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Abstract: The algorithms defined as variational image decomposition (VID) constitute the 

state-of-the-art in solving the image prefiltration problem. However, the discussion about the 

advantages and disadvantages of different variational image decomposition models in the 

context of fringe pattern prefiltration is yet to be addressed and this work is the first one leaning 

into this issue. The unsupervised variational image decomposition (uVID) algorithm allows for 

automatic, accurate and robust preprocessing of diverse fringe patterns and introduces the 

parameters and stopping criterion for Chambolle’s iterative projection algorithm to separate the 

fringes and background. However, determining the stopping criterion in each iteration is a 

severely time-consuming process, which is particularly important given the fact that in many 

cases thousands of iterations must be calculated to obtain a satisfactory fringe pattern 

decomposition result. Therefore, the idea of using convolutional neural network to map the 

relationship between the fringe pattern spatial intensity distribution and the required number of 

Chambolle projection iterations has emerged. That way, it is no longer required to determine 

the value of the stopping criterion in every iteration, but the appropriate number of iterations is 

known in advance via machine learning process. We showed that the calculation time is reduced 

on average by 3-4 times by employing the deep learning-based acceleration (DeepVID) without 

jeopardizing the overall accuracy of the prefiltration. This way an important progress in 

developing uVID algorithm features towards real-time studies of dynamic phenomena is 

reported in this contribution. For the sake of metrological figure of merit, we employ deep 

learning based solution, for the first time to the best of our knowledge, to accelerate powerful 

and well-established VID approach, not to bypass it completely. 

Keywords: Interferometry, Fringe analysis, Fringe pattern filtering, Machine learning, Deep 

learning, Convolutional neural network, Variational image decomposition, Total Variation. 

1. Introduction 

The techniques allowing the non-invasive, label-free and precise measurement in the full-field 

of view are of high importance for solving the issues encountered by contemporary non-contact 

metrology. The state-of-the-art full-field optical measurement methods, i.e., interferometry [1-

4], holographic microscopy [5-8], fringe projection [9] or the moiré technique [10], often lead 

to the result in a form of fringe pattern (interferogram, hologram, moiregram, shadowgram, 

etc.). In those techniques measurand is not given in a straightforward way but it is encoded in 

fringe pattern phase (or less frequently amplitude) map, which needs to be calculated 
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numerically from recorded intensity distribution. In the simplest way, the intensity distribution 

of fringe pattern can be described by [3]: 

𝐼(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦)fun(𝜑(𝑥, 𝑦)),    (1) 

where 𝑎(𝑥, 𝑦) is background, 𝑏(𝑥, 𝑦) is fringe pattern amplitude modulation, 𝜑(𝑥, 𝑦) is phase 

function and fun(𝜑(𝑥, 𝑦)) describes the characteristic of fringe pattern, which depends on the 

recording method. In most cases the profile of recorded fringes is described by the cosine 

function. There are exceptions, however, such as quasi-trapezoid fringe patterns recorded using 

the moiré technique [10] or fringe patterns recorded using time-averaged interference 

microscopy [11], where the measured vibration amplitude is encoded in the argument of the 

Bessel function. It should be also noted that in the equation describing the fringe pattern 

intensity distribution, additional components may appear due to the noise (e.g., 

thermal/electronic from the camera, typically occurring additive noise, or multiplicative noise 

caused by the speckle phenomenon) or recording errors caused by, e.g., non-linearity of the 

projector/detector and resulting in the appearance of higher signal harmonics in the recorded 

image. After considering the above-mentioned factors, the intensity distribution of the fringe 

pattern can be presented in the form [3]: 

𝐼(𝑥, 𝑦) = [𝑎(𝑥, 𝑦) + ∑ 𝑏𝑚(𝑥, 𝑦) cos(𝑚𝜑(𝑥, 𝑦))∞
𝑚=1 ]𝑛1(𝑥, 𝑦) + 𝑛2(𝑥, 𝑦), (2) 

where m is the number of the harmonic periodic functions, 𝑛1(𝑥, 𝑦) is a multiplicative noise 

and 𝑛2(𝑥, 𝑦) is an additive noise. It can be clearly seen that fringe pattern analysis is a complex 

issue, thus algorithmic solutions used for this purpose are based on different mechanisms and 

there are simply a lot of them.  

The most accurate solution for fringe pattern phase extraction is a multi-frame approach [1-

4]. It can be clearly seen that the equation describing fringe pattern intensity distribution (Eq. 

(2)) has a number of components (variables), which can be considered as the unknowns. In the 

easiest way the phase function can be retrieved by creating the system of equations and finding 

the solution for phase map “unknown” 𝜑(𝑥, 𝑦). This is the working principle of the algorithm 

called temporal phase shifting (TPS) [12-19], where the system of interferometric equations is 

defined by adding the phase shift (known [13-15] or unknown [16-19]) between the two 

coherent beams. In general, multi-frame approach has limited time resolution since multiple 

frames need to be collected and therefore the analysis of fast dynamic events or in an unstable 

environment is troublesome. This problem was solved by the hardware improvement, e.g., 

utilizing the polarization approaches and the multi-camera system to instantaneously record 

phase-shifted interferograms by different cameras [20] or use the pixelated phase-mask of a 

single camera [21]. Nevertheless, introduced modifications complicate and increase the cost of 

measurement system. For that reason, the single-frame fringe pattern analysis approach is a 

very attractive family of algorithmic solutions.  

The most popular representative of the numerical methods allowing for phase estimation 

from a single frame is the Fourier transform technique [22]. This very capable and useful 

method has limitation by means of accepted input carrier fringes frequency. Precisely, Fourier 

transform method allows for the analysis of off-axis [23,24] interferograms, where cross-

correlation terms are well separated from the auto-correlation term in the Fourier spectrum. The 

Kramers-Kronig relation [25] is a solution, which is able to deal with the slightly off-axis 

[26,27] interferograms, where cross-correlation terms are well separated from each other, but 

they are overlapping with the autocorrelation term. The localized Fourier transform 

representatives such as windowed Fourier transform [28], continuous wavelet transform [29] 

or other approaches like spatial carrier phase-shifting [30], or regularized phase tracking [31], 

are generally very capable but require a set of parameters to be fixed.  

The algorithmic solutions dealing with the fully on-axis [32,33] interferograms are limited 

to multi-frame approach and there is no single-frame solution to this problem. The most 
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universal solution enabling the single-frame phase analysis in the widest range of fringe 

patterns is based on the Hilbert spiral transform (HST) [34]. It accepts quasi on-axis 

interferograms, where cross-correlation and auto-correlation terms are significantly 

overlapping but interfering beams are not perfectly aligned causing the appearance of low 

frequency carrier fringes in the recorded image. To perform well Hilbert spiral transform needs 

the input signal to be zero-mean valued, which can be achieved with the use of prefiltration 

algorithms.  

It needs to be highlighted that the prefiltration algorithm used for preparation of the data for 

HST must be able to deal with the wide range of fringe patterns characteristics (shape of fringes, 

kind of noise and object under test etc.) and origin (different full-field optical metrology 

methods) so as not to nullify the advantage HST has over other known fringe pattern phase 

estimation solutions. Two numerical approaches are actively developed to fulfill this 

requirement: empirical mode decomposition (EMD) [35-37] and variational image 

decomposition (VID) [38-40]. The most important advantage of EMD-based solutions is the 

fact that they are purely data-driven and there is no need to set any parameters values to get the 

decomposition result in the form of a set of bidimensional intrinsic mode functions (BIMFs). 

Additionally, in the case of most recent solutions [41-45] the calculation time is short. On the 

other hand, the number of estimated BIMFs can be relatively high and the differentiation 

between fringe pattern background and fringes can be difficult due to the mode-mixing 

phenomenon, which was recently minimized in [46-48]. On the contrary, VID [49-57] provides 

the straightforward separation of background and fringes, but at the cost of increased numerical 

complexity and calculation time. Moreover, there is a number of parameters, which values need 

to be adjusted in order to get the accurate decomposition result.  

Some of the problems were solved by the unsupervised variational image decomposition 

(uVID) approach [57], where all parameters were specifically tailored for the fringe pattern 

prefiltration and the whole calculations were automatized and significantly simplified. It was 

proven that uVID can be successfully used for the prefiltration of fringe patterns of biological 

cells [38,39,58,59], optical elements [57], arduous interferograms encoding the droplet shape 

[57], ESPI fringe patterns encoding cantilever deformations [40] or besselograms encoding 

vibrations of microsystems [60]. Nevertheless, uVID calculation time is still the issue to be 

addressed. The most time-consuming part of the uVID is calculation of stopping criterion called 

tolerance, which is also the most important parameter due to its ability to universally adjust the 

calculation process when the characteristic of fringe pattern changes, thus providing unique 

versatility and automation of uVID. All Chambolle projection iteration numbers mentioned 

throughout manuscript were estimated with the use of tolerance stopping criterion [57]. In short 

tolerance stopping criterion may be described in 4 steps (Eq. (3)). First, the difference between 

two consecutive steps (Δ) need to be obtained, then it should be divided by initial image (f) 

norm to free from the initial image pixel range influence on the final result, (Δnorm, Eq. (3)):  
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Afterwards the derivative of Δnorm is calculated (dΔ, Eq. (3)). Finally, the derivative value is 

divided by the difference obtained for two first steps, (tol, Eq. (3)). 

The question which may appear while deciding to use the VID scheme is a choice of the 

most suitable decomposition model. VID is a general term encompassing a family of 

algorithms, where image is decomposed during the minimization of some, especially tailored 

functionals. The definition of the minimized functional has the greatest impact on the 

decomposition results and each solution has its advantages and disadvantages, which need to 

be considered during matching the model to the specific application. Fringe pattern prefiltration 

is not an usual filtration problem due to the unique characteristic of the filtered images, such as 

its periodicity, self-similarity and clear distinction into three components: background, fringes 

and noise. In this contribution we perform the analysis of three the most commonly used VID 
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models: TV-L2, TV-H-1 and TV-G weighting their accuracy against the calculation complexity 

in the presence of different carrier fringes frequencies from fully off-axis to quasi on-axis 

setups. To the best of our knowledge such discussion appears for the first time in the context of 

fringe pattern background and fringes separation. 

In this paper we propose the deep learning-based acceleration of uVID algorithm. Neural 

network-based solutions were already applied to support fringe pattern analysis on different 

stages, e.g., prefiltration [61-67], optimization of the window parameters for Fourier transform 

[68], phase estimation [69-75], phase unwrapping [76-82] and local fringe density map 

estimation [83]. Nevertheless, in this paper deliberately another approach was chosen than to 

directly determine the fringe pattern background filtration result by the neural network as an 

alternative to the solutions proposed in [66,67]. Developed convolutional neural network called 

DeepVID was taught to map the performance of the stopping criterion and to predict the number 

of iterations needed for uVID. We would like to highlight that the prefiltration algorithm has a 

crucial impact onto the final accuracy of fringe pattern analysis and therefore the outcome of 

the optical measurement. It should be mentioned that the use of neural network to replace the 

mathematically rigorous algorithmic solution such as VID may raise legitimate metrological 

concerns, as it was already noticed and discussed in [75, 83]. For that reason, in our work 

instead of developing another fully neural network-based solution the fringe pattern filtration 

is performed by classical, mathematically rigorous and versatile solution and only accelerated 

by the neural network, which in any way did not influence the final result. The working 

principle of proposed solution is presented in Fig. 1, which constitutes our novel approach. 

 

Fig. 1. Scheme of the proposed deep learning-based acceleration of the VID. 

The paper is constructed as follows: section 2 provides the analysis of the VID model 

implemented in uVID approach comparing it with other known models and describes in detail 

which part of the automatized model is the most computationally expensive, section 3 describes 

the proposed acceleration of uVID-based on the convolutional neural network and its numerical 

verification, section 4 contains experimental evaluation of the proposed algorithm, whereas 

section 5 concludes the paper.         

2. Analysis of automatized variational image decomposition model with 
regard to fringe pattern filtration  

The estimation of the decomposition components in VID is performed by the minimization of 

the appropriately selected functionals. In the context of fringe pattern prefiltration in order to 

obtain the background-fringes separation both of the components need to be modelled in the 

selected well-suited function space, where minimized functional is defined as the norm. 

Generally, in the variational models the norm connected with the background part estimation 

is defined with the use of quantity called Total Variation (TV) [49]. The function space for 

which the TV is finite is the space of the functions with bounded variation (BV space). Because 

of the TV properties the BV space functions are smooth but can have discontinuities along line, 

which means that the image edges are not going to be smoothed.  

The selection of function space for modelling the fringes part of the decomposition is a 

much more complicated issue. Historically first function space used for the definition of the 

image texture (in the context of fringe pattern prefiltration oscillatory part of the image) was L2 

space [49]. The minimization with the use of L2 norm assumes that the texture has an overall 

small energy and disregards the oscillations. For that reason, the TV-L2 decomposition model 

Page 4 of 19AUTHOR SUBMITTED MANUSCRIPT - JOPT-109993.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



provides the poor differentiation between the fringes (oscillations) and noise. The improvement 

was made using two approaches based on gradient projection minimization and frequency 

analysis. The first one was done with the use of the norm in the Banach space called G space 

[50-52]. The functions on G space can preserve the local characteristics well and have a small 

norm for the oscillating patterns. Because of that, fringes can be easily caught with an energy 

minimization process and distinguished from the noise. The second approach is performed 

using the Hilbert (H-1) space [53], where the norm is calculated using weighted Fourier 

transform. This norm can favor the oscillation simply by adjusting the weights that are large 

for the low frequencies and small for high frequencies. Additionally, the Hilbert norm is 

expected to be low for locally parallel structures (fringes) and high for generally random and 

uncorrelated noise. In this section we will provide the comparison between three different VID 

models: TV-L2, TV-G (further applied in unsupervised VID algorithm [57]) and TV-H-1 

expanding the understanding of their use for a specific task of fringe pattern prefiltration and 

the role of the number of performed iterations. It is the first such analysis reported and adds to 

the overall novelty of the paper. 

2.1. Unsupervised variational image decomposition model performance in 
comparison to other known models   

The state-of-the-art in the VID models, especially in the context of fringe pattern prefiltration, 

provides the three components decomposition, which means that the noise component is 

minimized prior to the background and texture components separation. For that reason, in this 

work, we focus solely onto the background and fringes separation and assume that the denoising 

was already accurately performed with the use of, e.g., block-matching 3D denoising algorithm 

(BM3D) [84,85]. The capability of the BM3D in the context of fringe pattern denoising was 

already discussed and proven in our previous works [57,86]. Here in our further numerical 

discussion, we simulated the noiseless fringe pattern series satisfying the relation: 

𝐼(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) + 𝑐𝑜𝑠 (𝜑(𝑥, 𝑦) +
2𝜋

𝑇
𝑥),    (4) 

where 𝑥, 𝑦  are the image coordinates simulated using Matlab function meshgrid(1:512), 

𝑎(𝑥, 𝑦) is a Gaussian function simulated low-frequency fringe pattern background component, 

𝑇 is carrier fringe period and 𝜑(𝑥, 𝑦) denotes phase modulation simulated here as the shape of 

an unstressed red blood cell described by the equation of Evans and Skalak [87]. The dynamic 

range of simulated phase function was kept on the relatively small level of 1.23 rads with 

maximum phase difference in adjacent pixels equal to 0.02 rads. That way our numerical 

analysis was mainly focused onto the sensitivity of different models rather than specific local 

characteristics of analyzed fringe patterns since introduced phase function does not strongly 

disturb the shape of carrier fringes. During the simulations the fringes period is changed in the 

extremely wide range from 4 px (high frequency fringes close to the limits defined by Nyquist 

sampling theorem) to 172 px (corresponding to the case with 3 fringes in the field of view, 

which is a troublesome situation for background and fringes separation).  

The results presented in Fig. 2 prove that the variational image decomposition keeps the 

prefiltration errors on the reasonable level for the whole range of simulated carrier fringes 

periods in the case of all analyzed decomposition models, which proves the universality of this 

classical fringe pattern prefiltration approach. Nevertheless among all analyzed models, the 

TV-G model provides the most accurate and stable results and it was proven that TV-G model 

outperforms other VID models in the context of fringe pattern prefiltration both considering 

calculation time and its accuracy. It can be seen in Fig. 2(a) that in the range of lower and 

medium carrier fringes periods (off-axis and slightly off-axis cases) TV-G provides the highest 

prefiltration accuracy and in the range of high carrier fringes periods (above 80 px) similar and 

the most accurate results were provided by TV-G and TV-H-1. The differences in the 

performance of three analyzed VID models are subtle, especially in the case of low fringes 

periods. As it has already been mentioned the main difference between TV-L2, TV-G and TV-
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H-1 is their ability to separate the fringes and noise. Changing the model parameters one can 

control the denoising process keeping in mind that there is a trade-off between the level of noise 

left in the image and preservation of low fringes periods. Once the noise has already been 

minimized mentioned trade-off is no longer a problem and the regularization parameters can 

be set arbitrarily high without the risk of preservation of the noise together with the low fringe 

periods. Nevertheless, the TV-H-1 model is the most computationally expensive, which can be 

clearly seen in Fig.2(b), where the calculation time of discussed models is presented. The TV-

L2 model is the simplest and the fastest one, but at the same time it provides the weakest 

differentiation between high fringes periods and the background. In the context of fringe pattern 

background and fringes separation the TV-G model was chosen for further improvement in 

uVID algorithm because it provides the most accurate results without adding unnecessary 

computational complexity.  
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Fig. 2. The performance comparison of three different VID models: (a) fringe pattern 
prefiltration accuracy, (b) time of the calculations, (c), (d), (e), (f) chosen characteristic fringe 

patterns and (g), (h), (i), (j) their respective Fourier spectra. 

2.2. Time cost of unsupervised variational image decomposition stopping criterion 

The main reason why, in the past, the fringe pattern prefiltration with the use of TV-G model 

was an arduous process was a need of adjusting the parameters values with the change of fringe 

pattern characteristics. The most troublesome issue to address is the fact that with the change 

of carrier fringes periods the number of iterations needed for the background and fringes 

separation changes. The mentioned relation can be clearly seen in Fig. 3, where using the 

simulated data with known ground truth prefiltered images the number of iterations was defined 

by the minimum root-mean-squared error (RMSE). Nevertheless, the relationship between the 

input fringe pattern characteristics and the proper number of TV-G iterations is not 

straightforward since there are a lot of factors to consider, e.g., the carrier fringes period, the 

dynamic range and complexity of measured phase function, the contrast of fringes, the 

background characteristics, etc. The introduction of the stopping criterion for the TV-G 

iterative process [57] allowed for the automation of calculations and made its use very simple. 

The reliability and versatility of the stopping criterion performance was achieved at the expense 

of the increase of the algorithm’s numerical complexity. The calculation time of a single TV-

G iteration increases 9.5 times (from 0.002 seconds to 0.019 seconds) for the small (100 x 100 

px) image size and 31.2 times (from 0.33 seconds to 10.3 seconds) for the image size of 2600 

x 2600 px after the introduction of stopping criterion, which is caused mainly because costly 

matrix norms calculations. The calculation time analysis throughout this paper was performed 

with the use of portable personal computer with parameters: Intel Core i5-10310U(CPU), 

16GB(RAM), Windows 10(OS) and Matlab computational environment. As it can be clearly 

seen on the chart presented in Fig. 4 the calculation time of the single TV-G iteration increases 

exponentially with the increase of the analyzed image size. Keeping in mind that for some 

fringe patterns there is a need of the calculation of few thousands of iterations to get a good 

quality fringes and background separation one can notice that the simplification of a stopping 

criterion is an issue to be addressed.     

 

Fig. 3. Relation between the needed TV-G iteration number and the change of fringe pattern 

characteristic. 
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Fig. 4. Relation between the image size and the single TV-G iteration calculation time before 

and after introduction of tolerance parameter. 

3. Fully automatic and accelerated variational image decomposition 
dedicated to fringe pattern filtration 

As it was already mentioned the definition of the relationship between the needed number of 

TV-G model iterations and analyzed fringe pattern characteristics is not an easy task. For that 

reason instead of searching for the specific analytical and numerical solution we decided to use 

the advances of programming based on neural networks to define this crucial uVID parameter. 

In this approach the algorithm’s input-output relationship is found during the neural network 

learning process and there is no need for its a priori analytical definition. In general, in the case 

of image analysis the most suitable and flourishing type of neural networks are convolutional 

neural networks (CNNs) [62-72, 74-83], where the basic mathematical operation in each neuron 

is defined by the convolution.  

From the analytical point of view in order to find a solution to the complicated problem one 

should break it down to a combination of several simpler problems and find their solutions. In 

the case of imaging the basic numerical operation describing it is convolution. Similarly to the 

analytical approach the CNNs using the convolutional layers are walking towards the searched 

solution to the complex problem simplifying it in each layer. Keeping that in mind it is clear 

that the deeper the neural network is, the more complex problems it can address. The 

advancement of neural network-based programming over the classical one lays in the definition 

of the basic blocks building the searched solution, in which case they are not set arbitrarily by 

the algorithm’s author but they are found during the network learning process (either supervised 

or unsupervised). In the case of the DeepVID network we decided to work with supervised 

learning. There are two reasons supporting the simplicity of this approach: we are dealing with 

noiseless images and in general the fringe patterns (interferograms, holograms, moiregrams, 

shadowgrams, etc.) can be described as spatially self-similar patterns, which makes it easy to 

receive the accurate learning outcome using purely simulated data [83].  

The data simulated for the DeepVID supervised learning process consist of 10000 images 

from which 9400 images are building the training dataset and 600 images are used for the 

validation during training, but are of the same origin as training dataset (simulated with the 

phase function simulated by tailored polynomials). Additionally, the test dataset of 100 images 

was simulated, which were not seen by the network during training and are of different origin 

than training dataset (the phase function defined as unstressed red blood cell shape [87], which 

is not a polynomial). Test dataset will be used throughout the paper for DeepVID performance 

analysis. The task given to the DeepVID neural network is to map the performance of tolerance 

stopping criterion [57] but without the troublesome and time-consuming calculation of criterion 
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value in every Chambolle projection iteration [88]. The accuracy and robustness of proposed 

stopping criterion was discussed and proven in [57] and in the scope of this paper we are not 

aiming at improving the accuracy of uVID solution but to accelerate it while maintaining its 

high universality. Based on that the DeepVID training data was labelled calculating the 

tolerance stopping criterion and finishing the iterative process after appropriate (defined in 

[57]) level of criterion value is achieved. Both training and validation datasets consisted of 

different carrier periods so 3 to dozens of fringes were visible in the image. Dataset phase 

functions were simulated with the use of two-dimensional polynomial functions of orders from 

2 to 5 sampled across X and Y axes. In order to simplify the dataset in the simulated 

interferograms the background function was set as constant, as the uVID iteration number is 

mostly influenced by the characteristic of the fringe pattern rather than the background 

modulation. This statement was confirmed by the analysis presented in Fig. 5, where all four 

presented curves calculated for different types of background modulation are highly similar. 

The maximum difference between the estimates of the number of iterations in the presence of 

different background types does not exceed 3% of the nominal value.   

 

Fig. 5. Influence of the background modulation onto estimated Chambolle projection iteration 

number: (a) relation between iteration number and carrier fringes period with the presence of 

different types of background, (b) uniform background, (c) high background modulation, (d) 
gaussian background, (e) diagonal background and examples of the analyzed fringe patterns with 

(f) uniform background, (g) high background modulation, (h) gaussian background, (i) diagonal 

background. 

3.1. Proposed DeepVID network architecture 

As it was already highlighted the purpose of the proposed neural network is to predict the 

number of TV-G model iterations needed for successful fringe term decoupling for a given 

fringe pattern. The approach that has been taken is different than in majority of neural network 

related papers, because neural network is not going to replace the mathematically reliable 
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classical fringe pattern prefiltration approach. Another application of neural networks has been 

presented here, similar to the one presented in [68], where neural network was used for 

optimization of window shape in windowed Fourier transform instead of fully replacing the 

Fourier transform performance. The input of DeepVID neural network is assumed to be 

512x512 px grayscale image while the returned output is a single floating number. Even though 

the single-valued output could indicate that we are facing a classification problem, the problem 

to be solved by the neural network is regression in nature. The neural network input-output 

relationship we are looking for during the learning process has a continuous distribution 

depending on fringe pattern characteristic rather than some discrete, categorizing values. 

The proposed network architecture is a simple CNN encoder, shown in Fig. 6, consisting of 

8 convolutional layers with ReLU as an activation unit and batch normalization. The input of 

the network is a 512x512 px grayscale image, while with the last convolutional layer the 

network proceeds to the output of the network as 1x1. In order to prevent overfitting, as it was 

suggested in [89], the 50% dropout regulation was applied on the first convolutional layer. 

Preventing overfitting is extremely important in our approach, because the training process was 

performed using purely simulated data with the phase function defined by tailored polynomials, 

while the target is to use DeepVID on experimentally recorded data, where phase function does 

not necessarily have to be defined using polynomials.  

 

Fig. 6. Scheme of the proposed DeepVID architecture. 

The network architecture examined in this paper was trained during the process of the 

supervised learning with the use of a computer-generated fringe pattern data set. Platform used 

for deep network training: Intel Core i7-11800H(CPU), NVIDIA GeForce 3050Ti(GPU), 

64GB(RAM), Windows 10(OS), Matlab Deep Learning ToolboxTM(Software). The learning 

parameter values, like learning rate (0.001), type of optimizer (ADAM), number of training 

(9400) and validation (600) data samples have been selected after many trial iterations. During 

the learning process proposed network learn to match the input image (fringe pattern) to a target 

label (number of Chambolle projection iterations [88]). The loss function used during the 

training is a half-mean-squared-error and is defined as follows: 

𝑙𝑜𝑠𝑠 =
1

2𝑁
∑(𝑦(𝑖) − 𝑡(𝑖))2,

𝑁

𝑖=1

 

where N is mini-batch size, y(i) is the neural network estimate and t(i) is a known ground truth 

for i-th data instance. Network trained that way can subsequently be used to perform a 

prediction on a new input image without knowing the ground-truth iteration number and 

therefore significantly reduces the calculation time. During the analysis of different sets of 

learning parameters values we found the interesting relationship between the neural network 

accuracy and the mini-batch size, which is presented in Fig. 7 using the test dataset. The bigger 

the mini-batch size, the more accurate learning outcome of DeepVID network. This relationship 

between neural network accuracy and mini-batch size may seem unusual at a first sight, since 

we would expect that mini-batch size has negligible effect on learning accuracy, but it can be 

easily explained. The very small mini-batch size connected with the dropout regularization 

results in insufficient generalization of neural network learned model due to the reduced cross-

correlation between individual data instances from the training dataset. In other words, we are 

preventing the overfitting of the neural network so effective that we introduced underfitting.  
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As it can be seen in Figs. 7(a)-7(c) small mini-batch size results in fixation of the network 

outcome around a certain constant value since during the learning process the network does not 

comprehend the general features of the whole training dataset. Nevertheless, underfitting is not 

an issue that cannot be easily handled by adjusting the training parameters. With the increase 

of the mini-batch size the neural network learning outcome starts to fit to the expected line 

defined by the ground truth. The best alignment was achieved for the mini-batch size equal to 

350, see Fig. 7(f), which at the same time was a learning platform computational capacity limit 

and that parameter defines the final DeepVID neural network learning process. We chose this 

way to deal with the underfitting instead of simply removing the dropout layer, because without 

the dropout layer regardless the mini-batch size the neural network overfits to the simulated 

training dataset and cannot generalize correctly for the experimental reality. 

 

Fig. 7. Scatter plot (blue dots) of the predicted value of iterations vs their true values (red line) 

for mini-batch size equal to (a) 1, (b) 2, (c) 10, (d) 100, (e) 200 and (f) 350. 

3.2. Deep learning-based acceleration of VID 

The goal of the work presented in this paper was the acceleration of the algorithmic solution 

called uVID without compromising the quality of estimated filtration results. In order to fully 

validate the efficiency of proposed DeepVID solution we presented in Fig. 8 three charts 

estimated with the use of test dataset: first verifying the accuracy of our neural network in 

mapping the performance of tolerance stopping criterion (Fig. 8(a)), second presenting the gain 

in the calculation time (Fig. 8(b)) and third proving that the VID-based fringe pattern filtration 

accuracy was not decreased in comparison with uVID (Fig. 8(c)). Analyzing the results 

presented in Fig. 8(a) and 8(c) it can be clearly seen that DeepVID maps the performance of 

the tolerance parameter without compromising the filtration accuracy. Additionally, for all 

images included in the test dataset the calculations were significantly accelerated. The 

calculation time needed for the fringe pattern prefiltration was shortened around 2-4 times (3 

times on average). In general, the reduction of the calculation time remains at the level of 60-

75% for the whole range of analyzed fringe patterns. 
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Fig. 8. Analysis of DeepVID performance on simulated test dataset. Relationship between carrier 

fringes period and (a) estimated number of iterations, (b) calculation time and (c) RMSE of 

filtration results.  

4. Experimental verification 

Even though our neural network-based solution was taught on the simulated fringe patterns 

(with fixed phase function and varying carrier fringes period) it should ultimately work on the 

experimentally recorded data. As it was already mentioned the biggest advantage of using the 

tolerance stopping criterion was its universality and independence from the specific fringe 

pattern characteristic and origin. For that reason, we decided to verify the performance of 

DeepVID with the use of four contrasting cases: the TPS series of interferograms of single 

polystyrene microsphere of approx. 90 um in diameter, single interferogram of healthy prostate 

cells (RWPE) [90], single interferogram encoding the droplet shape [91-93] and besselogram 

obtained as the amplitude from the TPS series of temporal averaging interferometry based 

interferograms [11, 60]. It should be highlighted that DeepVID solution does not perform 

purely neural network-based fringe pattern prefiltration. It is not dedicated to the specific type 

of data as it is in the case of the filtration performed fully by the neural network for, e.g., fringe 

projection [66]. DeepVID is thus as versatile as the capable and well-established uVID itself 

[57]. As it was explained, in this paper we are focused onto the fringes-background separation 

with previously minimized noise component and for that reason all experimentally recorded 

data was prefiltered with the use of BM3D denoising method.  

In Table 1 the results of the analysis of 5 phase-shifted interferograms are presented. The 

complexity of the analyzed data should be highlighted since we are dealing here with closed 

fringes, which are very troublesome for single-frame fringe pattern analysis techniques, 

especially around central fringe. Additionally, some disruptions and diffraction effects are 

clearly visible at the boundary between the microsphere surface and the medium. Despite this, 

the DeepVID solution provided sufficiently accurate results since the maximum difference 

between number of iterations defined by tolerance stopping criterion (considered as a ground 

truth) and neural network is 66 iterations. Furthermore, the prediction inaccuracy did not 

influence the filtration results since RMSE stays on the same level for both approaches. 

Similarly to the case of simulated test dataset the calculations were shortened by 3-4 times.  

The interferogram of healthy prostate cells presented in Table 2 is a representative of 

different type of fringe patterns, where carrier fringes period is sufficiently low not to cause the 
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appearance of closed fringes. In that case the Chambolle projection iteration [88] number 

predicted by DeepVID is highly accurate since the difference between neural network-based 

estimate and number defined by tolerance stopping criterion is only 6 (~2% of nominal value). 

The reduction of calculation time is significant and consistent with our previous analyses since 

it was shortened by 2.4 times.  

Highly cumbersome case of fringe pattern is presented in Table 3, where the interferogram 

encoding the droplet shape is presented. It contains of regions with very dense fringes and at 

the same time of regions of extremely low density. Nevertheless, even in that case the accuracy 

of the uVID iterations number estimated by DeepVID was proven. The uVID-based number of 

iterations is equal to 519, while estimate retrieved by DeepVID is equal to 547. The capability 

to deal with that type of data in the case of uVID was already discussed [57], while here it is 

demonstrated that DeepVID does not limit in any way the analysis options available with the 

use of standard uVID approach. The gain in the meaning of calculation time reduction is also 

clearly noticeable since the calculations were shortened by 4.3 times. 

Finally, in Table 4 completely different fringe pattern is presented where the profile of 

fringes is not described by cosine function but by the Bessel function. Even though the 

DeepVID neural network was trained with the use of typical, cosine fringe patterns the 

prediction of uVID iterations number is highly accurate. The uVID number of iterations 

estimated with the use of already tested and validated for besselograms filtration [60] tolerance 

parameter is equal to 1272, while DeepVID predicted iteration number is equal to 1203. The 

reduction of calculation time is the most noticeable and because of the high number of needed 

iterations calculations were shortened by 4.7 times.  

The examples of fringe pattern background and fringes separation with the use both 

DeepVID and uVID approach of the analyzed images are presented in Fig. 9, where it was 

proven that there is no noticeable difference between uVID and its neural network accelerated 

version. To prove that, we used Quality Index (QI) [94]. QI takes values from -1 to 1, where 

maximum similarity between analyzed and reference images is received for QI=1. For fringes 

presented in Fig. 9(b) and Fig. 9(d) QI=0.9991, for fringes presented in Fig. 9(f) and Fig. 9(h) 

QI=0.9998, for fringes presented in Fig. 9(j) and Fig. 9(l) QI=0.9935, for fringes presented in 

Fig. 9(n) and Fig. 9(p) QI=0.9923. All important uVID attributes, such as details preservation 

and ability to work with wide range of fringe pattern characteristics, are well preserved. 

Computation time is greatly reduced, thus the goal of this study is successfully achieved. It 

should also be highlighted that with the DeepVID approach the neural network estimate does 

not need to be highly precise unlike in the case where the neural network provides fully 

background and fringes estimation. In the case of complex fringe patterns and high iteration 

number the RMSE curve of uVID filtration results flattens and the estimates does not change 

significantly even for several dozens of iterations.   

Table 1. Analysis of the experimentally recorded TPS series of interferograms with phase shift equal to π/2. 

     

number of Chambolle projection iterations estimated with the use of tolerance stopping criterion (ground truth) 

583 591 572 572 581 

number of Chambolle projection iterations estimated with the use of DeepVID neural network 

638 655 647 622 635 

time needed for the calculations with the use of tolerance stopping criterion [s] 
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66 42 40 40 41 

time needed for the calculations with the use of DeepVID prediction [s] 

16 14 15 15 15 

reduction of the calculation time 

>4 times 3 times ~3 times ~3 times ~3 times 

RMSE of the filtration results estimated after the iteration number defined by tolerance stopping criterion  

0.1044 0.102 0.098 0.0907 0.1454 

RMSE of the filtration results estimated after the iteration number defined by DeepVID  

0.1065 0.1053 0.1027 0.0935 0.1468 

Table 2. Analysis of the experimentally recorded interferogram of healthy prostate cells (RWPE). 

 

number of Chambolle projection iterations estimated with the use of 

tolerance stopping criterion DeepVID prediction 

312 318 

time needed for the calculations with the use of 

tolerance stopping criterion DeepVID prediction 

18.2 s 7.6 s 

reduction of the calculation time: 2.4 times 

Table 3. Analysis of the interferogram encoding the droplet shape. 

 

number of Chambolle projection iterations estimated with the use of 

tolerance stopping criterion DeepVID prediction 

519 547 

time needed for the calculations with the use of 

tolerance stopping criterion DeepVID prediction 

43 s 10 s 

reduction of the calculation time: 4.3 times 

Table 4. Analysis of the besselogram encoding the amplitude of the higher vibration mode of square 

micromembrane. 

number of Chambolle projection iterations estimated with the use of 

tolerance stopping criterion DeepVID prediction 

1272 1203 

time needed for the calculations with the use of 

tolerance stopping criterion DeepVID prediction 

168 s 36 s 
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reduction of the calculation time: 4.7 times 

 

Fig. 9. The prefiltration results of fringe patterns presented in Tables 1-4. Microsphere 
interferogram background and fringes separation using (a), (b) DeepVID approach and (c), (d) 

uVID approach. RWPE interferogram background and fringes separation using (e), (f) DeepVID 

approach and (g), (h) uVID approach. Droplet interferogram background and fringes separation 
using (i), (j) DeepVID approach and (k), (l) uVID approach. Besselogram background and 

fringes separation using (m), (n) DeepVID approach and (o), (p) uVID approach. 

5. Conclusion 

The main novelty of this paper is connected with the meaningful acceleration of unsupervised 

VID algorithm [57] with the use of convolutional neural network. The biggest advantage of 

uVID over other known VID-based fringe pattern prefiltration solutions is its automation, 

versatility and robustness. It was achieved through the introduction of the tolerance stopping 

criterion allowing the automatic definition of proper number of algorithm’s iterations. On the 

other hand, introduced stopping criterion significantly increased the computation time of a 

single iteration and by doing so, it extended the prefiltration time. Proposed DeepVID neural 

network has been taught to map the performance of the previously introduced [57] tolerance 
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stopping criterion. It is important to emphasize that the purpose of using neural network was 

not to increase the accuracy of already highly precise uVID fringe pattern prefiltration 

algorithm, but to accelerate the uVID calculations without jeopardizing its efficiency. DeepVID 

allows to instantly determine the proper Chambolle projection iteration [88] number omitting 

the time-consuming process of stopping criterion calculation. The performance of DeepVID 

solution was successfully tested using the experimentally recorded data. It was proven that the 

time of the VID prefiltration was shortened up to 4-fold. 

Another important novelty of this paper is the analysis and comparison of three VID models: 

TV-L2, TV-H-1 and TV-G in the context of a specific task of fringe pattern prefiltration. It is 

the first time when the issue is discussed considering the calculation complexity of different 

models and their performance for different types of fringe patterns (with high and low 

frequency components). Conclusions drawn from mentioned analysis allow to determine TV-

G model as the most suitable for prefiltering fringe patterns, which confirmed the efficiency of 

uVID approach. 
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