spatially  filtered  and  coupled  to  one  optical  fiber  as
the  excitation source,  and then it  is  cleaned by  a  spatial
filter  system,  which  passes  through  a  10  nm  diameter
pinhole for spatial filtering, and then coupled into a sin-
gle-mode fiber by a fiber coupler. The single-mode fiber
guides  the  laser  beams  into  a  PA  probe  with  a  micro-
scope  objective  (MPlan  Apo  HL,  5X/0.13,  Sigma),  a
ringed focused ultrasonic transducer,  and a 2D scanner.
The transducer  has  a  central  frequency of  30 MHz.  The
2D scanning is performed using a bow-shaped scanning
trajectory.
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The first  experiment uses  silicone to simulate  skin by
covering  a  mouse's  ear  with  silicone  of  different  thick-
nesses  to  mimic  real  imaging  at  different  depths.  Sili-
cone  and  skin  have  similar  absorption  and  scattering
properties. The same area of mouse's ear is imaged with
silica  gel  sheets  with  different  thicknesses.  The  specific
experimental results are shown in Fig. 8.

In the experiment, it is evident from Fig. 8(a, c, e) that
as  the  thickness  increases,  the  overall  brightness  of  the
obtained  images  decreases,  and  the  noise  gradually  in-
creases. Figure 8(a, c, e, g) are photoacoustic microscopy
images with four layers, two layers, one layer, and no sili-
cone sheets,  respectively,  while Fig. 8(b, d, f) correspond
to the network output images. After network processing,
it  can  be  seen  from Fig. 8(a, c, e) to Fig. 8(b, d, f) that
small signals are enhanced, noise is reduced, and overall
image  resolution  is  improved. Figure 8(h−m) show  that
compared  to  the  input  images,  the  network  output  im-
ages  have  a  smaller  FWHM. Figure 8(h, j) show that  af-
ter network processing, the FWHM is smaller and back-
ground noise is effectively removed. Analyzing these re-
sults,  the  conclusion  is  that  the  network  effectively  im-
proves the blood vessels with different depths, improves
the overall resolution and effectively eliminates the back-

ground  noise.  Under  the  condition  of  4  silicone  sheets,
the  FWHM improves  by  an  average  of  60.4% after  pro-
cessing through the network. With 2 silicone sheets,  the
FWHM improves by an average of 19.9%, and with 1 sili-
cone sheet,  the  improvement is  10.2%.  These results  in-
dicate that the network possesses an adaptive capability,
showing  greater  improvement  as  the  initial  FWHM  of
the  imaging  result  deviates  further  from  the  ground-
truth  FWHM.  This  quantitative  evidence  further  con-
firms that our network achieves resolution enhancement
across  different  imaging  thicknesses.  The  data  at  differ-
ent depths are expressed in different ways, which proves
that the method can improve the resolution and denois-
ing.  In  the  actual  experiment,  we  can  see  that  the  net-
work  remains  adaptive.  The  more  significant  resolution
improvement  and  adaptability  of  PEDL  can  be  seen  in
Fig. S2.

In the second experiment, the ears of mice are imaged
by  photoacoustic  microscopy  at  different  energy  levels.
The mouse's ears are irradiated with lasers with different
power  levels  and  image  information  is  obtained.  In  this
experiment,  the  mouse's  ears  are  imaged  using  lasers
with 100% power, 66% power, and 33% power. The spe-
cific experimental results are shown in Fig. 9.
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In the experiment, it is evident from Fig. 9(a−f) that as
the  laser  power  decreases,  the  overall  brightness  of  the
obtained  images  diminishes,  and  fine  vessels  gradually
disappear.  After  processing with our network,  from Fig.
9(a−f) to Fig. 9(a1−f1),  small  signals  are  enhanced,  and
overall  image  resolution  is  improved.  Particularly  from
Fig. 9(f) to Fig. 9(f1),  the  structure  of  fine  vessels  is  re-
stored. Figure 9(a3−f3, a4−f4) show that compared to the
input error maps, the output error maps have significant
changes in fine vessels, and overall brightness in the out-
put error maps is lower than in the input error maps. In
Fig. 9,  the  arrows  clearly  highlight  that  the  vascular

structures  in  the  input  image  are  difficult  to  observe.
However, after PEDL reconstruction, the vascular struc-
tures are effectively restored. Using the 100% power im-
age  as  a  reference,  the  restored  vascular  structures  are
verified  to  be  reasonable.  In Fig. 9(a5−f5),  the  images
display histograms, where the x-axis represents intensity
levels and the y-axis indicates the number of pixels corre-
sponding  to  each  value. Figure 9(a5−f5) show  the  his-
togram  statistics  of  different  datasets.  Specifically, Fig.
9(a5−c5) and 9(d5−f5) represent  the  histograms  of  two
different  datasets.  The  low-energy  region primarily  rep-
resents  background  noise,  while  the  high-energy  region
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reflects vessel signals. The zoomed-in area shows that the
background  noise  is  reduced  in  the  low-energy  region,
and the vascular signals are enhanced in the high-energy
region, indicating improved signal quality in specific en-
ergy  ranges  during  processing.  Analyzing  these  results
demonstrates that the network can effectively restore im-
age information at different energy levels, enhance weak
signals, and effectively remove background noise. The ef-
fect of PEDL is not limited to the improvement of PAM
at low energy, but also has obvious quality improvement
for  high  power  PAM  imaging,  and  its  adaptability  has
been fully reflected. To evaluate the denoising capability
of  PEDL  on  high-noise  images,  additional  studies  are
conducted and presented in Fig. S3. 

Mouse brain experiments
In order to study the output performance of the network
under  the  conditions  of  deep  absorption  and  scattering
and over a large area, the mouse brain is imaged and an-
alyzed by photoacoustic microscopy. The resulting struc-
tures  are  compared  using  cGAN,  U-Net,  and  our  net-
work.  The  specific  experimental  results  are  shown  in
Fig. 10.

Figure 10(a−d) show  the  imaging  experiments  of
mouse brain with different  methods (cGAN, U-net,  our
network),  cGAN  and  U-Net  methods  have  limited  en-
hancement of the mouse brain, where PEDL has a more
significant  effect  on  the  recovery  of  fine  blood  vessels
and  resolution  enhancement  compared  to  these  two
methods.  In  particular,  the  resolution  enhancement  is
more pronounced in the ROI indicated by the green ar-
rows.  In Fig. 10(c),  the  U-Net  method  enhances  large
blood  vessels  but  has  limited  enhancement  for  small
blood vessels,  which might be due to the network's sim-
ple structure and the use of a simpler loss function, lead-
ing to unstable output. Figure 10(e) illustrates the vascu-
lar branch labeling of the input and output images using
different methods. The output image of our network has
more blood vessel  branches,  indicating the ability  to  re-
store more fine blood vessels. Figure 10(f) gives the error
analysis of the vessel branch labeling. Figure 10(g) shows
the  projection analysis  of  the  maximum intensity  of  the
dashed line in the ROI area, from which it can be clearly
observed  that  the  full  width  at  half  maximum  of  the
blood  vessel  decreases  obviously  after  PEDL,  which  can
effectively  prove  the  improvement  of  resolution. Figure
10(h) shows  the  Contrast-to-Noise  Ratio  (CNR)  and
SNR of  the three  methods,  and the weighted analysis  of

CNR  and  SNR,  where  the  weighted  curves  give  50%  of
CNR and SNR.  The formulas  for  CNR and SNR can be
found  in  the  supplementary  materials  under  Parameter
Definition.  The  input  image  processed  by  our  network
shows a significant improvement in CNR, SNR, and the
weighted curves, outperforming the other methods. Fig-
ure 10(i) shows the input images and histogram analyses
for the three methods. In the magnified region of the his-
togram,  it  can  be  observed  that  between  60  and  80,  the
output from PEDL is significantly higher than that of the
other  methods.  In  the  overall  chart,  it  can  be  seen  that
below 10, PEDL effectively suppresses background noise.
It  can  be  effectively  verified  that  PEDL  enhances  weak
signals  while  simultaneously  eliminating  background
noise.  To further  investigate  the  authenticity  of  the  ves-
sels  generated by PEDL,  additional  studies  are  conduct-
ed and are presented in Fig. S4. Based on the analysis of
Fig. S4, it can be concluded that the vessels generated by
PEDL exhibit high authenticity. 

Discussion and conclusion
 

Discussion
The purpose of this work is to develop a physical model
and a deep learning-based tool to enhance the quality of
PAM  imaging  under  various  imaging  conditions.  To
achieve  this,  the  paper  presents  a  mathematical  deriva-
tion and constructs a synthetic dataset that incorporates
diverse  degeneration  factors.  Based  on  a  physics-driven
degeneration model, the PEDL network is applied to ex-
tract  features  from  the  synthetic  dataset.  Compared  to
other  deep  learning-based  image  reconstruction  algo-
rithms,  the PEDL network integrates  additional  compo-
nents,  including residual  blocks and GC attention mod-
ules, to enhance feature extraction and information pro-
cessing.  These components  improve the model's  capaci-
ty to restore vessel structures and enhance overall recon-
struction performance across diverse conditions. The su-
periority  of  the  PEDL  network  is  validated  through
quantitative  analysis  in  simulation  and  phantom
experiments.

Specifically, the image simulation results under differ-
ent noise environments have clearly shown that the net-
work  can  effectively  remove  various  levels  of  noise  and
restore small signals covered by noise, while also enhanc-
ing  weaker  signals.  The  image  simulation  results  under
different degeneration conditions show that the network
can effectively restore images under various degeneration
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conditions,  significantly  improving  resolution.  The  per-
formance  of  the  network  is  also  demonstrated  through
statistical  measures  such  as  PSNR  and  SSIM.  Under
strong  noise  conditions,  both  PSNR  and  SSIM  are  im-
proved,  achieving  noise  removal  and  signal  recovery.
Even  under  severe  degeneration  conditions,  PSNR  and
SSIM  can  still  be  effectively  enhanced.  To  further  vali-
date  the  network's  ability  to  process  real  imaging  data,
this  work  conducted  photoacoustic  microscopy  experi-
ments at different depths and energy levels. In the depth
experiments, translucent silicone sheets of various thick-
nesses are used for imaging. The results showed that the
network  significantly  improved  the  resolution  and  con-
trast  of  blood  vessels  at  different  depths.  In  the  energy
experiments, the network effectively enhanced small sig-
nals and suppressed background noise.  Finally,  a mouse

brain  is  imaged  to  explore  the  network's  generalization
capability  and  compared  with  other  networks.  The  re-
sults  demonstrated  that  the  network  maintained  excel-
lent  performance  in  real  photoacoustic  microscopy
imaging,  significantly  improving  overall  image  resolu-
tion and contrast, and restoring and enhancing fine vas-
cular  structures.  Additionally,  the  degeneration  model
based  on  physical  mechanisms,  combining  mathemati-
cal derivation and practical data, has good generalizabili-
ty  and  can  be  adjusted  to  different  imaging  conditions.
However,  this  work has  limitations because PAM imag-
ing  still  requires  a  long  time  and  cannot  achieve  real-
time imaging.

The  purpose  of  introducing  the  attention  module  in
the  network  structure  is  to  enhance  the  network's  focus
on  key  features,  thereby  improving  its  generalization
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ability.  Since  embedding  the  physical  model  in  the  net-
work  causes  the  generated  data  to  vary  with  each  itera-
tion, the attention module helps the network better adapt
to  these  changes  and respond effectively  to  different  in-
put  conditions.  This  dynamic  adjustment  aligns  closely
with  the  imaging  process  in  real-world  scenarios,  en-
abling the model to more accurately simulate the uncer-
tainties  encountered in  practical  applications.  Addition-
ally, the residual module is introduced in the network to
capture  deeper  features.  This  design  allows  the  network
to retain and utilize more subtle feature layers when ex-
tracting  information,  further  enhancing  image  quality
and  the  resolution  of  complex  structures.  The  residual
module effectively mitigates the vanishing gradient prob-
lem  in  deep  network  training,  allowing  the  network  to
maintain high learning efficiency even at greater depths.
To  evaluate  the  computational  efficiency  of  the  PEDL
method,  we  compared  it  with  cGAN  and  U-Net  in  re-
constructing  100  images  of  400×400  pixels  under  the
same  hardware  conditions.  The  results  show  that  the
PEDL  method's  runtime  is  10.930  seconds,  with  a  peak
memory usage of 1.46 MB. In contrast, cGAN's runtime
is 8.050 seconds with 1.46 MB of memory usage, and U-
Net's  runtime  is  6.467  seconds  with  the  same  memory
usage of 1.46 MB. This indicates that the PEDL method
has  a  certain  disadvantage  in  computational  efficiency,
which  may  be  due  to  the  more  complex  structure  and
larger  number  of  parameters  in  the  PEDL  model,  thus
increasing the computational load.

Under undersampling conditions, the decline in imag-
ing resolution and the weakening of  small  vessel  signals
are  common  challenges.  Our  method  can  partially  sup-
port imaging under undersampling conditions and miti-
gate  the  loss  of  information  by  enhancing  resolution.
However,  due  to  the  current  limitations  of  the  physical
model,  there  is  still  room  for  improvement  in  integrat-
ing  it  with  undersampling  approaches.  Additionally,
when  processing  high-resolution  PAM  images  or  per-
forming  real-time  imaging,  the  PEDL  method  may  re-
quire  significant  computational  resources,  which  could
pose  challenges  in  resource-limited  settings  such  as
portable devices or small  laboratories.  While PEDL per-
forms well on specific tissue types, differences in optical
and  acoustic  properties  across  various  tissues  may  im-
pact  its  applicability.  Future  research  can  be  tested  and
popularized  in  various  tissue  types,  and  the  function  of
this method can be increased to improve its populariza-
tion in clinical and research environments. What's more,

integrating  PEDL  into  existing  PAM  systems  may  en-
counter  challenges  with  system  compatibility  and  data
processing  adaptation,  as  different  PAM  systems  have
varying data formats and processing workflows, necessi-
tating appropriate adjustments. The robustness and gen-
eralization  ability  of  deep  learning  models  depend  on
sufficient high-quality datasets. However, due to the dif-
ficulty  of  acquiring  medical  imaging  data,  future  efforts
could focus on improving imaging techniques to reduce
data  acquisition  costs  or  on  generating  high-quality
datasets  using  physical  models  and  simulation  tech-
niques.  At  last,  increasing  dataset  diversity  and  design-
ing well-structured networks can further enhance the ro-
bustness and generalization ability of the model.

In the current PEDL method, the resolution enhance-
ment  effect  is  very  apparent  on  simulated  data,  but  for
real-world  data,  especially  images  with  more  complex
structures  and noise,  the performance is  relatively  poor.
We believe the main reason for this difference is that, de-
spite  the  degeneration  process  applied  to  the  simulated
data,  there  remains  a  significant  gap  between  the  simu-
lated  and  real  data.  For  example,  the  noise  types  and
imaging conditions in real data are likely more complex,
which reduces the effectiveness of our method in denois-
ing  and  recovery  on  real-world  images.  Furthermore,
while our method is capable of effective denoising, some
smaller  vessels  still  cannot  be  recovered  after  PEDL  re-
construction,  indicating  that  there  is  still  room  for  im-
provement in the ability of PEDL to restore vessels post-
denoising. In the future, we plan to further optimize the
PEDL model  to enhance its  capacity for vessel  structure
restoration,  especially  in  the  presence  of  high  noise  and
complex backgrounds. Additionally, we intend to extend
the PEDL method to more application scenarios. Besides
vessel  structure  restoration,  we  aim  to  incorporate  the
detection of biomarkers like sO2, enabling PEDL to han-
dle  a  wider  range  of  imaging  tasks.  Through  these  im-
provements,  we  hope  to  enhance  the  performance  of
PEDL on real-world data and increase its  generalization
ability across various imaging applications. 

Conclusions
In  the  process  of  photoacoustic  microscopy  imaging,
various interfering factors can lead to low-quality imag-
ing  results.  This  work  combines  physical  models  with
deep  learning,  introducing  various  degeneration  factors
in the physical model to match real imaging conditions,
and  designs  a  network  structure  that  deeply  integrates
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the  physical  model.  To  address  the  challenge  of  obtain-
ing large datasets,  a  method of  synthesizing datasets  us-
ing physical models is employed. The network structure
includes GC attention modules, residual blocks, BN lay-
ers,  and  composite  loss  functions.  Extensive  results
demonstrate that the proposed model outperforms others.

By  implementing  these  optimization  techniques,  the
PEDL network significantly improves the resolution and
contrast of photoacoustic microscopy imaging. In exper-
iments conducted at different depths, the PEDL network
adaptively  optimizes  data,  enhancing  resolution  and  re-
ducing noise.  Additionally,  the PEDL network effective-
ly enhances photoacoustic microscopy imaging data un-
der  different  energy  conditions,  showing  reliable  recov-
ery of fine blood vessels. The results show that the PEDL
network is  superior  to  other  networks  in  improving the
imaging effect  in the experiment with mouse brain,  and
its  generalization ability  on different  datasets  is  verified.
Future  work  will  focus  on  developing  a  faster  PAM
imaging system and a network structure compatible with
the PAM system.
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